Sample records for achieve sustained release

  1. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    PubMed

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  2. Release behavior of tanshinone IIA sustained-release pellets based on crack formation theory.

    PubMed

    Liu, Pan; Li, Jin; Liu, Jianping; Yang, Jikun; Fan, Yongqing

    2012-08-01

    The objective of this study was to investigate the drug release mechanism and in vivo performance of Tanshinone IIA sustained-release pellets, coated with blends of polyvinyl acetate (PVAc) and poly(vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) graft copolymer. A formulation screening study showed that pellets coated with PVAc-PVA-PEG at a ratio of 70:30 (w/w) succeeded in achieving a 24 h sustained release, irrespective of the coating weight (from 2% to 10%). Both the microscopic observation and mathematical model gave further insight into the underlying release mechanism, indicating that diffusion through water-filled cracks was dominant for the control of drug release. In vivo test showed that the maximum plasma concentration of sustained-release pellets was decreased from 82.13 ± 17.05 to 40.50 ± 11.72 ng mL as that of quick-release pellets. The time of maximum concentration, half time, and mean residence time were all prolonged from 3.80 ± 0.40 to 8.02 ± 0.81 h, 4.28 ± 1.21 to 8.18 ± 2.06 h, and 8.60 ± 1.59 to 17.50 ± 2.78 h, compared with uncoated preparations. A good in vitro-in vivo correlation was characterized by a high coefficient of determination (r = 0.9772). In conclusion, pellets coated with PVAc-PVA-PEG could achieve a satisfactory sustained-release behavior based on crack formation theory. Copyright © 2012 Wiley Periodicals, Inc.

  3. Double loaded self-decomposable SiO2 nanoparticles for sustained drug release

    NASA Astrophysics Data System (ADS)

    Zhao, Saisai; Zhang, Silu; Ma, Jiang; Fan, Li; Yin, Chun; Lin, Ge; Li, Quan

    2015-10-01

    Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood circulation with a Tmax of about 8 h, afterwards a long lasting release pattern was achieved to maintain drug systemic exposure with a plasma elimination half-life of approximately 28 h. We disclosed that the absorbed drug molecules contributed to the initial fast release for quickly reaching the therapeutic level with relatively higher plasma concentrations, while the ``grown-in'' drugs were responsible for maintaining the therapeutic level via the later controlled slow and sustained release. The present nanoparticle carrier drug configuration and the loading/maintenance release mechanisms provide a promising platform that ensures a prolonged therapeutic effect by controlling drug concentrations within the therapeutic window--a sustained drug delivery system with a great impact on improving the management of chronic diseases.Sustained drug release for a long duration is a desired feature of modern drugs. Using double-loaded self-decomposable SiO2 nanoparticles, we demonstrated sustained drug release in a controllable manner. The double loading of the drugs was achieved using two different mechanisms--the first one via a co-growth mechanism, and the second one by absorption. A two-phase sustained drug release was firstly revealed in an in vitro system, and then further demonstrated in mice. After a single intravenous injection, the drug was controllably released from the nanoparticles into blood

  4. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling.

    PubMed

    Prakash Upputuri, Ravi Theaj; Azad Mandal, Abul Kalam

    2017-01-01

    Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro , antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL -1 . In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.

  5. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride.

    PubMed

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A

    2016-01-01

    The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F 10 composed of 28.5% Eudragit RSPM, 3% NaHCO 3 , and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F 10 where the drug release percentage was 96.51%±1.75% after 24 hours ( P =0.031). The pharmacokinetic results indicated that the area under the curve (AUC 0-∞ ) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton ® ) and the relative bioavailability of the sustained-release formulation F 10 increased to 187.80% ( P =0.022). The prepared floating tablets of ITO HCl (F 10 ) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.

  6. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release

    PubMed Central

    Li, Xiao; Zhao, Yang; Wang, Kaijie; Yang, Xiaohui; Zhu, Siquan

    2017-01-01

    To improve the efficacy of anti-inflammatory factors in patients who undergo cataract surgery, poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) hydrogels containing β-cyclodextrin (β-CD) (pHEMA/MMA/β-CD) were designed and prepared as intraocular lens (IOLs) biomaterials that could be loaded with and achieve the sustained release of dexamethasone. A series of pHEMA/MMA/β-CD copolymers containing different ratios of β-CD (range, 2.77 to 10.24 wt.%) were obtained using thermal polymerization. The polymers had high transmittance at visible wavelengths and good biocompatibility with mouse connective tissue fibroblasts. Drug loading and release studies demonstrated that introducing β-CD into hydrogels increased loading efficiency and achieved the sustained release of the drug. Administering β-CD via hydrogels increased the equilibrium swelling ratio, elastic modulus and tensile strength. In addition, β-CD increased the hydrophilicity of the hydrogels, resulting in a lower water contact angle and higher cellular adhesion to the hydrogels. In summary, pHEMA/MMA/β-CD hydrogels show great potential as IOL biomaterials that are capable of maintaining the sustained release of anti-inflammatory drugs after cataract surgery. PMID:29244868

  7. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    PubMed

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  8. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride

    PubMed Central

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed MA; Hassan, Omiya A

    2016-01-01

    Purpose The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Materials and methods Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. Results In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031). The pharmacokinetic results indicated that the area under the curve (AUC0–∞) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton®) and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022). Conclusion The prepared floating tablets of ITO HCl (F10) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability. PMID:28008229

  9. [Study on sustained release preparations of Epimedium component].

    PubMed

    Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin

    2015-04-01

    The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.

  10. Lipophilic nalmefene prodrugs to achieve a one-month sustained release.

    PubMed

    Gaekens, Tim; Guillaume, Michel; Borghys, Herman; De Zwart, Loeckie L; de Vries, Ronald; Embrechts, Roger C A; Vermeulen, An; Megens, Anton A H P; Leysen, Josée E; Herdewijn, Piet; Annaert, Pieter P; Atack, John R

    2016-06-28

    Nalmefene is an opioid antagonist which as a once-a-day tablet formulation has recently been approved for reducing ethanol intake in alcoholic subjects. In order to address the compliance issue in this patient population, a number of potential nalmefene prodrugs were synthesized with the aim of providing a formulation that could provide plasma drug concentrations in the region of 0.5-1.0ng/mL for a one-month period when dosed intramuscular to dogs or minipigs. In an initial series of studies, three different lipophilic nalmefene derivatives were evaluated: the palmitate (C16), the octadecyl glutarate diester (C18-C5) and the decyl carbamate (CB10). They were administered intramuscularly to dogs in a sesame oil solution at a dose of 1mg-eq. nalmefene/kg. The decyl carbamate was released relatively quickly from the oil depot and its carbamate bond was too stable to be used as a prodrug. The other two derivatives delivered a fairly constant level of 0.2-0.3ng nalmefene/mL plasma for one month and since there was no significant difference between these two, the less complex palmitate monoester was chosen to demonstrate that dog plasma nalmefene concentrations were dose-dependent at 1, 5 and 20mg-eq. nalmefene/kg. In a second set of experiments, the effect of the chain length of the fatty acid monoester promoieties was examined. The increasingly lipophilic octanoate (C8), decanoate (C10) and dodecanoate (C12) derivatives were evaluated in dogs and in minipigs, at a dose of 5mg-eq. nalmefene/kg and plasma nalmefene concentrations were measured over a four-week period. The pharmacokinetic profiles were very similar in both species with Cmax decreasing and Tmax increasing with increasing fatty acid chain length and the target plasma concentrations (0.5-1.0ng/mL over a month-long period) were achieved with the dodecanoate (C12) prodrug. These data therefore demonstrate that sustained plasma nalmefene concentrations can be achieved in both dog and minipig using nalmefene

  11. Oral sustained-release suspension based on a lauryl sulfate salt/complex.

    PubMed

    Kasashima, Yuuki; Uchida, Shinya; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Namiki, Noriyuki

    2016-12-30

    The objective of this study was to evaluate the feasibility of lauryl sulfate (LS) salt/complex as a novel carrier in oral sustained-release suspensions. Mirabegron, which has a pH-dependent solubility, was selected as the model drug. Sodium lauryl sulfate (SLS) was bound to mirabegron in a stoichiometric manner to form an LS salt/complex. LS salt/complex formulation significantly reduced the solubility of mirabegron and helped mirabegron achieve sustained-release over a wide range of pH conditions. Microparticles containing the LS salt/complex were prepared by spray drying with the aqueous dispersion of ethylcellulose (Aquacoat ® ECD). The diameter of the microparticles was less than 200μm, which will help avoid a gritty taste. In vitro results indicated the microparticles had slower dissolution profiles than the LS salt/complex. The dissolution rate could be controlled flexibly by changing the amount of Aquacoat ® ECD. The microparticle suspension retained the desired sustained-release property and dissolution profile after being stored for 30days at 40°C. In addition, the suspension displayed sustained-release behavior in dogs without a pronounced C max peak, which will help prevent side effects. These results suggest that microparticles containing LS salt/complex may be useful as a novel sustained-release suspension for oral delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Storage and sustained release of volatile substances from a hollow silica matrix

    NASA Astrophysics Data System (ADS)

    Wang, Jiexin; Ding, Haomin; Tao, Xia; Chen, Jianfeng

    2007-06-01

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO3 template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 mlperfume/mgcarrier) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  13. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.

  14. Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics

    PubMed Central

    Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing

    2013-01-01

    Background Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. Methods The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. Results The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. Conclusion PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity

  15. Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics.

    PubMed

    Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing

    2013-01-01

    Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity, with significantly slower pyridostigmine

  16. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.

    PubMed

    Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni

    2012-07-01

    Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Preparation and Characterization of Silymarin Synchronized and Sustained Release Dropping Pill.

    PubMed

    Liu, Zhi-Hong; Li, Xue-Jing; Huang, Ai-Wen; Zhang, Jing; Song, Hong-Tao

    2017-01-01

    This study aimed to develop a synchronized and sustained-release silymarin dropping pill, and to evaluate its pharmacokinetic characteristics. Polyoxyethylene stearate, glyceryl monostearate, and stearic acid were used to prepare the dropping pills. X-ray powder diffraction, differential scanning calorimetry, and release were used to evaluate its physicochemical properties. The plasma concentration of silybin in beagle dogs after oral administration of silymarin dropping pills and silymarin capsule was determined by RP-HPLC. Synchronized release was achieved with high similarity factor f2 values between every set of two of the five components. Mean plasma concentration-time curves of silymarin after oral administration of dropping pills in beagle dogs were in accordance with first-order absorption and open twocompartment model. The Tmax, Cmax, and AUC0-∞ of dropping pills in beagle dogs were 0.8750±0.13 h, 0.8183±0.07 μg·ml-1, and 2.274±0.90 μg·h·ml-1, respectively. Silymarin dropping pills prolonged in vivo exposure and reduced maximum in vivo concentration, achieving a stable level in the serum. The combination of solid dispersion technique and dropping pill formulation allowed synchronized release of multiple components in herbal medicine, and has potential application in the development of sustained release in herbal medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. [Cost-effective analysis of rotation from sustained-release morphine tablet to transdermal fentanyl of matrix type or sustained-release oxycodone tablet].

    PubMed

    Ise, Yuya; Wako, Tetsuya; Miura, Yoshihiko; Katayama, Shirou; Shimizu, Hisanori

    2009-12-01

    The present study was undertaken to determine the pharmacoeconomics of switching from sustained-release morphine tablet to matrix type (MT) of transdermal fontanel or sustained-release Oxycodone tablet. Cost-effective analysis was performed using a simulation model along with decision analysis. The analysis was done from the payer's perspective. The cost-effective ratio/patient of transdermal MT fontanel (22, 539 yen)was lower than that of sustained -release Oxycodone tablet (23, 630 yen), although a sensitivity analysis could not indicate that this result was reliable. These results suggest the possibility that transdermal MT fontanel was much less expensive than a sustained-release Oxycodone tablet.

  19. Sustained release of methotrexate through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2014-09-01

    To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.

  20. An Injectable System for Local and Sustained Release of Antimicrobial Agents in the Periodontal Pocket.

    PubMed

    Morelli, Laura; Cappelluti, Martino Alfredo; Ricotti, Leonardo; Lenardi, Cristina; Gerges, Irini

    2017-08-01

    Periodontitis treatments usually require local administration of antimicrobial drugs with the aim to reduce the bacterial load inside the periodontal pocket. Effective pharmaceutical treatments may require sustained local drug release for several days in the site of interest. Currently available solutions are still not able to fulfill the clinical need for high-quality treatments, mainly in terms of release profiles and patients' comfort. This work aims to fill this gap through the development of an in situ gelling system, capable to achieve controlled and sustained release of antimicrobial agents for medium-to-long-term treatments. The system is composed of micrometer-sized β-cyclodextrin-based hydrogel (bCD-Jef-MPs), featured by a strong hydrophilic character, suspended in a synthetic block-co-polymer solution (Poloxamer 407), which is capable to undergo rapid thermally induced sol-gel phase transition at body temperature. The chemical structure of bCD-Jef-MPs was confirmed by cross-correlating data from Fourier transform infrared (FTIR) spectroscopy, swelling test, and degradation kinetics. The thermally induced sol-gel phase transition is demonstrated by rheometric tests. The effectiveness of the described system to achieve sustained release of antimicrobial agents is demonstrated in vitro, using chlorhexidine digluconate as a drug model. The results achieved in this work disclose the potential of the mentioned system in effectively treating periodontitis lesions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 21 CFR 520.2260c - Sulfamethazine sustained-release tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfamethazine sustained-release tablets. 520....2260c Sulfamethazine sustained-release tablets. (a) Sponsor. See No. 053501 in § 510.600(c) of this chapter for use of an 8-gram sulfamethazine sustained-release tablet. (b) Conditions of use—(1) Amount. 8...

  2. Sustained-release subconjunctival 5-fluorouracil.

    PubMed

    Smith, T J; Ashton, P

    1996-09-01

    The purpose of this research was to obtain preliminary safety and efficacy data on a novel sustained-release 5-fluorouracil (5-FU) implant in high-risk glaucoma surgical patients. The implants were placed subconjunctivally in four patients undergoing high-risk trabeculectomy. The patients have been observed for approximately 2.5 years. In three of the four patients intraocular pressure was controlled at less than 21 mm Hg, with stabilization of the visual field. One patient had early failure. No untoward events were linked to the placement of the implant. Sustained-release systems for subconjunctival 5-FU may be useful in filter maintenance.

  3. Synchronized and sustained release of multiple components in silymarin from erodible glyceryl monostearate matrix system.

    PubMed

    Lu, Cheng; Lu, Yi; Chen, Jian; Zhang, Wentong; Wu, Wei

    2007-05-01

    Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane.

  4. Oral Sustained Release of a Hydrophilic Drug Using the Lauryl Sulfate Salt/Complex.

    PubMed

    Kasashima, Yuuki; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Uchida, Shinya; Namiki, Noriyuki

    2016-01-01

    The objective of this study was to establish the key factor of the lauryl sulfate (LS) salt/complex for sustained release of a hydrophilic drug at various physiological pH levels. Mirabegron is a hydrophilic drug that exhibits pH-dependent solubility. Sodium lauryl sulfate (SLS) bound to mirabegron in a stoichiometric manner. The formation of the LS salt/complex significantly reduced mirabegron solubility and helped achieve sustained release of mirabegron over a wide range of pH levels. In addition to SLS, other additives containing a sulfate group formed salts/complexes with mirabegron and reduced its solubility at different pH levels. Furthermore, octyl sulfate (OS), myristyl sulfate (MS), and cetyl sulfate (CS) salts/complexes, which contain alkyl chains of different lengths, showed a lower solubility than mirabegron and promoted sustained release of mirabegron. The rank order of solubility and dissolution rate were as follows: OS salt/complex>LS salt/complex>MS salt/complex>CS salt/complex, which corresponded to the rank of alkyl chain lengths. We conclude that the presence of a sulfate group and the length of the alkyl chain are key factors of the LS salt/complex for sustained release of a hydrophilic drug at various physiological pH levels.

  5. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles.

    PubMed

    Fan, Yan Liang; Hou, Han Wei; Tay, Hui Min; Guo, Wei Mei; Berggren, Per-Olof; Loo, Say Chye Joachim

    2017-10-01

    Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.

  6. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    NASA Astrophysics Data System (ADS)

    Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang

    2011-12-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.

  7. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect.

    PubMed

    Miao, Yanfei; Chen, Guoguang; Ren, Lili; Pingkai, Ouyang

    2016-09-01

    The purpose of this work was to develop self-nanomulsifying drug delivery systems (SNEDDS) in sustained-release pellets of ziprasidone to enhance the oral bioavailability and overcome the food effect of ziprasidone. Preformulation studies including screening of excipients for solubility and pseudo-ternary phase diagrams suggested the suitability of Capmul MCM as oil phase, Labrasol as surfactant, and PEG 400 as co-surfactant for preparation of self-nanoemulsifying formulations. Preliminary composition of the SNEDDS formulations were selected from the pseudo-ternary phase diagrams. The prepared ziprasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized ziprasidone-SNEDDS were used to prepare ziprasidone-SNEDDS sustained-release pellets via extrusion-spheronization method. The pellets were characterized for SEM, particle size, droplet size distribution and zeta potential. In vitro drug release studies indicated the ziprsidone-SNEDDS sustained-release pellets showed sustained release profiles with 90% released within 10 h. The ziprsidone-SNEDDS sustained-release pellets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation of Zeldox as a control. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolonged actions and enhanced bioavailability with no food effect was achieved simultaneously in ziprsidone-SNEDDS sustained-release pellets compared with Zeldox in fed state. The results indicated a sustained release with prolonged actions of schizophrenia and bipolar disorder treatment.

  8. Using Design To Achieve Sustainability

    EPA Science Inventory

    Sustainability is defined as meeting the needs of this generation without compromising the ability of future generations to meet their needs. This is a conditional statement that places the responsibility for achieving sustainability squarely in hands of designers and planners....

  9. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Matrix tablets for sustained release of repaglinide: Preparation, pharmacokinetics and hypoglycemic activity in beagle dogs.

    PubMed

    He, Wei; Wu, Mengmeng; Huang, Shiqing; Yin, Lifang

    2015-01-15

    Repaglinide (RG) is an efficient antihyperglycemic drug; however, due to its short half-life, patients are required to take the marketed products several times a day, which compromises the therapeutic effects. The present study was conducted to develop a hydrophilic sustained release matrix tablet for RG with the aims of prolonging its action time, reducing the required administration times and side effects and improving patient adherence. The matrix tablets were fabricated by a direct compression method, the optimized formulation for which was obtained by screening the factors that affected the drug release. Moreover, studies of the pharmacokinetics and hypoglycemic activity as measured by glucose assay kits were performed in dogs. Sustained drug releases profiles over 10h and a reduced influence of medium pHs on release were achieved with the optimized formulation; moreover, the in vivo performance of extended release formulation was also examined, and better absorption, a one-fold decrease in Cmax, a two-fold increase of Tmax and a prolonged hypoglycemic effect compared to the marketed product were observed. In conclusion, sustained RG release and prolonged action were observed with present matrix tablets, which therefore provide a promising formulation for T2D patients who require long-term treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold.

    PubMed

    Lim, Seng Han; Chia, Samuel Ming Yuan; Kang, Lifeng; Yap, Kevin Yi-Lwern

    2016-07-01

    Carbamazepine is the first-line anti-epileptic drug for focal seizures and generalized tonic-clonic seizures. Although sustained-release formulations exist, an initial burst of drug release is still present and this results in side effects. Zero-order release formulations reduce fluctuations in serum drug concentrations, thereby reducing side effects. Three-dimensional printing can potentially fabricate zero-order release formulations with complex geometries. 3D printed scaffolds with varying hole positions (side and top/bottom), number of holes (4, 8, and 12), and hole diameters (1, 1.5, and 2 mm) were designed. Dissolution tests and high performance liquid chromatography analysis were conducted. Good correlations in the linear release profiles of all carbamazepine-containing scaffolds with side holes (R(2) of at least 0.91) were observed. Increasing the hole diameters (1, 1.5, and 2 mm) resulted in increased rate of drug release in the scaffolds with 4 holes (0.0048, 0.0065, and 0.0074 mg/min) and 12 holes (0.0021, 0.0050, and 0.0092 mg/min), and the initial amount of carbamazepine released in the scaffolds with 8 holes (0.4348, 0.7246, and 1.0246 mg) and 12 holes (0.1995, 0.8598, and 1.4366 mg). The ultimate goal of this research is to improve the compliance of patients through a dosage form that provides a zero-order drug release profile for anti-epileptic drugs, so as to achieve therapeutic doses and minimize side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim

    2017-10-06

    Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.

  13. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug.

    PubMed

    Fizir, Meriem; Dramou, Pierre; Zhang, Kai; Sun, Cheng; Pham-Huy, Chuong; He, Hua

    2017-11-01

    In this research, novel polymer grafted-magnetic halloysite nanotubes with norfloxacin loaded (NOR-MHNTs) and controlled-release, was achieved by surface-initiated precipitation polymerization. The magnetic halloysite nanotubes exhibited better adsorption of NOR (72.10mgg -1 ) compared with the pristine HNTs (30.80mgg -1 ). Various parameters influencing the drug adsorption of the MHNTs for NOR were studied. Polymer grafted NOR-MHNTs has been designed using flexible docking in computer simulation to choose optimal monomers. NOR-MHNTs/poly (methacrylic acid or acrylamide-co-ethylene glycol dimethacrylate) nanocomposite were synthesized using NOR-MHNTs, methacrylic acid (MAA) or acrylamide (AM), ethylene glycol dimethacrylate (EGDMA) and AIBN as nanotemplate, monomers, cross linker and initiator, respectively. The magnetic nanocomposites were characterized by FTIR, TEM, XRD and VSM. The magnetic nanocomposites show superparamagnetic property and fast magnetic response (12.09emug -1 ). The copolymerization of monomers and cross linker led to a better sustained release of norfloxacin (>60h) due to the strong interaction formed between monomers and this cationic drug. The cumulative release rate of NOR is closely related to the cross linker amount. In conclusion, combining the advantages of the high adsorption capacity and magnetic proprieties of this biocompatible clay nanotube and the advantages of polymer shell in the enhancement of controlled-sustained release of cationic drug, a novel formulation for the sustained-controlled release of bioactive agents is developed and may have considerable potential application in targeting drug delivery system. Copyright © 2017. Published by Elsevier Inc.

  14. ACHIEVING SUSTAINABILITY - FINAL STEPS IN A DYNAMIC DANCE

    EPA Science Inventory

    Achieving sustainability relies upon adequate metrics to evaluate the environment and guide decisions. Although adequate assessment is important to prescribing remedies, achieving a sustainable environment cannot be delayed. It must be achieved today as well as tomorrow so that t...

  15. A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids

    PubMed Central

    Gao, Song-Qi; Maeda, Tadao; Okano, Kiichiro; Palczewski, Krzysztof

    2012-01-01

    Purpose. To design and develop a drug-delivery system containing a combination of poly(d,l-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. Methods. To study drug release in vivo, either the drug-loaded microparticle–hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat−/− mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. Results. Lrat−/− mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6−7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)–rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. Conclusions. Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat−/− mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat−/− mice improved visual function and retinal structure. PMID:22918645

  16. Effect of Quaternary Ammonium Carboxymethylchitosan on Release Rate In-vitro of Aspirin Sustained-release Matrix Tablets

    PubMed Central

    Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin

    2013-01-01

    The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627

  17. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens

    PubMed Central

    Eckhard, Lea H.; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J.

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  18. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine.

    PubMed

    Tanaka, Nobuyuki; Imai, Keiji; Okimoto, Kazuto; Ueda, Satoshi; Tokunaga, Yuji; Ohike, Atsuo; Ibuki, Rinta; Higaki, Kazutaka; Kimura, Toshikiro

    2005-11-28

    The goal of this study is to develop a novel sustained-release (SR) system for poorly water-soluble drugs by applying solid dispersion (SD) technique for improving the solubility. The developed SR system, disintegration-controlled matrix tablet (DCMT), consists of hydrogenated soybean oil (HSO) as wax and SD granules containing low-substituted hydroxypropylcellulose (L-HPC) as a disintegrant. In this study, nilvadipine (NiD) was chosen as a model compound. Sustained-release profiles of NiD from DCMT were identically controlled in several dissolution mediums in spite of varying pH and agitation speed. The release of NiD from DCMT was sustained more effectively by increasing the amount of wax or by decreasing the amount of disintegrant, and supersaturation of NiD was achieved without any re-crystallization in dissolution medium. The release rate of NiD from DCMT was controlled by the disintegration rate of tablet. The release profile of NiD was described by the Hixson-Crowell's model better than zero-order kinetics, first-order kinetics and Higuchi's model, which supports that the release of NiD from DCMT is regulated by the disintegration of the tablet. From this study, it was clarified that DCMT was one of the promising SR systems applying SD for the poorly water-soluble drugs.

  19. Preparation and evaluation of sustained release loxoprofen loaded microspheres.

    PubMed

    Venkatesan, P; Manavalan, R; Valliappan, K

    2011-06-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours.

  20. Bioequivalence of progesterone sustained release suppository in rabbits.

    PubMed

    Long, Lihong; Huang, Qun; Wu, Minghui; Hou, Shuxian; Dai, Zongshun

    2005-01-01

    To study the bioequivalence of a kind of progesterone sustained release suppository, a randomized cross-over study was conducted in 12 rabbits. A single rectal dose of 2.75 mg/kg progesterone sustained released suppository (tested formulation, T) and progesterone suppository (reference formulation, R) was administered; a multiple dose of 2.75 mg/kg was given up to seven times with an interval of 8 h. Concentrations in serum were determined by a competitive enzyme immunoassay. The main parameters of T were: for single and multiple doses, Cmax was 48.8 +/- 11.8 ng/mL and 43.5 +/- 9.4 ng/mL, Tmax was 0.5 +/- 0.3 h and 0.4 +/- 0.3 h, AUC(0-24 h) was 362.4 +/- 143 ng x h x mL(-1) and 310.6 +/- 70.3 ng x h x mL(-1), respectively. The relative bioavailability of T to R were (104.2 +/- 13.4)% and (111.4 +/- 19.1)%, respectively. Statistical analysis showed that the two formulations were bioequivalent and T had sustained released feature.

  1. Current strategies for sustaining drug release from electrospun nanofibers

    PubMed Central

    Chou, Shih-Feng; Carson, Daniel; Woodrow, Kim A.

    2017-01-01

    Electrospun drug-eluting fibers are emerging as a novel dosage form for multipurpose prevention against sexually transmitted infections, including HIV, and unintended pregnancy. Previous work from our lab and others show the versatility of this platform to deliver large doses of physico-chemically diverse agents. However, there is still an unmet need to develop practical fiber formulations for water-soluble small molecule drugs needed at high dosing due to intrinsic low potency or desire for sustained prevention. To date, most sustained release fibers have been restricted to the delivery of biologics or hydrophobic small molecules at low drug loading of typically < 1 wt.%, which is often impractical for most clinical applications. For hydrophilic small molecule drugs, their high aqueous solubility and poor partitioning and incompatibility with insoluble polymers make long-term release even more challenging. Here we investigate several existing strategies to sustain release of hydrophilic small molecule drugs that are highly-loaded in electrospun fibers. In particular, we investigate what is known about the design constraints required to realize multi-day release from fibers fabricated from uniaxial and coaxial electrospinning. PMID:26363300

  2. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly.

    PubMed

    Amancha, Kiran Prakash; Balkundi, Shantanu; Lvov, Yuri; Hussain, Alamdar

    2014-05-15

    The present study tests the hypothesis that layer-by-layer (LbL) nanoassembly of thin polyelectrolyte films on insulin particles provides sustained release of the drug after pulmonary delivery. LbL insulin microparticles were formulated using cationic and anionic polyelectrolytes. The microparticles were characterized for particle size, particle morphology, zeta potential and in vitro release. The pharmacokinetics and pharmacodynamics of drug were assessed by measuring serum insulin and glucose levels after intrapulmonary administration in rats. Bronchoalveolar lavage (BAL) and evans blue (EB) extravasation studies were performed to investigate the cellular or biochemical changes in the lungs caused by formulation administration. The mass median aerodynamic diameter (MMAD) of the insulin microparticles was 2.7 μm. Confocal image of the formulation particles confirmed the polyelectrolyte deposition around the insulin particles. Zeta potential measurements showed that there was charge reversal after each layering. Pulmonary administered LbL insulin formulation resulted in sustained serum insulin levels and concomitant decrease in serum glucose levels. The BAL and EB extravasation studies showed that the LbL insulin formulation did not elicit significant increase in marker enzymes activities compared to control group. These results demonstrate that the sustained release of insulin could be achieved using LbL nanoassembly around the insulin particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of modified in situ gelling oral liquid sustained release formulation of dextromethorphan.

    PubMed

    El Maghraby, Gamal M; Elzayat, Ehab M; Alanazi, Fars K

    2012-08-01

    Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping. Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine. Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release. Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product. Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.

  4. Design of sustained release tablet containing fucoidan.

    PubMed

    Tran, Thao Truong-Dinh; Ngo, Dai Kieu-Phuong; Vo, Toi Van; Tran, Phuong Ha-Lien

    2015-01-01

    The study introduced a new therapeutic agent, fucoidan, which can offer potential medical treatments including anti-inflammatory and anti-coagulant activities, as well as anti-proliferative effects on cancer cells. Fucoidan was included in sustained release formulations expected for an effective plasma drug concentration for approximately 24 h. The matrices based on the two polymers hydroxypropyl methycellulose (HPMC) and polyethylene oxide (PEO) were prepared with various ratios between the polymers and fucoidan. The dissolution profiles of various matrix tablets performed in enzyme-free simulated intestinal fluid (pH 6.8) for 24 h indicated a higher potential of PEO-based matrix tablets in sustaining release of fucoidan. The swelling and erosion of the tablets were also characterized to elucidate the difference among those dissolution profiles.

  5. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  6. Sustained Release Drug Delivery Applications of Polyurethanes.

    PubMed

    Lowinger, Michael B; Barrett, Stephanie E; Zhang, Feng; Williams, Robert O

    2018-05-09

    Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  7. Preparation and evaluation of sustained release loxoprofen loaded microspheres

    PubMed Central

    Venkatesan, P.; Manavalan, R.; Valliappan, K.

    2011-01-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017

  8. Current strategies for sustaining drug release from electrospun nanofibers.

    PubMed

    Chou, Shih-Feng; Carson, Daniel; Woodrow, Kim A

    2015-12-28

    Electrospun drug-eluting fibers are emerging as a novel dosage form for multipurpose prevention against sexually transmitted infections, including HIV, and unintended pregnancy. Previous work from our lab and others show the versatility of this platform to deliver large doses of physico-chemically diverse agents. However, there is still an unmet need to develop practical fiber formulations for water-soluble small molecule drugs needed at high dosing due to intrinsic low potency or desire for sustained prevention. To date, most sustained release fibers have been restricted to the delivery of biologics or hydrophobic small molecules at low drug loading of typically <1 wt.%, which is often impractical for most clinical applications. For hydrophilic small molecule drugs, their high aqueous solubility and poor partitioning and incompatibility with insoluble polymers make long-term release even more challenging. Here we investigate several existing strategies to sustain release of hydrophilic small molecule drugs that are highly-loaded in electrospun fibers. In particular, we investigate what is known about the design constraints required to realize multi-day release from fibers fabricated from uniaxial and coaxial electrospinning. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.

    PubMed

    Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko

    2005-02-01

    Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.

  10. Dual sustained release delivery system for multiple route therapy of an antiviral drug.

    PubMed

    Ramyadevi, D; Sandhya, P

    2014-06-01

    The first successful molecule against herpes infections was Acyclovir, which competes with new generations in the market, with its potential activity. The major physicochemical constraints and pharmacokinetics of Acyclovir such as low solubility, poor permeability, less half-life, high dose has initiated many researchers to develop diverse modified release dosage forms. The objective of this work was to design polymeric nanoparticles of Acyclovir and then incorporate the drug-loaded nanoparticles within an in situ gelling system to provide dual sustained release effect, whereby the duration of action and bioavailability through different routes of administration could be improved. The formulation was designed through 3(2) factorial design, first developing the nanoparticles using Polycaprolactone and Pluronic F127 by Solvent evaporation process, followed by dispersion of the suspended nanoparticles into thermosensitive in situ gelling system of Pluronic F127 with Carbopol. The characterization of the nanoparticles and its sol-gel system performed through zeta sizer, SEM, XRD, TG-DSC, FTIR and rheology helped to optimize the formulation. The drug release could be sustained to 60% and 30% at eight hours, for the nanoparticles and their in situ gel systems, respectively, with non-Fickian diffusion mechanism of drug release. The test for % cell viability with NIH3T3 cell line revealed low level of toxicity for the nanoparticles. The statistical significance obtained for the trail formulations experimentally proved its suitability for this dosage form design to achieve desired level of drug release.

  11. Controlled Release System for Localized and Sustained Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lidia Betsabe

    possible to prepare biodegradable microparticles with a uniform size distribution and high drug loading efficiency. However, this could only be achieved with a hybrid system consisting of chitosan matrix interior and then exterior coating of PLGA or PLA. A two layer coating of PLGA 50:50 was shown to be optimal with sustainable controlled drug release for almost 5 days and with 91% of degradation (weight loss) in 8 weeks.

  12. Methotrexate-loaded porous polymeric adsorbents as oral sustained release formulations.

    PubMed

    Wang, Xiuyan; Yan, Husheng

    2017-09-01

    Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40min and 5h post-dose, respectively; and the plasma concentrations decreased to 22% after 5h for free methotrexate and 44% after 24h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC 0-24 and AUC 0-inf , for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.

    PubMed

    Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M

    2012-01-01

    Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.

  14. Calcium Binding-Mediated Sustained Release of Minocycline from Hydrophilic Multilayer Coatings Targeting Infection and Inflammation

    PubMed Central

    Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui

    2014-01-01

    Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292

  15. Factors Contributing to Institutions Achieving Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew; Card, Karen

    2012-01-01

    Purpose: The purpose of this paper is to determine what factors contributed to three universities achieving environmental sustainability. Design/methodology/approach: A case study methodology was used to determine how each factor contributed to the institutions' sustainability. Site visits, fieldwork, document reviews, and interviews with…

  16. Pharmacokinetics of propafenone hydrochloride sustained-release capsules in male beagle dogs.

    PubMed

    Pan, Liping; Qian, Yafang; Cheng, Minlu; Gu, Pan; He, Yanna; Xu, Xiaowen; Ding, Li

    2015-01-01

    This paper describes the development and validation of a liquid chromatography-mass spectrometric assay for propafenone and its application to a pharmacokinetic study of propafenone administered as a new propafenone hydrochloride sustained-release capsule (SR-test), as an instant-release tablet (IR-reference) and as the market leader sustained-release capsule (Rythmol, SR-reference) in male beagle dogs (n=8). In Study A comparing SR-test with IR-reference in a crossover design T max and t 1/2 of propafenone for SR-test were significantly higher than those for IR-reference while C max and AUC were lower demonstrating the sustained release properties of the new formulation. In Study B comparing SR-test with SR-reference the observed C max and AUC of propafenone for SR-test (124.5±140.0 ng/mL and 612.0±699.2 ng·h/mL, respectively) were higher than for SR-reference (78.52±72.92 ng/mL and 423.6±431.6 ng·h/mL, respectively) although the differences were not significant. Overall, the new formulation has as good if not better sustained release characteristics to the market leader formulation.

  17. Continuous direct compression as manufacturing platform for sustained release tablets.

    PubMed

    Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2017-03-15

    This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of

  18. Development of sustained and dual drug release co-extrusion formulations for individual dosing.

    PubMed

    Laukamp, Eva Julia; Vynckier, An-Katrien; Voorspoels, Jody; Thommes, Markus; Breitkreutz, Joerg

    2015-01-01

    In personalized medicine and patient-centered medical treatment individual dosing of medicines is crucial. The Solid Dosage Pen (SDP) allows for an individual dosing of solid drug carriers by cutting them into tablet-like slices. The aim of the present study was the development of sustained release and dual release formulations with carbamazepine (CBZ) via hot-melt co-extrusion for the use in the SDP. The selection of appropriate coat- and core-formulations was performed by adapting the mechanical properties (like tensile strength and E-modulus) for example. By using different excipients (polyethyleneglycols, poloxamers, white wax, stearic acid, and carnauba wax) and drug loadings (30-50%) tailored dissolution kinetics was achieved showing cube root or zero order release mechanisms. Besides a biphasic drug release, the dose-dependent dissolution characteristics of sustained release formulations were minimized by a co-extruded wax-coated formulation. The dissolution profiles of the co-extrudates were confirmed during short term stability study (six months at 21.0 ± 0.2 °C, 45%r.h.). Due to a good layer adhesion of core and coat and adequate mechanical properties (maximum cutting force of 35.8 ± 2.0 N and 26.4 ± 2.8 N and E-modulus of 118.1 ± 8.4 and 33.9 ± 4.5 MPa for the dual drug release and the wax-coated co-extrudates, respectively) cutting off doses via the SDP was precise. While differences of the process parameters (like the barrel temperature) between the core- and the coat-layer resulted in unsatisfying content uniformities for the wax-coated co-extrudates, the content uniformity of the dual drug release co-extrudates was found to be in compliance with pharmacopoeial specification. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 21 CFR 520.2260b - Sulfamethazine sustained-release boluses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfamethazine sustained-release boluses. 520.2260b Section 520.2260b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... weight. (ii) Indications for use. Beef and nonlactating cattle for sustained treatment of shipping fever...

  20. 21 CFR 520.2260b - Sulfamethazine sustained-release boluses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfamethazine sustained-release boluses. 520.2260b Section 520.2260b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... weight. (ii) Indications for use. Beef and nonlactating cattle for sustained treatment of shipping fever...

  1. 21 CFR 520.2260b - Sulfamethazine sustained-release boluses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfamethazine sustained-release boluses. 520.2260b Section 520.2260b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... weight. (ii) Indications for use. Beef and nonlactating cattle for sustained treatment of shipping fever...

  2. Biocompatible interpolymer complex matrix tablets - an oral sustained release class-III antidiabetic drug

    NASA Astrophysics Data System (ADS)

    Ershadul Haque, S. K.; Sheela, A.

    2017-11-01

    Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.

  3. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release

    PubMed Central

    Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep

    2017-01-01

    The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654

  4. Perspectives on achieving sustainable energy production and use

    EPA Science Inventory

    The traditional definition of sustainability calls for polices and strategies that meet society's present needs without compromising the ability of future generations to meet their own needs. Achieving operational sustainability requires three critical elements: advances in scien...

  5. Conceptuation, formulation and evaluation of sustained release floating tablets of captopril compression coated with gastric dispersible hydrochlorothiazide using 23 factorial design

    PubMed Central

    Sirisha, Pathuri Lakshmi; Babu, Govada Kishore; Babu, Puttagunta Srinivasa

    2014-01-01

    Ambulatory blood pressure monitoring is regarded as the gold standard for hypertensive therapy in non-dipping hypertension patients. A novel compression coated formulation of captopril and hydrochlorothiazide (HCTZ) was developed in order to improve the efficacy of antihypertensive therapy considering the half-life of both drugs. The synergistic action using combination therapy can be effectively achieved by sustained release captopril (t1/2= 2.5 h) and fast releasing HCTZ (average t1/2= 9.5 h). The sustained release floating tablets of captopril were prepared by using 23 factorial design by employing three polymers i.e., ethyl cellulose (EC), carbopol and xanthan gum at two levels. The formulations (CF1-CF8) were optimized using analysis of variance for two response variables, buoyancy and T50%. Among the three polymers employed, the coefficients and P values for the response variable buoyancy and T50% using EC were found to be 3.824, 0.028 and 0.0196, 0.046 respectively. From the coefficients and P values for the two response variables, formulation CF2 was optimized, which contains EC polymer alone at a high level. The CF2 formulation was further compression coated with optimized gastric dispersible HCTZ layer (HF9). The compression coated tablet was further evaluated using drug release kinetics. The Q value of HCTZ layer is achieved within 20 min following first order release whereas the Q value of captopril was obtained at 6.5 h following Higuchi model, from which it is proved that rapid release HCTZ and slow release of captopril is achieved. The mechanism of drug release was analyzed using Peppas equation, which showed an n >0.90 confirming case II transportation mechanism for drug release. PMID:25006552

  6. Formulation and Evaluation of Fixed-Dose Combination of Bilayer Gastroretentive Matrix Tablet Containing Atorvastatin as Fast-Release and Atenolol as Sustained-Release

    PubMed Central

    Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar

    2014-01-01

    The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446

  7. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.

    PubMed

    Ahmed, Tarek A; Ibrahim, Hany M; Samy, Ahmed M; Kaseem, Alaa; Nutan, Mohammad T H; Hussain, Muhammad Delwar

    2014-06-01

    The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.

  8. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    PubMed

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  9. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics

    PubMed Central

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2012-01-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836

  10. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    PubMed

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  11. Optimization of propranolol HCl release kinetics from press coated sustained release tablets.

    PubMed

    Ali, Adel Ahmed; Ali, Ahmed Mahmoud

    2013-01-01

    Press-coated sustained release tablets offer a valuable, cheap and easy manufacture alternative to the highly expensive, multi-step manufacture and filling of coated beads. In this study, propranolol HCl press-coated tablets were prepared using hydroxylpropylmethylcellulose (HPMC) as tablet coating material together with carbopol 971P and compressol as release modifiers. The prepared formulations were optimized for zero-order release using artificial neural network program (INForm, Intelligensys Ltd, North Yorkshire, UK). Typical zero-order release kinetics with extended release profile for more than 12 h was obtained. The most important variables considered by the program in optimizing formulations were type and proportion of polymer mixture in the coat layer and distribution ratio of drug between core and coat. The key elements found were; incorporation of 31-38 % of the drug in the coat, fixing the amount of polymer in coat to be not less than 50 % of coat layer. Optimum zero-order release kinetics (linear regression r2 = 0.997 and Peppas model n value > 0.80) were obtained when 2.5-10 % carbopol and 25-42.5% compressol were incorporated into the 50 % HPMC coat layer.

  12. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.

    PubMed

    Chang, Debby P; Garripelli, Vivek Kumar; Rea, Jennifer; Kelley, Robert; Rajagopal, Karthikan

    2015-10-01

    Achieving long-term drug release from polymer-based delivery systems continues to be a challenge particularly for the delivery of large hydrophilic molecules such as therapeutic antibodies and proteins. Here, we report on the utility of an in situ-forming and injectable polymer-solvent system for the long-term release of a model antibody fragment (Fab1). The delivery system was prepared by dispersing a spray-dried powder of Fab1 within poly(lactide-co-glycolide) (PLGA)-triacetin solution. The formulation viscosity was within the range 1.0 ± 0.3 Pa s but it was injectable through a 27G needle. The release profile of Fab1, measured in phosphate-buffered saline (PBS), showed a lag phase followed by sustained-release phase for close to 80 days. Antibody degradation during its residence within the depot was comparable to its degradation upon long-term incubation in PBS. On the basis of temporal changes in surface morphology, stiffness, and depot mass, a mechanism to account for the drug release profile has been proposed. The unprecedented release profile and retention of greater than 80% of antigen-binding capacity even after several weeks demonstrates that PLGA-triacetin solution could be a promising system for the long-term delivery of biologics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  14. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    PubMed

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  15. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  16. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: formulation and in vitro evaluation.

    PubMed

    Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R

    2015-06-01

    This work aims to prepare sustained release buccal mucoadhesive lyophilized chitosan sponges of buspirone hydrochloride (BH) to improve its systemic bioavailability. Chitosan sponges were prepared using simple casting/freeze-drying technique according to 3(2) factorial design where chitosan grade was set at three levels (low, medium, and high molecular weight), and concentration of chitosan solution at three levels (0.5, 1, and 2%). Mucoadhesion force, ex vivo mucoadhesion time, percent BH released after 8 h (Q8h), and time for release of 50% BH (T50%) were chosen as dependent variables. Additional BH cup and core buccal chitosan sponge were prepared to achieve uni-directional BH release toward the buccal mucosa. Sponges were evaluated in terms of drug content, surface pH, scanning electron microscopy, swelling index, mucoadhesion strength, ex vivo mucoadhesion time, and in vitro drug release. Cup and core sponge (HCH 0.5E) were able to adhere to the buccal mucosa for 8 h. It showed Q8h of 68.89% and exhibited a uni-directional drug release profile following Higuchi diffusion model.

  17. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  18. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  19. Enhanced bacterial quorum aggregation on a zeolite capping layer for sustainable inhibition of ammonium release from contaminated sediment.

    PubMed

    Xu, Jinlan; Zhang, Haiyang; Zhao, Rong; Kong, Fanxing

    2017-12-01

    The main objective of this study was to investigate how signal molecules enhance bacterial quorum aggregation on a zeolite capping layer for sustainable inhibition of ammonium release from contaminated sediment. Sediment remediation experiments were carried out by using nitrifying bacteria (WGX10, WGX18), denitrifying bacteria (HF3, HF7) and two kinds of signal molecules (OHHL, C8-HSL). The results showed that nitrifying bacteria and denitrifying bacteria could significantly aggregate on zeolite after adding 1.0 μM OHHL at a C/N ratio of 7. The maximum ammonium removal of five times the amount of ammonium adsorbed was achieved when 1.0 μM OHHL was added at the C/N ratio of 7 (the bio-regeneration rate was up to 88.32%), which was 1.24-2.02 times the ammonium removal amount at C/N ratios of 3, 5, 9. The concentration of total nitrogen in the overlying water was no more than 0.8 mg/L during four rounds of sediment remediation experiments. In addition, the bio-regeneration rate was up to 71.20%, which achieved sustainable inhibition of ammonium release from contaminated sediment.

  20. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date

    PubMed Central

    Caixàs, Assumpta; Albert, Lara; Capel, Ismael; Rigla, Mercedes

    2014-01-01

    Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer), reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave®). We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed. PMID:25258511

  1. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date.

    PubMed

    Caixàs, Assumpta; Albert, Lara; Capel, Ismael; Rigla, Mercedes

    2014-01-01

    Obesity is an emerging disease worldwide. Changes in living habits, especially with increased consumption of high-calorie foods and decreased levels of physical activity, lead to an energy imbalance that brings weight gain. Overweight and obesity are major risk factors for several chronic diseases (including cardiovascular diseases, diabetes, and cancer), reduce quality of life, and are associated with higher mortality. For all these reasons, it is of the utmost importance that the trend be reversed and obese people enabled to lose weight. It is known that eating a healthy diet and exercising regularly can help prevent obesity, but data show that in many cases these steps are not enough. This is the reason why, over the last few decades, several antiobesity drugs have been developed. However, the disappointing results demonstrated for the vast majority of them have not discouraged the pharmaceutical industry from continuing to look for an effective drug or combination of drugs. The systematic review presented here focuses on naltrexone sustained-release/bupropion sustained-release combination (Contrave(®)). We conclude from the current published reports that its effectiveness in the treatment of obesity can be estimated as a placebo-subtracted weight loss of around 4.5%. This weight reduction is moderate but similar to other antiobesity drugs. The safety profile of this combination is acceptable, despite additional data regarding cardiovascular disease being needed.

  2. Achieving true sustainability of zoo populations.

    PubMed

    Lacy, Robert C

    2013-01-01

    For the last 30 years, cooperative management of irreplaceable animal populations in zoos and aquariums has focused primarily on the goal of minimizing genetic decay within defined time frames, and large advances have been made in technologies to optimize genetic management of closed populations. However, recent analyses have shown that most zoo programs are not projected to meet their stated goals. This has been described as a lack of achieving "sustainability" of the populations, yet by definition a goal of managed decay is not a plan for sustainability. True sustainability requires management of the resource in manner that does not deplete its value for the future. Achieving such sustainability for many managed populations may require changing from managing isolated populations to managing populations that are part of a broader metapopulation, with carefully considered exchange between populations across a spectrum of ex situ to in situ. Managing zoo populations as components of comprehensive conservation strategies for the species will require research on determinants of various kinds of genetic, physiological, behavioral, and morphological variation and their roles in population viability, development of an array of management techniques and tools, training of population managers in metapopulation management and integrated conservation planning, and projections of impacts of management strategies on the viability of the captive populations and all populations that are interactively managed or affected. Such a shift in goals and methods would result in zoo population management being an ongoing part of species conservation rather than short-term or isolated from species conservation. Zoo Biol. 32:19-26, 2013. © 2012 Wiley Periodicals, Inc. © 2012 Wiley Periodicals, Inc.

  3. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A diels-alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells

    PubMed Central

    Koehler, Kenneth C.; Alge, Daniel L.; Anseth, Kristi S.; Bowman, Christopher N.

    2013-01-01

    We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion model, the release kinetics were tuned to achieve sustained concentrations conducive to osteogenic differentiation of human mesenchymal stem cells (hMSCs). Efficacy was first demonstrated in a 2D culture model, in which dexamethasone release induced significant increases in alkaline phosphatase (ALP) activity and mineral deposition in hMSCs compared to a dexamethasone-free treatment. The results were similar to that observed with a soluble dexamethasone treatment. More dramatic differences were observed in 3D culture, where co-encapsulation of a dexamethasone releasing hydrogel depot within an hMSC-laden extracellular matrix mimetic poly(ethylene glycol) hydrogel resulted in a local and robust osteogenic differentiation. ALP activity reached levels that were up to six times higher than the dexamethasone free treatment. Interestingly, at 5 and 10 day time points, the ALP activity exceeded the dexamethasone positive control, suggesting a potential benefit of sustained release in 3D culture. After 21 days, substantial mineralization comparable to the positive control was also observed in the hydrogels. Collectively, these results demonstrate Diels-Alder modulated release as an effective and versatile new platform for controlled drug delivery that may prove especially beneficial for sustaining the release of low molecular weight molecules in hydrogel systems. PMID:23465826

  5. Controlled release of GAG-binding enhanced transduction (GET) peptides for sustained and highly efficient intracellular delivery.

    PubMed

    Abu-Awwad, Hosam Al-Deen M; Thiagarajan, Lalitha; Dixon, James E

    2017-07-15

    Controlled release systems for therapeutic molecules are vital to allow the sustained local delivery of their activities which direct cell behaviour and enable novel regenerative strategies. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor signalling but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding domains which promote cell targeting, and cell penetrating peptides (CPPs) which allow cell entry. Herein we demonstrate that GET system can be used in controlled release systems to mediate sustained intracellular transduction over one week. We assessed the stability and activity of GET peptides in poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) prepared using a S/O/W double emulsion method. Efficient encapsulation (∼65%) and tailored protein release profiles could be achieved, however intracellular transduction was significantly inhibited post-release. To retain GET peptide activity we optimized a strategy of co-encapsulation of l-Histidine, which may form a complex with the PLGA degradation products under acidic conditions. Simulations of the polymer microclimate showed that hydrolytic acidic PLGA degradation products directly inhibited GET peptide transduction activity, and use of l-Histidine significantly enhanced released protein delivery. The ability to control the intracellular transduction of functional proteins into cells will facilitate new localized delivery methods and allow approaches to direct cellular behaviour for many regenerative medicine applications. The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for

  6. 21 CFR 520.1197 - Ivermectin sustained-release bolus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ivermectin sustained-release bolus. 520.1197 Section 520.1197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1197 Ivermectin...

  7. Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

    PubMed Central

    Celia, Christian; Ferrati, Silvia; Bansal, Shyam; van de Ven, Anne L.; Ruozi, Barbara; Zabre, Erika; Hosali, Sharath; Paolino, Donatella; Sarpietro, Maria Grazia; Fine, Daniel; Fresta, Massimo; Ferrari, Mauro

    2014-01-01

    Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 hrs, sustaining their constant plasma level for many days is a challenge. To address this, we developed, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib loaded-liposomes, and we demonstrate the release of intact vesicles for over 18 days. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments. PMID:23881575

  8. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    PubMed

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  9. Preparation and evaluation of sustained drug release from pluronic polyol rectal suppositories.

    PubMed

    Anderson, D; Amomo, M M

    2001-01-01

    Suppository dosage forms offer several advantages in drug delivery and can be compounded in a pharmacy setting for the needs of the individual patient. In this study, we have examined the use of Pluronic polyols in the development of sustained-release rectal suppository formulations. Solid and liquid Pluronic poyols (Pluronic L61, F68, L101, and F108) were combined in a weight ratio ranging from 80:20 (solid to liquid) to 70:30 to prepare the bases. The release behavior of a model drug, riboflavin, from the suppositories wee evaluated by means of the United Stated Pharmacopeia Basket Dissolution Method. When compared with the control Polybase suppository, which released 50% of the drug (t50) in about 7.23 minutes, Pluronic F68/L61 suppositories at an 80:20 weight ratio exhibited a t50 of 86.5 minutes (1.44 hours). Riboflavin release from suppositories made with Pluronic F108/L101 was even further delayed. The t50 of riboflavin from Pluronic F108/L101 suppositories at an 80:20 weight ratio, for instance, was 274.4 minutes (4.6 hours). The results of this study show that by choosing specific combinations of Pluronic polyols and weight ratios, compounding pharmacists can prepare sustained-release suppository formulations that can deliver drugs within minutes to hours. This flexibility of compounding sustained-release suppositories is beneficial, especially for the management of chronic pain in cancer patients.

  10. Bioavailability of ambroxol sustained release preparations. Part II: Single and multiple oral dose studies in man.

    PubMed

    Janssen, T J; Guelen, P J; Vree, T B; Botterblom, M H; Valducci, R

    1988-01-01

    The bioavailability of a new ambroxol sustained release preparation (75 mg) based on a dialyzing membrane for controlled release was studied in healthy volunteers after single and multiple oral dose in comparison with a standard sustained release formulation in a cross-over study under carefully controlled conditions. Plasma concentrations of ambroxol were measured by means of a HPLC method. Based on AUC data both preparations are found to be bioequivalent, but show different plasma concentration profiles. The test preparation showed a more pronounced sustained release profile than the reference preparation (single dose) resulting in significantly higher steady state plasma levels.

  11. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    NASA Astrophysics Data System (ADS)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  12. Multiple response optimisation of processing and formulation parameters of pH sensitive sustained release pellets of capecitabine for targeting colon.

    PubMed

    Pandey, Sonia; Swamy, S M Vijayendra; Gupta, Arti; Koli, Akshay; Patel, Swagat; Maulvi, Furqan; Vyas, Bhavin

    2018-04-29

    To optimise the Eudragit/Surelease ® -coated pH-sensitive pellets for controlled and target drug delivery to the colon tissue and to avoid frequent high dosing and associated side effects which restrict its use in the colorectal-cancer therapy. The pellets were prepared using extrusion-spheronisation technique. Box-Behnken and 3 2 full factorial designs were applied to optimise the process parameters [extruder sieve size, spheroniser-speed, and spheroniser-time] and the coating levels [%w/v of Eudragit S100/Eudragit-L100 and Surelease ® ], respectively, to achieve the smooth optimised size pellets with sustained drug delivery without prior drug release in upper gastrointestinal tract (GIT). The design proposed the optimised batch by selecting independent variables at; extruder sieve size (X 1  = 1 mm), spheroniser speed (X 2  = 900 revolutions per minute, rpm), and spheroniser time (X 3  = 15 min) to achieve pellet size of 0.96 mm, aspect ratio of 0.98, and roundness 97.42%. The 16%w/v coating strength of Surelease ® and 13%w/v coating strength of Eudragit showed pH-dependent sustained release up to 22.35 h (t 99% ). The organ distribution study showed the absence of the drug in the upper part of GIT tissue and the presence of high level of capecitabine in the caecum and colon tissue. Thus, the presence of Eudragit coat prevent the release of drug in stomach and the inner Surelease ® coat showed sustained drug release in the colon tissue. The study demonstrates the potential of optimised Eudragit/Surelease ® -coated capecitabine-pellets for effective colon-targeted delivery system to avoid frequent high dosing and associated systemic side effects of drug.

  13. [Studies on preparation of sustained-release Shuxiong formulation, a traditional Chinese medicine compound recipe, using time-controlled release techniques].

    PubMed

    Song, Hong-Tao; Zhang, Qian; Jiang, Peng; Guo, Tao; Chen, Da-Wei; He, Zhong-Gui

    2006-09-01

    To prepare a sustained-release formulation of traditional Chinese medicine compound recipe by adopting time-controlled release techniques. Shuxiong tablets were chosen as model drug. The prescription and technique of core tablets were formulated with selecting disintegrating time and swelling volume of core tablets in water as index. The time-controlled release tablets were prepared by adopting press-coated techniques, using PEG6000, HCO and EVA as coating materials. The influences of compositions, preparation process and dissolution conditions in vitro on the lag time (T(lag)) of drug release were investigated. The composition of core tablets was as follow: 30% of drug, 50% MCC and 20% CMS-Na. The T(lag) of time-controlled release tablets was altered remarkably by PEG6000 content of the outer layer, the amount of outer layer and hardness of tablet. The viscosity of dissolution media and basket rotation had less influence on the T(lag) but more on rate of drug release. The core tablets pressed with the optimized composition had preferable swelling and disintegrating properties. The shuxiong sustained-release formulations which contained core tablet and two kinds of time-controlled release tablets with 3 h and 6 h of T(lag) could release drug successively at 0 h, 3 h and 6 h in vitro. The technique made it possible that various components with extremely different physicochemical properties in these preparations could release synchronously.

  14. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  15. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  16. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    PubMed

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers

    PubMed Central

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin

    2018-01-01

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h. PMID:29565280

  18. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.

    PubMed

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin; Yu, Deng-Guang

    2018-03-22

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  19. Development and Evaluation of High Bioavailable Sustained-Release Nimodipine Tablets Prepared with Monolithic Osmotic Pump Technology.

    PubMed

    Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo

    2018-01-01

    Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. 21 CFR 520.1920 - Prochlorperazine, isopropamide sustained release capsules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prochlorperazine, isopropamide sustained release capsules. 520.1920 Section 520.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... dogs in which gastrointestinal disturbances are associated with emotional stress. (2)(i) Capsules...

  1. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: polyvinylacetate-povidone.

    PubMed

    Shao, Z J; Farooqi, M I; Diaz, S; Krishna, A K; Muhammad, N A

    2001-01-01

    A new commercially available sustained-release matrix material, Kollidon SR, composed of polyvinylacetate and povidone, was evaluated with respect to its ability to modulate the in vitro release of a highly water-soluble model compound, diphenhydramine HCl. Kollidon SR was found to provide a sustained-release effect for the model compound, with certain formulation and processing variables playing an important role in controlling its release kinetics. Formulation variables affecting the release include the level of the polymeric material in the matrix, excipient level, as well as the nature of the excipients (water soluble vs. water insoluble). Increasing the ratio of a water-insoluble excipient, Emcompress, to Kollidon SR enhanced drug release. The incorporation of a water-soluble excipient, lactose, accelerated its release rate in a more pronounced manner. Stability studies conducted at 40 degrees C/75% RH revealed a slow-down in dissolution rate for the drug-Kollidon SR formulation, as a result of polyvinylacetate relaxation. Further studies demonstrated that a post-compression curing step effectively stabilized the release pattern of formulations containing > or = 47% Kollidon SR. The release mechanism of Kollidon-drug and drug-Kollidon-Emcompress formulations appears to be diffusion controlled, while that of the drug-Kollidon-lactose formulation appears to be controlled predominantly by diffusion along with erosion.

  2. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    PubMed

    Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2016-06-15

    Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Preparation and pharmacokinetics in beagle dogs of ganershu sustained-release pellets

    PubMed Central

    Pan, Jin-huo; Wang, Jian-chun; Jiang, Zhi-tao; Zhang, Ting; Ge, Shao-bo; Zhang, Ye-xia; Jin, Xin; Yan, Guo-jun

    2014-01-01

    Background: The active ingredients of Ganershu compound recipe, which are effective for hepatitis treatment in liver protection and transaminase reduction. However, the active ingredients of Ganershu compound recipe are poor absorption, which conduct it has a low oral bioavailability. Objective: We prepared Ganershu sustained-release pellets (GSPs) by fluidized-bed on central composite design-response surface methodology and increase its bioavailability in beagle dogs. Materials and Methods: In this study, GSPs were successfully prepared. The Drug-loaded pellets and sustained-release coated were carried out in fluidized-bed machine. GSP was optimized for fitting release, roundness, and the overall desirability by central composite design-response surface methodology. Results: To optimize cumulative release profile, the outermost ethyl cellulose coating layer and the hydroxypropyl methyl cellulose (HPMC) swelling layer were employed, which were respectively given coating levels in terms of weight gain of 22% and 6%, the concentration of HPMC is 4.5% (g/ml). The pharmacokinetics of Ganershu normal pellets (GNPs) and GSP was studied in beagle dogs after oral administration. The naringenin as an index, the area under the curve0-∞ of naringenin in GSP was 1.38 times greater than that of GNP. Meanwhile, Tmax of GSP was prolonged for about 74%. Conclusion: This study can clearly indicate that we enhanced the oral bioavailability of Ganershu by preparing the GSP, which had the sustained dissolution and improved the potential of it for clinical application. PMID:25210307

  4. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation.

    PubMed

    Brouillet, F; Bataille, B; Cartilier, L

    2008-05-22

    High-amylose sodium carboxymethyl starch (HASCA), produced by spray-drying (SD), was previously shown to have interesting properties as a promising pharmaceutical sustained drug-release tablet excipient for direct compression, including ease of manufacture and high crushing strength. This study describes the effects of some important formulation parameters, such as compression force (CF), tablet weight (TW), drug-loading and electrolyte particle size, on acetaminophen-release performances from sustained drug-release matrix tablets based on HASCA. An interesting linear relationship between TW and release time was observed for a typical formulation of the system consisting of 40% (w/w) acetaminophen as model drug and 27.5% NaCl as model electrolyte dry-mixed with HASCA. Application of the Peppas and Sahlin model gave a better understanding of the mechanisms involved in drug-release from the HASCA matrix system, which is mainly controlled by surface gel layer formation. Indeed, augmenting TW increased the contribution of the diffusion mechanism. CFs ranging from 1 to 2.5 tonnes/cm(2) had no significant influence on the release properties of tablets weighing 400 or 600 mg. NaCl particle size did not affect the acetaminophen-release profile. Finally, these results prove that the new SD process developed for HASCA manufacture is suitable for obtaining similar-quality HASCA in terms of release and compression performances.

  5. Bioavailability of a Sustained Release Formulation of Curcumin

    PubMed Central

    Madhavi, Doddabele; Kagan, Daniel

    2014-01-01

    Context Curcumin has a number of beneficial effects, such as functioning as a potent antioxidant,1 anti-inflammatory, 2 and anticancer agent. Because of its poor oral bioavailability, very high oral doses and repeated dosing have been used to obtain effective plasma levels, with mixed results. High doses of curcumin may cause gastric disturbance, often resulting in poor patient compliance. Objective The objective of this study was to compare the relative bioavailability of MicroActive Curcumin—an advanced, micronized formulation of curcumin that is 25% curcuminoids in a sustained release matrix—with that of an unformulated, 95% pure curcumin powder. Design A dissolution study compared the solubility of the formulated and the unformulated curcumin. The research team also performed a single-dose, 12-h, crossover uptake study with 10 participants and a high-dose tolerability and accumulation study with 3 participants, comparing the 2 forms of curcumin. Setting The study was done in MAZE Laboratories (Purchase, NY, USA). Participants Ten healthy male and female volunteers, aged 21–66 y, took part in the single-dose study. Three participants, 2 female and 1 male aged 40–55 y, took part in the tolerability and accumulation study. The participants were people from the community. Intervention For the dissolution study, the research team filled hard gelatin capsules with unformulated 95% curcumin powder and the MicroActive Curcumin powder to the equivalent of 25 mg curcuminoids. For the single-dose study, participants received 500 mg of curcumin in 2 forms. MicroActive Curcumin capsules were administered after breakfast, and blood samples were drawn at 1, 2, 4, 8, and 12 h postdose. After a 7-d washout period, the protocol was repeated for unformulated, 95% curcumin powder capsules. For the tolerability study, the unformulated, 95% curcumin powder was given at a dose that provided 2 g of curcumin for 7 d followed by 5 g of curcumin for an additional 7 d. After a

  6. Feasibility of localized immunosuppression: 3. Preliminary evaluation of organosilicone constructs designed for sustained drug release in a cell transplant environment using dexamethasone.

    PubMed

    Song, Y; Margolles-Clark, E; Fraker, C A; Weaver, J D; Ricordi, C; Pileggi, A; Stabler, C L; Buchwald, P

    2012-05-01

    As part of our ongoing effort to develop biohybrid devices for pancreatic islet transplantation, we are interested in establishing the feasibility of a localized immune-suppressive approach to avoid or minimize the undesirable side effects of existing systemic treatments. Since biohybrid devices can also incorporate biocompatible scaffold constructs to provide a support environment for the transplanted cells that enhances their engraftment and long-term function, we are particularly interested in an approach that would use the same three-dimensional construct, or part of the same construct, to also provide sustained release of therapeutic agents to modulate the inflammatory and immune responses locally. Within this framework, here, we report preliminary results obtained during the investigation of the suitability of organosilicone constructs for providing sustained localized drug release using small, matrix-type polydimethylsiloxane (PDMS) disks and dexamethasone as a model hydrophobic drug. Following a short burst, long-term steady sustained release was observed under in vitro conditions at levels of 0.1-0.5 microg/day/disk with a profile in excellent agreement with that predicted by the Higuchi equation. To verify that therapeutic levels can be achieved, suppression of LPS-induced activation has been shown in THP-1 cells with disks that have been pre-soaked for up to 28 days. These preliminary results prove the feasibility of this approach where an integral part of the biomaterial construct used to enhance cell engraftment and long-term function also serves to provide sustained local drug release.

  7. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Sustained-release theophylline and nocturnal asthma, once-daily and unequal dosing schedules.

    PubMed

    Smolensky, M H; D'Alonzo, G E; Kunkel, G; Barnes, P J

    1987-01-01

    Many asthmatic patients experience aggravation of symptoms overnight resulting in disruption of their sleep. Sustained-release theophylline represents at this time a major bronchodilator medication which possesses a sufficient duration of activity to avert the nocturnal breathing distress of asthma. Circadian rhythm-adapted theophylline schedules consisting of unequal dosing--more or all the drug taken in the evening--have proven efficacious in clinical investigations for certain patients. Although the kinetic behavior of some formulations is affected by food, the circadian rhythm-adapted schedules represent a significant step forward toward the goal of optimizating sustained-release theophyllines for patients who experience nighttime symptoms.

  9. Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs

    PubMed Central

    Fornell, Jordina; Soriano, Jorge; Guerrero, Miguel; Sirvent, Juan de Dios; Ferran-Marqués, Marta; Ibáñez, Elena; Barrios, Leonardo; Baró, Maria Dolors; Suriñach, Santiago; Nogués, Carme; Sort, Jordi; Pellicer, Eva

    2017-01-01

    Pure Fe and FeMnSi thin films were sputtered on macroporous polypropylene (PP) membranes with the aim to obtain biocompatible, biodegradable and, eventually, magnetically-steerable platforms. Room-temperature ferromagnetic response was observed in both Fe- and FeMnSi-coated membranes. Good cell viability was observed in both cases by means of cytotoxicity studies, though the FeMnSi-coated membranes showed higher biodegradability than the Fe-coated ones. Various strategies to functionalize the porous platforms with transferrin-Alexa Fluor 488 (Tf-AF488) molecules were tested to determine an optimal balance between the functionalization yield and the cargo release. The distribution of Tf-AF488 within the FeMnSi-coated PP membranes, as well as its release and uptake by cells, was studied by confocal laser scanning microscopy. A homogeneous distribution of the drug within the membrane skeleton and its sustained release was achieved after three consecutive impregnations followed by the addition of a layer made of gelatin and maltodextrin, which prevented exceedingly fast release. The here-prepared organic-inorganic macroporous membranes could find applications as fixed or magnetically-steerable drug delivery platforms. PMID:28672792

  10. Sustaining School Achievement in California's Elementary Schools after State Monitoring

    ERIC Educational Resources Information Center

    McCabe, Molly

    2010-01-01

    This study examined the Academic Performance Index (API) and Adequate Yearly Progress (AYP) achievement trends between 2004 and 2006 of 58 California public elementary schools after exiting state monitoring and investigated practices for sustaining consistent achievement growth. Statistical methods were used to analyze statewide achievement trends…

  11. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet.

    PubMed

    Bhalekar, M R; Madgulkar, A R; Sheladiya, D D; Kshirsagar, S J; Wable, N D; Desale, S S

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 3(2) full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X(1)) and bees wax (X(2)) were selected as independent variables and release after 12 h and time required for 50% (t(50)) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t(50) but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.

  12. Statistical Optimization of Sustained Release Venlafaxine HCI Wax Matrix Tablet

    PubMed Central

    Bhalekar, M. R.; Madgulkar, A. R.; Sheladiya, D. D.; Kshirsagar, S. J.; Wable, N. D.; Desale, S. S.

    2008-01-01

    The purpose of this research was to prepare a sustained release drug delivery system of venlafaxine hydrochloride by using a wax matrix system. The effects of bees wax and carnauba wax on drug release profile was investigated. A 32 full factorial design was applied to systemically optimize the drug release profile. Amounts of carnauba wax (X1) and bees wax (X2) were selected as independent variables and release after 12 h and time required for 50% (t50) drug release were selected as dependent variables. A mathematical model was generated for each response parameter. Both waxes retarded release after 12 h and increases the t50 but bees wax showed significant influence. The drug release pattern for all the formulation combinations was found to be approaching Peppas kinetic model. Suitable combination of two waxes provided fairly good regulated release profile. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings. PMID:20046773

  13. Ocular Sustained Release Nanoparticles Containing Stereoisomeric Dipeptide Prodrugs of Acyclovir

    PubMed Central

    Jwala, Jwala; Boddu, Sai H.S.; Shah, Sujay; Sirimulla, Suman; Pal, Dhananjay

    2011-01-01

    Abstract Purpose The objective of this study was to develop and characterize polymeric nanoparticles of appropriate stereoisomeric dipeptide prodrugs of acyclovir (L-valine-L-valine-ACV, L-valine-D-valine-ACV, D-valine-L-valine-ACV, and D-valine-D-valine-ACV) for the treatment of ocular herpes keratitis. Methods Stereoisomeric dipeptide prodrugs of acyclovir (ACV) were screened for bioreversion in various ocular tissues, cell proliferation, and uptake across the rabbit primary corneal epithelial cell line. Docking studies were carried out to examine the affinity of prodrugs to the peptide transporter protein. Prodrugs with optimum characteristics were selected for the preparation of nanoparticles using various grades of poly (lactic-co-glycolic acid) (PLGA). Nanoparticles were characterized for the entrapment efficiency, surface morphology, size distribution, and in vitro release. Further, the effect of thermosensitive gels on the release of prodrugs from nanoparticles was also studied. Results L-valine-L-valine-ACV and L-valine-D-valine-ACV were considered to be optimum in terms of enzymatic stability, uptake, and cytotoxicity. Docking results indicated that L-valine in the terminal position increases the affinity of the prodrugs to the peptide transporter protein. Entrapment efficiency values of L-valine-L-valine-ACV and L-valine-D-valine-ACV were found to be optimal with PLGA 75:25 and PLGA 65:35 polymers, respectively. In vitro release of prodrugs from nanoparticles exhibited a biphasic release behavior with initial burst phase followed by sustained release. Dispersion of nanoparticles in thermosensitive gels completely eliminated the burst release phase. Conclusion Novel nanoparticulate systems of dipeptide prodrugs of ACV suspended in thermosensitive gels may provide sustained delivery after topical administration. PMID:21500985

  14. Pharmacokinetic Studies of Sustained-Release Depot of Dexamethasone in Beagle Dogs.

    PubMed

    Blizzard, Charles; Desai, Ankita; Driscoll, Arthur

    2016-11-01

    To examine the pharmacokinetic characteristics of sustained-release dexamethasone depots in two separate canine studies. Dexamethasone depots loaded with a clinically representative (0.4 mg) dose (DEXTENZA™; Ocular Therapeutix) or an elevated (0.7 mg) dose were inserted into the canaliculi of beagle eyes (n = 37 and n = 34, respectively). Tear fluid was collected for pharmacokinetic analysis of dexamethasone in both studies at predetermined time points. Explanted 0.4 mg depots were collected weekly to measure remaining drug level. Clinical observations and ophthalmic examinations were performed in both studies at each visit. The 0.4 mg depots released a median 308 μg by day 15 and tapered to complete drug release by day 28. Median dexamethasone tear fluid concentrations in the 0.4 mg study group decreased from 2,805 ng/mL at day 7 to 0 ng/mL on day 28. Median dexamethasone tear fluid concentrations in the 0.7 mg study group decreased from 4,370 ng/mL at 6 h post insertion to 830 ng/mL on day 35. Mean ± standard deviation intraocular pressures in the 0.4 and 0.7 mg study groups were 20.7 ± 2.8 and 19.0 ± 4.1 mmHg at baseline, respectively, and demonstrated no meaningful change (20.5 ± 3.0 and 20.6 ± 2.9 mmHg, respectively) over the studies' durations. No ocular toxicities were attributed to the dexamethasone depot. Sustained-release dexamethasone produced no identifiable ocular toxicity in this animal model, and pharmacokinetics demonstrated a sustained and tapered drug release over 28 days at a 0.4 mg dose and exceeded 35 days at a 0.7 mg dose.

  15. Development of matrix-based theophylline sustained-release microtablets.

    PubMed

    Rey, H; Wagner, K G; Wehrlé, P; Schmidt, P C

    2000-01-01

    Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50 degrees C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37 degrees C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50 degrees C for 2 months showed no significant influence on the theophylline release.

  16. The Sustainability of Superintendent-Led Reforms to Improve Student Achievement

    ERIC Educational Resources Information Center

    Bagley, Rick Edward

    2012-01-01

    The purpose of this research was threefold. First, the study explored the possible relationship between the tenure of public school district superintendents and the sustainability of their reform efforts to improve student achievement. Second, the study compared superintendents' perceptions of factors supporting or impeding sustainability of their…

  17. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  18. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.

    PubMed

    Thote, Amol J; Gupta, Ram B

    2005-03-01

    Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.

  19. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.

    PubMed

    Li-Hong, Wang; Xin, Che; Hui, Xu; Li-Li, Zhou; Jing, Han; Mei-Juan, Zou; Jie, Liu; Yi, Liu; Jin-Wen, Liu; Wei, Zhang; Gang, Cheng

    2013-09-15

    The organic solvent solution immersion method was often used to achieve the loading of the drugs into mesoporous silica, but the drugs that have loaded into the pores of the mesoporous silica would inevitable migrate from the inside to the external surface or near the outside surface during the process of drying. Hence, it often leads to the pores of mesoporous materials not be fully utilized, and results in a low drug loading efficiency and a fast releasing rate. The purpose of this study was to develop a novel drug loading strategy to avoid soluble component migration during the process of drying, then, to prepare poorly water-soluble drug mesoporous silica microparticles with higher drug loading efficiency and longer sustained-release time. Ibuprofen was used as model drug. The microparticles were prepared by a novel method based on mesoporous silica and supercritical fluid (SCF) technique. The drug-loaded mesoporous silica microparticles prepared by SCF technique were analyzed by thermogravimetric analysis (TGA), N2 adsorption/desorption, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In vitro releasing study was used to evaluate the sustained-release effect of the drug-loaded microparticles. By virtue of the high diffusibility and the high dissolving capacity of the supercritical carbon dioxide (SCF-CO2), the poorly water-soluble drugs, ibuprofen, entered the pores of the mesoporous silica. The amount and the depth of ibuprofen entered the pores of the mesoporous silica by SCF technique were both larger than those by the solution immersion method. It was found that ibuprofen loaded into the mesoporous silica by SCF technique was amorphous and the largest amount of the ibuprofen loaded into the mesoporous silica by SCF technique could reach 386 mg/g (w/w, ibuprofen/SiO2), it was more than that by the solution immersion method. In vitro releasing study showed that the sustained-release effect of

  20. Sustained-release of naproxen sodium from electrospun-aligned PLLA-PCL scaffolds.

    PubMed

    Lui, Yuan Siang; Lewis, Mark P; Loo, Say Chye Joachim

    2017-04-01

    Spontaneous tendon healing may result in reduced tissue functionality. In view of this, tissue engineering (TE) emerges as a promising approach in promoting proper tendon regeneration. However, unfavourable post-surgical adhesion formations restrict adequate tendon healing through the TE approach. Naproxen sodium (NPS), a non-steroidal anti-inflammatory drug (NSAID), has been demonstrated to prevent adhesions by inhibiting the inflammatory response. Therefore, in this study, various factors, such as polymer composition, i.e. different poly-l-lactic acid (PLLA):polycaprolactone (PCL) ratios, and percentage of water:hexafluoroisopropanol (HFIP; as co-solvent) ratios, were investigated to understand how these can influence the release of NPS from electrospun scaffolds. By adjusting the amount of water as the co-solvent, NPS could be released sustainably for as long as 2 weeks. Scaffold breaking strength was also enhanced with the addition of water as the co-solvent. This NPS-loaded scaffold showed no significant cytotoxicity, and L929 murine fibroblasts cultured on the scaffolds were able to proliferate and align along the fibre orientation. These scaffolds with desirable tendon TE characteristics would be promising candidates in achieving better tendon regeneration in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Preparation and pharmaceutical evaluation of new sustained-release capsule including starch-sponge matrix (SSM).

    PubMed

    Shibata, Nobuhito; Nishumura, Asako; Naruhashi, Kazumasa; Nakao, Yurie; Miura, Rieko

    2010-05-01

    The focus of current study was to demonstrate a new sustained-release capsule including starch-sponge matrix (SSM) and to investigate how the pharmaceutical properties of SSM affect the drug release or its pharmacokinetic properties. Three representative drugs (uranine [UN], indomethacin [IMC] and nifedipine [NFP]) with different physicochemical properties (LogP(ow): 0.10, 1.18 and 3.23, respectively) were selected as model drugs. Model drug was dispersioned in pastelike cornstarch (starch glue) after heating 2.0-3.0% cornstarch suspension with electromagnetic wave at 2450 MHz (700 W) for l min. Then the drug mixture was encapsulated into a gratin capsule by a syringe, and the SSM including drug was prepared by means of a freeze-dried method. Essentially, drug-free SSM has a porous and netlike structure, and the distribution aspect of model drugs in the SSM depends on physicochemical properties between cornstarch glue and drugs. UN with much lower lipophilicity exists in continues phase of SSM, and IMC or NFP with a moderate or a higher lipophilicity exist in continues phase or porous space of the SSM. In the in vitro dissolution study, the release rate of drug from the SSM was mainly dependent on the lipophilicities of drugs, showing a rank order of the release rate of UN>IMC>NFP. In addition, the in vitro release rate for each drug was well regulated by changing the initial concentration of cornstarch suspension. In vivo absorption studies after intraduodenal administration of SSM capsule including model drug revealed that the sustained-release effects also could be regulated by the initial concentration of starch suspension. Moreover, the sustained-release effect of SSM capsule was enhanced with an increase in the lipophilicity of drug, and local-residential and mucoadhesive properties of SSM in the intestine provided stable supply of drugs from the SSM. The SSM capsule we developed here shows promising results as an oral drug delivery system for sustained-release

  2. Wax-based sustained release matrix pellets prepared by a novel freeze pelletization technique II. In vitro drug release studies and release mechanisms.

    PubMed

    Cheboyina, Sreekhar; Wyandt, Christy M

    2008-07-09

    A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.

  3. Development of Intra-knee Joint Sustained-Release Gel Formulation and Evaluation of Its Pharmacological Efficiency in Rats.

    PubMed

    Noda, Takehiro; Okuda, Tomoyuki; Ban, Kousuke; Mizuno, Ryota; Tagami, Tatsuaki; Ozeki, Tetsuya; Okamoto, Hirokazu

    2017-06-01

    In the development of a drug for intra-articular administration, a sustained-release formulation is desirable since it is difficult to sustain the effects of conventional injections due to fast drug leakage from the joint cavity. In this study, we prepared sustained release gel formulations for intra-articular administration containing indocyanine green (ICG) as a model drug to follow its fate after intra-articular administration in rats with in-vivo imaging system (IVIS). ICG administered as an aqueous solution leaked from the joint cavity in a short time and was excreted out of the body within a day. On the other hand, ICG in the sustained-release formulations was retained and released in the joint cavity for a week. Next, we prepared a sustained-release formulation with hyaluronic acid (HA) as the gel base containing a pain-relief drug (Drug A). We had administered it and other formulations into the rat knee where we injected bradykinin to evaluate their walking distance after 1 and 3 d. The effect of an aqueous solution of Drug A disappeared on day 3. The HA gel formulation without Drug A was more effective than the aqueous solution. The HA gel formulation with Drug A was the most effective; the walking distance was about 85% of the baseline on day 3. This study showed that the gel formulations were effective to sustain the release of a drug in the knee joint, and that the combination of a pain-relief drug with HA gel was effective to improve the mobility of the acute pain model rats.

  4. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    PubMed

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  5. Sustained release ophthalmic formulations of pilocarpine.

    PubMed

    Deshpande, S G; Shirolkar, S

    1989-03-01

    The bioavailability of drugs from conventional ophthalmic formulations is low. To optimize the therapy, sustained release ophthalmic dosage forms are warranted. Hydrogels such as sodium-carboxymethyl cellulose, hydroxypropylmethyl cellulose, Carbopol-940, Carbopol-941 and Lutrol-FC-127 increase the duration of action of various drugs. Gels containing pilocarpine were prepared and evaluated by measuring the intensity and duration of miotic response in albino rabbits. Carbopol-940 gels, being the best of those used, were studied further for the effect of its concentration and of additives (benzalkonium chloride, phenylmercuric nitrate, chlorbutol and disodium edetate), autoclaving at 121 degrees C for 30 min and irradiation with gamma rays (2.5 Mrad), on the end product.

  6. Sustained release of antibiotics from injectable and thermally responsive polypeptide depots.

    PubMed

    Adams, Samuel B; Shamji, Mohammed F; Nettles, Dana L; Hwang, Priscilla; Setton, Lori A

    2009-07-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications. (c) 2008 Wiley Periodicals, Inc.

  7. Pseudoephedrine hydrochloride sustained-release pellets prepared by a combination of hot-melt subcoating and polymer coating.

    PubMed

    Yang, Zi Yi; Lu, Yan; Tang, Xing

    2008-12-01

    Pseudoephedrine hydrochloride is an active very highly water soluble substance. In order to control release of a drug with this property, we developed the application of a combination of hot-melt subcoating and polymer coating was developed. The main objective was to investigate the influence of this combination on the release of highly water soluble drug and how it works. Hot-melt subcoating was achieved by using a coating pan. Subsequently, the outer polymer coating was prepared by fluidized bed, and the drug release was determined by high-performance liquid chromatograph (HPLC) method. Hot-melt subcoating can form a barrier between the drug-loaded pellets and the polymer coating layer, which prevents migration of the drug during film application. Consequently, the level of polymer coating can be reduced significantly, and the effectiveness of the polymer coating increased. In this study, the release profile of pellets with a 10% hot-melt subcoating and 5% polymer coating weight gain met the dissolution requirement of USP29 for pseudoephedrine hydrochloride extended-release capsules. Compared with pellets only polymer coated (10% level), the polymer coating level of pellets prepared by this technology was reduced by half due to hot-melt subcoating. By means of this hot-melt subcoating and polymer coating, sustained-release pellets containing pseudoephedrine hydrochloride were successfully prepared.

  8. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    PubMed Central

    Patel, Shraddha; Jammalamadaka, Uday; Sun, Lin; Tappa, Karthik; Mills, David K.

    2015-01-01

    The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs) as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL) scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate) were then mixed with poly-e-caprolactone (PLC) using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties. PMID:28952563

  9. Development and Characterization of Chitosan Cross-Linked With Tripolyphosphate as a Sustained Release Agent in Tablets, Part I: Design of Experiments and Optimization.

    PubMed

    Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H

    2018-04-01

    Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. In vitro and ex vivo characterisation of an in situ gelling formulation for sustained lidocaine release with potential use following knee arthroplasty.

    PubMed

    Sharma, Manisha; Chandramouli, Kaushik; Curley, Louise; Pontre, Beau; Reilly, Keryn; Munro, Jacob; Hill, Andrew; Young, Simon; Svirskis, Darren

    2018-06-01

    Sustained lidocaine release via a thermoresponsive poloxamer-based in situ gelling system has the potential to alleviate pain following knee arthroplasty. A previously developed formulation showed a promising drug release profile in synthetic phosphate-buffered saline (PBS). To support the translation of this formulation, ex vivo characterisation was warranted. This study therefore aimed (1) to modify the previously developed formulation to reduce the burst release, (2) to compare the release behaviour into ex vivo human intra-articular fluid (IAF) and PBS and (3) to determine the formulation spread in an ex vivo human knee using magnetic resonance imaging (MRI). All formulations provided sustained release out to 72 h; polyvinyl pyrrolidone was the most effective additive yielding a small yet significant decrease (p < 0.05) in the burst release. Release of lidocaine from the formulation occurred significantly faster into IAF compared to PBS (1.4 times greater release in the first 24 h), correlating with faster rates of gel erosion in IAF. Injection was easily achieved through a 21-gauge (G) needle into the synovial space of a human cadaveric knee, and MRI scans revealed effective spreading of the formulation throughout the joint cavity. The pattern of spread is promising for the drug to reach the widespread nerve endings in the joint capsule; the effect of this spread on release in an in vivo setting will be the subject of future studies. The demonstrated properties indicate that the in situ gelling formulation has the potential to be used clinically to treat post-operative pain following knee arthroplasty.

  11. Development of sustained release capsules containing "coated matrix granules of metoprolol tartrate".

    PubMed

    Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya

    2010-09-01

    The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.

  12. Hydroxyethyl Pachyman as a novel excipient for sustained-release matrix tablets.

    PubMed

    Zhou, Xiaoju; Wang, Pengyu; Wang, Jiong; Liu, Zhi; Hong, Xuechuan; Xiao, Yuling; Liu, Peng; Hu, Xianming

    2016-12-10

    This paper addressed the application of hydroxyethyl pachyman (HEP) as a novel matrix for sustained - release tablets, using diclofenac sodium (DS) as a model drug. The studies showed the HEP tablets prepared by wet granulation had much slower drug release as compared to those prepared by direct compression. Meanwhile, increasing the percentage of HEP in the formulations caused a decrease in drug release rates. Moreover, DS release from the HEP tablets was much higher at high pH (6.8) than that at low pH (1.2). Morphology studies proved the HEP tablet formed a continuous gel layer with porous inner structure in the dissolution media. Analysis of DS release profiles revealed that diffusion and matrix erosion occurred in simulated intestinal fluid(SIF, pH=6.8) for all the tablets. The experimental results predict HEP has a potential as a hydrophilic matrix in tablets to prolong drug release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Spherical and tubule nanocarriers for sustained drug release

    PubMed Central

    Shutava, T.; Fakhrullin, R.; Lvov, Y.

    2014-01-01

    We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068

  14. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review.

    PubMed

    O'Connor, David; Hou, Deyi; Ok, Yong Sik; Song, Yinan; Sarmah, Ajit K; Li, Xuanru; Tack, Filip M G

    2018-06-06

    The removal of recalcitrant organic pollutants in groundwater is a challenge being faced around the world. Achieving effective long-term remediation of contaminated aquifers faces a variety of significant issues such as back diffusion, tailing, and rebound. In recent years, some researchers have proposed the use of controlled release materials (CRMs) as a new approach to counteracting such issues. The novelty of CRMs lies in that they release their active products slowly, over prolonged periods of time, in order to sustain in situ treatments and long-term effectiveness. Here we review the main constituents of CRMs, analyze their production, characterization, and applications, with a focus on reaction mechanisms, effectiveness, and secondary effects. This review shows that the reactive components of CRMs most commonly involve either: (i) chemical oxidants to treat contaminants such as TCE, PCE, BTEX, and 1,4-Dioxane; (ii) sources of dissolved oxygen to stimulate aerobic biodegradation of contaminants such as BTEX and 1,4-Dioxane; or, (iii) substrates that stimulate reductive dechlorination of contaminants such as TCE and 1,2-DCA. It was found that in some studies, CRMs provided sustained delivery of CRM treatment reagents over several years, and achieved complete contaminant removal. However, lower removal rates were apparent in other cases, which may be ascribed to insufficient dispersion in the subsurface. There are a relatively limited number of field-scale applications of CRMs in contaminated land remediation. Those conducted to date suggest that CRMs could prove to be an effective future remediation strategy. Lessons learned from field applications, suggestions for future research directions, and conclusions are put forward in this review. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Formulation and In Vitro, In Vivo Evaluation of Effervescent Floating Sustained-Release Imatinib Mesylate Tablet

    PubMed Central

    Kadivar, Ali; Kamalidehghan, Behnam; Javar, Hamid Akbari; Davoudi, Ehsan Taghizadeh; Zaharuddin, Nurul Dhania; Sabeti, Bahareh; Chung, Lip Yong; Noordin, Mohamed Ibrahim

    2015-01-01

    Introduction Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets. Methodology Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted. Results and Discussion Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent

  17. Oxygen-Releasing Antioxidant Cryogel Scaffolds with Sustained Oxygen Delivery for Tissue Engineering Applications.

    PubMed

    Shiekh, Parvaiz A; Singh, Anamika; Kumar, Ashok

    2018-06-06

    With the advancement in biomaterial sciences, tissue-engineered scaffolds are developing as a promising strategy for the regeneration of damaged tissues. However, only a few of these scaffolds have been translated into clinical applications. One of the primary drawbacks of the existing scaffolds is the lack of adequate oxygen supply within the scaffolds. Oxygen-producing biomaterials have been developed as an alternate strategy but are faced with two major concerns. One is the control of the rate of oxygen generation, and the other is the production of reactive oxygen species (ROS). To address these concerns, here, we report the development of an oxygen-releasing antioxidant polymeric cryogel scaffold (PUAO-CPO) for sustained oxygen delivery. PUAO-CPO scaffold was fabricated using the cryogelation technique by the incorporation of calcium peroxide (CPO) in the antioxidant polyurethane (PUAO) scaffolds. The PUAO-CPO cryogels attenuated the ROS and showed a sustained release of oxygen over a period of 10 days. An in vitro analysis of the PUAO-CPO cryogels showed their ability to sustain H9C2 cardiomyoblast cells under hypoxic conditions, with cell viability being significantly better than the normal polyurethane (PU) scaffolds. Furthermore, in vivo studies using an ischemic flap model showed the ability of the oxygen-releasing cryogel scaffolds to prevent tissue necrosis upto 9 days. Histological examination indicated the maintenance of tissue architecture and collagen content, whereas immunostaining for proliferating cell nuclear antigen confirmed the viability of the ischemic tissue with oxygen delivery. Our study demonstrated an advanced approach for the development of oxygen-releasing biomaterials with sustained oxygen delivery as well as attenuated production of residual ROS and free radicals because of ischemia or oxygen generation. Hence, the oxygen-releasing PUAO-CPO cryogel scaffolds may be used with cell-based therapeutic approaches for the regeneration of

  18. Preparation and evaluation of metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating.

    PubMed

    Yang, Yan; Shen, Lian; Li, Juan; Shan, Wei-Guang

    2017-06-01

    The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion-erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.

  19. Sustained Release of an Anti-Glaucoma Drug: Demonstration of Efficacy of a Liposomal Formulation in the Rabbit Eye

    PubMed Central

    Ang, Marcus; Darwitan, Anastasia; Foo, Selin; Zhen, Ma; Koo, Magdalene; Wong, Tina T.; Venkatraman, Subbu S.

    2011-01-01

    Topical medication remains the first line treatment of glaucoma; however, sustained ocular drug delivery via topical administration is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Currently, daily topical administration for lowering the intra-ocular pressure (IOP), has many limitations, such as poor patient compliance and ocular allergy from repeated drug administration. Poor compliance leads to suboptimal control of IOP and disease progression with eventual blindness. The delivery of drugs in a sustained manner could provide the patient with a more attractive alternative by providing optimal therapeutic dosing, with minimal local toxicity and inconvenience. To investigate this, we incorporated latanoprost into LUVs (large unilamellar vesicles) derived from the liposome of DPPC (di-palmitoyl-phosphatidyl-choline) by the film hydration technique. Relatively high amounts of drug could be incorporated into this vesicle, and the drug resides predominantly in the bilayer. Vesicle stability monitored by size measurement and DSC (differential scanning calorimetry) analysis showed that formulations with a drug/lipid mole ratio of about 10% have good physical stability during storage and release. This formulation demonstrated sustained release of latanoprost in vitro, and then tested for efficacy in 23 rabbits. Subconjunctival injection and topical eye drop administration of the latanoprost/liposomal formulation were compared with conventional daily administration of latanoprost eye drops. The IOP lowering effect with a single subconjunctival injection was shown to be sustained for up to 50 days, and the extent of IOP lowering was comparable to daily eye drop administration. Toxicity and localized inflammation were not observed in any treatment groups. We believe that this is the first demonstration, in vivo, of sustained delivery to the anterior segment of the eye

  20. Preparation and evaluation of sustained release microballoons of propranolol.

    PubMed

    Porwal, A; Swami, G; Saraf, Sa

    2011-01-01

    The purpose of the present investigation was to characterize, optimize and evaluate microballoons of Propranolol hydrochloride and to increase its boioavailability by increasing the retention time of the drug in the gastrointestinal tract. Propranolol hydrochloride-loaded microballoons were prepared by the non-aqueous O/O emulsion solvent diffusion evaporation method using Eudragit RSPO as polymer. It was found that preparation temperature determined the formation of cavity inside the microballoon and this in turn determined the buoyancy. Microballoons were subjected to particle size determination, micromeritic properties, buoyancy, entrapment efficiency, drug loading, in vitro drug release and IR study. The correlation between the buoyancy, bulk density and porosity of microballoons were elucidated. The release rate was determined in simulated gastric fluid (SGF) of pH 1.2 at 37±0.5°C. The microballoons presented spherical and smooth morphologies (SEM) and were porous due to presence of hollow cavity. Microballoons remained buoyant for >12 hrs for the optimized formulation. The formulation demonstrated favorable in vitro floating and release characteristics. The encapsulation efficiency was high. In vitro dissolution kinetics followed the Higuchi model. The drug release from microballoons was mainly controlled by diffusion and showed a biphasic pattern with an initial burst release, followed by sustained release for 12 hrs. The amount of the drug which released up to 12 hrs was 82.05±0.64%. Statistical analysis (ANOVA) showed significant difference (p<0.05) in the cumulative amount of drug released after 30 min, and up to 12 hrs from optimized formulations. The designed system for propanolol would possibly be advantageous in terms of increased bioavailability and patient compliance.

  1. Effects of Naltrexone Sustained- Release/Bupropion Sustained-Release Combination Therapy on Body Weight and Glycemic Parameters in Overweight and Obese Patients With Type 2 Diabetes

    PubMed Central

    Hollander, Priscilla; Gupta, Alok K.; Plodkowski, Raymond; Greenway, Frank; Bays, Harold; Burns, Colleen; Klassen, Preston; Fujioka, Ken

    2013-01-01

    OBJECTIVE To assess the efficacy and safety of 32 mg naltrexone sustained-release (SR)/360 mg bupropion SR (NB) in overweight/obese individuals with type 2 diabetes with or without background oral antidiabetes drugs. RESEARCH DESIGN AND METHODS This was a 56-week, double-blind, placebo-controlled study in which 505 patients received standardized lifestyle intervention and were randomized 2:1 to NB or placebo. Coprimary end points were percent weight change and achievement of ≥5% weight loss. Secondary end points included achievement of HbA1c <7% (53 mmol/mol), achievement of weight loss ≥10%, and change in HbA1c, waist circumference, fasting blood glucose, and lipids. RESULTS In the modified intent-to-treat population (54% female, 80% Caucasian, and mean age 54 years, weight 106 kg, BMI 37 kg/m2, and HbA1c 8.0% [64 mmol/mol]), NB resulted in significantly greater weight reduction (−5.0 vs. −1.8%; P < 0.001) and proportion of patients achieving ≥5% weight loss (44.5 vs. 18.9%, P < 0.001) compared with placebo. NB also resulted in significantly greater HbA1c reduction (−0.6 vs. −0.1% [6.6 vs. 1.1 mmol/mol]; P < 0.001), percent of patients achieving HbA1c <7% (53 mmol/mol) (44.1 vs. 26.3%; P < 0.001), and improvement in triglycerides and HDL cholesterol compared with placebo. NB was associated with higher incidence of nausea (42.3 vs. 7.1%), constipation (17.7 vs. 7.1%), and vomiting (18.3 vs. 3.6%). No difference was observed between groups in the incidence of depression, suicidal ideation, or hypoglycemia. CONCLUSIONS NB therapy in overweight/obese patients with type 2 diabetes induced weight loss, which was associated with improvements in glycemic control and select cardiovascular risk factors and was generally well tolerated with a safety profile similar to that in patients without diabetes. PMID:24144653

  2. Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: preparation and in vitro/in vivo characterization.

    PubMed

    Lee, Yeo-Song; Song, Jae Guen; Lee, Sang Hoon; Han, Hyo-Kyung

    2017-11-01

    The present study aimed to develop the sustained-release oral dosage form of pelubiprofen (PEL) by using the blended mixture of 3-aminopropyl functionalized-magnesium phyllosilicate (aminoclay) and pH-independent polymers. The sustained-release solid dispersion (SRSD) was prepared by the solvent evaporation method and the optimal composition of SRSD was determined as the weight ratio of drug: Eudragit® RL PO: Eudragit® RS PO of 1:1:2 in the presence of 1% of aminoclay (SRSD(F6)). The dissolution profiles of SRSD(F6) were examined at different pHs and in the simulated intestinal fluids. The drug release from SRSD(F6) was limited at pH 1.2 and gradually increased at pH 6.8, resulting in the best fit to Higuchi equation. The sustained drug release from SRSD(F6) was also maintained in simulated intestinal fluid at fasted-state (FaSSIF) and fed-state (FeSSIF). The structural characteristics of SRSD(F6) were examined by using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), indicating the change of drug crystallinity to an amorphous form. After oral administration in rats, SRSD(F6) exhibited the prolonged drug exposure in plasma. For both PEL and PEL-transOH (active metabolite), once a day dosing of SRSD(F6) achieved oral exposure (AUC) comparable to those from the multiple dosing (3 times a day) of untreated drug. In addition, the in vivo absorption of SRSD(F6) was well-correlated with the in vitro dissolution data, establishing a good level A in vitro/in vivo correlation. These results suggest that SRSD(F6) should be promising for the sustained-release of PEL, thereby reducing the dosing frequency.

  3. Food interactions with sustained-release theophylline preparations. A review.

    PubMed

    Jonkman, J H

    1989-03-01

    Currently, theophylline is being used predominantly as sustained-release capsules or tablets. In the mid-seventies the first preparations for use with a dosage interval of 12 hours (twice-daily preparations) were introduced. Since 1983, theophylline preparations that can be given with an interval of 24 hours (once-daily preparations) have become available. The release of theophylline from some of these products can be influenced (either increased or decreased) by concomitant intake of food. With some preparations the composition of the meal (especially the fat content) has an influence on the degree of effect. The consequence may be an effect on the rate of absorption or on the amount absorbed, or both simultaneously. This could result in an unexpected shift of the plasma theophylline concentration. Such a shift is therapeutically undesirable, because theophylline has a fairly narrow therapeutic range. A review is given of those food interactions with the sustained-release theophylline preparations, both twice-daily and once-daily products, that are currently on the world market. Special attention is paid to the specific (bio)pharmaceutical characteristics of the different products, and to the influence of the composition and timing of the meals. For each preparation the effect of food on the following pharmacokinetic parameters is discussed: area under the plasma concentration-time curve, peak plasma drug concentration and time to reach this peak. Where possible, the results for both adults and children are discussed. There are indications that children are more susceptible to food-effects than adults. The regulatory aspects are mentioned briefly. Clinically important effects of food have been observed with the following twice-daily products: 'Theo-Dur Sprinkle', 'Theolair SR' (= 'Nuelin SR') and 'Theograd'. Pronounced effects could have an even greater impact with once-daily preparations, as the total daily dose will be given at a single time. A particularly

  4. [Application of an artificial neural network in the design of sustained-release dosage forms].

    PubMed

    Wei, X H; Wu, J J; Liang, W Q

    2001-09-01

    To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.

  5. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC.

    PubMed

    Sankalia, Jolly M; Sankalia, Mayur G; Mashru, Rajashree C

    2008-07-02

    The purpose of this study was to examine a level A in vitro-in vivo correlation (IVIVC) for glipizide hydrophilic sustained-release matrices, with an acceptable internal predictability, in the presence of a range of formulation/manufacturing changes. The effect of polymeric blends of ethylcellulose, microcrystalline cellulose, hydroxypropylmethylcellulose, xanthan gum, guar gum, Starch 1500, and lactose on in vitro release profiles was studied and fitted to various release kinetics models. Water uptake kinetics with scanning electron microscopy (SEM) was carried out to support the drug release mechanism. An IVIVC was established by comparing the pharmacokinetic parameters of optimized (M-24) and marketed (Glytop-2.5 SR) formulations after single oral dose studies on white albino rabbits. The matrix M-19 (xanthan:MCC PH301 at 70:40) and M-24 (xanthan:HPMC K4M:Starch 1500 at 70:25:15) showed the glipizide release within the predetermined constraints at all time points with Korsmeyer-Peppas' and zero-order release mechanism, respectively. Kopcha model revealed that the xanthan gum is the major excipient responsible for the diffusional release profile and was further supported by SEM and swelling studies. A significant level A IVIVC with acceptable limits of prediction errors (below 15%) enables the prediction of in vivo performance from their in vitro release profile. It was concluded that proper selection of rate-controlling polymers with release rate modifier excipients will determine overall release profile, duration and mechanism from directly compressed matrices.

  6. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  7. Development and validation of dissolution study of sustained release dextromethorphan hydrobromide tablets.

    PubMed

    Rajan, Sekar; Colaco, Socorrina; Ramesh, N; Meyyanathan, Subramania Nainar; Elango, K

    2014-02-01

    This study describes the development and validation of dissolution tests for sustained release Dextromethorphan hydrobromide tablets using an HPLC method. Chromatographic separation was achieved on a C18 column utilizing 0.5% triethylamine (pH 7.5) and acetonitrile in the ratio of 50:50. The detection wavelength was 280 nm. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The suitable conditions were clearly decided after testing sink conditions, dissolution medium and agitation intensity. The most excellent dissolution conditions tested, for the Dextromethorphan hydrobromide was applied to appraise the dissolution profiles. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The method was established to have sufficient intermediate precision as similar separation was achieved on another instrument handled by different operators. Mean Recovery was 101.82%. Intra precisions for three different concentrations were 1.23, 1.10 0.72 and 1.57, 1.69, 0.95 and inter run precisions were % RSD 0.83, 1.36 and 1.57%, respectively. The method was successfully applied for dissolution study of the developed Dextromethorphan hydrobromide tablets.

  8. [Discussion on releasing price of Chinese patent medicine to market economy to achieve sustainable development].

    PubMed

    Long, Xingchao; Huang, Luqi; Jiang, Erguo; Zhou, Yonghong; Xu, Yanfeng; Zheng, Shuhua; Ning, Xiaoling; Liu, Hongwei; Chen, Lin

    2012-02-01

    To analyze costs of the traditional Chinese medicine industry focusing on production costs. Data of 50 planted Chinese herbal medicines and 50 wild Chinese herbal medicines were summarized and analyzed to see the changes of price of Chinese herbal medicines. The derivative problems of limited price were analyzed by crude drug, quality of Chinese medicine and sustainable utilization of resource. The price of Chinese medicine shall be adapted to sustainable development of market economy.

  9. Preparation and evaluation of sustained release microballoons of propranolol

    PubMed Central

    Porwal, A; Swami, G; Saraf, SA

    2011-01-01

    Background and the purpose of the study The purpose of the present investigation was to characterize, optimize and evaluate microballoons of Propranolol hydrochloride and to increase its boioavailability by increasing the retention time of the drug in the gastrointestinal tract. Methods Propranolol hydrochloride-loaded microballoons were prepared by the non-aqueous O/O emulsion solvent diffusion evaporation method using Eudragit RSPO as polymer. It was found that preparation temperature determined the formation of cavity inside the microballoon and this in turn determined the buoyancy. Microballoons were subjected to particle size determination, micromeritic properties, buoyancy, entrapment efficiency, drug loading, in vitro drug release and IR study. The correlation between the buoyancy, bulk density and porosity of microballoons were elucidated. The release rate was determined in simulated gastric fluid (SGF) of pH 1.2 at 37±0.5°C. Results The microballoons presented spherical and smooth morphologies (SEM) and were porous due to presence of hollow cavity. Microballoons remained buoyant for >12 hrs for the optimized formulation. The formulation demonstrated favorable in vitro floating and release characteristics. The encapsulation efficiency was high. In vitro dissolution kinetics followed the Higuchi model. The drug release from microballoons was mainly controlled by diffusion and showed a biphasic pattern with an initial burst release, followed by sustained release for 12 hrs. The amount of the drug which released up to 12 hrs was 82.05±0.64%. Statistical analysis (ANOVA) showed significant difference (p<0.05) in the cumulative amount of drug released after 30 min, and up to 12 hrs from optimized formulations. Conclusion The designed system for propanolol would possibly be advantageous in terms of increased bioavailability and patient compliance. PMID:22615657

  10. Leadership Effects on Student Achievement and Sustained School Success

    ERIC Educational Resources Information Center

    Jacobson, Stephen

    2011-01-01

    Purpose: The purpose of this paper is to examine the effects of leadership on student achievement and sustained school success, especially in challenging, high-poverty schools. Design/methodology/approach: The paper combines a review of the leadership literature with findings drawn from longitudinal studies of the International Successful School…

  11. Polymer excipients enable sustained drug release in low pH from mechanically strong inorganic geopolymers.

    PubMed

    Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria

    2012-01-01

    Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.

  12. Polymer excipients enable sustained drug release in low pH from mechanically strong inorganic geopolymers

    PubMed Central

    Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria

    2012-01-01

    Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid–ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids. PMID:25755991

  13. Preparation and Optimization of Immediate Release/Sustained Release Bilayered Tablets of Loxoprofen Using Box-Behnken Design.

    PubMed

    Tak, Jin Wook; Gupta, Biki; Thapa, Raj Kumar; Woo, Kyu Bong; Kim, Sung Yub; Go, Toe Gyeong; Choi, Yongjoo; Choi, Ju Yeon; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-05-01

    The aim of our current study was to characterize and optimize loxoprofen immediate release (IR)/sustained release (SR) tablet utilizing a three-factor, three-level Box-Behnken design (BBD) combined with a desirability function. The independent factors included ratio of drug in the IR layer to total drug (X 1 ), ratio of HPMC to drug in the SR layer (X 2 ), and ratio of Eudragit RL PO to drug in the SR layer (X 3 ). The dependent variables assessed were % drug released in distilled water at 30 min (Y 1 ), % drug released in pH 1.2 at 2 h (Y 2 ), and % drug released in pH 6.8 at 12 h (Y 3 ). The responses were fitted to suitable models and statistical validation was performed using analysis of variance. In addition, response surface graphs and contour plots were constructed to determine the effects of different factor level combinations on the responses. The optimized loxoprofen IR/SR tablets were successfully prepared with the determined amounts of ingredients that showed close agreement in the predicted and experimental values of tablet characterization and drug dissolution profile. Therefore, BBD can be utilized for successful optimization of loxoprofen IR/SR tablet, which can be regarded as a suitable substitute for the current marketed formulations.

  14. Challenges to achievement of metal sustainability in our high-tech society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challengesmore » to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.« less

  15. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus)

    PubMed Central

    Seymour, Travis L; Adams, Sean C; Felt, Stephen A; Jampachaisri, Katechan; Yeomans, David C; Pacharinsak, Cholawat

    2016-01-01

    Postoperative analgesia in laboratory rats is complicated by the frequent handling associated with common analgesic dosing requirements. Here, we evaluated sustained-release buprenorphine (Bup-SR), sustained-release meloxicam (Melox-SR), and carprofen gel (CG) as refinements for postoperative analgesia. The aim of this study was to investigate whether postoperative administration of Bup-SR, Melox-SR, or CG effectively controls behavioral mechanical and thermal hypersensitivity in a rat model of incisional pain. Rats were randomly assigned to 1 of 5 treatment groups: saline, 1 mL/kg SC BID; buprenorphine HCl (Bup HCl), 0.05 mg/kg SC BID; Bup-SR, 1.2 mg/kg SC once; Melox-SR, 4 mg/kg SC once; and CG, 2 oz PO daily. Mechanical and thermal hypersensitivity were tested daily from day–1 through 4. Bup HCl and Bup-SR attenuated mechanical and thermal hypersensitivity on days 1 through 4. Melox-SR and CG attenuated mechanical hypersensitivity–but not thermal hypersensitivity–on days 1 through 4. Plasma concentrations, measured by using UPLC with mass spectrometry, were consistent between both buprenorphine formulations. Gross pathologic examination revealed no signs of toxicity in any group. These findings suggest that postoperative administration of Bup HCl and Bup-SR—but not Melox-SR or CG—effectively attenuates mechanical and thermal hypersensitivity in a rat model of incisional pain. PMID:27177563

  16. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus).

    PubMed

    Seymour, Travis L; Adams, Sean C; Felt, Stephen A; Jampachaisri, Katechan; Yeomans, David C; Pacharinsak, Cholawat

    2016-01-01

    Postoperative analgesia in laboratory rats is complicated by the frequent handling associated with common analgesic dosing requirements. Here, we evaluated sustained-release buprenorphine (Bup-SR), sustained-release meloxicam (Melox-SR), and carprofen gel (CG) as refinements for postoperative analgesia. The aim of this study was to investigate whether postoperative administration of Bup-SR, Melox-SR, or CG effectively controls behavioral mechanical and thermal hypersensitivity in a rat model of incisional pain. Rats were randomly assigned to 1 of 5 treatment groups: saline, 1 mL/kg SC BID; buprenorphine HCl (Bup HCl), 0.05 mg/kg SC BID; Bup-SR, 1.2 mg/kg SC once; Melox-SR, 4 mg/kg SC once; and CG, 2 oz PO daily. Mechanical and thermal hypersensitivity were tested daily from day-1 through 4. Bup HCl and Bup-SR attenuated mechanical and thermal hypersensitivity on days 1 through 4. Melox-SR and CG attenuated mechanical hypersensitivity-but not thermal hypersensitivity-on days 1 through 4. Plasma concentrations, measured by using UPLC with mass spectrometry, were consistent between both buprenorphine formulations. Gross pathologic examination revealed no signs of toxicity in any group. These findings suggest that postoperative administration of Bup HCl and Bup-SR-but not Melox-SR or CG-effectively attenuates mechanical and thermal hypersensitivity in a rat model of incisional pain.

  17. Serum Albumin Beads: An Injectable, Biodegradable System for the Sustained Release of Drugs

    NASA Astrophysics Data System (ADS)

    Lee, Timothy K.; Sokoloski, Theodore D.; Royer, Garfield P.

    1981-07-01

    Biologically active compounds were entrapped in cross-linked serum albumin microbeads. Injection of these drug-impregnated beads into rabbits produced no adverse immunological reactions. Sustained release (20 days) of progesterone was demonstrated in vivo.

  18. Design and Evaluation of Hydrophilic Matrix System for pH-Independent Sustained Release of Weakly Acidic Poorly Soluble Drug.

    PubMed

    Huang, Jinheng; Lin, Huaqing; Peng, Bingxin; Huang, Qianfeng; Shuai, Fangzhou; Xie, Yanxian

    2018-04-30

    The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f 2 ) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.

  19. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    PubMed

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  20. Pharmacokinetics of Sustained-Release Analgesics in Mice

    PubMed Central

    Kendall, Lon V; Hansen, Ryan J; Dorsey, Kathryn; Kang, Sooah; Lunghofer, Paul J; Gustafson, Daniel L

    2014-01-01

    Buprenorphine and carprofen, 2 of the most commonly used analgesics in mice, must be administered every 8 to 12 h to provide sustained analgesia. Sustained-release (SR) formulations of analgesics maintain plasma levels that should be sufficient to provide sustained analgesia yet require less frequent dosing and thus less handling of and stress to the animals. The pharmacokinetics of SR formulations of buprenorphine (Bup-SR), butorphanol (Butp-SR), fentanyl (Fent-SR), carprofen (Carp-SR), and meloxicam (Melox-SR) were evaluated in mice over 72 h and compared with those of traditional, nonSR formulations. Bup-SR provided plasma drug levels greater than the therapeutic level for the first 24 to 48 h after administration, but plasma levels of Bup-HCl fell below the therapeutic level by 4 h. Fent-SR maintained plasma levels greater than reported therapeutic levels for 12 h. Therapeutic levels of the remaining drugs are unknown, but Carp-SR provided plasma drug levels similar to those of Carp for the first 24 h after administration, whereas Melox-SR had greater plasma levels than did Melox for the first 8 h. Butp-SR provided detectable plasma drug levels for the first 24 h, with a dramatic decrease over the first 4 h. These results indicate that Bup-SR provides a stable plasma drug level adequate for analgesia for 24 to 48 h after administration, whereas Carp-SR, Melox-SR, Fent-SR, and Butp-SR would require additional doses to provide analgesic plasma levels beyond 24 h in mice. PMID:25255070

  1. Preparation and characterization of cross-linked excipient of coprocessed xanthan gum-acacia gum as matrix for sustained release tablets

    NASA Astrophysics Data System (ADS)

    Surini, Silvia; Wati, Dina Risma; Syahdi, Rezi Riadhi

    2018-02-01

    Sustained release tablet is solid dosage form which is designed to release drugs slowly in the body. This research was intended to prepare and characterize the cross-linked excipients of co-processed xanthan gum-acacia gum (CL-Co-XGGA) as matrices for sustained release tablets with gliclazide as a model drug. CL-Co-XGGA excipients were cross-linked materials of co-processed excipients of xanthan gum-acacia gum (Co-XGGA) using sodium trimetaphosphate. Co-processed excipients of xanthan gum-acacia gum were prepared in the ratio of each excipient 1:2, 1:1 and 2:1. Co-XGGA and CL-Co-XGGA excipients were characterized physically, chemically and functionally. Then, the sustained release (SR) tablets were formulated by wet granulation method using CL-Co-XGGA excipients as matrices. Also, the dissolution study of the gliclazide SR tablets was carried out in phosphate buffer medium pH 7,4 containing sodium lauryl sulphate 0.2% for 12 hours. The results showed that the degree of substitution (DS) of CL-Co-XGGA 1:2, 1:1, 2:1 excipients were respectively 0.067, 0.082 and 0.08. Besides that, the excipients gel strengths were 14.03, 17.27 and 20,70 gF, respectively. The cross-linked excipients had improved flow properties and swelling capability compared to the Co-XGGA excipients. The results of the gliclazide SR tablets evaluations showed that all tablets were passed all tablet requirements. Moreover, the gliclazide release from SR tablets F1 - F6 revealed the sustained release profile, which was following zero order kinetics (F1, F2, F3, F6) and Higuchi kinetics (F4 and F5). It could be concluded that the obtained CL-Co-XGGA excipients might be used as matrices for sustained release tablets and could retard drug release up to 8 until 32 hours.

  2. Development and evaluation of new multiple-unit levodopa sustained-release floating dosage forms.

    PubMed

    Goole, J; Vanderbist, F; Amighi, K

    2007-04-04

    This work relates to the development and the in vitro evaluation of sustained-release minitablets (MT), prepared by melt granulation and subsequent compression, which are designed to float over an extended period of time. Levodopa was used as a model drug. The importance of the composition and manufacturing parameters of the MT on their floating and dissolution properties was then examined. The investigation showed that MT composition and MT diameter had the greatest influence on drug release, which was sustained for more than 8h. By using the same formulation, the best floating properties were obtained with 3mm MT prepared at low compression forces ranging between 50 and 100N. Their resultant-weight (RW) values were always higher than those obtained with a marketed HBS dosage form within 13h. When they were filled into gelatin capsules, no sticking was observed. By evaluating the dissolution profiles of levodopa at different pH values, it was found that dissolution profiles depend more on the prolonged-release ability of Methocel K15M than on the pH-dependent solubility of levodopa. Finally, the robustness of the floating MT was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests.

  3. Testing lyoequivalency for three commercially sustained-release tablets containing diltiazem hydrochloride.

    PubMed

    Maswadeh, Hamzah A; Al-Hanbali, Othman A; Kanaan, Reem A; Shakya, Ashok K; Maraqa, Anwar

    2010-01-01

    In vitro release kinetics of three commercially available sustained release tablets (SR) diltiazem hydrochloride were studied at pH 1.1 for 2 h and for another 6 h at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process was studied by analyzing the dissolution data using five kinetic equations: the zero-order equation, the first-order equation, the Higuchi square root equation, the Hixson-Crowell cube root law and the Peppas equation. Analyses of the dissolution kinetic data for diltiazem hydrochloride commercial SR tablets showed that both Dilzacard and Dilzem SR tablets released drug by Non-Fickian (Anomalous transport) release with release exponent (n) equal to 0.59 and 0.54, respectively, which indicate the summation of both diffusion and dissolution controlled drug release. Bi-Tildiem SR tablets released drug by super case II (n = 1.29) which indicate zero-order release due to the dissolution of polymeric matrix and relaxation of the polymer chain. This finding was also in agreement with results obtained from application of zero-order and Hixson-Crowell equations. A dissolution profile comparative study was done to test the lyoequivelancy of the three products by using the mean dissolution time (MDT), dissimilarity factor f1 and similarity factor f2. Results showed that the three products are different and not lyoequivalent.

  4. Evaluation of serum theophylline concentrations following administration of sustained-release beads in applesauce to asthmatic preschool children.

    PubMed

    Leeder, J S; Robertson, C; Correia, J; Isles, A F; Levison, H; Macleod, S M

    1986-02-01

    A sustained-release theophylline preparation (Theo-Dur Sprinkle) was evaluated in young asthmatic patients aged 1 to 6 years and receiving a daily dose of 23.4 +/- 2.0 mg/kg (mean +/- SD) to determine, on the basis of serial serum concentrations obtained over a 12-hour dosing interval at steady state, the suitability of such a product in patients likely to metabolize the drug very rapidly. Peak theophylline concentrations of 15.1 +/- 4.1 mg/L were achieved 5.5 +/- 1.5 hours after dosing. The mean maximum to minimum concentration difference was 6.9 +/- 2.2 mg/L for the dosing interval studied. Fluctuations in theophylline concentration less than 100% were achieved in nine of the 12 study patients. Use of the "sprinkle-technique" with Theo-Dur Sprinkle appears to be a simple and effective method of maintaining acceptable fluctuations in serum theophylline concentrations in preschool asthmatic children.

  5. Local sustained-release delivery systems of the antibiofilm agent thiazolidinedione-8 for prevention of catheter-associated urinary tract infections.

    PubMed

    Shenderovich, Julia; Feldman, Mark; Kirmayer, David; Al-Quntar, Abed; Steinberg, Doron; Lavy, Eran; Friedman, Michael

    2015-05-15

    Thiazolidinedione-8 (TZD-8) is an anti-quorum-sensing molecule that has the potential to effectively prevent catheter-associated urinary tract infections, a major healthcare challenge. Sustained-release drug-delivery systems can enhance drugs' therapeutic potential, by maintaining their therapeutic level and reducing their side effects. Varnishes for sustained release of TZD-8 based on ethylcellulose or ammonio methacrylate copolymer type A (Eudragit(®) RL) were developed. The main factors affecting release rate were found to be film thickness and presence of a hydrophilic or swellable polymer in the matrix. The release mechanism of ethylcellulose-based systems matched the Higuchi model. Selected varnishes were retained on catheters for at least 8 days. Sustained-release delivery systems of TZD-8 were active against Candida albicans biofilms. The present study demonstrates promising results en route to developing applications for the prevention of catheter-associated infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    PubMed

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Formulation and in vitro characterization of xanthan gum-based sustained release matrix tables of isosorbide-5- mononitrate.

    PubMed

    Kar, Rajat; Mohapatra, Snehamayee; Bhanja, Satyabrata; Das, Debjyoti; Barik, Bhaktibhusan

    2010-01-01

    In the present investigation an attempt has been made to increase therapeutic efficacy, to reduce frequency of administration and to improve patient compliance by developing a sustained release matrix tablets of isosorbide-5-mononitrate. Sustained release matrix tablets of isosorbide-5-mononitrate were developed by using different drug: polymer ratios, such in F1 (1:0.75), F2 (1:1), F3 (1:1.5), F4 (1:1.75) and F6 (1:2). Xanthan gum was used as matrix former and microcrystalline cellulose as diluent. All the lubricated formulations were compressed, using 8mm flat faced punches. Compressed tablets were evaluated for uniformity of weight, content of active ingredient, friability, hardness, thickness, in vitro dissolution study using basket method and swelling index. Each formulation showed compliance with pharmacopoeial standards. Among all formulations, F5 showed a greater sustained release pattern of drug over a 12 h period with 92.12% of drug being released. The kinetic studies showed that drug release follows the Higuchi model (r(2) =0.9851). Korsemeyer and Peppas equation gave an n-value of 0.4566, which was close to 0.5, indicating that drug release follows the Fickian diffusion. Thus, xanthan gum can be used as an effective matrix former to extend the release of isosorbide-5-mononitrate. No significant difference was observed in the dissolution profile of optimized formulation, using basket and paddle apparatus.

  8. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering.

    PubMed

    Sefcik, Lauren S; Petrie Aronin, Caren E; Wieghaus, Kristen A; Botchwey, Edward A

    2008-07-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects, and healing of bony defects was assessed by radiograph X-ray, microcomputed tomography (muCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies.

  9. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering

    PubMed Central

    Sefcik, Lauren S.; Petrie Aronin, Caren E.; Wieghaus, Kristen A.

    2009-01-01

    Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cells types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects and healing of bony defects was assessed by radiograph x-ray, microcomputed tomography (μCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies. PMID:18405965

  10. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    PubMed

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  11. Development of theophylline sustained release dosage form based on Kollidon SR.

    PubMed

    Reza, Md Selim; Quadir, Mohiuddin Abdul; Haider, Syed Shabbir

    2002-01-01

    Sustained release theophylline matrix tablets constituting Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer) were developed in this study in an attempt to design a dosage form that manifests desirable release profile and thorough adherence to official monographs. Four matrix tablet formulations were prepared by dry blending and direct compression of Kollidon SR and HPMC-15cps (hydroxypropylmethylcellulose) in varying proportion with fixed percentage of theophylline. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release with an initial burst effect. Incorporation of HPMC-15cps in the matrix tablet prolonged the release of drug with subsequent minimization of burst effect as confirmed by mean dissolution time, T50 and Higuchi release rate data. Among the batches containing HPMC-15 cps, a direct relationship was obtained between release rate and the percentage of HPMC used. A suitable controlled release profile was obtained with the matrix tablets containing 20% Kollidon SR and 30% HPMC-15cps. The formulation showed close resemblance to commercial products and compliance with USP specification. The results were explored and explained by the difference of physico-chemical property and hydration characteristics of the polymers. In addition to this result, the exponential model was applied to characterize the drug release behaviour from polymeric systems. It was found that, Fickian release is predominant in tablets containing Kollidon SR alone and non-Fickian mechanism plays an important role in the release of drug from HPMC containing tablets with a trend towards zero-order or case II release. In vitro release profile of two commercial brands were also undertaken for comparison and modulation of the experimental batches.

  12. Pharmacokinetics of Sustained-Release and Transdermal Buprenorphine in Göttingen Minipigs (Sus scrofa domestica)

    PubMed Central

    Thiede, Allison J; Garcia, Kelly D; Stolarik, DeAnne F; Ma, Junli; Jenkins, Gary J; Nunamaker, Elizabeth A

    2014-01-01

    The opioid buprenorphine has been shown to provide adequate postoperative analgesia in both companion and laboratory animals. However, its use is still hindered by the need for multiple parenteral injections to achieve continuous analgesia. The purpose of the current study was to conduct a pharmacokinetic analysis of 2 new long-acting formulations of buprenorphine—an injectable sustained-release buprenorphine (SRB) and a transdermal buprenorphine (TDB) patch—in healthy Göttingen minipigs by using liquid chromatography–electrospray ionization–tandem mass spectrometry. Administration of 0.18 mg/kg SC SRB and 30 μg/h TDB achieved AUC0-Tlast of 221.6 ± 26.8 and 25.2 ± 3.9 ng × h/mL, respectively, compared with 9.7 ± 1.4 ng*h/mL for 0.02 mg/kg IV buprenorphine. By using a hypothesized therapeutic plasma buprenorphine concentration threshold of 0.1 ng/mL, therapeutic concentrations were achieved at the first study time point (5 to 30 min) and lasted an average of 8.0 ± 1.3 h for intravenous buprenorphine and 264.0 ± 32.2 h for SRB. TDB achieved therapeutic concentrations in 12 to 24 h after patch application, which lasted until the patch was removed at 72 h. The results of this study suggest that SRB and TDB are long-acting alternatives for pain management, and their use could decrease animal handling and stress, thereby simplifying pain management and improving welfare in laboratory swine. PMID:25650977

  13. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product.

    PubMed

    Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris

    2016-05-01

    This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  14. Sustained release of a novel anti-quorum-sensing agent against oral fungal biofilms.

    PubMed

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael; Steinberg, Doron

    2015-04-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Evaluation of intratympanic formulations for inner ear delivery: methodology and sustained release formulation testing

    PubMed Central

    Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539

  16. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion.

    PubMed

    Li, Yongcheng; Lu, Ming; Wu, Chuanbin

    2017-11-10

    The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.

  17. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    PubMed

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p

  18. Formulation and characterization of sustained release dosage form of moisture sensitive drug

    PubMed Central

    Patel, Priya; Dave, Abhishek; Vasava, Amit; Patel, Paresh

    2015-01-01

    Objective: The purpose of this study was to prepare sustained release tablet of moisture sensitive drug like Ranitidine Hydrochloride for treatment of gastroesophageal reflux disease along with the improvement of moisture stability to get better therapeutic efficacy. Materials and Methods: Pan coating technique was used for coating of the tablet. Film coating was done using Eudragit RLPO and Eugragit EPO as coating polymer. 32 full factorial design was applied for optimization purpose, and 9 runs were conducted. In that Eudragit RLPO and Eudragit EPO taken as an independent variables and moisture gain and Cummulative Drug Release (CDR) were taken as dependent variables. Drug and excipient compatibility was done using differential scanning calorimetry and Fourier transform infrared spectroscopy study. The tablet was evaluated for precompression parameter and all postcompression parameter. Stability study was carried out at room temperature (30°C ± 2°C/65% ± 5% relative humidity). Final formulation was compared with marketed formulation RANTEC 300. Result: Tablets were passing out all precompression parameter along with postcompression parameter. Stability study shows that the parameter such as hardness, friability, and dissolution are in the range. Hence, there is no significant change shown after stability study. Our final formulation was compared with marketed formulation RANTEC 300 and result demonstrates that our final formulation have less moisture gain and give release up to 12 h. Conclusion: The result of present study demonstrates that final formulation has less moisture gain and getting desired CDR for sustained release of drug. On the basis of all study, it was concluded that the tablet was coated by combination of Eudragit RLPO 10% and Eudragit EPO 10% give better result. This formation provided promising approach for the drug release up to 12 h for moisture sensitive drug like ranitidine hydrochloride. PMID:25838994

  19. Impact of release characteristics of sinomenine hydrochloride dosage forms on its pharmacokinetics in beagle dogs

    PubMed Central

    Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui

    2005-01-01

    AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686

  20. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Multi-layer polymeric implants for sustained release of chemopreventives

    PubMed Central

    Aqil, Farrukh; Jeyabalan, Jeyaprakash; Kausar, Hina; Bansal, Shyam S.; Sharma, Ram J.; Singh, Inder P.; Vadhanam, Manicka V.; Gupta, Ramesh C.

    2012-01-01

    Poor oral bioavailability limits the use of many chemopreventives in the prevention and treatment of cancer. To overcome this limitation, we report an improvised implant formulation (“coated” implants) using curcumin, individual curcuminoids, withaferin A and oltipraz. This method involves the coating of blank polycaprolactone implants with 20–30 layers of 10–20% polycaprolactone solution in dichloromethane containing 0.5–2% of the test agent. The in vitro release showed that while oltipraz was released with almost zero-order kinetics over eight weeks, curcumin, individual curcuminoids and withaferin A were released with some initial burst. The in vivo release was determined by grafting implants subcutaneously in A/J mice. When delivered by coated implants, oltipraz significantly diminished lung DNA adducts in mice treated with dibenzo[a, l]pyrene compared with sham treatment (28±7 versus 54±17 adducts/109 nucleotides). Withaferin A also diminished DNA adducts, but it was insignificant. Curcumin and individual curcuminoids were ineffective. Analysis of lung, liver and brain by UPLC-fluorescence showed the presence of the three test curcuminoids indicating effectiveness of the implant delivery system. Further, based on its known antitumor activity in vivo, withaferin A given via the implants significantly inhibited human lung cancer A549 xenograft in athymic nude mice, while it was ineffective when the same total dose was administered i.p. and required over 2-fold higher dose to elicit effectiveness. Together, our data suggest that coated polymeric implants can accommodate heat-labile compounds, can furnish sustained release for long duration, and elicit DNA damage-inhibiting and anti-tumor activities. PMID:22820161

  2. Injectable and implantable sustained release naltrexone in the treatment of opioid addiction

    PubMed Central

    Kunøe, Nikolaj; Lobmaier, Philipp; Ngo, Hanh; Hulse, Gary

    2014-01-01

    Sustained release technologies for administering the opioid antagonist naltrexone (SRX) have the potential to assist opioid-addicted patients in their efforts to maintain abstinence from heroin and other opioid agonists. Recently, reliable SRX formulations in intramuscular or implantable polymers that release naltrexone for 1–7 months have become available for clinical use and research. This qualitative review of the literature provides an overview of the technologies currently available for SRX and their effectiveness in reducing opioid use and other relevant outcomes. The majority of studies indicate that SRX is effective in reducing heroin use, and the most frequently studied SRX formulations have acceptable adverse events profiles. Registry data indicate a protective effect of SRX on mortality and morbidity. In some studies, SRX also seems to affect other outcomes, such as concomitant substance use, vocational training attendance, needle use, and risk behaviour for blood-borne diseases such as hepatitis or human immunodeficiency virus. There is a general need for more controlled studies, in particular to compare SRX with agonist maintenance treatment, to study combinations of SRX with behavioural interventions, and to study at-risk groups such as prison inmates or opioid-addicted pregnant patients. The literature suggests that sustained release naltrexone is a feasible, safe and effective option for assisting abstinence efforts in opioid addiction. PMID:23088328

  3. Injectable and implantable sustained release naltrexone in the treatment of opioid addiction.

    PubMed

    Kunøe, Nikolaj; Lobmaier, Philipp; Ngo, Hanh; Hulse, Gary

    2014-02-01

    Sustained release technologies for administering the opioid antagonist naltrexone (SRX) have the potential to assist opioid-addicted patients in their efforts to maintain abstinence from heroin and other opioid agonists. Recently, reliable SRX formulations in intramuscular or implantable polymers that release naltrexone for 1-7 months have become available for clinical use and research. This qualitative review of the literature provides an overview of the technologies currently available for SRX and their effectiveness in reducing opioid use and other relevant outcomes. The majority of studies indicate that SRX is effective in reducing heroin use, and the most frequently studied SRX formulations have acceptable adverse events profiles. Registry data indicate a protective effect of SRX on mortality and morbidity. In some studies, SRX also seems to affect other outcomes, such as concomitant substance use, vocational training attendance, needle use, and risk behaviour for blood-borne diseases such as hepatitis or human immunodeficiency virus. There is a general need for more controlled studies, in particular to compare SRX with agonist maintenance treatment, to study combinations of SRX with behavioural interventions, and to study at-risk groups such as prison inmates or opioid-addicted pregnant patients. The literature suggests that sustained release naltrexone is a feasible, safe and effective option for assisting abstinence efforts in opioid addiction. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  4. Use of an intravitreal sustained-release cyclosporine delivery device for treatment of equine recurrent uveitis.

    PubMed

    Gilger, B C; Wilkie, D A; Davidson, M G; Allen, J B

    2001-12-01

    To evaluate the use of an intravitreal sustained-release cyclosporine (CsA) delivery device for treatment of horses with naturally occurring recurrent uveitis. 16 horses with recurrent uveitis. Horses with frequent recurrent episodes of uveitis or with disease that was progressing despite appropriate medication were selected for this study. Additional inclusion criteria included adequate retinal function as determined by use of electroretinography, lack of severe cataract formation, and no vision-threatening ocular complications (eg, retinal detachment, severe retinal degeneration, and posterior synechia). Sustained-release CsA delivery devices (4 microg of CsA/d) were implanted into the vitreous through a sclerotomy at the pars plana. Reexaminations were performed 1, 3, 6, and 12 months after implantation, then continued annually. Ophthalmic changes, number of recurrent episodes of uveitis, and vision were recorded. The rate of recurrent episodes after device implantation (0.36 episodes/y) was less than prior to surgery (75 episodes/y). In addition, only 3 horses developed episodes of recurrent uveitis after surgery. Vision was detected in 14 of 16 affected eyes at a mean follow-up time of 13.8 months (range, 6 to 24 months). This intravitreal sustained-release CsA delivery device may be a safe and important tool for long-term treatment of horses with chronic recurrent uveitis.

  5. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study.

    PubMed

    Kallakunta, Venkata Raman; Tiwari, Roshan; Sarabu, Sandeep; Bandari, Suresh; Repka, Michael A

    2018-05-14

    The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new

  6. Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films.

    PubMed

    Kramar, A; Turk, S; Vrecer, F

    2003-04-30

    The objective of the present study was to evaluate three formulation parameters for the application of polymethacrylic films from aqueous dispersions in order to obtain multiparticulate sustained release of diclofenac sodium. Film coating of pellet cores was performed in a laboratory fluid bed apparatus. The chosen independent variables, i.e. the concentration of plasticizer (triethyl citrate), methacrylate polymers ratio (Eudragit RS:Eudragit RL) and the quantity of coating dispersion were optimised with a three-factor, three-level Box-Behnken design. The chosen dependent variables were cumulative percentage values of diclofenac dissolved in 3, 4 and 6 h. Based on the experimental design, different diclofenac release profiles were obtained. Response surface plots were used to relate the dependent and the independent variables. The optimisation procedure generated an optimum of 40% release in 3 h. The levels of plasticizer concentration, quantity of coating dispersion and polymer to polymer ratio (Eudragit RS:Eudragit RL) were 25% w/w, 400 g and 3/1, respectively. The optimised formulation prepared according to computer-determined levels provided a release profile, which was close to the predicted values. We also studied thermal and surface characteristics of the polymethacrylic films to understand the influence of plasticizer concentration on the drug release from the pellets.

  7. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang

    2012-06-01

    Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  8. Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture.

    PubMed

    Zhou, Yan; Liu, Shiqing; Ming, Jianghua; Li, Yaming; Deng, Ming; He, Bin

    2017-10-01

    The low bioavailability and short biological half-life of berberine chloride (BBR) negatively affect the protective role of this compound against osteoarthritis (OA). The present study was performed to evaluate the effectiveness of sustained BBR release system. Novel BBR-loaded chitosan microspheres (BBR-loaded CMs) were successfully synthesized using an ionic cross-linking method for sustained release. The basic characteristics of the prepared microspheres were subsequently evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) techniques, encapsulation efficiency (EE), and in vitro release experiments. BBR-loaded CMs displayed spherical forms to encapsulate a considerable quantity of BBR (100.8 ± 2.7 mg/g); these microspheres also exhibited an ideal releasing profile. The FT-IR spectra and XRD results revealed that BBR-loaded CMs were successfully synthesized via electrostatic interaction. In vitro experiments further showed that BBR-loaded CMs significantly inhibited sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, and led to increasing mitochondrial membrane potential and maintaining the nuclear morphology. BBR-loaded CMs exerted markedly higher anti-apoptotic activity in the treatment of OA, and markedly inhibited the protein expression levels of caspase-3, a disintegrin, and metalloproteinase with thrombospondin motifs (ADAMTS)-5 and matrix metalloproteinase (MMP)-13 induced by SNP in rat articular chondrocytes, compared with free BBR at equivalent concentration. Therefore, novel BBR-loaded CMs may offer potential for application in the treatment of OA.

  9. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    PubMed

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  10. Pharmaceutical suspension containing both immediate/sustained-release amoxicillin-loaded gelatin nanoparticles: preparation and in vitro characterization.

    PubMed

    Harsha, Sree

    2013-01-01

    Pharmaceutical suspension containing oral dosage forms delivering both immediate-release and sustained-release amoxicillin was developed as a new dosage form to eradicate Helicobacter pylori. Amoxicillin-loaded gelatin nanoparticles are able to bind with the mucosal membrane after delivery to the stomach and could escalate the effectiveness of a drug, providing dual release. The objective of this study was to develop amoxicillin nanoparticles using innovative new technology--the Büchi Nano Spray Dryer B-90 - and investigate such features as drug content, particle morphology, yield, in vitro release, flow properties, and stability. The nanoparticles had an average particle size of 571 nm. The drug content and percentage yield was 89.2% ± 0.5% and 93.3% ± 0.6%, respectively. Angle of repose of nanoparticle suspension was 26.3° and bulk density was 0.59 g/cm(3). In vitro drug release of formulations was best fitted by first-order and Peppas models with R (2) of 0.9841 and 0.9837 respectively; release profile was 15.9%, while; for the original drug, amoxicillin, under the same conditions, 90% was released in the first 30 minutes. The nanoparticles used in this study enabled sustained release of amoxicillin over an extended period of time, up to 12 hours, and were stable for 12 months under accelerated storage conditions of 25 °C ± 2 °C and 60% ± 5% relative humidity.

  11. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Yao; Zhang, Man; Liu, Zhe-Peng; Wang, Ke; Yu, Deng-Guang

    2018-03-01

    Almost all electrospraying processes are carried out under an air-solution interface, thereby overlooking the potential influence of an additional solvent surface modification between air and the working solution. A pure solvent was explored to temporarily and dynamically surround the solutions utilized for blending electrospraying, which contained a guest drug meletin and a protein drug carrier gliadin. The new modified processes created protein-based medicated nanoparticles (P2) with higher quality than their counterparts (P1) from blending processes, as demonstrated by the SEM and TEM images. Although the particles from the two processes were similar (nanocomposites), and the particles P1 were larger than P2, the later provided a better meletin sustained-release profile than the former. This finding was verified by the smaller initial burst release, longer sustained-release time period, and shorter late leveling-off stage. These unanticipated results were attributed to the rounder surface, the more uniform size distribution, and the smaller total surface area of particles P2 than P1. The microformation mechanism of the modified coaxial process was suggested. The protocols reported here paved a new way for the development of new kinds of functional nanoparticles by modifying the interfaces of working fluids during electrospraying.

  12. Do Intelligence and Sustained Attention Interact in Predicting Academic Achievement?

    ERIC Educational Resources Information Center

    Steinmayr, Ricarda; Ziegler, Mattias; Trauble, Birgit

    2010-01-01

    Research in clinical samples suggests that the relationship between intelligence and academic achievement might be moderated by sustained attention. The present study aimed to explore whether this interaction could be observed in a non-clinical sample. We investigated a sample of 11th and 12th grade students (N = 231). An overall performance score…

  13. Sustained availability of trimethoprim in drinking water to achieve higher plasma sulphonamide-trimethoprim antibacterial activity in broilers.

    PubMed

    Sumano, H; Hernandez, L; Gutierrez, L; Bernad-Bernad, M J

    2005-02-01

    (1) In order to make trimethoprim (TMP) available to broilers throughout the day, a sustained release formulation (SRF) of the drug in the form of granules was added to the water tank that supplies drinking water. (2) Broilers were initially dosed with sulphachloropiridazine-TMP (SCP-TMP 5:1) and then further medicated throughout the day, achieving in the end a dose of 30 mg/kg each of SCP and TMP (group A). Group B received a preparation with the same dose of SCP and TMP (1:1) as group A, but administered as a single dose without the SRF of TMP. Group C received the customary SCP-TMP 5:1 preparation (30 and 6 mg/kg, respectively). Water tanks were completely consumed in 3 to 4 h. (3) Broilers were bled at different times and concentration of antibacterial activity in serum determined by correlating the composite antibacterial activity of SCP and TMP with actual concentrations of these drugs by means of a microbiological agar diffusion assay. (4) Time vs serum concentrations of activity were higher in group B; the increments in the maximum serum concentration for group B over groups A and C being 39 and 67%, respectively. (5) However, the sustained concentration of activity over time, measured as the area under the cu)rve, was highest in group A. Group B had higher values for area under the curve than group C. (6) An additional dose of TMP to achieve 30 mg/kg of both SCP and TMP improves the serum concentration of this combination over the customary 5:1 proportion. The best values for sustaining antibacterial activity were obtained using a 1:1 ratio as in group A. The use of a SRF as in group A may translate into better clinical results.

  14. In-vitro trials to ascertain sustained release efficacy of assembly pheromone micro particles for the control of brown dog tick, Rhipicephalus sanguineus.

    PubMed

    Bhoopathy, Dhivya; Bhaskaran Ravi, Latha

    2017-12-01

    Sustained release micro particles were prepared incorporating assembly pheromone and deltamethrin. Two natural polymers, namely, chitosan and calcium alginate and a synthetic polymer, poly-ε-caprolactone were used for encapsulating the assembly pheromone-acaricide combination. The micro particles were subjected to in vitro evaluation freshly after preparation and then at monthly intervals to assess their sustained release efficacy. The response of the unfed stages of dog tick, Rhipicephalus sanguineus to fresh and aged micro particles was assessed and results were recorded. The micro particles were found to release assembly pheromone in a sustained manner up to 2 months of study period.

  15. A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo.

    PubMed

    Galvin, Orla; Srivastava, Akshay; Carroll, Oliver; Kulkarni, Rajiv; Dykes, Steve; Vickers, Steven; Dickinson, Keith; Reynolds, Alison L; Kilty, Claire; Redmond, Gareth; Jones, Rob; Cheetham, Sharon; Pandit, Abhay; Kennedy, Breandán N

    2016-07-10

    Pathologic neovascularisation and ocular permeability are hallmarks of proliferative diabetic retinopathy and age-related macular degeneration. Current pharmacologic interventions targeting VEGF are effective in only 30-60% of patients and require multiple intraocular injections associated with iatrogenic infection. Thus, our goal is to develop novel small molecule drugs that are VEGF-independent are amenable to sustained ocular-release, and which reduce retinal angiogenesis and retinal vascular permeability. Here, the anti-angiogenic drug quininib was formulated into hyaluronan (HA) microneedles whose safety and efficacy was evaluated in vivo. Quininib-HA microneedles were formulated via desolvation from quininib-HA solution and subsequent cross-linking with 4-arm-PEG-amine prior to freeze-drying. Scanning electron microscopy revealed hollow needle-shaped particle ultrastructure, with a zeta potential of -35.5mV determined by electrophoretic light scattering. The incorporation efficiency and pharmacokinetic profile of quininib released in vitro from the microneedles was quantified by HPLC. Quininib incorporation into these microneedles was 90%. In vitro, 20% quininib was released over 4months; or in the presence of increasing concentrations of hyaluronidase, 60% incorporated quininib was released over 4months. Zebrafish hyaloid vasculature assays demonstrated quininib released from these microneedles significantly (p<0.0001) inhibited ocular developmental angiogenesis compared to control. Sustained amelioration of retinal vascular permeability (RVP) was demonstrated using a bespoke cysteinyl leukotriene induced rodent model. Quininib-HA microparticles significantly inhibited RVP in Brown Norway rats one month after administration compared to neat quininib control (p=0.0071). In summary, quininib-HA microneedles allow for sustained release of quininib; are safe in vivo and quininib released from these microneedles effectively inhibits angiogenesis and RVP in vivo

  16. Method‐of‐use study of naltrexone sustained release (SR)/bupropion SR on body weight in individuals with obesity

    PubMed Central

    Shan, Kevin; Walsh, Brandon; Gilder, Kye; Fujioka, Ken

    2016-01-01

    Objective This study assessed the effects of 32 mg naltrexone sustained release (SR)/360 mg bupropion SR (NB) on body weight in adults with obesity, with comprehensive lifestyle intervention (CLI), for 78 weeks. Methods In this phase 3b, randomized, open‐label, controlled study, subjects received NB + CLI or usual care (standard diet/exercise advice) for 26 weeks. NB subjects not achieving 5% weight loss at week 16 were discontinued, as indicated by product labeling. After week 26, usual care subjects began NB + CLI. Assessments continued through week 78. The primary end point was percent change in weight from baseline to week 26 in the per protocol population. Other end points included percentage of subjects achieving ≥5%, ≥10%, and ≥15% weight loss, percent change in weight at week 78, and adverse events (AEs) necessitating study medication discontinuation. Results NB + CLI subjects lost significantly more weight than usual care subjects at week 26 (8.52% difference; P < 0.0001). Weight loss persisted through 78 weeks. In total, 20.7% of subjects discontinued medication for AEs, including 7.0% for nausea. Conclusions Treatment with NB, used as indicated by prescribing information and with CLI, significantly improved weight loss over usual care alone. NB‐facilitated weight loss was sustained for 78 weeks and was deemed safe and well tolerated. PMID:28026920

  17. Application of 5-Fluorouracil-Polycaprolactone Sustained-Release Film in Ahmed Glaucoma Valve Implantation Inhibits Postoperative Bleb Scarring in Rabbit Eyes.

    PubMed

    Bi, Xiu-Zeng; Pan, Wei-Hua; Yu, Xin-Ping; Song, Zong-Ming; Ren, Zeng-Jin; Sun, Min; Li, Cong-Hui; Nan, Kai-Hui

    2015-01-01

    This study was designed to investigate whether 5-fluorouracil (5-Fu)-polycaprolactone sustained-release film in Ahmed glaucoma valve implantation inhibits postoperative bleb scarring in rabbit eyes. Eighteen New Zealand white rabbits were randomly divided into three groups (A, B and C; n = 6 per group). Group A received combined 5-Fu-polycaprolactone sustained-release film application and Ahmed glaucoma valve implantation, group B received local infiltration of 5-Fu and Ahmed glaucoma valve implantation, and group C received Ahmed glaucoma valve implantation. Postoperative observations were made of the anterior segment, intraocular pressure, central anterior chamber depth, blebs, drainage tube, and accompanying ciliary body detachment. The pathology of the blebs and surrounding tissues were observed at month 3 postoperatively. We revealed that the 5-Fu-polycaprolactone sustained-release film maintained a release concentration range of 13.7 ± 0.12 to 37.41 ± 0.47 μg/ml over three months in vitro. Postoperatively, diffuse blebs with ridges were found in all eyes in group A, two blebs were observed in group B, and no bleb formation was present in group C. The postoperative central anterior chamber depth in group A was significantly less than that of the other two groups. The postoperative intraocular pressure of group A stabilized at 6.33-8.67 mmHg, whereas that of group C gradually remained at 7.55-10.02 mmHg. The histopathology showed that the fibrous tissue thickness of the blebs in group A was significantly thinner than that of the other groups. We conclude that the 5-Fu-polycaprolactone sustained-release film had a sustained drug release effect, which promoted the inhibition of bleb scarring after Ahmed glaucoma valve implantation.

  18. The role of partnership functioning and synergy in achieving sustainability of innovative programmes in community care.

    PubMed

    Cramm, Jane M; Phaff, Sanne; Nieboer, Anna P

    2013-03-01

    This cross-sectional study (conducted in April-May 2011) explored associations between partnership functioning synergy and sustainability of innovative programmes in community care. The study sample consisted of 106 professionals (of 244 individuals contacted) participating in 21 partnerships that implemented different innovative community care programmes in Rotterdam, The Netherlands. Partnership functioning was evaluated by assessing leadership, resources administration and efficiency. Synergy was considered the proximal outcome of partnership functioning, which, in turn, influenced the achievement of programme sustainability. On a 5-point scale of increasing sustainability, mean sustainability scores ranged from 1.9 to 4.9. The results of the regression analysis demonstrated that sustainability was positively influenced by leadership (standardised regression coefficient β = 0.32; P < 0.001) and non-financial resources (β = 0.25; P = 0.008). No significant relationship was found between administration or efficiency and programme sustainability. Partnership synergy acted as a mediator for partnership functioning and significantly affected sustainability (β = 0.39; P < 0.001). These findings suggest that the sustainability of innovative programmes in community care is achieved more readily when synergy is created between partners. Synergy was more likely to emerge with boundary-spanning leaders, who understood and appreciated partners' different perspectives, and could bridge their diverse cultures and were comfortable sharing ideas, resources and power. In addition, the acknowledgement of and ability to use members' resources were found to be valuable in engaging partners' involvement and achieving synergy in community care partnerships. © 2012 Blackwell Publishing Ltd.

  19. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats.

    PubMed

    Imai, Hisanori; Misra, Gauri P; Wu, Linfeng; Janagam, Dileep R; Gardner, Thomas W; Lowe, Tao L

    2015-12-01

    Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. The developed hydrogels have great potential to sustain release of insulin to the retina via subconjunctival

  20. Sustained-release bupropion versus naltrexone in the treatment of pathological gambling: a preliminary blind-rater study.

    PubMed

    Dannon, Pinhas N; Lowengrub, Katherine; Musin, Ernest; Gonopolski, Yehudit; Kotler, Moshe

    2005-12-01

    Pathological gambling (PG) is a relatively common and highly disabling impulse control disorder. A range of psychotherapeutic agents, including selective serotonin reuptake inhibitors, mood stabilizers, and opioid antagonists, has been shown to be effective in the treatment of PG. The use of selective serotonin reuptake inhibitors and opioid antagonists for PG is consistent with the observation that PG shares features of both the obsessive-compulsive spectrum disorders and addictive disorders. The aim of the study is to compare the effectiveness of sustained-release bupropion versus naltrexone in the treatment of PG. Thirty-six male pathological gamblers were enrolled in our study. A comprehensive psychiatric diagnostic evaluation was performed at baseline on all patients, and patients were screened for symptoms of gambling, depression, and anxiety using the South Oaks Gambling Screen, the Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the Clinical Global Impression-Severity Scale. In addition, the patients completed self-report questionnaires about their demographic status. Patients were randomized in 2 groups and received either naltrexone (n = 19) or sustained-release bupropion (n = 17) for 12 weeks in a parallel fashion. Treatment response was monitored using the Clinical Global Impression-Improvement Scale which was performed at weeks 2, 4, 8, and 12. Patients were also assessed for the presence of gambling behavior via an unstructured interview, which was also performed at weeks 2, 4, 6, 8, and 12. Raters were blind to the study treatment. The majority of patients responded well to the drug treatment. Twelve of 17 patients in the sustained-release bupropion group completed the 12-week study, and 13 of 19 naltrexone patients completed the study. Nine (75%) of the 12 completers were rated as full responders in the sustained-release bupropion group versus 10 (76%) of 12 in the naltrexone group. Three (25%) of 12 completers in the

  1. Nanoparticles for controlled delivery and sustained release of chlorhexidine in the oral environment.

    PubMed

    Garner, S; Barbour, M E

    2015-07-01

    Chlorhexidine (CHX) is in widespread use as a topical antimicrobial agent. Within the field of oral medicine, it is used in the prevention of ventilator-associated pneumonia as well as in the treatment of oral candidosis and microbial-associated lichenoid reactions. The objective of this study was to develop a strategy for controlled, sustained topical delivery of CHX using nanoparticle technology. Chlorhexidine was applied to hydroxyapatite, selected as a tooth analogue, as conventional CHX digluconate solutions and as aqueous suspensions of CHX hexametaphosphate nanoparticles with total CHX concentrations of 1, 2.2 and 5 mM. Soluble CHX release from the treated hydroxyapatite was monitored over a period of 7 days. A repeated-measures ANOVA with post hoc LSD test indicated that CHX release was 2-3× greater, and sustained for longer, when CHX was delivered as CHX hexametaphosphate nanoparticles than in aqueous solution with 2.2 and 5 mM CHX (P = 0.020 and 0.013, respectively), but there was no statistically significant difference at 1 mM CHX (P = 0.172). Chlorhexidine hexametaphosphate nanoparticles increased both the local dose and duration of soluble CHX delivery when applied to hydroxyapatite surfaces. This may provide a means to deliver a sustained dose of CHX with less frequent interventions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release.

    PubMed

    Nielsen, Anne Louise; Madsen, Flemming; Larsen, Kim Lambertsen

    2009-02-01

    Hydrogels are water swollen networks of polymers and especially hydrogels consisting of poly vinylpyrrolidone/poly ethyleneglycol-dimethacrylate (PVP/PEG-DMA) blends show promising wound care properties. Enhanced functionality of the hydrogels can be achieved by incorporating drugs and other substances that may assist wound healing into the gel matrix. Controlling the release of active compounds from the hydrogels may be possible by carefully modifying the polymer matrix. For this purpose, cyclodextrins (CD) were grafted to the polymer matrix in 4-5 w/w% in an attempt to retard the release of water-soluble drugs. Ibuprofenate (IBU) was chosen as model drug and loaded in IBU/CD ratios of 0.6, 1.2, and 2.5. Vinyl derivatives of alpha-, beta- and gamma-CD were produced, added to the prepolymer blend and cured by UV-light. During this curing process the CD derivatives were covalently incorporated into the hydrogel matrix. The modified hydrogels were loaded with ibuprofenate by swelling. The release of the model drug from CD modified hydrogels show that especially covalently bonded beta-cyclodextrin can change both the release rate and the release profile of ibuprofen.

  3. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  4. In situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies.

    PubMed

    Kilicarslan, Muge; Koerber, Martin; Bodmeier, Roland

    2014-05-01

    This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.

  5. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  6. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    PubMed

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  7. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats

    PubMed Central

    Salem, Heba F

    2010-01-01

    The production of an intramuscular (IM) injection of natural progesterone would provide a safer solution than using semi synthetic progesterone. However, disadvantages such as low solubility and a short half life prevent the use of natural progesterone. In this study, we formulated a sustained release form of natural progesterone to be given as IM injection. A progesterone nanosuspension (PNS) was first developed and then dispersed in a thermosensitive gel matrix. The selected nanoparticles showed an average particle size of 267 nm and a zeta potential approaching-41 mV. The in vitro release profile of PNS from the F127 plus methyl cellulose gel followed zero order kinetics and correlated linearly with the weight percentage of gel dissolved, demonstrating that the overall rate of release of PNS is controlled by dissolution of the pluronic F127/methyl cellulose (MC) gel (r2 > 0.99). The pharmacokinetic parameters of the PNS (6 mg/mL) in pluronic F127/MC gel were evaluated in comparison with the control progesterone suspension. After the administration of PNS in F127/MC gel into the rats, a maximum serum concentration of 22.1 ± 1.9 ng/mL was reached at a Tmax of 4.05 ± 0.1 h. The terminal half life was 12.7 ± 0.8 h. The area under the curve AUC0-∞ of the injected formula was 452.75 ± 42.8 ng·h/mL and the total mean residence time was 18.57 ± 1.44 h. The PNS in gel was significantly different from the control in rate and extent at P < 0.001. The natural progesterone which was nanosized and formulated in a thermosensitive gel significantly sustained the action of natural progesterone so that it could be injected every 36 h instead of every day. Moreover, this formula is expected to provide a much safer choice than the use of semi-synthetic progesterone. PMID:21187946

  8. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats.

    PubMed

    Salem, Heba F

    2010-11-10

    The production of an intramuscular (IM) injection of natural progesterone would provide a safer solution than using semi synthetic progesterone. However, disadvantages such as low solubility and a short half life prevent the use of natural progesterone. In this study, we formulated a sustained release form of natural progesterone to be given as IM injection. A progesterone nanosuspension (PNS) was first developed and then dispersed in a thermosensitive gel matrix. The selected nanoparticles showed an average particle size of 267 nm and a zeta potential approaching-41 mV. The in vitro release profile of PNS from the F127 plus methyl cellulose gel followed zero order kinetics and correlated linearly with the weight percentage of gel dissolved, demonstrating that the overall rate of release of PNS is controlled by dissolution of the pluronic F127/methyl cellulose (MC) gel (r² > 0.99). The pharmacokinetic parameters of the PNS (6 mg/mL) in pluronic F127/MC gel were evaluated in comparison with the control progesterone suspension. After the administration of PNS in F127/MC gel into the rats, a maximum serum concentration of 22.1 ± 1.9 ng/mL was reached at a T(max) of 4.05 ± 0.1 h. The terminal half life was 12.7 ± 0.8 h. The area under the curve AUC₀₋∞ of the injected formula was 452.75 ± 42.8 ng·h/mL and the total mean residence time was 18.57 ± 1.44 h. The PNS in gel was significantly different from the control in rate and extent at P < 0.001. The natural progesterone which was nanosized and formulated in a thermosensitive gel significantly sustained the action of natural progesterone so that it could be injected every 36 h instead of every day. Moreover, this formula is expected to provide a much safer choice than the use of semi-synthetic progesterone.

  9. Preparation and evaluation of novel metronidazole sustained release and floating matrix tablets.

    PubMed

    Asnaashari, Solmaz; Khoei, Nazaninossadat Seyed; Zarrintan, Mohammad Hosein; Adibkia, Khosro; Javadzadeh, Yousef

    2011-08-01

    In the present study, metronidazole was used for preparing floating dosage forms that are designed to retain in the stomach for a long time and have developed as a drug delivery system for better eradication of Helicobacter Pylori in peptic ulcer diseases. For this means, various formulations were designed using multi-factorial design. HPMC, psyllium and carbopol in different concentrations were used as floating agents, and sodium bicarbonate was added as a gas-forming agent. Hardness, friability, drug loading, floating ability and release profiles as well as kinetics of release were assessed. Formulations containing HPMC as filler showed prolonged lag times for buoyancy. Adding psyllium to these formulations had reduced relative lag times. Overall, selected formulations were able to float immediately and showed buoyancy for at least 8?h. Meanwhile, sustained profiles of drug release were also obtained. Kinetically, among the 10 assessed models, the release pattern of metronidazole from the tablets fitted best to Power law, Weibull and Higuchi models in respect overall to mean percentage error values of 3.8, 4.73 and 5.77, respectively, for calcium carbonate-based tablets and, 2.95, 6.39 and 3.9, respectively, for calcium silicate-based tablets. In general, these systems can float in the gastric condition and control the drug release from the tablets.

  10. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

    PubMed

    Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng

    2017-03-15

    Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we

  11. Native and microwave-modified Terminalia mantaly gums as sustained-release and bioadhesive excipients in naproxen matrix tablet formulations.

    PubMed

    Odeniyi, Michael Ayodele; Oyedokun, Babatunde Mukhtar; Bamiro, Oluyemisi Adebowale

    2017-01-01

    Hydrophilic polymers provide a means of sustaining drug delivery. Native gums may be limited in function, but modification may improve their activity. The aim of the study was to evaluate native and modified forms of Terminalia mantaly gum for their sustained-release and bioadhesive properties. The native gum (NTM) was modified by microwave irradiation for 20 seconds (MTM20) and 60 seconds (MTM60) and characterized using microscopy, Fourier transform infrared spectroscopy (FTIR) and packing properties. The effects of the thermally induced molecular reorientation were determined. Tablet formulations of naproxen were produced by direct compression. The mechanical, bioadhesive and release properties of the formulations were determined. Irradiation of NTM improved the gum's flow properties, resulting in Carr's Index and Hausner's ratios lower than 16% and 1.25, respectively. Swelling studies showed that MTM20 and MTM60 had lower water absorption capacity and swelling index values, while packing properties improved upon irradiation, as depicted by lower tapped density values. FTIR spectra of samples showed that the irradiated gums were distinct from the native gums and did not interact with naproxen sodium. The gum's mechanical properties improved with MTM20 and MTM60 and sustained-release action of up 12 h was obtained. Inclusion of hydroxypropyl methylcellulose (HPMC) in the tablet formulations proved critical for bioadhesion. Microwave irradiation of native Terminalia mantaly gum improved the flow, mechanical and sustained-release properties of Naproxen tablets, and the addition of HPMC increased bioadhesion properties. The tablet properties of the native gum were significantly improved after 20 s of microwave irradiation.

  12. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    PubMed

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (<0.1%). The melt-granulated captopril in matrix systems containing 50% EC (45P, 100P or 100FP) and the melt-granulated metformin hydrochloride in reservoir systems coated with Kollicoat® SR 30D and Opadry® II (80:20 with 10% weight gain or 70:30 with 20% weight gain) exhibited release profiles adequate to sustained release formulations, for over 450min. Therefore, carnauba wax proved to be a promising excipient in melt

  13. Controlled Antibiotics Release System through Simple Blended Electrospun Fibers for Sustained Antibacterial Effects.

    PubMed

    Zhang, Zixin; Tang, Jianxiong; Wang, Heran; Xia, Qinghua; Xu, Shanshan; Han, Charles C

    2015-12-09

    Implantation of sustained antibacterial system after abdominal surgery could effectively prevent complicated intra-abdominal infection. In this study, a simple blended electrospun membrane made of poly(D,L-lactic-co-glycolide) (PLGA)/poly(dioxanone) (PDO)/Ciprofloxacin hydrochloride (CiH) could easily result in approximately linear drug release profile and sustained antibacterial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The addition of PDO changed the stack structure of PLGA, which in turn influenced the fiber swelling and created drug diffusion channels. It could be a good candidate for reducing postoperative infection or be associated with other implant to resist biofilm formation.

  14. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    PubMed

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Positive and Negative Impacts of Oil Palm Expansion in Indonesia and the Prospect to Achieve Sustainable Palm Oil

    NASA Astrophysics Data System (ADS)

    Shahputra, M. A.; Zen, Z.

    2018-02-01

    The aim of the study is to deepen understanding the role of palm oil on Indonesian economy, poverty elevation and to investigate the positive and negative impacts of oil palm expansion, due to the burden of GHG emissions; and prospect to be more sustainable palm oil industry. The statistics show that average rural poverty tends to be lower and Gross Regional Product tends to be higher in provinces which have greater levels of oil palm cultivation. Indonesian oil palm will grow from 10.6 in 2013 to 13.7 million ha by 2020. This will release 135.59 million tons of CO2 if nothing is done to mitigate BAU emissions. Unless there are sustained efforts to redirect development and expansion of oil palm, plantation growth will continue to encroach on intact forest and peat land.. In fact Indonesia has large areas of degraded land, an estimated total 19,144,000 ha is available for planting oil palm and other crops. A large-scale expansion program driven by estate companies needs to be accompanied by effective smallholder development program in order to achieve the best outcome for local farmers and avoid the conflicts.

  16. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats

    PubMed Central

    Imai, Hisanori; Misra, Gauri P.; Wu, Linfeng; Janagam, Dileep R.; Gardner, Thomas W.; Lowe, Tao L.

    2015-01-01

    Purpose Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. Methods The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. Results The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. Conclusions The developed hydrogels have great potential to sustain release of insulin to the

  17. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    PubMed

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  18. Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets.

    PubMed

    Khamanga, Sandile M; Walker, Roderick B

    2006-01-01

    Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.

  19. Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release.

    PubMed

    Ma, Dong; Zhang, Li-Ming

    2011-09-12

    A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity.

  20. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile

    PubMed Central

    Stallmann, Hein P; Faber, Chris; Bronckers, Antonius LJJ; Nieuw Amerongen, Arie V; Wuisman, Paul IJM

    2006-01-01

    Background Polymethyl-methacrylate (PMMA) beads releasing antibiotics are used extensively to treat osteomyelitis, but require surgical removal afterwards because they do not degrade. Methods As an alternative option, this report compares the in vitro gentamicin release profile from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types. Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then every 24 h, for 21 days), the release fluid was exchanged and the gentamicin concentration was measured. The activity of released gentamicin was tested on Staphylococcus aureus. Results All combinations showed initial burst-release of active gentamicin, two cements had continuous-release (17 days). The relative release of all cements (36–85%) and granules (30–62%) was higher than previously reported for injectable PMMA-cements (up to 17%) and comparable to other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas the granules released all gentamicin that had adhered to the surface. Conclusion The high release achieved shows great promise for clinical application of these biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst or sustained) may be achieved. PMID:16504140

  1. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.

    PubMed

    Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi

    2011-07-11

    Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.

  2. Synthesis of thiolated arabinoxylan and its application as sustained release mucoadhesive film former.

    PubMed

    Zaman, Muhammad; Hanif, Muhammad; Sultana, Kishwar; Atta-Ur-Rehman

    2018-02-08

    The present work aimed to synthesize thiolated arabinoxylan (TAX), and to evaluate its mucoadhesive potential. Synthesis of TAX was accomplished by esterification of arabinoxylan (AX) with thioglycolic acid (TGA). The appearance of a characteristic peak at 2516 cm -1 in the FTIR spectrum of TAX, and presence of 6.01 ± 1.03 m moles of thiol per gram of the polymer confirmed successful thiolation of AX. The incorporation of the thiol group considerably promoted mucoadhesive strength of the polymer-viz. 3.99-fold. Moreover, in vivo safety analysis in albino rats revealed TAX to be safe in the concentration range of 750-1000 mg kg -1 body weight. Synthesized TAX was utilized to prepare Tizanidine HCl (TZN HCl) loaded sustained release (SR) mucoadhesive buccal films using a solvent casting technique. Results proved that the prepared films were of uniform thickness, good mechanical strength (with folding endurance >300), acceptable moisture contents (5%-7%) and surface pH (6.23 ± 0.81 to 6.43 ± 0.49) compatible to that of the buccal cavity. Presence of greater that 90% of drug contents indicated the excellent drug loading ability of the prepared films. Results of in vitro dissolution studies and ex vivo permeation studies conducted respectively by USP dissolution apparatus II and Franz diffusion cell indicated that sustained effect of TAX was achieved for 8 h. These results have conclusively proven that TAX has the potential to improve the bioavailability of TZN HCl due to enhanced mucoadhesion in buccal cavity, hence signifying its suitability as a mucoadhesive buccal film former.

  3. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test.

    PubMed

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-10-01

    To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.

  4. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    PubMed

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  5. Tannate complexes of antihistaminic drug: sustained release and taste masking approaches.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Berendt, Robert T; Khan, Mansoor A

    2012-01-17

    The aim of this investigation was to evaluate the complexation potential of brompheniramine maleate (BPM) and tannic acid (TA) for sustained release and taste masking effects. The complexes (1:1-1:7 TA to BPM ratio) were prepared by the solvent evaporation method using methanol, phosphate buffer pH 6.8 or 0.1N HCl as common solvents. The complexes were characterized microscopically by scanning electron microscopy (SEM), chemically by Fourier transform infrared (FTIR) and solid-state NMR (SSNMR), thermally by differential scanning calorimetry (DSC), for crystallinity by powder X-ray powder diffraction (PXRD), for organoleptic evaluation by electronic tongue (e-tongue), and for solubility in 0.1N HCl and phosphate buffer pH 6.8. The dissolution studies were carried out using the USP II method at 50 rpm in 500 ml of dissolution media (0.1N HCl or phosphate buffer pH 6.8). SEM images revealed that the morphology of complexes were completely different from the individual components, and all complexes had the same morphological characteristics, irrespective of the solvent used for their preparation, pH or ratio of BPM and TA. The FTIR spectra showed the presence of chemical interactions between the TA and BPM. DSC, PXRD and SSNMR indicated that the drug lost its crystalline nature by formation of the complex. Complexation has significantly reduced the solubility of BPM and sustained the drug release up to 24h in phosphate buffer pH 6.8 media. The bitter taste of the BPM was completely masked which was indicated by Euclidean distance values which was far from the drug but near to its placebo in the complexes in all ratios studied. The taste masked complexes can be potentially developed as suitable dosage forms for pediatric use. In summary, complexation of BPM and TA effectively sustained the dissolution and masked the bitter taste of drug for the development of suitable dosage forms for pediatric use. Published by Elsevier B.V.

  6. [Sustained release of recombinant human bone morphogenetic protein-2 combined with stromal vascular fraction cells in promoting posterolateral spinal fusion in rat model].

    PubMed

    Yuan, Wei; Zheng, Jun; Qian, Jinyu; Zhou, Xiaoxiao; Wang, Minghui; Wang, Xiuhui

    2017-07-01

    To observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model. SVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson's trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining. The cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C ( P <0.05), and in group B than groups A and C ( P <0.05). HE staining, Masson's trichrome staining, and immunohistochemistry staining for OCN staining exhibited a large number of cartilage cells

  7. Development of sustained release antipsychotic tablets using novel polysaccharide isolated from Delonix regia seeds and its pharmacokinetic studies

    PubMed Central

    Krishnaraj, Kaliaperumal; Chandrasekar, Mulla Joghi Nanjan; Nanjan, Mulla Joghi; Muralidharan, Selvadurai; Manikandan, Duraikannu

    2011-01-01

    A natural polysaccharide was isolated from the seeds of Delonix regia. The isolated polysaccharide could maintain aqueous equilibrium between the dosage form and the surrounding medium due to its massive competence of water absorption (80.72%) and swelling index (266.7%). The Scanning Electron Micrograph of a polysaccharide exhibits rough surface with pores and crevices, hence, the drug release will be retarded because of the drug particles entrapment in the pores and crevices. Further, the surface tension of polysaccharide is higher than that of water, which may facilitate sustained release of drugs from dosage forms. An antipsychotic drug, quetiapine fumarate has a short half-life of 6 h and administered multiple times per day. Hence the quetiapine fumarate oral sustained release tablets were formulated using this polysaccharide in the concentration of 5–30% to avoid the side effects and increase patient compliance. Dissolution of the developed tablets with 25% polysaccharide content showed a better release profile than the other batches (5–20%) at the end of 12 h. The strong matrix complex has low solubility in water, it does not dissolve rapidly and the drug continues to diffuse through the gel layer at a consistent rate. Drug release from the matrix tablets follows matrix type except F-4 and F-5 which follow first order and Hix.crow type. The bioavailability study was carried out using healthy male New Zealand white rabbits that show the AUC(0–inf) value for developed SR tablets is 1.44 times higher than the reference thus, indicating more efficient and sustained drug delivery capable of maintaining plasma drug levels better. PMID:24115903

  8. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energymore » Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.« less

  9. Synthesis and Characterization of Chlorpyrifos/Copper(II) Schiff Base Mesoporous Silica with pH Sensitivity for Pesticide Sustained Release.

    PubMed

    Chen, Huayao; Lin, Yueshun; Zhou, Hongjun; Zhou, Xinhua; Gong, Sheng; Xu, Hua

    2016-11-02

    The salicylaldehyde-modified mesoporous silica (SA-MCM-41) was prepared through a co-condensation method. Through the bridge effect from the copper ion, which also acts as the nutrition of the plant, the model drug chlorpyrifos (CH) was supported on the copper(II) Schiff base mesoporous silica (Cu-MCM-41) to form a highly efficient sustained-release system (CH-Cu-MCM-41) for pesticide delivery. The experimental results showed that the larger the concentration of the copper ion, the more adsorption capacity (AC) of Cu-MCM-41 for chlorpyrifos and the smaller its release rate. The results confirmed the existence of a coordination bond between SA-MCM-41 and copper ions as well as a coordination bond between Cu-MCM-41 and chlorpyrifos. The AC of SA-MCM-41 is 106 mg/g, while that of Cu-MCM-41 is 295 mg/g. The as-synthesized system showed significant pH sensitivity. Under the condition of pH ≤ 7, the release rate of chlorpyrifos decreased with increasing pH, whereas its release rate in weak base conditions was slightly larger than that in weak acid conditions. Meanwhile, the drug release rate of the as-synthesized system was also affected by the temperature. Their sustained-release curves can be described by the Korsmeyer-Peppas equation.

  10. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-04-20

    Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6-24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB. An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated

  11. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

    PubMed Central

    2013-01-01

    Background Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6–24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process. Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB. Result An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The

  12. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  13. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100.

    PubMed

    El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed

    2014-03-01

    Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.

  14. Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle

  15. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test

    PubMed Central

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-01-01

    Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013

  16. Safety and clinical effectiveness of a compounded sustained-release formulation of buprenorphine for postoperative analgesia in New Zealand White rabbits.

    PubMed

    DiVincenti, Louis; Meirelles, Luiz A D; Westcott, Robin A

    2016-04-01

    To determine the clinical effectiveness and safety of a compounded sustained-release formulation of buprenorphine, compared with effects of regular buprenorphine, for postoperative analgesia in rabbits. Blinded randomized controlled clinical trial. 24 purpose-bred adult male New Zealand White rabbits. Rabbits received titanium implants in each tibia as part of another study. Immediately prior to surgery, each rabbit received regular buprenorphine hydrochloride (0.02 mg/kg [0.009 mg/lb], SC, q 12 h for 3 days) or 1 dose of a compounded sustained-release formulation of buprenorphine (0.12 mg/kg [0.055 mg/lb], SC) followed by an equal volume of saline (0.9% NaCl) solution (SC, q 12 h for 3 days) after surgery. For 7 days after surgery, rabbits were evaluated for signs of pain by means of rabbit grimace and activity scoring and for adverse effects. No significant differences were identified between treatment groups in grimace and activity scores at any point. No major adverse effects were detected for either drug. However, 3 rabbits that received regular buprenorphine had pain scores suggestive of moderate to severe pain by the time dose administration was due (ie, within the 12-hour administration interval). No clinically important differences were detected in intraoperative anesthetic or postoperative recovery variables. Sustained-release buprenorphine administered SC at 0.12 mg/kg was at least as effective as regular buprenorphine in providing analgesia for rabbits following orthopedic surgery without any major adverse effects. This sustained-release formulation represents an important alternative for rabbit analgesia with potential to improve rabbit welfare over existing analgesic standards.

  17. Local drug delivery - the early Berlin experience: single drug administration versus sustained release.

    PubMed

    Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena

    2011-05-01

    Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.

  18. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  19. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    PubMed

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  20. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    PubMed

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  1. Preparation and in vitro-in vivo evaluation of none gastric resident dipyridamole (DIP) sustained-release pellets with enhanced bioavailability.

    PubMed

    Xu, Lishuang; Luo, Yanfei; Feng, Jia; Xu, Ming; Tao, Xiaoguang; He, Haibing; Tang, Xing

    2012-01-17

    The objective of this study was to develop none gastric resident sustained-release pellets loaded with dipyridamole with a high bioavailability. Two different kinds of core pellets, one containing citric acid as a pH-modifier (CAP) and, the other without pH-modifier (NCAP) were prepared by extrusion-spheronization and then coated with mixtures of enteric soluble and insoluble polymers (referred to as CAP(1) and NCAP(1)) or insoluble polymer alone (referred to as CAP(2) and NCAP(2)). The relative bioavailability of the sustained-release pellets was studied in fasted beagle dogs after oral administration using a commercially available immediate release tablet (IRT) as a reference. The in vitro release, in vivo absorption and in vitro-in vivo correlation were also evaluated. Results revealed that the plasma drug concentrations after administration of CAP(2), NCAP(1) and NCAP(2) were undetectable, indicating that the drug release was almost zero from the preparations throughout the gastro-intestinal tract. The C(max), T(max) and AUC((0→24)) of CAP(1) were 0.78 ± 0.23 (μg/ml), 3.80 ± 0.30 (h), and 6.74 ± 0.47 (μg/mlh), respectively. While the corresponding values were 2.23 ± 0.32 (μg/ml), 3.00 ± 0.44 (h) and 9.42 ± 0.69 (μg/mlh) for IRT. The relative bioavailability of CAP(1) was 71.55% compared with IRT. By combined incorporation of a pH-modifier into the core of pellets to modify the inner micro-environment and employing mixtures of enteric soluble and insoluble polymers as a retarding layer, drugs with high solubility in stomach and limited solubility in small intestine, such as DIP, could be successfully formulated as sustained release preparations with no pH-dependence in drug release and enhanced bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process.

    PubMed

    Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-07-25

    In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes.

    PubMed

    Zhu, Yunxiao; Hoshi, Ryan; Chen, Siyu; Yi, Ji; Duan, Chongwen; Galiano, Robert D; Zhang, Hao F; Ameer, Guillermo A

    2016-09-28

    Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus. Altered cell migration due to microcirculatory deficiencies as well as excessive and prolonged reactive oxygen species production are implicated in the delayed healing of DFUs. The goal of this research was to assess whether sustained release of SDF-1, a chemokine that promotes endothelial progenitor cell homing and angiogenesis, from a citrate-based antioxidant thermoresponsive polymer would significantly improve impaired dermal wound healing in diabetes. Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) was synthesized via sequential polycondensation and free radical polymerization reactions. SDF-1 was entrapped via gelation of the PPCN+SDF-1 solution above its lower critical solution temperature (LCST) and its release and bioactivity was measured. The effect of sustained release of SDF-1 from PPCN (PPCN+SDF-1) versus a bolus application of SDF-1 in phosphate buffered saline (PBS) on wound healing was evaluated in a diabetic murine splinted excisional dermal wound model using gross observation, histology, immunohistochemistry, and optical coherence tomography microangiography. Increasing PPCN concentration decreased SDF-1 release rate. The time to 50% wound closure was 11days, 16days, 14days, and 17days for wounds treated with PPCN+SDF-1, SDF-1 only, PPCN only, and PBS, respectively. Wounds treated with PPCN+SDF-1 had the shortest time for complete healing (24days) and exhibited accelerated granulation tissue production, epithelial maturation, and the highest density of perfused blood vessels. In conclusion, sustained release of SDF-1 from PPCN is a promising and easy to use therapeutic strategy to improve the treatment of chronic non-healing DFUs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  5. Preparation and characterization of poly(lactic acid) nanoparticles for sustained release of pyridostigmine bromide.

    PubMed

    Tan, Q Y; Xu, M L; Wu, J Y; Yin, H F; Zhang, J Q

    2012-04-01

    A novel pyridostigmine bromide poly (lactic acid) nanoparticles (PBPNPs) was prepared to obtain sustained release characteristics of PB. A central composite design approach was employed for process optimization. The in vitro release studies were carried out by dialysis method and conducted using four different dissolution media. Similar factor method was investigated for dissolution profile comparison. Multiple linear regression analysis for process optimization revealed that the optimal PBPNPs were obtained where the values of the amount of PB (X1, mg), PLA concentration (X2, % w:v), and PVA concentration (X3, % w:v) were 49.20 mg, 3.31% and 3.41%, respectively. The average particle size and zeta potential of PBPNPs with the optimized formulation were 722.9 +/- 4.3 nm, and -25.12 +/- 1.2 mV, respectively. PBPNPs provided an initial burst of drug release followed by a very slow release over an extended period of time (72 h). Compared with free PB, PBPNPs had a significantly lower release rate of PB in vitro. The in vitro release profile of the PBPNPs could be described by Weibull models, regardless of type of dissolution medium. Statistical significance of similarity between every two dissolution profiles of PBPNPs in different dissolution media was found, and the difference between the curves of PBPNPs and pure PB was statistically significant.

  6. Bimatoprost sustained-release intracameral implant reduces episcleral venous pressure in dogs.

    PubMed

    Lee, Susan S; Burke, James; Shen, Jie; Almazan, Alexandra; Orilla, Werhner; Hughes, Patrick; Zhang, Jane; Li, Huajiang; Struble, Craig; Miller, Paul E; Robinson, Michael R

    2018-02-19

    To determine the effect of a bimatoprost sustained-release intracameral implant (Bimatoprost SR) on episcleral venous pressure (EVP) in normal dogs. Normotensive beagle dogs were randomized to receive Bimatoprost SR 30 μg (n = 7) or sham injection (needle insertion only, n = 7) in one eye on day 1. EVP was measured with an episcleral venomanometer through day 65. Episcleral aqueous outflow vessels were identified using fluorescence imaging following intracameral injection of indocyanine green in one additional animal. A separate cohort of dogs that had been trained for conscious intraocular pressure (IOP) measurements received Bimatoprost SR 30 μg (n = 8) in one eye; IOP was evaluated through day 66. Baseline mean EVP was 10.0 mmHg in the Bimatoprost SR group and 10.4 mmHg in the sham group. Eyes treated with Bimatoprost SR exhibited a transient increase in mean EVP that peaked at day 8, followed by a decrease to levels below baseline. From day 29 to day 65, the change in mean EVP from baseline ranged from -2.4 to -3.9 mmHg (P < 0.05 vs. sham). Baseline mean IOP in eyes treated with Bimatoprost SR was 14.9 mmHg, and a steady IOP reduction was maintained through day 66. Bimatoprost SR-treated eyes exhibited a selective, sustained dilation of aqueous outflow vessels that was not observed in sham-treated eyes. In normal dogs, Bimatoprost SR was associated with a transient increase in EVP followed by a sustained decrease. Changes in EVP were accompanied by a sustained dilation of aqueous outflow vessels. © 2018 Allergan. Veterinary Opthalmology published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Ophthalmologists.

  7. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds.

    PubMed

    Lin, Wei-Chih; Huang, Chieh-Cheng; Lin, Shu-Jyuan; Li, Meng-Ju; Chang, Yen; Lin, Yu-Jung; Wan, Wei-Lin; Shih, Po-Chien; Sung, Hsing-Wen

    2017-11-01

    Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (H 2 S), which is an ephemeral gaseous molecule. Physiologically, H 2 S is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile H 2 S donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous H 2 S under physiological conditions. The sustained release of H 2 S promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of H 2 S for the treatment of diabetic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    PubMed

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  9. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer

    PubMed Central

    Belz, Jodi E.; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S.; Royce, Darlene B.; Zhang, Di; van de Ven, Anne L.; Liby, Karen T.; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. PMID:29158830

  11. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.

    PubMed

    Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.

  12. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices.

    PubMed

    Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2016-11-20

    During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrospun formulations of bevacizumab for sustained release in the eye.

    PubMed

    Angkawinitwong, Ukrit; Awwad, Sahar; Khaw, Peng T; Brocchini, Steve; Williams, Gareth R

    2017-12-01

    Medicines based on vascular endothelial growth factor (VEGF) neutralising antibodies such as bevacizumab have revolutionized the treatment of age related macular degeneration (AMD), a common blinding disease, and have great potential in preventing scarring after surgery or accelerating the healing of corneal injuries. However, at present frequent invasive injections are required to deliver these antibodies. Such administration is uncomfortable for patients and expensive for health service providers. Much effort is thus focused on developing dosage forms that can be administered less frequently. Here we use electrospinning to prepare a solid form of bevacizumab designed for prolonged release while maintaining antibody stability. Electrospun fibers were prepared with bevacizumab encapsulated in the core, surrounded by a poly-ε-caprolactone sheath. The fibers were generated using aqueous bevacizumab solutions buffered at two different pH values: 6.2 (the pH of the commercial product; F beva ) and 8.3 (the isoelectric point of bevacizumab; F bevaP ). The fibers had smooth and cylindrical morphologies, with diameters of ca. 500nm. Both sets of bevacizumab loaded fibers gave sustained release profiles in an in vitro model of the subconjunctival space of the eye. F beva displayed first order kinetics with t 1/2 of 11.4±4.4 days, while F bevaP comprises a zero-order reservoir type release system with t 1/2 of 52.9±14.8 days. Both SDS-PAGE and surface plasmon resonance demonstrate that the bevacizumab in F bevaP did not undergo degradation during fiber fabrication or release. In contrast, the antibody released from F beva had degraded, and failed to bind to VEGF. Our results demonstrate that pH control is crucial to maintain antibody stability during the fabrication of core/shell fibers and ensure release of functional protein. Bevacizumab is a potent protein drug which is highly effective in the treatment of degenerative conditions in the eye. To be effective, frequent

  14. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    PubMed

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model.

    PubMed

    Cokelaere, Stefan M; Plomp, Saskia G M; de Boef, Esther; de Leeuw, Mike; Bool, Sophie; van de Lest, Chris H A; René van Weeren, P; Korthagen, Nicoline M

    2018-05-02

    Synovial inflammation is an important characteristic of arthritic disorders like osteoarthritis and rheumatoid arthritis. Orally administered non-steroidal anti-inflammatory drugs (NSAIDs) such as celecoxib are among the most widely prescribed drugs to manage these debilitating diseases. Intra-articular delivery in biodegradable in situ forming hydrogels overcomes adverse systemic effects and prolongs drug retention in the joint. In this study two formulations of celecoxib (40 mg/g and 120 mg/g) in a propyl-capped PCLA-PEG-PCLA triblock copolymer were sequentially evaluated in a multiple LPS challenge equine synovitis model. Intra-articular release and systemic exposure to celecoxib and local changes at joint level were evaluated longitudinally. A single intra-articular injection of the high dose (HCLB)-gel or low dose (LCLB)-gel showed a sustained and controlled intra-articular release in both inflamed and healthy joints together with very low systemic exposure. Synovitis and lameness were moderate respectively very mild in this model due to the low concentration LPS (0.25 ng/joint). Both celecoxib formulations had a mild, transient effect on inflammatory and structural synovial fluid biomarkers but these returned to baseline within one week of administration. The HCLB-gel showed a significant inhibition in peak white blood cell concentration at 8 hours after LPS induction. Elevated levels of celecoxib were observed in the joint for up to 30 days but no overall anti-inflammatory effects could be observed, which was thought to be due to the moderate synovitis. As there were no long-term adverse effects, sustained intra-articular release of celecoxib from in situ forming hydrogels should be evaluated further for its effects on longer-term relief of inflammatory joint pain in humans and animals. Copyright © 2018. Published by Elsevier B.V.

  16. Single processing step toward injectable sustained-release formulations of Triptorelin based on a novel degradable semi-solid polymer.

    PubMed

    Asmus, Lutz R; Kaufmann, Béatrice; Melander, Louise; Weiss, Torsten; Schwach, Grégoire; Gurny, Robert; Möller, Michael

    2012-08-01

    Poly(lactic acid) is a widely used polymer for parenteral sustained-release formulations. But its solid state at room-temperature complicates the formulation process, and elaborate formulation systems like microparticles and self-precipitating implants are required for administration. In contrast, hexylsubstituted poly(lactic acid) (hexPLA) is a viscous, biodegradable liquid, which can simply be mixed with the active compound. In this study, the feasibility to prepare injectable suspension formulations with peptides was addressed on the example of the GnRH-agonist Triptorelin. Two formulation procedures, of which one was a straight forward one-step cryo-milling-mixing process, were compared regarding the particle size of the peptide in the polymer matrix, distribution, and drug release. This beneficial method resulted in a homogeneous formulation with an average particle diameter of the incorporated Triptorelin of only 4.1 μm. The rheological behavior of the Triptorelin-hexPLA formulations was assessed and showed thixotropic and shear-thinning behavior. Viscosity and injectability were highly dependent on the drug loading, polymer molecular weight, and temperature. Nine formulations with drug loadings from 2.5% to 10% and hexPLA molecular weights between 1500 and 5000 g/mol were investigated in release experiments, and all displayed a long-term release for over 3 months. Formulations with hexPLA of 1500 g/mol showed a viscosity-dependent release and hexPLA-Triptorelin formulations of over 2500 g/mol a molecular weight-dependent release profile. In consequence, the burst release and rate of release were controllable by adapting the drug loading and the molecular weight of the hexPLA. The degradation characteristics of the hexPLA polymer during the in vitro release experiment were studied by following the molecular weight decrease and weight loss. Triptorelin-hexPLA formulations had interesting sustained-release characteristics justifying further investigations in

  17. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula - containing wheat germ oil and stabilized by magnesium oxide nanoparticles.

    PubMed

    Elmotasem, Heba; Farag, Hala K; Salama, Abeer A A

    2018-05-16

    The objective of this study was to innovate an effective oral sustained release hepatoprotective formula for - the water soluble drug - caffeine. Caffeine is rapidly absorbed and eliminated which dictates frequent administration to achieve adequate therapeutic effect. A w/o Pickering emulsion incorporating caffeine in the internal phase was primed. It contained wheat germ oil and was stabilized by synthesized magnesium oxide nanoparticles (MgO NPs). Components selection was based on their antioxidant, hepatoprotective and anticarcinogenic effects. The MgO NPs were prepared via sol-gel method, and then were characterized using X-ray diffractometry, transmission electron microscopy, contact angle and cytotoxicity. The Pickering emulsion formula stabilized by MgO NPs (F1) was compared to another stabilized by conventional MgO particles (F2). Both were evaluated regarding droplet size, stability and caffeine release. F1 was stable against phase separation for a 2 months period. Its droplets mean size was 665.9 ± 90 nm. F1 afforded sustained release for caffeine that reached 70% within 48 h that followed zero order kinetics. 100 ppm of F1 showed nearly 36% growth inhibition of hepatocellular carcinoma (HEPG2). In vivo and histopathalogical evaluations were conducted on CCl 4 intoxicated rats. Biochemical analysis for liver enzymes - (ALT and AST), oxidative stress biomarkers and the inflammation marker (protein kinase C) - revealed that the selected formula elicited significant hepatoprotection. This formula acted as an economical approach to multiple therapy and afforded safe effective sustained level for caffeine. Copyright © 2018. Published by Elsevier B.V.

  18. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  19. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-01-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251

  20. Multifunctional core-shell silica microspheres and their performance in self-carrier decomposition, sustained drug release and fluorescent bioimaging

    NASA Astrophysics Data System (ADS)

    Mehdi, Yamina Ait; Itatahine, Asma; Fizir, Meriem; Xiao, Deli; Dramou, Pierre; He, Hua

    2018-07-01

    An ideal nanocarrier system for drug delivery is that one made from biocompatible and biodegradable materials for safe excretion from the biological system, and often with additional imaging abilities. In the present work, new core-shell silica microspheres have been prepared, with carrier decomposition after drug release. Paclitaxel, which is one of the most efficient drugs against a wide range of malignancies was integrated into the silica core. The carrier decomposition resulted from the escape of drug molecules with loading capacity about 16.95%. To achieve the fluorescents properties of the synthesized material a biocompatible photoluminescent prepared carbon dots were inserted in a silica shell around the Ptx-SiO2 core. The resultant silica core-shell (Ptx-SiO2CDs-SiO2) NPs with average particle size around 100 nm showed high fluorescent properties from the confocal laser scanning microscope observation. Further observation under UV-light at 365 nm also confirmed the photoluminescence. The Ptx-SiO2@CDs-SiO2 NPs were highly water soluble, and provide a sustained drug release as well as pH sensitivity. The incubation of A549 cells line with Ptx-SiO2@CDs-SiO2 NPs exhibits high cellular uptake as shown by CDs imaging. These properties in addition to the biocompatibility of Ptx-SiO2@CDs-SiO2 NPs and biodegradability of the silica core contributed simultaneously with the drug release process for easy body excretion after its functionality via renal system.

  1. Achieving Our Environmental Sustainability Goals: The Opportunities and Pitfalls of Applying Life Cycle Thinking

    EPA Science Inventory

    An increasing number of people around the world are beginning to realize that a systems approach, such as life cycle thinking, is necessary to truly achieve environmental sustainability. Without the holistic perspective that life cycle thinking provides, our actions risk leading ...

  2. Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...

  3. Sustained release of stem cell factor in a double network hydrogel for ex vivo culture of cord blood-derived CD34+ cells.

    PubMed

    Zhang, Yuanhao; Pan, Xiuwei; Shi, Zhen; Cai, Haibo; Gao, Yun; Zhang, Weian

    2018-04-01

    Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34 + cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34 + cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs. © 2017 John Wiley & Sons Ltd.

  4. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  5. Tailoring the mucoadhesive and sustained release characteristics of mesalamine loaded formulations for local treatment of distal forms of ulcerative colitis.

    PubMed

    Ali, Hany S M; Hanafy, Ahmed F; El Achy, Samar N

    2016-10-10

    Direct delivery of sustained therapeutic levels of mesalamine (MS) via rectal systems to manage distal forms of ulcerative colitis was studied. The High molecular weight hydroxypropyl methylcellulose (HPMC K4M) polymer was combined with hydrophilic surfactants to control polymer hydration process allowing optimization of the mucoadhesive and controlled drug release properties for the rectal systems. Physical mixtures and granules of MS and HPMC K4M were prepared and in vitro characterized using scanning electron microscope, differential scanning calorimetry and X-ray diffraction techniques. Rectal formulations were prepared utilizing MS-HPMC K4M mixtures in different polyethylene glycol (PEG) combination bases. The developed rectal formulations were investigated for physical, mucoadhesion, in-vitro drug release and swelling characteristics. Results revealed acceptable physical characteristics of the prepared formulations with good content uniformity and minimum weight variation. Sustained release patterns of MS form HPMC K4M based formulations were observed. Formulations prepared using high proportions of the polymer or PEG 400 showed higher extent of mucoadhesion, swelling and greatly extended drug release time. Efficacy of an optimized formulation was assessed using the acetic acid induced colitis model in rats and compared to a reference polymer-free formulation of the drug. Clinical evaluation included bleeding from rectum, consistency of animal stool and colon/body weight ratio. Furthermore, histopathological analysis was carried out to evaluate the degree of inflammation and mucosal damage. Overall results showed a significant enhancement in the clinical pictures and colon histopathology of animals treated by the sustained release mucoadhesive formulation compared to the reference polymer free formulation and the non-treated colitis group. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Retardation of Antigen Release from DNA Hydrogel Using Cholesterol-Modified DNA for Increased Antigen-Specific Immune Response.

    PubMed

    Umeki, Yuka; Saito, Masaaki; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-10-01

    Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  8. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    PubMed

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  9. The use of Hibiscus esculentus (Okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form.

    PubMed

    Zaharuddin, Nurul Dhania; Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.

  10. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats

    PubMed Central

    Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank

    2016-01-01

    Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti–Sr–O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti–Sr–O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti–Sr–O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456

  11. Preparation of Tea Tree Oil/Poly(styrene-butyl methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties

    PubMed Central

    Lin, Guanquan; Chen, Huayao; Zhou, Hongjun; Zhou, Xinhua; Xu, Hua

    2018-01-01

    Using butyl methacrylate (BMA) and styrene (St) as monomers and divinylbenzene (DVB) as a crosslinking agent, P(St-BMA) microspheres were prepared by suspension polymerization. Tea tree oil (TTO) microspheres were prepared by adsorbing TTO on P(St-BMA) microspheres. The structure and surface morphology of P(St-BMA) microspheres and TTO microspheres were characterized by Fourier transformed infrared spectroscopy (FTIR), optical microscopy, and Thermogravimetric analysis (TGA). In doing so, the structural effect of P(St-BMA) microspheres on oil absorption and sustained release properties could be investigated. The results show that the surface of the P(St-BMA) microspheres in the process of TTO microsphere formation changed from initially concave to convex. The TTO microspheres significantly improved the stability of TTO, which was found to completely decompose as the temperature of the TTO increased from about 110 °C to 150 °C. The oil absorption behavior, which was up to 3.85 g/g, could be controlled by adjusting the monomer ratio and the amount of crosslinking agent. Based on Fickian diffusion, the sustained release behavior of TTO microspheres was consistent with the Korsmeyer-Pappas kinetic model. After 13 h of natural release, the anti-bacterial effect of the TTO microspheres was found to be significantly improved compared to TTO. PMID:29723967

  12. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases

    PubMed Central

    Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.

    2016-01-01

    This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498

  13. Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow.

    PubMed

    Saadatian-Elahi, Mitra; Bloom, David; Plotkin, Stanley; Picot, Valentina; Louis, Jacques; Watson, Michael

    2017-01-01

    Vaccination is a complex ecosystem with several components that interact with one another and with the environment. Today's vaccine ecosystem is defined by the pursuit of polio eradication, the drive to get as many of the new vaccines to as many people as possible and the research and development against immunologically challenging diseases. Despite these successes, vaccine ecosystem is facing keys issues with regard to supply/distribution and cost/profitability asymmetry that risk slowing its global growth. The conference "Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow" held in Annecy-France (January 19-21, 2015) took stock of the health of today's vaccination ecosystem and its ability to reliably and sustainably supply high-quality vaccines while investing in tomorrow's needed innovation. Small and decreasing numbers of suppliers/manufacturing facilities; paucity of research-driven companies; regulatory pressures; market uncertainties; political prioritization; anti-vaccine movements/complacency; and technological and programmatic issues were acknowledged as the major challenges that could weaken today's vaccination ecosystem. The expert panel discussed also drivers and barriers to a sustainable vaccination ecosystem; the metrics of a vaccination ecosystem; and what should be added, removed, increased, or reduced to maintain the health of the vaccination ecosystem.

  14. Pharmacokinetics of a Sustained-release Formulation of Meloxicam After Subcutaneous Administration to Hispaniolan Amazon Parrots (Amazona ventralis).

    PubMed

    Guzman, David Sanchez-Migallon; Court, Michael H; Zhu, Zhaohui; Summa, Noémie; Paul-Murphy, Joanne R

    2017-09-01

    Meloxicam has been shown to have a safe and favorable pharmacodynamic profile with individual variability in Hispaniolan Amazon parrots (Amazona ventralis). In the current study, we determined the pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to Hispaniolan Amazon parrots. Twelve healthy adult parrots, 6 males and 6 females, were used in the study. Blood samples were collected before (time 0) and at 0.5, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after a single dose of the sustained-release meloxicam formulation (3 mg/kg SC). Plasma meloxicam concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were determined by noncompartmental analysis. Plasma concentrations reached a mean C max of 23.4 μg/mL (range, 14.7-46.0 μg/mL) at 1.8 hours (range, 0.5-6 hours), with a terminal half-life of 7.4 hours (range, 1.4-40.9 hours). Individual variation was noticeable, such that some parrots (4 of 12 birds) had very low plasma meloxicam concentrations, similar to the high variability reported in a previous pharmacokinetic study of the standard meloxicam formulation in the same group of birds. Two birds developed small self-resolving scabs at the injection site. On the basis of these results, the sustained-release meloxicam formulation could be administered every 12 to 96 hours in Hispaniolan Amazon parrots to manage pain. Because of these highly variable results, the use of this formulation in this species cannot be recommended until further pharmacokinetic, safety, and pharmacogenomic evaluations are performed to establish accurate dosing recommendations and to understand the high pharmacokinetic variability.

  15. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system.

    PubMed

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed

    2017-03-01

    Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets. The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.

  16. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    NASA Astrophysics Data System (ADS)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  17. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate.

    PubMed

    Yang, Xiaoyan; Trinh, Hoang M; Agrahari, Vibhuti; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2016-04-01

    This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09 ± 6.21%, 55.74 ± 6.26%, and 62.54 ± 3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.

  18. Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood

    PubMed Central

    Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.

    2012-01-01

    Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784

  19. In-vitro evaluation of ion-exchange microspheres for the sustained release of liposomal-adenoviral conjugates.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J

    2004-03-24

    This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.

  20. Solutions as solutions--synthesis and use of a liquid polyester excipient to dissolve lipophilic drugs and formulate sustained-release parenterals.

    PubMed

    Asmus, Lutz R; Gurny, Robert; Möller, Michael

    2011-11-01

    Solid poly(lactides) and poly(lactide-co-glycolides) are widely used polymers for sustained-release parenterals. However, they have some unfavorable properties regarding manufacturing of the formulations and administration to the patient due to their solid aggregate state. In contrast, hexyl-substituted poly(lactic acid) (hexPLA, poly(2-hydroxyoctanoic acid)) is a viscous degradable polyester. To date, a two-step ring-opening polymerization was used for its synthesis. Here, we investigated a novel one-pot one-step melt polycondensation method to prepare hexPLA for biomedical applications by a simple green chemistry process. No catalyst or solely pharmaceutically acceptable catalysts and environmentally friendly purification methods without organic solvents were used. The resulting hexPLA polymers are stable under dry heat sterilization conditions. Low molecular weight hexPLAs with less than 5000 g/mol are less viscous than high molecular weight polymers. HexPLA can dissolve lipophilic active substances, with generally high incorporation capacities in low molecular weight polymers. The incorporation of solid compounds increases the viscosity and glass transition temperature, whereas the addition of small amounts of plasticizers or sparse warming significantly decreases the viscosity. Loratadine is soluble in hexPLA up to 28%. This highly concentrated Loratadine-hexPLA formulation released the active compound entirely over 14 days without initial burst in a zero order kinetic, matching the clinical requirements for such a sustained-release formulation. This demonstrates the potential of hexPLA as an excipient for injectable sustained-release formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Disparities in achieving and sustaining viral suppression among a large cohort of HIV-infected persons in care - Washington, DC.

    PubMed

    Castel, Amanda D; Kalmin, Mariah M; Hart, Rachel L D; Young, Heather A; Hays, Harlen; Benator, Debra; Kumar, Princy; Elion, Richard; Parenti, David; Ruiz, Maria Elena; Wood, Angela; D'Angelo, Lawrence; Rakhmanina, Natella; Rana, Sohail; Bryant, Maya; Hebou, Annick; Fernández, Ricardo; Abbott, Stephen; Peterson, James; Wood, Kathy; Subramanian, Thilakavathy; Binkley, Jeffrey; Happ, Lindsey Powers; Kharfen, Michael; Masur, Henry; Greenberg, Alan E

    2016-11-01

    One goal of the HIV care continuum is achieving viral suppression (VS), yet disparities in suppression exist among subpopulations of HIV-infected persons. We sought to identify disparities in both the ability to achieve and sustain VS among an urban cohort of HIV-infected persons in care. Data from HIV-infected persons enrolled at the 13 DC Cohort study clinical sites between January 2011 and June 2014 were analyzed. Univariate and multivariate logistic regression were conducted to identify factors associated with achieving VS (viral load < 200 copies/ml) at least once, and Kaplan-Meier (KM) curves and Cox proportional hazards models were used to identify factors associated with sustaining VS and time to virologic failure (VL ≥ 200 copies/ml after achievement of VS). Among the 4311 participants, 95.4% were either virally suppressed at study enrollment or able to achieve VS during the follow-up period. In multivariate analyses, achieving VS was significantly associated with age (aOR: 1.04; 95%CI: 1.03-1.06 per five-year increase) and having a higher CD4 (aOR: 1.05, 95% CI 1.04-1.06 per 100 cells/mm(3)). Patients infected through perinatal transmission were less likely to achieve VS compared to MSM patients (aOR: 0.63, 95% CI 0.51-0.79). Once achieved, most participants (74.4%) sustained VS during follow-up. Blacks and perinatally infected persons were less likely to have sustained VS in KM survival analysis (log rank chi-square p ≤ .001 for both) compared to other races and risk groups. Earlier time to failure was observed among females, Blacks, publically insured, perinatally infected, those with longer standing HIV infection, and those with diagnoses of mental health issues or depression. Among this HIV-infected cohort, most people achieved and maintained VS; however, disparities exist with regard to patient age, race, HIV transmission risk, and co-morbid conditions. Identifying populations with disparate outcomes allows for appropriate targeting

  2. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics.

    PubMed

    Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2016-05-01

    Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Achieving sustainable cultivation of potatoes

    USDA-ARS?s Scientific Manuscript database

    Every phase of the production cycle impacts the sustainability of potato. Potato physiology determines how genetically encoded developmental attributes interact with local environmental conditions as modified through agricultural practice to produce a perishable crop. In this chapter we highlight ho...

  4. A pillar[5]arene based gel from a low-molecular-weight gelator for sustained dye release in water.

    PubMed

    Yao, Yong; Sun, Yan; Yu, Huaxu; Chen, Wenrui; Dai, Hong; Shi, Yujun

    2017-12-12

    A soft gel based on pillar[5]arene was successfully prepared using a carbazone reaction. Furthermore, dyes such as TPP or TPPE can be incorporated into this gel and were observed to be released in a sustained way in water due to solvent exchange.

  5. What Is an Education for Sustainable Development Supposed to Achieve--A Question of What, How and Why

    ERIC Educational Resources Information Center

    Hofman, Maria

    2015-01-01

    This is a theoretical article to open the discussion of what an education for sustainable development is supposed to achieve and how teachers can help students to develop skills that might be needed in order to support a sustainable future. The focus in the article will be on education. As it is an article aiming to open this kind of discussion…

  6. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    PubMed

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  7. A TWO CENTURY HISTORY OF PACIFIC NORTHWEST SALMON: LESSONS LEARNED FOR ACHIEVING A SUSTAINABLE FUTURE

    EPA Science Inventory

    Achieving ecological sustainability is a daunting challenge. In the Pacific Northwest one of the most highly visible public policy debates concerns the future of salmon populations. Throughout the Pacific Northwest, many wild salmon stocks have declined and some have disappeare...

  8. The Use of Hibiscus esculentus (Okra) Gum in Sustaining the Release of Propranolol Hydrochloride in a Solid Oral Dosage Form

    PubMed Central

    Noordin, Mohamed Ibrahim; Kadivar, Ali

    2014-01-01

    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength. PMID:24678512

  9. Secondary Students' Reading Attitudes and Achievement in a Scaffolded Silent Reading Program versus Traditional Sustained Silent Reading

    ERIC Educational Resources Information Center

    West, Chandra Lorene

    2010-01-01

    This study explored the reading attitudes and achievement, as well as genre knowledge, of tenth, eleventh, and twelfth-grade students who participated in Scaffolded Silent Reading, Sustained Silent Reading, or a control group. The Reading and You attitude survey, Degrees of Reading Power achievement measure, and Genre Assessment were administered…

  10. In vivo biocompatibility, sustained-release and stability of triptorelin formulations based on a liquid, degradable polymer.

    PubMed

    Asmus, Lutz R; Tille, Jean-Christophe; Kaufmann, Béatrice; Melander, Louise; Weiss, Torsten; Vessman, Kerstin; Koechling, Wolfgang; Schwach, Grégoire; Gurny, Robert; Möller, Michael

    2013-02-10

    Hexylsubstituted poly(lactic acid) (hexPLA) is a viscous polymer, which degrades in the presence of water similar to the structure related poly(lactic acid). With hydrophilic active compounds, like Triptorelin acetate, the lipophilic polymer was formulated in form of parenterally injectable suspensions. This first in vivo study toward the biocompatibility of hexPLA implants in rats over 3 months in comparison to in situ forming poly(lactic-co-glycolic acid) (PLGA) formulations is presented here. The hexPLA implants showed only a mild acute inflammation at the injection site after application, which continuously regressed. In contrast to the PLGA formulations, hexPLA did not provoke an encapsulation of the implant with extracellular matrix. Prior to the formulation application, the stability of Triptorelin inside the hexPLA matrix was assessed under different storage conditions and in the presence of buffer to simulate a peptide degrading environment. At 5°C Triptorelin showed a stability of 98% inside the polymer for at least 6 months. The stability was still 78% at an elevated temperature of 40°C. HexPLA protected the incorporated peptide from the surrounding aqueous environment, which resulted in 20% less degradation inside the polymer compared to the solution. This protection effect supports the use of Triptorelin-hexPLA formulations for parenteral sustained-release formulations. In a second in vivo evaluation in Wistar Hannover rats, formulations containing 5% and 10% Triptorelin in the polymeric matrix released the active compound continuously for 6 months. The formulations showed a higher release during the initial 7 days, which is necessary for the clinical use to down-regulate all GnRH-receptors. Afterwards, a zero order drug release was observed over the first 3 months. After 3 months, the plasma levels decreased slowly but remained at effective concentrations for the total of 6 months. Furthermore, a qualitative in vitro-in vivo correlation was observed

  11. Bimatoprost-Loaded Ocular Inserts as Sustained Release Drug Delivery Systems for Glaucoma Treatment: In Vitro and In Vivo Evaluation

    PubMed Central

    Franca, Juçara Ribeiro; Foureaux, Giselle; Fuscaldi, Leonardo Lima; Ribeiro, Tatiana Gomes; Rodrigues, Lívia Bomfim; Bravo, Renata; Castilho, Rachel Oliveira; Yoshida, Maria Irene; Cardoso, Valbert Nascimento; Fernandes, Simone Odília; Cronemberger, Sebastião; Ferreira, Anderson José; Faraco, André Augusto Gomes

    2014-01-01

    The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM) were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP) was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a promising system

  12. Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Upadhye, Sampada B; Vladyka, Ronald S; Repka, Michael A

    2015-12-30

    The objective of the present study was to develop pH-independent/dependent sustained release (SR) tablets of ondansetron HCl dihydrate (OND), a selective 5-HT3 receptor antagonist that is used for prevention of nausea and vomiting caused by chemotherapy, radiotherapy and postoperative treatment. The challenge with the OND API is its pH-dependent solubility and relatively short elimination half-life. Therefore, investigations were made to solve these problems in the current study. Formulations were prepared using stearic acid as a binding agent via a melt granulation process in a twin-screw extruder. The micro-environmental pH of the tablet was manipulated by the addition of fumaric acid to enhance the solubility and release of OND from the tablet. The in vitro release study demonstrated sustained release for 24h with 90% of drug release in formulations using stearic acid in combination with ethyl cellulose, whereas 100% drug release in 8h for stearic acid-hydroxypropylcellulose matrices. The formulation release kinetics was correlated to the Higuchi diffusion model and a non-Fickian drug release mechanism. The results of the present study demonstrated for the first time the pH dependent release from hydrophilic-lipid matrices as well as pH independent release from hydrophobic-lipid matrices for OND SR tablets manufactured by means of a continuous melt granulation technique utilizing a twin-screw extruder. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. LC for analysis of two sustained-release mixtures containing cough cold suppressant drugs.

    PubMed

    El-Gindy, Alaa; Sallam, Shehab; Abdel-Salam, Randa A

    2010-07-01

    A liquid chromatographic method was applied for the analysis of two sustained-release mixtures containing dextromethorphane hydrobromide, carbinoxamine maleate with either phenylephrine hydrochloride in pharmaceutical capsules (Mix 1) or phenyl-propanolamine, methylparaben, and propylparaben, which bonds as a drug base to ion exchange resin in pharmaceutical syrup (Mix 2). The method was used for their simultaneous determination using a CN column with a mobile phase consisting of acetonitrile-12 mM ammonium acetate in the ratio of 60:40 (v/v, pH 6.0) for Mix 1 and 45:55 (v/v, pH 6.0) for Mix 2.

  14. Effects of sustained release dexamethasone hydrogels in hearing preservation cochlear implantation.

    PubMed

    Honeder, Clemens; Zhu, Chengjing; Schöpper, Hanna; Gausterer, Julia Clara; Walter, Manuel; Landegger, Lukas David; Saidov, Nodir; Riss, Dominik; Plasenzotti, Roberto; Gabor, Franz; Arnoldner, Christoph

    2016-11-01

    It has been shown that glucocorticoids reduce the hearing threshold shifts associated with cochlear implantation. Previous studies evaluated the administration of glucocorticoids immediately before surgery or the repeated pre- or perioperative systemic application of glucocorticoids. The aim of this study was to evaluate the effects of a sustained release dexamethasone hydrogel in hearing preservation cochlear implantation. To address this issue, a guinea pig model of cochlear implantation was used. 30 normal hearing pigmented guinea pigs were randomized into a group receiving a single dose of a dexamethasone/poloxamer407 hydrogel one day prior to surgery, a second group receiving the hydrogel seven days prior to surgery and a control group. A silicone cochlear implant electrode designed for the use in guinea pigs was inserted to a depth of 5 mm through a cochleostomy. Compound action potentials of the auditory nerve (frequency range 0.5-32 kHz) were measured preoperatively, directly postoperatively and on postoperative days 3, 7, 14, 21 and 28. Following the last audiometry, temporal bones were harvested and histologically evaluated. Dexamethasone hydrogel application one day prior to surgery resulted in significantly reduced hearing threshold shifts at low, middle and high frequencies measured at postoperative day 28 (p < 0.05). Application of the hydrogel seven days prior to surgery did not show such an effect. Dexamethasone application one day prior to surgery resulted in increased outer hair cell counts in the cochlear apex and in reduced spiral ganglion cell counts in the basal and middle turn of the cochlea, a finding that was associated with a higher rate of electrode translocation in this group. In this study, we were able to demonstrate functional benefits of a single preoperative intratympanic application of a sustained release dexamethasone hydrogel in a guinea pig model of cochlear implantation. Copyright © 2016 The Authors. Published by Elsevier

  15. Strategies Employed by Middle School Principals Successful in Increasing and Sustaining the Mathematics Achievement of African American Students

    ERIC Educational Resources Information Center

    Clark, Rebecca

    2013-01-01

    This study approaches the problem of African American mathematics achievement from a strength-based perspective, identifying practices implemented by middle school principals successful in increasing and sustaining the mathematics achievement of African American students. The study was designed to answer questions regarding both school-wide…

  16. Sustained Silent Reading in Middle School and Its Impact on Students' Attitudes and Achievement

    ERIC Educational Resources Information Center

    Morgan, Margaret Peggy S.

    2013-01-01

    Sustained Silent Reading (SSR) is a period of time given to students to read self-selected materials during their school day. This study examines the effect of participation in a SSR program on reading attitudes and reading achievement of students as measured by the Adolescent Motivation to Read Profile (AMRP) and the Northwest Evaluation…

  17. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  18. An investigation of acetylcholine released in skeletal muscle and protein unbound drug released in blood based on the pyridostigmine bromide (pretreatment drug) sustained-release pellets by microdialysis technique in the rabbit model.

    PubMed

    Huang, Yuh-Tyng; Cheng, Chun-Jen; Lai, Tsun-Fwu; Tsai, Tong-Rong; Tsai, Tung-Hu; Chuo, Wen-Ho; Cham, Thau-Ming

    2007-04-18

    Pyridostigmine bromide (PB) is a reversible acetylcholinesterase inhibitor that has been used as a pretreatment drug for "Soman" nerve gas poisoning in combat to increase survival. The once-daily PB-sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods in our laboratory, which was followed by zero-order release mechanism. The results showed that the released concentration of acetylcholine (ACh) in skeletal muscle and the released concentration of protein unbound drug in blood were determined by microdialysis technique to have significant differences (P<0.05) among the three dosage forms (IV injection, commercial IR tablets and the PB-SR pellet). The released concentrations of ACh and protein unbound drug for PB-SR pellets were slower than IV injection and commercial IR tablets; this phenomenon indicating that the retention period of drug efficacy in vivo for PB-SR pellet was longer than the others, that is to say, the PB-SR pellets provided with SR effect in vivo as well. We believe that once-daily administered PB-SR pellets would improve limitations of post-exposure antidotes, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in wars or terrorist attacks in the future.

  19. Sustained-release liquisolid compact tablets containing artemether-lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance.

    PubMed

    Nnamani, Petra Obioma; Ugwu, Agatha Adaora; Ibezim, Emmanuel Chinedu; Kenechukwu, Franklin Chimaobi; Akpa, Paul Achile; Ogbonna, John-Dike Nwabueze; Obitte, Nicholas Chinedu; Odo, Amelia Ngozi; Windbergs, Maike; Lehr, Claus-Michael; Attama, Anthony Amaechi

    The present study aimed to develop low-dose liquisolid tablets of two antimalarial drugs artemether-lumefantrine (AL) from a nanostructured lipid carrier (NLC) of lumefantrine (LUM) and estimate the potential of AL as an oral delivery system in malariogenic Wistar mice. LUM-NLCs were prepared by hot homogenization using Precirol ® ATO 5/Transcutol ® HP and tallow fat/Transcutol ® HP optimized systems containing 3:1 ratios of the lipids, respectively, as the matrices. LUM-NLC characteristics, including morphology, particle size, zeta potential, encapsulation efficiency, yield, pH-dependent stability, and interaction studies, were investigated. Optimized LUM-NLCs were mixed with artemether powder and other dry ingredients and the resultant powder evaluated for micromeritics. Subsequent AL liquisolid tablets were tested for in vitro drug release and in vivo antiplasmodial activity in mice infected with Plasmodium berghei berghei (NK 65). Results showed that optimized LUM-NLC were stable, spherical, polydispersed but nanometric. Percentage yield and encapsulation efficiency were ~92% and 93% for Precirol ® ATO 5/Transcutol ® HP batch, then 81% and 95% for tallow fat/Transcutol ® HP batch while LUM was amorphous in NLC matrix. In vitro AL release from liquisolid compacts revealed initial burst release and subsequent sustained release. Liquisolid tablet compacts formulated with Precirol ® ATO 5/Transcutol ® HP-AL4 achieved higher LUM release in simulated intestinal fluid (84.32%) than tallow fat/Transcutol ® HP-BL3 (77.9%). Non-Fickian (anomalous) diffusion and super case II transport were the predominant mechanisms of drug release. Equal parasitemia reduction was observed for both batches of tablet compacts (~92%), superior to the reduction obtained with commercial antimalarial formulations: Coartem ® tablets (86%) and chloroquine phosphate tablets (66%). No significant difference ( P <0.05) in parasite reduction between double (4/24 mg/kg) and single (2/12 mg

  20. Sustained-release liquisolid compact tablets containing artemether–lumefantrine as alternate-day regimen for malaria treatment to improve patient compliance

    PubMed Central

    Nnamani, Petra Obioma; Ugwu, Agatha Adaora; Ibezim, Emmanuel Chinedu; Kenechukwu, Franklin Chimaobi; Akpa, Paul Achile; Ogbonna, John-Dike Nwabueze; Obitte, Nicholas Chinedu; Odo, Amelia Ngozi; Windbergs, Maike; Lehr, Claus-Michael; Attama, Anthony Amaechi

    2016-01-01

    The present study aimed to develop low-dose liquisolid tablets of two antimalarial drugs artemether–lumefantrine (AL) from a nanostructured lipid carrier (NLC) of lumefantrine (LUM) and estimate the potential of AL as an oral delivery system in malariogenic Wistar mice. LUM-NLCs were prepared by hot homogenization using Precirol® ATO 5/Transcutol® HP and tallow fat/Transcutol® HP optimized systems containing 3:1 ratios of the lipids, respectively, as the matrices. LUM-NLC characteristics, including morphology, particle size, zeta potential, encapsulation efficiency, yield, pH-dependent stability, and interaction studies, were investigated. Optimized LUM-NLCs were mixed with artemether powder and other dry ingredients and the resultant powder evaluated for micromeritics. Subsequent AL liquisolid tablets were tested for in vitro drug release and in vivo antiplasmodial activity in mice infected with Plasmodium berghei berghei (NK 65). Results showed that optimized LUM-NLC were stable, spherical, polydispersed but nanometric. Percentage yield and encapsulation efficiency were ~92% and 93% for Precirol® ATO 5/Transcutol® HP batch, then 81% and 95% for tallow fat/Transcutol® HP batch while LUM was amorphous in NLC matrix. In vitro AL release from liquisolid compacts revealed initial burst release and subsequent sustained release. Liquisolid tablet compacts formulated with Precirol® ATO 5/Transcutol® HP-AL4 achieved higher LUM release in simulated intestinal fluid (84.32%) than tallow fat/Transcutol® HP-BL3 (77.9%). Non-Fickian (anomalous) diffusion and super case II transport were the predominant mechanisms of drug release. Equal parasitemia reduction was observed for both batches of tablet compacts (~92%), superior to the reduction obtained with commercial antimalarial formulations: Coartem® tablets (86%) and chloroquine phosphate tablets (66%). No significant difference (P<0.05) in parasite reduction between double (4/24 mg/kg) and single (2/12 mg

  1. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer

    PubMed Central

    Tummala, Shashank; Satish Kumar, M.N.; Prakash, Ashwati

    2014-01-01

    5-Fluorouracil is used in the treatment of colorectal cancer along with oxaliplatin as first line treatment, but it is having lack of site specificity and poor therapeutic effect. Also toxic effects to healthy cells and unavailability of major proportion of drug at the colon region remain as limitations. Toxic effects prevention and drug localization at colon area was achieved by preparing enteric-coated chitosan polymeric nanoparticles as it can be delivered directly to large bowel. Enteric coating helps in preventing the drug degradation at gastric pH. So the main objective was to prepare chitosan polymeric nanoparticles by solvent evaporation emulsification method by using different ratios of polymer (1:1, 1:2, 1:3, 1:4). Optimized polymer ratio was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), entrapment efficiency and particle size and further subjected to enteric coating. In vitro drug release studies were done using dialysis bag technique using simulated fluids at various pH (1.2, 4.5, 7.5, 7.0) to mimic the GIT tract. 5-FU nanoparticles with drug: polymer ratio of 1:2 and 1:3 has shown better particle size (149 ± 1.28 nm and 138 ± 1.01 nm respectively), entrapment efficiency (48.12 ± 0.08% and 69.18 ± 1.89 respectively). 5-FU E1 has shown better drug release after 4 h and has shown 82% drug release till 24 h in a sustained manner comparable to the non-enteric coated tablets, which released more than 50% of the drug before entering the colon region. So we can conclude that nanoparticles prepared by this method using the same polymer with the optimized ratio can represent as potential drug delivery approach for effective delivery of the active pharmaceutical ingredient to the colorectal tumors. PMID:26106279

  2. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.

    PubMed

    Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A

    2017-09-01

    We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-11-01

    The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration.

    PubMed

    Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M

    2017-01-01

    Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Gum Ghatti--a pharmaceutical excipient: development, evaluation and optimization of sustained release mucoadhesive matrix tablets of domperidone.

    PubMed

    Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir

    2012-01-01

    The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.

  6. Evaluation of urinary catheters coated with sustained-release varnish of chlorhexidine in mitigating biofilm formation on urinary catheters in dogs.

    PubMed

    Segev, G; Bankirer, T; Steinberg, D; Duvdevani, M; Shapur, N K; Friedman, M; Lavy, E

    2013-01-01

    Biofilm formation occurs commonly on urinary catheters. To assess the efficacy of urinary catheters coated with sustained-release varnish of chlorhexidine in decreasing catheter-associated biofilm formation in dogs. Thirty client-owned dogs. Prospective study. Thirteen dogs were catheterized with urinary catheters coated with sustained-release varnish of chlorhexidine (study group), and 13 dogs were catheterized with an untreated urinary catheter (control group). Presence and intensity of biofilm formation on the urinary catheters were assessed and compared between the groups by evaluating colony-forming units (CFU) of biofilm bacteria, and semiquantitatively, using confocal laser scanning microscopy and electron microscopy. None of the dogs experienced adverse effects associated with the presence of the urinary catheters. Median CFU count of biofilm bacteria at all portions of the urinary catheter was significantly (P < .001) lower in the study compared with the control group. The degree of biofilm formation on the urinary catheters, as evaluated by confocal laser scanning microscopy and electron microscopy, was significantly lower in the study compared with the control group. Electron microscopy examination identified crystals on some of the urinary catheters. The proportion of catheters on which crystals were observed was significantly lower on the distal part of the urinary catheter in the study group compared with the control group (16.7% versus 66.7%, respectively; P = .04). Chlorhexidine sustained-release varnish-coated urinary catheters effectively decrease urinary catheter-associated biofilm formation in dogs. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  7. Method of achieving the controlled release of thermonuclear energy

    DOEpatents

    Brueckner, Keith A.

    1986-01-01

    A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

  8. The effect of food on gastrointestinal (GI) transit of sustained-release ibuprofen tablets as evaluated by gamma scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borin, M.T.; Khare, S.; Beihn, R.M.

    1990-03-01

    The GI transit of radiolabeled sustained-release ibuprofen 800-mg tablets in eight healthy, fed volunteers was monitored using external gamma scintigraphy. Ibuprofen serum concentrations were determined from blood samples drawn over 36 hr following dosing. Sustained-release ibuprofen tablets containing 0.18% of 170Er2O3 (greater than 96% 170Er) in the bulk formulation were manufactured under pilot-scale conditions and were radiolabeled utilizing a neutron activation procedure which converted stable 170Er to radioactive 171Er (t1/2 = 7.5 hr). At the time of dosing, each tablet contained 50 mu Ci of 171Er. Dosage form position were reported at various time intervals. In five subjects the sustained-releasemore » tablet remained in the stomach and eroded slowly over 7-12 hr, resulting in gradual increases in small bowel radioactivity. In the remaining three subjects, the intact tablet was ejected from the stomach and a gastric residence time of approximately 4 hr was measured. This is in marked contrast to a previous study conducted in fasted volunteers in which gastric retention time ranged from 10 to 60 min. Differences in GI transit between fed and fasted volunteers had little effect on ibuprofen bioavailability. AUC and Tmax were unaltered and Cmax was increased by 24%, which is in agreement with results from a previous, crossover-design food effect study.« less

  9. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds.

    PubMed

    Lvov, Yuri; Wang, Wencai; Zhang, Liqun; Fakhrullin, Rawil

    2016-02-10

    Halloysite is an alumosilicate tubular clay with a diameter of 50 nm, an inner lumen of 15 nm and a length of 600-900 nm. It is a natural biocompatible nanomaterial available in thousands of tons at low price, which makes it a good candidate for nanoarchitectural composites. The inner lumen of halloysite may be adjusted by etching to 20-30% of the tube volume and loading with functional agents (antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins) allowing for formulations with sustained release tuned by the tube end-stoppers for hours and days. Clogging the tube ends in polymeric composites allows further extension of the release time. Thus, antioxidant-loaded halloysite doped into rubber enhances anti-aging properties for at least 12 months. The addition of 3-5 wt% of halloysite increases the strength of polymeric materials, and the possibility of the tube's orientation promises a gradient of properties. Halloysite nanotubes are a promising mesoporous media for catalytic nanoparticles that may be seeded on the tube surface or synthesized exclusively in the lumens, providing enhanced catalytic properties, especially at high temperatures. In vitro and in vivo studies on biological cells and worms indicate the safety of halloysite, and tests for efficient adsorption of mycotoxins in animals' stomachs are also carried out. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design of sustained release pellets of ferrous fumarate using cow ghee as hot-melt coating agent.

    PubMed

    Sakarkar, Dinesh M; Dorle, Avinash K; Mahajan, Nilesh Manoharrao; Sudke, Suresh Gendappa

    2013-07-01

    The objective of the present study was to design ferrous fumarate (FF) sustained release (SR) pellets using of cow ghee (CG) as an important hot-melt coating (HMC) agent. The pellets were coated by HMC technique using CG and ethyl cellulose composition by conventional coating pan without the use of spray system. FF formulated as pellets and characterized with regard to the drug content and physico-chemical properties. Stability studies were carried out on the optimized formulation for a period of 6 months at 40 ± 2°C and 75 ± 5% relative humidity. Pellets with good surface morphology and smooth texture confirmed by stereo micrographs. HMC is easy, efficient, rapid and simple method since virtually no agglomeration seen during coating. In-vitro release from pellets at a given level of coating and for present pellet size was dependent upon the physico-chemical property of the drug and mostly aqueous solubility of the drug. The selection of optimized FF formulation was confirmed by comparing percent cumulative drug release with theoretical release profile. Formulation F2 had difference factor (f 1) and similarity factor (f 2) values was found to be 5 and 66 respectively. F2 showed SR of drug for 8 h with cumulative per cent release of 98.03 ± 4.49%. Release kinetics indicates approximately zero order release pattern. HMC pellets were stable during the course of stability study. By means of HMC using CG and ethyl cellulose, SR pellets containing FF were successfully prepared.

  11. Dual release and molecular mechanism of bilayered aceclofenac tablet using polymer mixture.

    PubMed

    Van Nguyen, Hien; Nguyen, Van Hong; Lee, Beom-Jin

    2016-12-30

    The objectives of the present study were to develop a controlled-release bilayered tablet of aceclofenac (AFN) 200mg with dual release and to gain a mechanistic understanding of the enhanced sustained release capability achieved by utilizing a binary mixture of the sustained release materials. Different formulations of the sustained-release layer were formulated by employing hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) as the major retarding polymers. The in vitro dissolution studies of AFN bilayered tablets were carried out in intestinal fluid (pH 6.8 buffer). The mechanism of the synergistic rate-retarding effect of the polymer mixture containing HPC and carbomer was elucidated by the rate of swelling and erosion in intestinal fluid and the molecular interactions in the polymer network. The optimized bilayered tablets had similar in vitro dissolution profiles to the marketed tablet Clanza ® CR based on the similarity factor (f2) in combination with their satisfactory micromeritic, physicochemical properties, and stability profiles. Drug release from HPMC-based matrix was controlled by non-Fickian transport, while drug release from HPC-based matrix was solely governed by drug diffusion. The swelling and erosion data exhibited a dramatic increase of water uptake and a reduction of weight loss in the polymer mixture-loaded tablet. Fourier transform infrared (FTIR) spectra revealed strong hydrogen bonding between HPC and carbomer in the polymer mixture. Regarding spatial distribution of polymers in the polymer mixture-loaded tablet, carbomer was found to be the main component of the gel layer during the first 2h of the hydration process, which was responsible for retarding drug release at initial stage. This process was then followed by a gradual transition of HPC from the glassy core to the gel layer for further increasing gel strength. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sustained release of antibiotic complexed by multivalent ion: in vitro and in vivo study for the treatment of peritonitis.

    PubMed

    Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho

    2014-12-10

    The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Single ocular injection of a sustained-release anti-VEGF delivers 6 months pharmacokinetics and efficacy in a primate laser CNV model

    PubMed Central

    Adamson, Peter; Wilde, Thomas; Dobrzynski, Eric; Sychterz, Caroline; Polsky, Rodd; Kurali, Edit; Haworth, Richard; Tang, Chi-Man; Korczynska, Justyna; Cook, Fiona; Papanicolaou, Irene; Tsikna, Lemy; Roberts, Chris; Hughes-Thomas, Zoe; Walford, James; Gibson, Daniel; Warrack, John; Smal, Jos; Verrijk, Ruud; Miller, Paul E.; Nork, T. Michael; Prusakiewicz, Jeffery; Streit, Timothy; Sorden, Steven; Struble, Craig; Christian, Brian; Catchpole, Ian R.

    2017-01-01

    A potent anti-vascular endothelial growth factor (VEGF) biologic and a compatible delivery system were co-evaluated for protection against wet age-related macular degeneration (AMD) over a 6month period following a single intravitreal (IVT) injection. The anti-VEGF molecule is dimeric, containing two different anti-VEGF domain antibodies (dAb) attached to a human IgG1 Fc region: a dual dAb. The delivery system is based on microparticles of PolyActive™ hydrogel co-polymer. The molecule was evaluated both in vitro for potency against VEGF and in ocular VEGF-driven efficacy modelsin vivo. The dual dAb is highly potent, showing a lower IC50 than aflibercept in VEGF receptor binding assays (RBAs) and retaining activity upon release from microparticles over 12 months in vitro. Microparticles released functional dual dAb in rabbit and primate eyes over 6 months at sufficient levels to protect Cynomolgus against laser-induced grade IV choroidal neovascularisation (CNV). This demonstrates proof of concept for delivery of an anti-VEGF molecule within a sustained-release system, showing protection in a pre-clinical primate model of wet AMD over 6 months. Polymer breakdown and movement of microparticles in the eye may limit development of particle-based approaches for sustained release after IVT injection. PMID:27810558

  14. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease.

    PubMed

    Xie, Binbin; Jin, Ling; Luo, Zichao; Yu, Jing; Shi, Shuai; Zhang, Zhaoliang; Shen, Meixiao; Chen, Hao; Li, Xingyi; Song, Zongming

    2015-07-25

    Delivery of drugs, especially bioactive macromolecules such as proteins and nucleic acids, to the posterior segment is still a significant challenge for pharmaceutical scientists. In the present study, we developed an injectable thermosensitive polymeric hydrogel for sustained release of Avastin(®) to treat posterior segment disorders. The payload of Avastin(®) to poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel did not influence its inherent sol-gel transition behavior, but shifted the sol-gel transition to a lower temperature. The resulting Avastin(®)/PLGA-PEG-PLGA hydrogels had a porous structure (pore size, 100 ∼ 150 μm) as determined by scanning electron microcopy (SEM), facilitating sustained Avastin(®) release over a period of up to 14 days in vitro. The PLGA-PEG-PLGA hydrogel was immediately formed in the vitreous humor after intravitreal injection, followed by slow clearance over an 8 week study period. The PLGA-PEG-PLGA hydrogel exhibited no apparent toxicity against retinal tissue, as indicated by the absence of inflammation, retinal necrosis, and stress responses, using optical coherence tomography (OCT) and histological/immunochemical analyses. Electrophysiology (ERG) examination also showed that the PLGA-PEG-PLGA hydrogel did not affect retinal function. In vivo pharmacokinetic studies indicated that the use of the PLGA-PEG-PLGA hydrogel greatly extended the release of Avastin(®) over time in the vitreous humor and retina after intravitreal injection. Together, these results demonstrated that the PLGA-PEG-PLGA hydrogel was a promising candidate for ocular drug delivery of Avastin(®)via intravitreal injection. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. DEVELOPMENT AND APPLICATION OF PLANNING PROCESS TO ACHIEVE SUSTAINABILITY

    EPA Science Inventory

    Concepts of sustainability are numerous, widely discussed, and necessary, but sustainability needs to be applied to development projects to succeed. However, few applications are made and their measures are unclear. Sustainability indicators are typically used as measures, but ...

  16. Addressing China's grand challenge of achieving food security while ensuring environmental sustainability.

    PubMed

    Lu, Yonglong; Jenkins, Alan; Ferrier, Robert C; Bailey, Mark; Gordon, Iain J; Song, Shuai; Huang, Jikun; Jia, Shaofeng; Zhang, Fusuo; Liu, Xuejun; Feng, Zhaozhong; Zhang, Zhibin

    2015-02-01

    China's increasingly urbanized and wealthy population is driving a growing and changing demand for food, which might not be met without significant increase in agricultural productivity and sustainable use of natural resources. Given the past relationship between lack of access to affordable food and political instability, food security has to be given a high priority on national political agendas in the context of globalization. The drive for increased food production has had a significant impact on the environment, and the deterioration in ecosystem quality due to historic and current levels of pollution will potentially compromise the food production system in China. We discuss the grand challenges of not only producing more food but also producing it sustainably and without environmental degradation. In addressing these challenges, food production should be considered as part of an environmental system (soil, air, water, and biodiversity) and not independent from it. It is imperative that new ways of meeting the demand for food are developed while safeguarding the natural resources upon which food production is based. We present a holistic approach to both science and policy to ensure future food security while embracing the ambition of achieving environmental sustainability in China. It is a unique opportunity for China to be a role model as a new global player, especially for other emerging economies.

  17. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Horný, Lukáš; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, Rastislav; Veselý, Jan; Chlup, Hynek; Denk, František

    2016-03-01

    Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation. Copyright © 2016. Published by Elsevier Inc.

  18. A phase II trial with new triptorelin sustained release formulations in prostatic carcinoma.

    PubMed

    Minkov, N K; Zozikov, B I; Yaneva, Z; Uldry, P A

    2001-01-01

    The objectives were to assess if a single intramuscular (i.m.) injection of the GnRH agonist triptorelin, as pamoate Sustained Release (RS) 11.25 mg, was able to induce pharmacological castration and to maintain the plasma testosterone levels in the castrate range (< 1.735 nmol/l) up to 3 months in prostatic carcinoma. Two different formulations of triptorelin pamoate 11.25 mg were assessed in 2 groups of 10 patients suffering from prostatic carcinoma. Each patient received one i.m. injection of triptorelin pamoate SR 11.25 mg. Triptorelin and testosterone levels were measured over 3 months. Pain, micturition difficulties, performance status, local and general tolerance, and the occurrence of adverse events were evaluated. Both formulations were able to induce castration levels (<1.735 nmol/l) of testosterone within 3 to 4 weeks post-injection, and to maintain levels below 1.735 nmol/l till the end of 3rd month. The bioavailability of one formulation (DLGSD-3-95-21) tended to be greater. This may explain the quicker onset of castration and the slight better maintenance of low testosterone levels during the 3rd month observed with this formulation. In terms of clinical end-points, the local tolerance of both formulations was excellent. No serious adverse events were recorded except transient hot flushes in 2 cases and slight bone pain in one. Triptorelin pamoate 11.25 mg given in microgranules is a 3-month sustained-release administration form which appears to be safe and effective in advanced prostatic carcinoma. Based on the findings of this study, the formulation with greater bioavailability (DLGSD-3-95-21) was selected as formulation of choice to be used for clinical treatments and further clinical investigation.

  19. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism.

    PubMed

    Wang, Lexi; Wang, Aiping; Zhao, Xiaolei; Liu, Ximing; Wang, Dan; Sun, Fengying; Li, Youxin

    2012-05-10

    Two kinds of in situ forming implants (ISFIs) of atypical antipsychotics, risperidone and its 9-hydroxy active metabolite, paliperidone, using poly(lactide-co-glycolide)(PLGA) as carrier, were investigated. Significant difference was observed in the solution-gel transition mechanism of the two systems: homogeneous system of N-methyl-2-pyrrolidone (NMP) ISFI, in which drug was dissolved, and heterogeneous system of dimethyl sulfoxide (DMSO) ISFI, in which drug was dispersed. Fast solvent extractions were found in both systems, but in comparison with the high drug release rate from homogeneous system of drug/polymer/NMP, a fast solvent extraction from the heterogeneous system of drug/polymer/DMSO was not accompanied by a high drug release rate but a rapid solidification of the implant, which resulted in a high drug retention, well-controlled initial burst and slow release of the drug. In vivo study on beagle dogs showed a more than 3-week sustained release with limited initial burst. Pharmacologic evaluation on optimized paliperidone ISFIs presented a sustained-suppressing effect from 1 day to 38 day on the MK-801 induced schizophrenic behavior mice model. A long sustained-release antipsychotic ISFI of 50% drug loading and controlled burst release was achieved, which indicated a good potential in clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Neural tissue engineering scaffold with sustained RAPA release relieves neuropathic pain in rats.

    PubMed

    Ding, Tan; Zhu, Chao; Kou, Zhen-Zhen; Yin, Jun-Bin; Zhang, Ting; Lu, Ya-Cheng; Wang, Li-Ying; Luo, Zhuo-Jing; Li, Yun-Qing

    2014-09-01

    To investigate the effect of locally slow-released rapamycin (RAPA) from bionic peripheral nerve stent to reduce the incidence of neuropathic pain or mitigate the degree of pain after nerve injury. We constructed a neural tissue engineering scaffold with sustained release of RAPA to repair 20mm defects in rat sciatic nerves. Four presurgical and postsurgical time windows were selected to monitor the changes in the expression of pain-related dorsal root ganglion (DRG) voltage-gated sodium channels 1.3 (Nav1.3), 1.7 (Nav1.7), and 1.8 (Nav1.8) through immunohistochemistry (IHC) and Western Blot, along with the observation of postsurgical pathological pain in rats by pain-related behavior approaches. Relatively small upregulation of DRG sodium channels was observed in the experimental group (RAPA+poly(lactic-co-glycolic acid) (PLGA)+stent) after surgery, along with low degrees of neuropathic pain and anxiety, which were similar to those in the Autologous nerve graft group. Autoimmune inflammatory response plays a leading role in the occurrence of post-traumatic neuropathic pain, and that RAPA significantly inhibits the abnormal upregulation of sodium channels to reduce pain by alleviating inflammatory response. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Synthetic Geopolymers for Controlled Delivery of Oxycodone: Adjustable and Nanostructured Porosity Enables Tunable and Sustained Drug Release

    PubMed Central

    Forsgren, Johan; Pedersen, Christian; Strømme, Maria; Engqvist, Håkan

    2011-01-01

    In this article we for the first time present a fully synthetic mesoporous geopolymer drug carrier for controlled release of opioids. Nanoparticulate precursor powders with different Al/Si-ratios were synthesized by a sol-gel route and used in the preparation of different geopolymers, which could be structurally tailored by adjusting the Al/Si-ratio and the curing temperatures. In particular, it was shown that the pore sizes of the geopolymers decreased with increasing Al/Si ratio and that completely mesoporous geopolymers could be produced from precursor particles with the Al/Si ratio 2∶1. The mesoporosity was shown to be associated with a sustained and linear in vitro release profile of the opioid oxycodone. A clinically relevant release period of about 12 h was obtained by adjusting the size of the pellets. The easily fabricated and tunable geopolymers presented in this study constitute a novel approach in the development of controlled release formulations, not only for opioids, but whenever the clinical indication is best treated with a constant supply of drugs and when the mechanical stability of the delivery vehicle is crucial. PMID:21423616

  2. The importance of an integrating framework for achieving the Sustainable Development Goals: the example of health and well-being.

    PubMed

    Nunes, Ana Raquel; Lee, Kelley; O'Riordan, Tim

    2016-01-01

    The 2030 Agenda for Sustainable Development came into force in January 2016 as the central United Nations (UN) platform for achieving 'integrated and indivisible' goals and targets across the three characteristic dimensions of sustainable development: the social, environmental and economic. We argue that, despite the UN adoption of the Sustainable Development Goals (SDGs), a framework for operationalising them in an integrated fashion is lacking. This article puts forth a framework for integrating health and well-being across the SDGs as both preconditions and outcomes of sustainable development. We present a rationale for this approach, and identify the challenges and opportunities for implementing and monitoring such a framework through a series of examples. We encourage other sectors to develop similar integrating frameworks for supporting a more coordinated approach for operationalising the 2030 Agenda for Sustainable Development.

  3. Magnetic modulation of release of macromolecules from polymers.

    PubMed Central

    Hsieh, D S; Langer, R; Folkman, J

    1981-01-01

    Sustained-release systems were made by incorporating bovine serum albumin and magnetic steel beads in an ethylene-vinyl acetate copolymer matrix. When exposed to aqueous medium, the polymer matrix released the albumin slowly and continuously. Application of an oscillating magnetic field increased the release rate by as much as 100%. Intervals of 6-hr periods of magnetic exposure and nonexposure were alternated over a 5-day period, resulting in corresponding increases and decreases in release and establishing a pattern of modulated sustained release. Images PMID:6940193

  4. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    PubMed Central

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  5. Octadecylamine-Mediated Versatile Coating of CoFe2O4 NPs for the Sustained Release of Anti-Inflammatory Drug Naproxen and in Vivo Target Selectivity.

    PubMed

    Georgiadou, Violetta; Makris, George; Papagiannopoulou, Dionysia; Vourlias, Georgios; Dendrinou-Samara, Catherine

    2016-04-13

    Magnetic nanoparticles (MNPs) can play a distinct role in magnetic drug delivery via their distribution to the targeted area. The preparation of such MNPs is a challenging multiplex task that requires the optimization of size, magnetic, and surface properties for the achievement of desirable target selectivity, along with the sustained drug release as a prerequisite. In that context, CoFe2O4 MNPs with a small size of ∼7 nm and moderate saturation magnetization of ∼60 emu g(-1) were solvothermally synthesized in the presence of octadecylamine (ODA) with a view to investigate the functionalization route effect on the drug release. Synthetic regulations allowed us to prepare MNPs with aminated (AmMNPs) and amine-free (FAmMNPs) surface. The addition of the nonsteroidal anti-inflammatory drug with a carboxylate donor, Naproxen (NAP), was achieved by direct coupling with the NH2 groups, rendered by ODA, through the formation of an amide bond in the case of AmMNPs. In the case of FAmMNPs, indirect coupling of NAP was performed through an intermediate linker (polyethylenimine) and on PEG-ylated MNPs. FT-IR, (1)H NMR, (13)C NMR, and UV-vis data confirmed the addition of NAP, whereas diverse drug-release behavior was observed for the different functionalization approaches. The biological behavior of the MNPs@NAP was evaluated in vitro in rat serum and in vivo in mice, after radiolabeling with a γ-emitting radionuclide, (99m)Tc. The in vivo fate of MNPs@NAP carriers was in straightforward relation with the direct or indirect coupling of NAP. Furthermore, an inflammation was induced intramuscularly, where the directly coupled (99m)Tc-MNPs@NAP carriers showed increased accumulation at the inflammation site.

  6. Solventless dry powder coating for sustained drug release using mechanochemical treatment based on the tri-component system of acetaminophen, carnauba wax and glidant.

    PubMed

    Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi

    2013-02-01

    Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

  7. [Oral controlled release dosage forms].

    PubMed

    Mehuys, Els; Vervaet, Chris

    2010-06-01

    Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.

  8. Program Proposal: Certificates of Competence, Certificate of Achievement, Associate in Applied Science Degree in Sustainable Technology.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…

  9. A Genetically Engineered Thermally Responsive Sustained Release Curcumin Depot to Treat Neuroinflammation

    PubMed Central

    Sinclair, S. Michael; Bhattacharyya, Jayanta; McDaniel, Jonathan R.; Gooden, David M.; Gopalaswamy, Ramesh; Chilkoti, Ashutosh; Setton, Lori A.

    2014-01-01

    Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4 days post-injection and decreased plasma AUC 7-fold. PMID:23830979

  10. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. ACHIEVING SUSTAINABILITY THROUGH LIFE CYCLE STRATEGIES

    EPA Science Inventory

    Sustainability is, of course, not a recent concept. But our understanding of what it means and what we need to do to meet the challenge it presents continues to grow. Throughout the ages, nations have had to address the issue of harmony between the environment, society and the e...

  12. Controlled, sustained release of proteins via an injectable, mineral-coated microsphere delivery vehicle

    NASA Astrophysics Data System (ADS)

    Franklin-Ford, Travelle

    Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.

  13. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    PubMed

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nitric Oxide Releasing Coronary Stent: A New Approach Using Layer-by-Layer Coating and Liposomal Encapsulation.

    PubMed

    Elnaggar, Mahmoud A; Seo, Seong Ho; Gobaa, Samy; Lim, Kyung Seob; Bae, In-Ho; Jeong, Myung Ho; Han, Dong Keun; Joung, Yoon Ki

    2016-11-01

    The sustained or controlled release of nitric oxide (NO) can be the most promising approach for the suppression or prevention of restenosis and thrombosis caused by stent implantation. The aim of this study is to investigate the feasibility in the potential use of layer-by-layer (LBL) coating with a NO donor-containing liposomes to control the release rate of NO from a metallic stent. Microscopic observation and surface characterizations of LBL-modified stents demonstrate successful LBL coating with liposomes on a stent. Release profiles of NO show that the release rate is sustained up to 5 d. In vitro cell study demonstrates that NO release significantly enhances endothelial cell proliferation, whereas it markedly inhibits smooth muscle cell proliferation. Finally, in vivo study conducted with a porcine coronary injury model proves the therapeutic efficacy of the NO-releasing stents coated by liposomal LBL technique, supported by improved results in luminal healing, inflammation, and neointimal thickening except thrombo-resistant effect. As a result, all these results demonstrate that highly optimized release rate and therapeutic dose of NO can be achieved by LBL coating and liposomal encapsulation, followed by significantly efficacious outcome in vivo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Achieving and Sustaining Universal Health Coverage: Fiscal Reform of the National Health Insurance in Taiwan.

    PubMed

    Lan, Jesse Yu-Chen

    2017-12-01

    The paper discusses the expansion of the universal health coverage (UHC) in Taiwan through the establishment of National Health Insurance (NHI), and the fiscal crisis it caused. Two key questions are addressed: How did the NHI gradually achieve universal coverage, and yet cause Taiwanese health spending to escalate to fiscal crisis? What measures have been taken to reform the NHI finance and achieve moderate success to date? The main argument of this paper is that the Taiwanese Government did try to implement various reforms to save costs and had moderate success, but the path-dependent process of reform does not allow increasing contribution rates significantly and thereby makes sustainability challenging.

  17. The importance of an integrating framework for achieving the Sustainable Development Goals: the example of health and well-being

    PubMed Central

    Lee, Kelley; O'Riordan, Tim

    2016-01-01

    The 2030 Agenda for Sustainable Development came into force in January 2016 as the central United Nations (UN) platform for achieving ‘integrated and indivisible’ goals and targets across the three characteristic dimensions of sustainable development: the social, environmental and economic. We argue that, despite the UN adoption of the Sustainable Development Goals (SDGs), a framework for operationalising them in an integrated fashion is lacking. This article puts forth a framework for integrating health and well-being across the SDGs as both preconditions and outcomes of sustainable development. We present a rationale for this approach, and identify the challenges and opportunities for implementing and monitoring such a framework through a series of examples. We encourage other sectors to develop similar integrating frameworks for supporting a more coordinated approach for operationalising the 2030 Agenda for Sustainable Development. PMID:28588955

  18. Factors associated with sustainability of 2 quality improvement programs after achieving early implementation success. A qualitative case study.

    PubMed

    Ament, Stephanie M C; Gillissen, Freek; Moser, Albine; Maessen, José M C; Dirksen, Carmen D; von Meyenfeldt, Maarten F; van der Weijden, Trudy

    2017-12-01

    Sustainability of innovations is a relatively new concept in health care research and has become an issue of growing interest. The current study explored factors related to the sustainability of 2 multidisciplinary hospital-based programs 3 to 6 years after achieving early implementation success. An exploratory qualitative study was conducted into 2 implementation cases, an Enhanced Recovery After Surgery program for colorectal surgery and a short-stay program for breast cancer surgery. Semistructured interviews were held with key persons involved in the care process in 14 hospitals from both cases minimally 3 years after the implementation, between March 2012 and May 2013. The Consolidated Framework for Implementation Research was used to direct the development of the interview guide, during data collection and during analysis. A directed content analysis was performed. A total of 21 interviews with 26 individuals were held, 18 regarding the Enhanced Recovery After Surgery case and 8 regarding the short-stay program case. Respondents mentioned the following factors associated with sustainability of the programs: modification and adaptability of the program, cost-effectiveness, institutionalization into existing systems, short communication lines within the multidisciplinary team, an innovative culture, benefits for patients, cosmopolitanism, the existence of external policies and incentives, trust and belief in the program, and spread of the program to other settings. Two factors are not covered by the Consolidated Framework for Implementation Research, ie, modification of the program over the years and spread of the program to other contexts. The factors associated with sustainability put forward in both cases were largely the same. Leadership and the implementation project were not mentioned as having influenced the long-term sustainability of the benefits achieved. Sustainability of the innovations is influenced by determinants stemming from all ecological

  19. Using a framework to implement large-scale innovation in medical education with the intent of achieving sustainability.

    PubMed

    Hudson, Judith N; Farmer, Elizabeth A; Weston, Kathryn M; Bushnell, John A

    2015-01-16

    Particularly when undertaken on a large scale, implementing innovation in higher education poses many challenges. Sustaining the innovation requires early adoption of a coherent implementation strategy. Using an example from clinical education, this article describes a process used to implement a large-scale innovation with the intent of achieving sustainability. Desire to improve the effectiveness of undergraduate medical education has led to growing support for a longitudinal integrated clerkship (LIC) model. This involves a move away from the traditional clerkship of 'block rotations' with frequent changes in disciplines, to a focus upon clerkships with longer duration and opportunity for students to build sustained relationships with supervisors, mentors, colleagues and patients. A growing number of medical schools have adopted the LIC model for a small percentage of their students. At a time when increasing medical school numbers and class sizes are leading to competition for clinical supervisors it is however a daunting challenge to provide a longitudinal clerkship for an entire medical school class. This challenge is presented to illustrate the strategy used to implement sustainable large scale innovation. A strategy to implement and build a sustainable longitudinal integrated community-based clerkship experience for all students was derived from a framework arising from Roberto and Levesque's research in business. The framework's four core processes: chartering, learning, mobilising and realigning, provided guidance in preparing and rolling out the 'whole of class' innovation. Roberto and Levesque's framework proved useful for identifying the foundations of the implementation strategy, with special emphasis on the relationship building required to implement such an ambitious initiative. Although this was innovation in a new School it required change within the school, wider university and health community. Challenges encountered included some resistance to

  20. Subconjunctivally Implantable Hydrogels with Degradable and Thermoresponsive Properties for Sustained Release of Insulin to the Retina

    PubMed Central

    Misra, Gauri P.; Singh, Ravi S.J.; Aleman, Tomas S.; Jacobson, Samuel G.; Gardner, Thomas W.; Lowe, Tao L.

    2009-01-01

    The objective of this work is to develop subconjunctivally implantable, biodegradable hydrogels for sustained release of intact insulin to the retina to prevent and treat retinal neurovascular degeneration such as diabetic retinopathy. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-(2-hydroxyetheyl methacrylate) units (Dex-lactateHEMA) in 25:75 (v:v) ethanol:water mixture solvent. Insulin is loaded into the hydrogels during the synthesis process with loading efficiency up to 98%. The hydrogels can release biologically active insulin in vitro for at least one week and the release kinetics can be modulated by varying the ratio between NIPAAm and Dex-lactateHEMA and altering the physical size of the hydrogels. The hydrogels are not toxic to R28 retinal neuron cells in culture medium with 100% cell viability. The hydrogels can be implanted under the conjunctiva without causing adverse effects to the retina based on hematoxylin and eosin stain, immunostaining for microglial cell activation, and electroretinography. These subconjunctivally implantable hydrogels have potential for long-term periocular delivery of insulin or other drugs to treat diabetic retinopathy and other retinal diseases. PMID:19709741

  1. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.

    PubMed

    Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang

    2017-03-01

    The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.

  2. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles

    PubMed Central

    Wu, E.C.; Andrew, J.S.; Cheng, L; Freeman, W.R.; Pearson, L; Sailor, M.J.

    2011-01-01

    A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 micrometers thick and 35 micrometers across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change. PMID:21122914

  3. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability

    PubMed Central

    Lu, Yonglong; Jenkins, Alan; Ferrier, Robert C.; Bailey, Mark; Gordon, Iain J.; Song, Shuai; Huang, Jikun; Jia, Shaofeng; Zhang, Fusuo; Liu, Xuejun; Feng, Zhaozhong; Zhang, Zhibin

    2015-01-01

    China’s increasingly urbanized and wealthy population is driving a growing and changing demand for food, which might not be met without significant increase in agricultural productivity and sustainable use of natural resources. Given the past relationship between lack of access to affordable food and political instability, food security has to be given a high priority on national political agendas in the context of globalization. The drive for increased food production has had a significant impact on the environment, and the deterioration in ecosystem quality due to historic and current levels of pollution will potentially compromise the food production system in China. We discuss the grand challenges of not only producing more food but also producing it sustainably and without environmental degradation. In addressing these challenges, food production should be considered as part of an environmental system (soil, air, water, and biodiversity) and not independent from it. It is imperative that new ways of meeting the demand for food are developed while safeguarding the natural resources upon which food production is based. We present a holistic approach to both science and policy to ensure future food security while embracing the ambition of achieving environmental sustainability in China. It is a unique opportunity for China to be a role model as a new global player, especially for other emerging economies. PMID:26601127

  4. Language Teacher Action Research: Achieving Sustainability

    ERIC Educational Resources Information Center

    Edwards, Emily; Burns, Anne

    2016-01-01

    Action research (AR) is becoming increasingly popular in ELT contexts as a means of continuous professional development. The positive impacts of AR on language teacher development are well documented, but the important question of how those impacts can be sustained over time is virtually unexplored. Drawing on findings from a study of teachers in…

  5. On-Demand Drug Release from Gold Nanoturf for a Thermo- & Chemo-Therapeutic Esophageal Stent (TES).

    PubMed

    Lee, Sori; Hwang, Gyoyeon; Kim, Tae Hee; Kwon, S Joon; Kim, Jong Uk; Koh, Kyongbeom; Park, Byeonghak; Hong, Haeleen; Yu, Ki Jun; Chae, Heeyeop; Jung, Youngmee; Lee, Jiyeon; Kim, Tae-Il

    2018-06-07

    Stimuli-responsive delivery systems for cancer therapy have been increasingly used to promote the on-demand therapeutic efficacy of anticancer drugs, and in some cases, simultaneously generate heat in response to a stimulus, resulting in hyperthermia. However, their application is still limited due to the systemic drawbacks of intravenous delivery, such as rapid clearance from the bloodstream, and the repeat injections required for sustained safe dosage, which can cause over-dosing. Here, we propose a gold (Au)-coated nanoturf structure as an implantable therapeutic interface for near-infrared (NIR)-mediated on-demand hyperthermia chemotherapy. The Au nanoturf possessed long-lasting doxorubicin (DOX) duration, which helps facilitate drug release in a sustained and prolonged manner. Moreover, the Au-coated nanoturf provides reproducible hyperthermia induced by localized surface plasmon resonances (LSPRs) under NIR irradiation. Simultaneously, the NIR-mediated temperature increase can promote on-demand drug release at desired time points. For in vivo analysis, the Au nanoturf structure was applied on an esophageal stent, which needs sustained anticancer treatment to prevent tumor recurrence on the implanted surface. This thermo- and chemo-esophageal stent induced significant cancer cell death with released drug and hyperthermia. These phenomena were also confirmed by theoretical analysis. The proposed strategy provides a solution to achieve enhanced thermo-/chemotherapy, and has broad applications in sustained cancer treatments.

  6. Optimization of metformin HCl 500 mg sustained release matrix tablets using Artificial Neural Network (ANN) based on Multilayer Perceptrons (MLP) model.

    PubMed

    Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar

    2008-02-01

    The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.

  7. Sustained Local Delivery of siRNA from an Injectable Scaffold

    PubMed Central

    Nelson, Christopher E.; Gupta, Mukesh K.; Adolph, Elizabeth J.; Shannon, Joshua M.; Guelcher, Scott A.; Duvall, Craig L.

    2011-01-01

    Controlled gene silencing technologies have significant, unrealized potential for use in tissue regeneration applications. The design described herein provides a means to package and protect siRNA within pH-responsive, endosomolytic micellar nanoparticles (si-NPs) that can be incorporated into nontoxic, biodegradable, and injectable polyurethane (PUR) tissue scaffolds. The si-NPs were homogeneously incorporated throughout the porous PUR scaffolds, and they were shown to be released via a diffusion-based mechanism for over three weeks. The siRNA-loaded micelles were larger but retained nano particulate morphology of approximately 100 nm diameter following incorporation into and release from the scaffolds. PUR scaffold releasate collected in vitro in PBS at 37°C for 1–4 days was able to achieve dose-dependent siRNA-mediated silencing with approximately 50% silencing achieved of the model gene GAPDH in NIH3T3 mouse fibroblasts. This promising platform technology provides both a research tool capable of probing the effects of local gene silencing and a potentially high-impact therapeutic approach for sustained, local silencing of deleterious genes within tissue defects. PMID:22061489

  8. Formulation and In-vitro Characterization of Sustained Release Matrix Type Ocular Timolol Maleate Mini-Tablet

    PubMed Central

    Mortazavi, Seyed Alireza; Jafariazar, Zahra; Ghadjahani, Yasaman; Mahmoodi, Hoda; Mehtarpour, Farzaneh

    2014-01-01

    The purpose of this study was preparation and evaluation of sustained release matrix type ocular mini-tablets of timolol maleate, as a potential formulation for the treatment of glaucoma. Following the initial studies on timolol maleate powder, it was formulated into ocular mini-tablets. The polymers investigated in this study included cellulose derivatives (HEC, CMC, EC) and Carbopol 971P. Mannitol was used as the solubilizing agent and magnesium stearate as the lubricant. Mini-tablets were prepared by through mixing of the ingredients, followed by direct compression. All the prepared formulations were evaluated in terms of physicochemical tests, including uniformity of weight, thickness, crushing strength, friability and in-vitro drug release. Four groups of formulations were prepared. The presence of different amounts of cellulose derivatives or Carbopol 971P, alone, was studied in group A formulations. In group B formulations, the effect of adding Carbopol 971P alongside different cellulose derivatives was investigated. Group C formulations were made by including mannitol as the solubilizing agent, alongside Carbopol 971P and a cellulose derivative. In group D formulations, mini-tablets were made using Carbopol 971P, alongside two different cellulose derivative. The selected formulation (C1) contained ethyl cellulose, Carbopol 971P, mannitol and magnesium stearate, which showed almost 100% drug release over 5 h. Based on kinetic studies, this formulation was found to best fit the zero-order model of drug release. However, the Higuchi and Hixson -Crowell models also showed a good fit. Hence, overall, formulation C1 was chosen as the best formulation. PMID:24734053

  9. Assessment of the usage of biodegradable polymeric matrix in vaginal devices to sustain progesterone release in cows.

    PubMed

    Pimentel, José Rodrigo Valim; Maturana Filho, Milton; Cardozo-Filho, Lucio; Agnelli, José Augusto M; Nascimento, Jefter; Madureira, Ed Hoffmann

    2017-10-01

    The usage of timed artificial insemination (TAI) at a low cost leading to better reproductive rates has been the aim of several research groups in the field. Usually during TAI protocols, sustained progesterone (P 4 ) release devices are employed. Most devices are constituted of a nylon skeleton covered with a silicon layer with P 4 . A device based on biopolymers was developed in order to reduce costs and decrease its environmental impact. In this study, we compared the kinetics of sustained progesterone release among devices manufactured with a polymeric blend made of polyhydroxybutyrate-valerate (PHBV) and poly-ε-caprolactone (PCL) (DISP) which were compared with DIB® (Internal Bovine Device) used as the control. In the in vitro and in vivo progesterone release tests, two types of biopolymer-based devices with a superficial area of 147 cm 2 were used: DISP8 (46% PHBV, 46% PCL and 8% P 4 ; n = 4), DISP10 (45% PHBV, 45% PCL, 10% P 4 ; n = 4) and DIB® (1 g P 4 , 120 cm 2 area; n = 3). The in vitro tests were carried out according to USP XXIII specifications and were performed in a dissolutor sink using an alcohol/water mixture (60/40 v/v) as a release media and samples were collected at 2 min, 2, 4, 8, 12, 24, 48, 60, 72, 84 and 96 h. P 4 concentrations were measured through spectrophotometry in a 244 nm long wave. Three to 3 comparisons of angular coefficients of the straight lines obtained by regression analysis of accumulated P 4 concentrations as a function of square root of time were carried out. Furthermore, the diffusion coefficient values of P 4 were also determined for DISP8 and DISP10. The results showed that the concentrations of P 4 were higher in the DISP10 (774.63 ± 45.26 μg/cm 2 /t 1 /2 ) compared to DISP8 (566.17 ± 3.68 μg/cm 2 /t 1 /2 ) (P < 0.05). However, both DISP10 and DISP8 P 4 concentrations did not differ from DIB® (677.39 ± 16.13 μg/cm 2 /t 1 /2 ). For the analysis of released quantities per day of the in

  10. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system.

    PubMed

    Rachmawati, Heni; Arvin, Yang Aryani; Asyarie, Sukmadjaja; Anggadiredja, Kusnandar; Tjandrawinata, Raymond Rubianto; Storm, Gert

    2018-06-01

    Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower C max value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl.

  11. Oseltamivir phosphate released from injectable Pickering emulsions over an extended term disables human pancreatic cancer cell survival

    PubMed Central

    Wood, Kurt; Szewczuk, Myron R.; Rousseau, Dérick; Neufeld, Ronald J.

    2018-01-01

    Pickering emulsions are colloidal dispersions stabilized by particles that either migrate to, or are formed at, the oil-water interface during emulsification. Here, we fabricated and characterized Pickering water-in-oil emulsions where molten glycerol monostearate crystallized at the surface of micron-sized water droplets and formed protective solid shells. We tested this emulsion as a reservoir delivery platform for the sustained release of low molecular weight hydrophilic molecules including sodium chloride (NaCl) and sodium citrate as model compounds, and the therapeutic oseltamivir phosphate (OP), the delivery of which was the ultimate goal of this research. The objective was to achieve long-term (30-day) release of challenging to encapsulate actives and ultimately demonstrate the sustained release of OP for 20–30 days from an injectable formulation. OP was used because of its anticancer properties targeting mammalian neuraminidase 1 (Neu1) involved in multistage tumorigenesis. All actives including OP encapsulated in Pickering emulsions displayed a near linear release profile over 30 days. It was demonstrated that the release could be modulated by the addition of a second, competing surfactant sorbitan monooleate, Span 80, to the emulsion at levels above its critical micelle concentration. OP released from the emulsions significantly reduced cell viability in the human PANC-1 pancreatic cancer cell line for up to 30 days. The findings from this study indicate a simple, potentially injectable formulation and method that is easily upscaled resulting in a stable product with the potential to fully retain small hydrophilic molecules/drugs for sustained, near linear release over days, weeks, and potentially months. PMID:29560107

  12. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens.

    PubMed

    Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui

    2018-06-10

    In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Development and evaluation of a novel biodegradable sustained release microsphere formulation of paclitaxel intended to treat breast cancer

    PubMed Central

    Shiny, Jacob; Ramchander, Thadkapally; Goverdhan, Puchchakayala; Habibuddin, Mohammad; Aukunuru, Jithan Venkata

    2013-01-01

    Objective: The objective of this study was to develop a novel 1 month depot paclitaxel (PTX) microspheres that give a sustained and complete drug release. Materials and Methods: PTX loaded microspheres were prepared by o/w emulsion solvent evaporation technique using the blends of poly(lactic-co-glycolic acid) (PLGA) 75/25, polycaprolactone 14,000 and polycaprolactone 80,000. Fourier transform infrared spectroscopy was used to investigate drug excipient compatibility. Compatible blends were used to prepare F1-F6 microspheres, the process was characterised and the optimum formulation was selected based on the release. Optimised formulation was characterised for solid state of the drug using the differential scanning calorimetry (DSC) studies, surface morphology using the scanning electron microscopy (SEM), in vivo drug release, in vitro in vivo correlation (IVIVC) and anticancer activity. Anticancer activity of release medium was determined using the cell viability assay in Michigan Cancer Foundation (MCF-7) cell line. Results: Blend of PLGA with polycaprolactone (Mwt 14,000) at a ratio of 1:1 (F5) resulted in complete release of the drug in a time frame of 30 days. F5 was considered as the optimised formulation. Incomplete release of the drug resulted from other formulations. The surface of the optimised formulation was smooth and the drug changed its solid state upon fabrication. The formulation also resulted in 1-month drug release in vivo. The released drug from F5 demonstrated anticancer activity for 1-month. Cell viability was reduced drastically with the release medium from F5 formulation. A 100% IVIVC was obtained with F5 formulation suggesting the authenticity of in vitro release, in vivo release and the use of the formulation in breast cancer. Conclusions: From our study, it was concluded that with careful selection of different polymers and their combinations, PTX 1 month depot formulation with 100% drug release and that can be used in breast cancer was

  14. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design

    PubMed Central

    Khatun, Sabera; Sutradhar, Kumar B.

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations. PMID:24966835

  15. Depressive symptoms as a side effect of the sustained release form of methylphenidate in a 7-year-old boy with attention-deficit hyperactivity disorder.

    PubMed

    Lakić, Aneta

    2012-02-01

    Hyperkinetic disorder or attention-deficit hyperactivity disorder (ADHD) is a clinical entity consisting of a cluster of symptoms including hyperactivity, attention disorder and impulse control disorder group. In the context of ADHD etiology we may say that genetic, clinical and imaging studies point out a disruption of the brain dopamine system, which is corroborated by the clinical effectiveness of stimulant drugs, which increase extracellular dopamine in the brain. Basically, it is a biological and not psychological disorder, which is important both for the comprehension and therapeutical approach to this problem. Today, the best recommended approach regarding children with ADHD is a combination of two therapeutic modalities: pharmacotherapy and behavioral treatment. The first-choice drugs for this disorder belong to the group of sympathomimetics--psychostimulants and atomoxetine (more recently). As the first-choice therapy, methylphenydate in sustained release form has numerous advantages. Like all drugs, methylphenidate has its unwanted side effects. Most common are: loss of appetite, weight loss, sleeping disorders, irritability, headache. These side effects are well-known and documented in the literature. By analysing the available literature we have found cases of psychiatric side effects such as: psychosis, mania, visual hallucinations, agitation, suicidal ideas. We have not found examples of ADHD in children who use increased dosage of sustained release of methylphenidate leading to depressive symptomatology. On the other side, methylphenidate may be prescribed for off-label use in treatment-resistant cases of depression. The case of a 7-year-old boy diagnosed with ADHD was on a minimal dose of sustained release form of methylphenidate. After initial titration of the drug, i.e. after raising the dose to the next level the boy developed clinical signs of depression. The treatment was ceased and depressive symptoms were withdrawed. Manifestation of

  16. Achieving Campus Sustainability: Top-Down, Bottom-Up, or Neither?

    ERIC Educational Resources Information Center

    Brinkhurst, Marena; Rose, Peter; Maurice, Gillian; Ackerman, Josef Daniel

    2011-01-01

    Purpose: The dynamics of organizational change related to environmental sustainability on university campuses are examined in this article. Whereas case studies of campus sustainability efforts tend to classify leadership as either "top-down" or "bottom-up", this classification neglects consideration of the leadership roles of…

  17. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    PubMed

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Rechargeable anticandidal denture material with sustained release in saliva.

    PubMed

    Malakhov, A; Wen, J; Zhang, B-X; Wang, H; Geng, H; Chen, X-D; Sun, Y; Yeh, C-K

    2016-07-01

    Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10-100% human saliva (1-30 days). Miconazole release was measured and then tested for bioactivity vs miconazole-sensitive and miconazole-resistant Candida isolates. HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva, and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Rechargeable anticandidal denture material with sustained release in saliva

    PubMed Central

    Malakhov, Andrey; Wen, Jianchuan; Zhang, Bin-Xian; Wang, Hanzhou; Geng, Hui; Chen, Xiao-Dong; Sun, Yuyu; Yeh, Chih-Ko

    2016-01-01

    Objective Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Materials and Methods Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10–100% human saliva (1–30 days). Miconazole release was measured and then tested for bioactivity versus miconazole-sensitive and -resistant Candida isolates. Results HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. Conclusions These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. PMID:26855200

  20. Getting to Green: An Examination of the Relationship between Institutional Characteristics and Sustainability Achievement at Four-Year U.S. Based Colleges and Universities

    ERIC Educational Resources Information Center

    Miller, Justin

    2014-01-01

    This study presents an examination of how institutional characteristics might influence a four-year institution of higher education's achievement in sustainability, as measured by the Sustainability Tracking, Assessment, and Rating System (STARS). Specifically, it examined the potential role Carnegie classification, sector, location, number of…

  1. Floating modular drug delivery systems with buoyancy independent of release mechanisms to sustain amoxicillin and clarithromycin intra-gastric concentrations.

    PubMed

    Rossi, Alessandra; Conti, Chiara; Colombo, Gaia; Castrati, Luca; Scarpignato, Carmelo; Barata, Pedro; Sandri, Giuseppina; Caramella, Carla; Bettini, Ruggero; Buttini, Francesca; Colombo, Paolo

    2016-01-01

    Release modules of amoxicillin and clarithromycin combined in a single dosage form designed to float in the gastric content and to sustain the intra-gastric concentrations of these two antibiotics used for the eradication of Helicobacter pylori have been studied. The modules having a disc shape with curved bases were formulated as hydrophilic matrices. Two modules of clarithromycin were assembled by sticking the concave base of one module to the concave base of the other, creating an internal void chamber. The final dosage form was a floating assembly of three modules of clarithromycin and two of amoxicillin in which the drug release mechanism did not interfere with the floatation mechanism. The assembled system showed immediate in vitro floatation at pH 1.2, lasting 5 h. The in vitro antibiotics release profiles from individual modules and assembled systems exhibited linear release rate during buoyancy for at least 8 h. The predicted antibiotic concentrations in the stomach maintained for long time levels significantly higher than the respective minimum inhibitory concentrations (MIC). In addition, an in vivo absorption study performed on beagle dogs confirmed the slow release of clarithromycin and amoxicillin from the assembled system during the assembly's permanence in the stomach for at least 4 h.

  2. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    PubMed

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  3. Quick-release medical tape

    PubMed Central

    Laulicht, Bryan; Langer, Robert; Karp, Jeffrey M.

    2012-01-01

    Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical tapes, crack propagation occurs at the adhesive–skin interface, which is also the interface responsible for device fixation. By designing quick-release medical tape to undergo crack propagation between the backing and adhesive layers, we decouple removal and device fixation, enabling dual functionality. We created an ordered adhesive/antiadhesive composite intermediary layer between the medical tape backing and adhesive for which we achieve tunable peel removal force, while maintaining high shear adhesion to secure medical devices. We elucidate the relationship between the spatial ordering of adhesive and antiadhesive regions to create a fully tunable system that achieves strong device fixation and quick, easy, damage-free device removal. We also described ways of neutralizing the residual adhesive on the skin and have observed that thick continuous films of adhesive are easier to remove than the thin islands associated with residual adhesive left by current medical tapes. PMID:23112196

  4. A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release

    PubMed Central

    Yang, Yi; Zhao, Hang; Jia, YanPeng; Guo, QingFa; Qu, Ying; Su, Jing; Lu, XiaoLing; Zhao, YongXiang; Qian, ZhiYong

    2016-01-01

    Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release. PMID:26883682

  5. Correlation of ibuprofen bioavailability with gastrointestinal transit by scintigraphic monitoring of /sup 171/Er-labeled sustained-release tablets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, A.F.; Beihn, R.M.; Franz, R.M.

    1987-12-01

    External gamma scintigraphy was used to monitor the gastrointestinal (GI) transit of radiolabeled sustained-release tablets containing 800 mg ibuprofen in eight fasted healthy volunteers. Ibuprofen serum concentrations were determined from blood samples drawn sequentially over a 24-hr period. Serum concentrations and related parameters were correlated to the position of the dosage form in the GI tract from the scintiphotos. The sustained-release tablets were radiolabeled intact utilizing a neutron activation procedure, by incorporating 0.18% of /sup 170/Er2O3 (enriched to greater than 96% /sup 170/Er) into the bulk formulation. After manufacture of the final dosage forms, the tablets were irradiated in amore » neutron flux (4.4 x 10(13) n/cm2.sec) for 2 min, converting the stable /sup 170/Er to radioactive /sup 171/Er (t1/2 = 7.5 hr). Each tablet contained 50 microCi of /sup 171/Er at the time of administration. The scintigraphy studies suggested that the greatest proportion of ibuprofen was absorbed from this dosage form while the tablet was in the large bowel. The dosage forms eroded slowly in the small bowel and appeared to lose their integrity in the large bowel. In vitro studies showed only minimal effects of the neutron irradiation procedure on the dosage form performance.« less

  6. Repression by sustained-release. beta. -glucuronidase inhibitors of chemical carcinogen-mediated induction of a marker oncofetal protein in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walaszek, Z.; Hanausek-Walaszek, M.; Webb, T.E.

    1988-01-01

    The degree of induction of an oncofetal protein marker in rodents by selected chemical carcinogens has been correlated with changes in carcinogenicity induced by dietary D-glucaro-1,4-lactone (GL) based anticarcinogens. These potent anticarcinogens may act to increase the clearance of carcinogens as glucuronides through the inhibition of ..beta..-glucuronidase. The sustained-release forms are particularly effective, 1.5 mmol/kg of GL maintaining serum ..beta..-glucuronidase activity at or below 50% for only 1 h, while an equivalent amount of calcium glucarate (CGT) maintained this level of inhibition for over 5 h. CGT or other sustained-release inhibitors, when fed to rodents during administration of carcinogens thatmore » undergo glucuronidation, caused a marked reduction in the induction of the marker protein. For those systems where other markers of carcinogenesis were also assessed, it was determined the inhibition of marker-protein induction was quantitatively similar to both the inhibition of binding of the carcinogen to DNA and the subsequent induction of tumors in target organs. The following carcinogens were administered intraperitoneally: benzo(a)pryene; 7,12-demethylbenz(a)anthracene; 3-methylcholanthrene; 2-acetylaminofluorene; 2-naphthylamine; N-nitroso-N,N-dibutylamine; aflatoxin B1; 1-nitropyrene.« less

  7. Antibiotic-containing polymers for localized, sustained drug delivery

    PubMed Central

    Stebbins, Nicholas D.; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2014-01-01

    Many currently used antibiotics suffer from issues such as systemic toxicity, short half-life, and increased susceptibility to bacterial resistance. Although most antibiotic classes are administered systemically through oral or intravenous routes, a more efficient delivery system is needed. This review discusses the chemical conjugation of antibiotics to polymers, achieved by forming covalent bonds between antibiotics and a pre-existing polymer or by developing novel antibiotic-containing polymers. Through conjugating antibiotics to polymers, unique polymer properties can be taken advantage of. These polymeric antibiotics display controlled, sustained drug release and vary in antibiotic class type, synthetic method, polymer composition, bond lability, and antibacterial activity. The polymer synthesis, characterization, drug release, and antibacterial activities, if applicable, will be presented to offer a detailed overview of each system. PMID:24751888

  8. Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests.

    PubMed

    Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico

    2017-01-01

    Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Sustained release carrier for adenosine triphosphate as signaling molecule.

    PubMed

    Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas

    2014-12-10

    Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study

    PubMed Central

    Gimeno, Marina; Pinczowski, Pedro; Pérez, Marta; Giorello, Antonella; Martínez, Miguel Ángel; Santamaría, Jesús; Arruebo, Manuel; Luján, Lluís

    2015-01-01

    A new device for local delivery of antibiotics is presented, with potential use as a drug-eluting fixation pin for orthopedic applications. The implant consists of a stainless steel hollow tubular reservoir packed with the desired antibiotic. Release takes place through several orifices previously drilled in the reservoir wall, a process that does not compromise the mechanical properties required for the implant. Depending on the antibiotic chosen and the number of orifices, the release profile can be tailored from a rapid release of the load (ca. 20 h) to a combination of rapid initial release and slower, sustained release for a longer period of time (ca. 200 h). An excellent bactericidal action is obtained, with 4-log reductions achieved in as little as 2 h, and total bacterial eradication in 8 h using 6-pinholed implants filled with cefazolin. PMID:26297104

  11. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine.

    PubMed

    Zhang, Hongbo; Shahbazi, Mohammad-Ali; Mäkilä, Ermei M; da Silva, Tiago H; Reis, Rui L; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2013-12-01

    Diatoms are porous silica-based materials obtained from single cell photosynthetic algae. Despite low cost, easy purification process, environmentally safe properties, and rapidly increasing potentials for medical applications, the cytotoxicity of diatoms and the effect on drug permeation of oral formulations have not been studied so far. Herein, we have evaluated the potential of diatom silica microparticles (DSMs) for the delivery of mesalamine and prednisone, which are two commonly prescribed drugs for gastrointestinal (GI) diseases. Transmission electron microscopy analysis of the morphological surface changes of Caco-2/HT-29 monolayers and the cell viability data in colon cancer cells (Caco-2, HT-29 and HCT-116) showed very low toxicity of diatoms at concentrations up to 1000 μg/mL. The mesalamine and prednisone release under simulated GI conditions indicated prolonged release of both drugs from the diatoms. Furthermore, drug permeation across Caco-2/HT-29 co-culture monolayers demonstrated that diatoms are capable to enhance the drug permeability. Overall, this study evaluated DSMs' cytotoxicity in colon cancer cells and the effect of DSMs on drug permeability across Caco-2/HT-29 monolayers. Our results demonstrate that DSMs can be considered as a non-cytotoxic biomaterial with high potential to improve the mesalamine and prednisone bioavailability by sustaining the drug release and enhancing drug permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of VEGF-ANG-1-PLA nano-sustained release microspheres on proliferation and differentiation of ADSCs.

    PubMed

    He, Yucang; Li, Zihao; Chen, Zhuojie; Yu, Xiaofang; Ji, Ziwan; Wang, Jingping; Qian, Yao; Li, Liqun

    2018-05-10

    The improvement of fat graft viability might depend on the presence of multipotent resident adipose derived stem cells (ADSCs) which is the important component of stromal vascular fraction (SVF). Vascular endothelial growth factor (VEGF) and angiogenin-1 (Ang-1) are responsible for neovascularization. However, their half-life is too short to produce a biological effect. We thus investigated whether VEGF-ANG-1-polylactic acid (PLA) microspheres could enhance the angiogenic properties of ADSCs. PLA microspheres containing VEGF and ANG-1 were prepared by in vitro ultrasonic emulsification and characterized according to their encapsulation efficiency (EE), drug-loading rate (DL), particle size and drug release. The systemic toxicity of empty loaded nanospheres (NPs) and the ability of these microspheres to promote the proliferation and differentiation of ADSCs were evaluated. The EE and DL were above 86% and 2.8%, respectively. The drug release was completed after 20 days. Systemic toxicity was verified in ADSCs that received the unloaded NPs. It was observed that ADSCs treated with VEGF-ANG-1-PLA microspheres had an increase in the proliferation and the number of CD31 positive cells. ADSCs proliferation and differentiation toward endothelial cells (ECs) could be enhanced by the addition of VEGF-ANG-1-PLA nano-sustained release microspheres. This article is protected by copyright. All rights reserved.

  13. Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.

    PubMed

    Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon

    2016-11-20

    Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    PubMed

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  15. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization

    PubMed Central

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    2016-01-01

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016

  16. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    PubMed

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  17. PEG modulated release of etanidazole from implantable PLGA/PDLA discs.

    PubMed

    Wang, Fangjing; Lee, Timothy; Wang, Chi-Hwa

    2002-09-01

    In this work, etanidazole (one type of hypoxic radiosensitizer) is encapsulated into spray dried poly(D),L-lactide-co-glycolide) (PLGA) microspheres and then compressed into discs for controlled release applications. Etanidazole is characterized by intracellular glutathione depletion and glutathione transferases inhibition, thereby enhancing sensitivity to radiation. It is also cytotoxic to tumor cells and can chemosensitize some alkylating agents by activating their tumor cell killing capabilities. We observed the release characteristics of etanidazole in the dosage forms of microspheres and discs, subjected to different preparation conditions. The release characteristics, morphology changes, particle size, and encapsulation efficiency of microspheres are also investigated. The release rate of etanidazole from implantable discs (13 mm in diameter, 1 mm in thickness, fabricated by a press) is much lower than microspheres due to the reduced specific surface. After the initial burst of 1% release for the first day, the cumulative release within the first week is less than 2% until a secondary burst of release (caused by polymer degradation) occurs after one month. Some key preparation conditions such as drug loadings, disc thickness and diameter, and compression pressure can affect the initial burst of etanidazole from the discs. However, none of them can significantly make the release more uniform. In contrast, the incorporation of polyethylene glycol (PEG) can greatly enhance the release rate of discs and also reduces the secondary burst effect, thereby achieving a sustained release for about 2 months.

  18. Film-forming formulations containing porous silica for the sustained delivery of actives to the skin.

    PubMed

    Heck, Rouven; Hermann, Sabrina; Lunter, Dominique J; Daniels, Rolf

    2016-11-01

    The purpose of this study was to develop film-forming formulations facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, an oily solution of nonivamide was loaded into porous silica particles which were then suspended in the dispersion of a sustained release polymer. Such formulations form a film when applied to the skin and encapsulate the drug loaded silica particles in a dry polymeric matrix. Dermal delivery and permeation of the antipruritic drug nonivamide (NVA) are controlled by the matrix. The film-forming formulations were examined regarding homogeneity, storage stability, substantivity and ex vivo skin permeation. Confocal Raman spectral imaging proved the stability of silica-based film-forming formulations over a period of 6 months. Substantivity was found to be enhanced substantially compared to a conventional semisolid formulation. Permeation rates of nonivamide from film-forming formulations through the skin are much lower compared to those achieved with a conventional immediate release formulation with the same drug amount. Due to the drug reservoir in the polymer matrix, a sustained permeation is enabled. Film-forming formulations may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance through a sustained release regime. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Efficacy and Safety of Oral Diclofenac Sustained release Versus Transdermal Diclofenac Patch in Chronic Musculoskeletal Pain: A Randomized, Open Label Trial.

    PubMed

    Shinde, Viraj Ashok; Kalikar, Mrunalini; Jagtap, Satyajeet; Dakhale, Ganesh N; Bankar, Mangesh; Bajait, Chaitali S; Motghare, Vijay M; Pashilkar, Ashlesha A; Raghute, Latesh B; Khamkar, Ajita D

    2017-01-01

    To compare the efficacy, safety, and tolerability of transdermal patches of diclofenac sodium with oral diclofenac sustained release (SR) in patients of chronic musculoskeletal MSK pain conditions. The eligible patients were given either transdermal diclofenac patch or tablet diclofenac SR. Pain was assessed at 2 and 4 weeks using a visual analog scale. Adverse events were recorded. Patients with 18-65 years old of either gender with score of ≥4 on a 11-item numeric rating scale-numeric version of visual analog scale for pain with diagnosis of primary osteoarthritis (OA) of the knee or hand of at least 3 months duration, with independent radiological confirmation of OA or having pain associated with other MSK conditions such as soft-tissue rheumatism, cervical and lumbar back pain, and fibromyalgia, of at least 3 months duration were included in this study. Transdermal diclofenac diethylamine patch and tablet diclofenac sodium sustained release (SR) do not significantly differ in the reduction of numerical rating scores at the end of 4 weeks (P = 0.8393). Transdermal diclofenac was equi-efficacious as tablet diclofenac sodium SR in reducing pain due to chronic MSK pain conditions.

  20. Efficacy and Safety of Oral Diclofenac Sustained release Versus Transdermal Diclofenac Patch in Chronic Musculoskeletal Pain: A Randomized, Open Label Trial

    PubMed Central

    Shinde, Viraj Ashok; Kalikar, Mrunalini; Jagtap, Satyajeet; Dakhale, Ganesh N.; Bankar, Mangesh; Bajait, Chaitali S.; Motghare, Vijay M.; Pashilkar, Ashlesha A.; Raghute, Latesh B.; Khamkar, Ajita D.

    2017-01-01

    Introduction: To compare the efficacy, safety, and tolerability of transdermal patches of diclofenac sodium with oral diclofenac sustained release (SR) in patients of chronic musculoskeletal MSK pain conditions. Materials and Methods: The eligible patients were given either transdermal diclofenac patch or tablet diclofenac SR. Pain was assessed at 2 and 4 weeks using a visual analog scale. Adverse events were recorded. Patients with 18–65 years old of either gender with score of ≥4 on a 11-item numeric rating scale-numeric version of visual analog scale for pain with diagnosis of primary osteoarthritis (OA) of the knee or hand of at least 3 months duration, with independent radiological confirmation of OA or having pain associated with other MSK conditions such as soft-tissue rheumatism, cervical and lumbar back pain, and fibromyalgia, of at least 3 months duration were included in this study. Results: Transdermal diclofenac diethylamine patch and tablet diclofenac sodium sustained release (SR) do not significantly differ in the reduction of numerical rating scores at the end of 4 weeks (P = 0.8393). Conclusion: Transdermal diclofenac was equi-efficacious as tablet diclofenac sodium SR in reducing pain due to chronic MSK pain conditions. PMID:29472748

  1. Safety of implanting sustained-release 5-fluorouracil into hepatic cross-section and omentum majus after primary liver cancer resection.

    PubMed

    Chen, Jiangtao; Zhang, Junjie; Wang, Chenyu; Yao, Kunhou; Hua, Long; Zhang, Liping; Ren, Xuequn

    2016-09-01

    This study was designed to evaluate the short-term safety of implanting sustained-release 5-fluorouracil (5-FU) into hepatic cross-section and omentum majus after primary liver cancer resection and its impact on related indexes of liver. Forty patients were selected and divided into an implantation group (n = 20) and a control group (n = 20). On the first day after admission, first week after surgery, and first month after surgery, fasting venous blood was extracted from patients for measuring hematological indexes. The reduction rate of alpha fetoprotein (AFP) on the first week and first month after surgery was calculated, and moreover, drainage volume of the abdominal cavity drainage tube, length of stay after surgery, and wound healing condition were recorded. We found that levels of alanine aminotransferase, aspartate amino transferase, blood urea nitrogen, creatinine, total bilirubin, albumin, and white blood cells measured on the first week and first month after surgery, length of stay, and wound healing of patients in the two groups had no significant difference (P >0.05). Drainage volume and reduction rate of AFP of two groups were significantly different on the first week and first month after surgery (P <0.05). Implanting sustained-release 5-FU into hepatic cross-section and omentum majus after primary liver cancer resection is proved to be safe as it has little impact on related indexes. © The Author(s) 2016.

  2. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  3. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres.

    PubMed

    El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M

    2012-03-01

    The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.

  4. A multifunctional multimaterial system for on-demand protein release.

    PubMed

    Tuncaboylu, Deniz Ceylan; Friess, Fabian; Wischke, Christian; Lendlein, Andreas

    2018-06-15

    In order to provide best control of the regeneration process for each individual patient, the release of protein drugs administered during surgery may need to be timely adapted and/or delayed according to the progress of healing/regeneration. This study aims to establish a multifunctional implant system for a local on-demand release, which is applicable for various types of proteins. It was hypothesized that a tubular multimaterial container kit, which hosts the protein of interest as a solution or gel formulation, would enable on-demand release if equipped with the capacity of diameter reduction upon external stimulation. Using devices from poly(ɛ-caprolactone) networks, it could be demonstrated that a shape-memory effect activated by heat or NIR light enabled on-demand tube shrinkage. The decrease of diameter of these shape-memory tubes (SMT) allowed expelling the payload as demonstrated for several proteins including SDF-1α, a therapeutically relevant chemotactic protein, to achieve e.g. continuous release with a triggered add-on dosing (open tube) or an on-demand onset of bolus or sustained release (sealed tube). Considering the clinical relevance of protein factors in (stem) cell attraction to lesions and the progress in monitoring biomarkers in body fluids, such on-demand release systems may be further explored e.g. in heart, nerve, or bone regeneration in the future. Copyright © 2018. Published by Elsevier B.V.

  5. Socially cooperative choices: An approach to achieving resource sustainability in the coastal zone

    NASA Astrophysics Data System (ADS)

    Crance, Colin; Draper, Dianne

    1996-03-01

    Achieving resource sustainability, particularly in the coastal zone, is complicated by a variety of interdependencies and trade-offs between economic, social, and ecological variables. Although trade-offs between each of these variables are important, this paper emphasizes the social components of resource management. In this regard a distinction is made between individual and cooperative choices. Individual choices frequently are made from a shortterm, self-interested perspective, whereas cooperative choices are made from a long-term, community and resource-sustainability perspective. Typically, when presented with a spectrum of resource management decisions, individuals have a tendency to act in a self-interested manner. Thus, cooperative benefits, such as reduced conflict and improved resource certainty, are not realized. An overview of selected aspects of social dilemma theory suggests that socially cooperative choice outcomes are attainable in coastal zone management by integrating structural and behavioral solutions in resource use decision making. Three barriers to successful integration of structural and behavioral solutions are identified as self-interest, mistrust, and variable perceptions of resource amenities. Examples from coastal zone management indicate that these barriers may be overcome using approaches such as scopereduction, co-management, community education, and local participation. The paper also provides comment on the potential benefits of integrating structural and behavioral solutions in international coastal zone management efforts.

  6. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord.

    PubMed

    Elliott Donaghue, Irja; Tator, Charles H; Shoichet, Molly S

    2015-01-01

    Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive release. Here, an injectable composite drug delivery system (DDS) composed of biodegradable polymeric nanoparticles dispersed in a hyaluronan/methyl cellulose hydrogel was injected into the intrathecal space to achieve acute local delivery to the spinal cord after a thoracic clip compression injury. NT-3 was encapsulated in the DDS and released in vitro for up to 50 d. With a single injection of the DDS into the intrathecal space of the injured spinal cord, NT-3 diffused ventrally through the cord and was detectable in the spinal cord for at least 28 d therein. Delivery of NT-3 resulted in significant axon growth with no effect on the astroglial response to injury in comparison with vehicle and injury controls. NT-3 treatment promoted functional improvements at 21 d according to the Basso Beattie Bresnahan locomotor scale in comparison with the DDS alone. The sustained delivery of bioactive NT-3 to the injured spinal cord achieved in this study demonstrates the promise of this DDS for central nervous system repair.

  7. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure.

    PubMed

    Whitaker, Martin; Debono, Miguel; Huatan, Hiep; Merke, Deborah; Arlt, Wiebke; Ross, Richard J

    2014-04-01

    It is not possible with current hydrocortisone replacement to mimic the diurnal cortisol profile in patients with adrenal insufficiency. Previous attempts with modified-release technology were unsuccessful. Our objective was to develop hydrocortisone formulations that recreate the diurnal cortisol profile using multiparticulate technology. Screening by in vitro dissolution profiles, pharmacokinetic (PK) testing in dexamethasone-suppressed dogs and humans, and comparison with a reference population. Field laboratories and clinical research facility. Formulations were generated using an enteric (delayed release) design configuration with an extended (sustained release) dissolution profile. In vitro dissolution confirmed delayed and sustained hydrocortisone release. However, in dogs and humans, sustained release resulted in reduced bioavailability. A formulation, DIURF-006, was developed that maintained delayed release but omitted the sustained-release functionality. PK characterization of DIURF-006 showed that, despite absence of a sustained-release component, absorption was sufficiently sustained to deliver extended hydrocortisone absorption. In dexamethasone-suppressed volunteers (n = 16) receiving a twice-daily 'toothbrush' regimen (20 mg at 23:00 h and 10 mg at 07:00 h), DIURF-006 gave a similar cortisol profile to physiological cortisol levels: DIURF-006 vs physiological, Geomean AUC 5610 vs 4706 h * nmol/l, Geomean Cmax 665 vs 594 nmol/l and Median Tmax 8·5 h vs clock time 08:12 h for peak cortisol. The relative bioavailability of DIURF-006 vs hydrocortisone was 89%, and cortisol levels increased linearly with doses between 5 and 30 mg. A multiparticulate oral hydrocortisone formulation with only an enteric coat provides delayed and sustained absorption and when given in a 'toothbrush' regimen provides physiological cortisol exposure. © 2013 John Wiley & Sons Ltd.

  8. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs.

    PubMed

    Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo

    2017-03-30

    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Is sustainability achievable? Exploring the limits of sustainability with model systems.

    PubMed

    Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto; Williamson, James

    2008-09-01

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic understanding further includes a sense of the time scale of possible future events and the limits of what is and is not likely to be possible. With this understanding, systematic approaches can then be used to develop policy guidelines for the system. This article presents an illustration of these ideas by analyzing an integrated ecological-economic-social model, which comprises various ecological (natural) and domesticated compartments representing species along with a macroeconomic price setting model. The stable and qualitatively realistic model is used to analyze different relevant scenarios. Apart from highlighting complex relationships within the system, it identifies potentially unsustainable future developments such as increased human per capita consumption rates. Dynamic optimization is then used to develop time-dependent policy guidelines for the unsustainable scenarios using objective functions that aim to minimize fluctuations in the system's Fisher information. The results can help to identify effective policy parameters and highlight the tradeoff between natural and domesticated compartments while managing such integrated systems. The results should also qualitatively guide further investigations in the area of system level studies and policy development.

  10. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties.

    PubMed

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-11-01

    Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 2(3) full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the T(max) was prolonged (from 0.65 +/- 0.082 hr to 4.83 +/- 1.60 hr) and AUC(0-t) (from 734.88 +/- 230.68 ng/ml.hr to 1153.34 +/- 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.

  11. Achieving and Maintaining Existing Building Sustainability Certification at Georgetown University

    ERIC Educational Resources Information Center

    Payant, Richard P.

    2013-01-01

    Sustainability is the promotion of high performance, healthful, energy-efficient, and environmentally stable buildings. Buildings intended for sustainable certification must meet guidelines developed by the Leadership in Energy and Environmental Design (LEED) of the U.S. Green Building Council. The problem is that LEED certification often fails to…

  12. Laser sclerectomy and 5-FU controlled-drug-release biodegradable implant for glaucoma therapy

    NASA Astrophysics Data System (ADS)

    Villain, Franck L.; Parel, Jean-Marie A.; Kiss, Katalin; Parrish, Richard K.; Kuhne, Francois; Takesue, Yoshiko; Hostyn, Patrick

    1993-06-01

    Laser sclerectomy, a simple filtering procedure performed to alleviate high intraocular pressure in glaucoma patients, was taught to offer longer lasting effect and therefore improve the patient's outcome when compared with the standard trabeculectomy procedure. Recent clinical trials have shown that this was not the case and pharmacologic wound healing modulation is also required with this new procedure. Five-Fluorouracil (5-FU) is useful as an adjunct treatment for glaucoma filtering surgery. However, efficacy depends upon maintaining sustained drug levels, currently achieved by repeated daily injection of the drug for several weeks. To overcome this limitation, we designed a biodegradable implant for the sustained release of 5-FU. After laser sclerectomy, the implant is inserted through the same 1 mm wide conjunctival snip incision and positioned below the open channel. Implantation takes less than a minute. The implant releases the drug for over 15 days and totally biodegrades in less than 100 days. The combined laser surgery and implantation procedure show great potentials for the treatment of glaucoma.

  13. Once-daily, controlled-release tramadol and sustained-release diclofenac relieve chronic pain due to osteoarthritis: A randomized controlled trial

    PubMed Central

    Beaulieu, André D; Peloso, Paul M; Haraoui, Boulos; Bensen, William; Thomson, Glen; Wade, John; Quigley, Patricia; Eisenhoffer, John; Harsanyi, Zoltan; Darke, Andrew C

    2008-01-01

    OBJECTIVE: The present study was a randomized, parallel, double-blind comparison between controlled-release (CR) tramadol and sustained-release (SR) diclofenac in patients with chronic pain due to osteoarthritis of the hips and/or knees. METHODS: Patients with at least moderate pain intensity, and having received analgesics over the past three months, underwent a two-to seven-day washout of current analgesics before initiation of 200 mg CR tramadol or 75 mg SR diclofenac. During the eight-week study, patients returned to the clinic biweekly. CR tramadol doses were titrated to a maximum of 200 mg, 300 mg or 400 mg per day. SR diclofenac doses were titrated to 75 mg or 100 mg once daily, or 75 mg twice a day based on pain relief and the presence of side effects. For rescue analgesic, patients took acetaminophen as needed, up to 650 mg three times a day. RESULTS: Forty-five patients on CR tramadol and 52 patients on SR diclofenac were evaluable. Significant improvements from prestudy treatment were shown for visual analogue scale pain (P=0.0001), stiffness (P<0.0005) and physical function (P=0.0001) scores for both treatments. There were no significant differences between the two treatments in the Western Ontario and McMaster Universities subscales, overall pain, pain and sleep, or the clinical effectiveness evaluation. Overall incidence of adverse events was similar in both groups, with more opioid-related adverse events with CR tramadol, and two serious adverse events occurring with the use of SR diclofenac. CONCLUSIONS: CR tramadol is as effective as SR diclofenac in the treatment of pain due to knee or hip osteoarthritis, with the potential for fewer of the serious side effects that characterize nonsteroidal anti-inflammatory drug administration. PMID:18443672

  14. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems.

    PubMed

    Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J

    2017-09-28

    We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Design and In-vitro Evaluation of Sustained Release Floating Tablets of Metformin HCl Based on Effervescence and Swelling

    PubMed Central

    Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar

    2016-01-01

    An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147

  16. Multiple response optimization of processing and formulation parameters of Eudragit RL/RS-based matrix tablets for sustained delivery of diclofenac.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2017-11-01

    Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.

  17. Achieving a sustainable service advantage.

    PubMed

    Coyne, K P

    1993-01-01

    Many managers believe that superior service should play little or no role in competitive strategy; they maintain that service innovations are inherently copiable. However, the author states that this view is too narrow. For a company to achieve a lasting service advantage, it must base a new service on a capability gap that competitors cannot or will not copy.

  18. Efficacy of Testosterone Suppression with Sustained-Release Triptorelin in Advanced Prostate Cancer.

    PubMed

    Breul, Jürgen; Lundström, Eija; Purcea, Daniela; Venetz, Werner P; Cabri, Patrick; Dutailly, Pascale; Goldfischer, Evan R

    2017-02-01

    Androgen deprivation therapy (ADT) is a mainstay of treatment against advanced prostate cancer (PC). As a treatment goal, suppression of plasma testosterone levels to <50 ng/dl has been established over decades. Evidence is growing though that suppression to even lower levels may add further clinical benefit. Therefore, we undertook a pooled retrospective analysis on the efficacy of 1-, 3-, and 6-month sustained-release (SR) formulations of the gonadotropin-releasing hormone (GnRH) agonist triptorelin to suppress serum testosterone concentrations beyond current standards. Data of 920 male patients with PC enrolled in 9 prospective studies using testosterone serum concentrations as primary endpoint were pooled. Patients aged 42-96 years had to be eligible for ADT and to be either naïve to hormonal treatment or have undergone appropriate washout prior to enrolment. Patients were treated with triptorelin SR formulations for 2-12 months. Primary endpoints of this analysis were serum testosterone concentrations under treatment and success rates overall and per formulation, based on a testosterone target threshold of 20 ng/dl. After 1, 3, 6, 9, and 12 months of treatment, 79%, 92%, 93%, 90%, and 91% of patients reached testosterone levels <20 ng/dl, respectively. For the 1-, 3-, and 6-month formulations success rates ranged from 80-92%, from 83-93%, and from 65-97% with median (interquartile range) serum testosterone values of 2.9 (2.9-6.5), 5.0 (2.9-8.7), and 8.7 (5.8-14.1) ng/dl at study end, respectively. In the large majority of patients, triptorelin SR formulations suppressed serum testosterone concentrations to even <20 ng/dl. Testosterone should be routinely monitored in PC patients on ADT although further studies on the clinical benefit of very low testosterone levels and the target concentrations are still warranted.

  19. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    PubMed

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  20. An oral multi-particulate, modified release, hydrocortisone replacement therapy that provides physiological cortisol exposure

    PubMed Central

    Huatan, Hiep; Merke, Deborah; Arlt, Wiebke; Ross, Richard J.

    2013-01-01

    Objective It is not possible with current hydrocortisone replacement to mimic the diurnal cortisol profile in patients with adrenal insufficiency. Previous attempts with modified release technology were unsuccessful. Our objective was to develop hydrocortisone formulations that recreate the diurnal cortisol profile using multi-particulate technology. Design and Measurements Screening by in-vitro dissolution profiles, pharmacokinetic testing in dexamethasone suppressed dogs and humans, and comparison to a reference population. Setting Field laboratories and clinical research facility. Results Formulations were generated using an enteric (delayed-release) design configuration with an extended (sustained-release) dissolution profile. In-vitro dissolution confirmed delayed and sustained hydrocortisone release. However, in dogs and humans, sustained release resulted in reduced bioavailability. A formulation, DIURF-006, was developed that maintained delayed release but omitted the sustained release functionality. Pharmacokinetic characterisation of DIURF-006 showed that, despite absence of a sustained release component, absorption was sufficiently sustained to deliver extended hydrocortisone absorption. In dexamethasone-suppressed volunteers (n=16) receiving a twice daily ‘toothbrush’ regimen (20mg at 23:00h and 10mg at 07:00h), DIURF-006 gave a similar cortisol profile to physiological cortisol levels: DIURF-006 vs physiological, Geomean AUC 5610 vs 4706 hr*nmol/l, Geomean Cmax 665 vs 594 nmol/l and Median Tmax 8.5h vs clock time 08:12 hours for peak cortisol. The relative bioavailability of DIURF-006 vs hydrocortisone was 89% and cortisol levels increased linearly with doses between 5 and 30mg. Conclusion A multi-particulate oral hydrocortisone formulation with only an enteric coat provides delayed and sustained absorption and when given in a ‘toothbrush’ regimen provides physiological cortisol exposure. PMID:23980724

  1. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  2. Green innovation and sustainable industrial systems within sustainability and company improvement perspective

    NASA Astrophysics Data System (ADS)

    Edi Nugroho Soebandrija, Khristian

    2017-12-01

    This paper comprises discussion of Green Innovation and Sustainable Industrial Systems within Sustainability and Company Improvement Perspective of beverage manufacturing company (BMC). The stakeholder theory is the grand theory for the company improvement perspective in this paper. The data processing in this paper is conducted through software which are SEM-PLS with SmartPLS 2.0 and SPSS 19. The specified objective of this paper has focus on sustainability as one of 6 variables, in lieu of those 6 variables as the big picture. The reason behind this focus on sustainability is the fact that there are assorted challenges in sustainability that is ranging from economic, environment and company perspectives. Those challenges in sustainability include the sustainable service supply chain management and its involvement of society. The overall objective is to analyze relationship hypothesis of 6 variables, 4 of them (leadership, organizational learning, innovation, and performance) are based on Malcolm Baldrige’s performance excellence concept to achieve sustainability and competitive advantage through company-competitor and customer questionnaire, and its relation to Total Quality Management (TQM) and Quality Management System (QMS). In conclusion, the spearheaded of company improvement in this paper is in term of consumer satisfaction through 99.997% quality standards. These can be achieved by ambidexterity through exploitation and exploration innovation. Furthermore, in this paper, TQM enables to obtain popularity brand index achievement that is greater than 45.9%. Subsequently, ISO22000 of food security standard encompasses quality standard of ISO9000 and HACCP. Through the ambidexterity of exploitation and exploration (Non Standard Product Inspection) NOSPI machine, the company improvement generates the achievement of 75% automation, 99.997% quality control standard and 80% of waste reduction.

  3. Mucoadhesive Microparticles in a Rapidly Dissolving Tablet for Sustained Drug Delivery to the Eye

    PubMed Central

    Choy, Young Bin; Patel, Samirkumar R.; Park, Jung-Hwan; McCarey, Bernard E.; Edelhauser, Henry F.

    2011-01-01

    Purpose. To test the hypothesis that mucoadhesive microparticles formulated in a rapidly dissolving tablet can achieve sustained drug delivery to the eye. Methods. Mucoadhesive microparticles, smaller than 5 μm were fabricated with poly(lactic-co-glycolic acid) and poly(ethylene glycol) as a core material and mucoadhesion promoter, respectively, and encapsulated pilocarpine as a model drug. These microparticles were embedded in a poly(vinyl alcohol) matrix to form a dry tablet designed to reduce rapid clearance of the microparticles on initial application to the eye. Results. This in vitro drug release study exhibited that for all formulations, approximately 90% of pilocarpine was released during the first 10 minutes, and the remaining 10% was released slowly for 3 hours. In vivo mucoadhesion test on the rabbit eye indicated that mucoadhesive microparticles adhered significantly better to the preocular surface than other formulations. To assess the pharmacodynamics, the most prolonged pilocarpine-induced pupil constriction was observed in rabbit eyes in vivo using a tablet with mucoadhesive microparticles; it lasted up to 330 minutes. Conclusions. The authors conclude that mucoadhesive microparticles formulated into a dry dosage form is a promising system for sustained drug delivery to the eye. PMID:21245405

  4. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.

    PubMed

    Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun

    2010-12-13

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.

  5. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

    PubMed Central

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655

  6. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury.

    PubMed

    Hanna, Amgad; Thompson, Daniel L; Hellenbrand, Daniel J; Lee, Jae-Sung; Madura, Casey J; Wesley, Meredith G; Dillon, Natalie J; Sharma, Tapan; Enright, Connor J; Murphy, William L

    2016-07-01

    Because of the dynamics of spinal cord injury (SCI), the optimal treatment will almost certainly be a combination approach to control the environment and promote axonal growth. This study uses peripheral nerve grafts (PNGs) as scaffolds for axonal growth while delivering neurotrophin-3 (NT-3) via calcium phosphate (CaP) coatings on surgical sutures. CaP coating was grown on sutures, and NT-3 binding and release were characterized in vitro. Then, the NT-3-loaded sutures were tested in a complete SCI model. Rats were analyzed for functional improvement and axonal growth into the grafts. The CaP-coated sutures exhibited a burst release of NT-3, followed by a sustained release for at least 20 days. Functionally, the rats with PNGs + NT-3-loaded sutures and the rats treated with PNGs scored significantly higher than controls on day 56 postoperatively. However, functional scores in rats treated with PNGs + NT-3-loaded suture were not significantly different from those of rats treated with PNGs alone. Cholera toxin subunit B (CTB) labeling rostral to the graft was not observed in any controls, but CTB labeling rostral to the graft was observed in almost all rats that had had a PNG. Neurofilament labeling on transverse sections of the graft revealed that the rats treated with the NT-3-loaded sutures had significantly more axons per graft than rats treated with an NT-3 injection and rats without NT-3. These data demonstrate that PNGs serve as scaffolds for axonal growth after SCI and that CaP-coated sutures can efficiently release NT-3 to increase axonal regeneration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. High-reliability release mechanism

    NASA Technical Reports Server (NTRS)

    Paradise, J. J.

    1971-01-01

    Release mechanism employing simple clevis fitting in combination with two pin-pullers achieves high reliability degree through active mechanical redundancy. Mechanism releases solar arrays. It is simple and inexpensive and performs effectively. It adapts to other release-system applications with variety of pin-puller devices.

  8. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics.

    PubMed

    Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L

    2015-09-01

    Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques.

    PubMed

    Malcolm, R Karl; Veazey, Ronald S; Geer, Leslie; Lowry, Deborah; Fetherston, Susan M; Murphy, Diarmaid J; Boyd, Peter; Major, Ian; Shattock, Robin J; Klasse, Per Johan; Doyle, Lara A; Rasmussen, Kelsi K; Goldman, Laurie; Ketas, Thomas J; Moore, John P

    2012-05-01

    Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 μg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ~10(6)-fold greater than the 50% inhibitory concentrations (IC(50)s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle.

  10. Sustained Release of the CCR5 Inhibitors CMPD167 and Maraviroc from Vaginal Rings in Rhesus Macaques

    PubMed Central

    Veazey, Ronald S.; Geer, Leslie; Lowry, Deborah; Fetherston, Susan M.; Murphy, Diarmaid J.; Boyd, Peter; Major, Ian; Shattock, Robin J.; Klasse, Per Johan; Doyle, Lara A.; Rasmussen, Kelsi K.; Goldman, Laurie; Ketas, Thomas J.; Moore, John P.

    2012-01-01

    Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 μg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ∼106-fold greater than the 50% inhibitory concentrations (IC50s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle. PMID:22330914

  11. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.

    PubMed

    Xie, Xin-Hui; Wang, Xin-Luan; Zhang, Ge; He, Yi-Xin; Leng, Yang; Tang, Ting-Ting; Pan, Xiaohua; Qin, Ling

    2015-08-01

    A phytomolecule, icaritin, has been identified and shown to be osteopromotive for the prevention of osteoporosis and osteonecrosis. This study aimed to produce a bioactive poly (l-lactide-co-glycolide)-tricalcium phosphate (PLGA-TCP)-based porous scaffold incorporating the osteopromotive phytomolecule icaritin, using a fine spinning technology. Both the structure and the composition of icaritin-releasing PLGA-TCP-based scaffolds were evaluated by scanning electron microscopy (SEM). The porosity was quantified by both water absorption and micro-computed tomography (micro-CT). The mechanical properties were evaluated using a compression test. In vitro release of icaritin from the PLGA-TCP scaffold was quantified by high-performance liquid chromatography (HPLC). The attachment, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the composite scaffold were evaluated. Both an in vitro cytotoxicity test and an in vivo test via muscular implantation were conducted to confirm the scaffold's biocompatibility. The results showed that the PLGA-TCP-icaritin composite scaffold was porous, with interconnected macro- (about 480 µm) and micropores (2-15 µm). The mechanical properties of the PLGA-TCP-icaritin scaffold were comparable with those of the pure PLGA-TCP scaffold, yet was spinning direction-dependent. Icaritin content was detected in the medium and increased with time. The PLGA-TCP-icaritin scaffold facilitated the attachment, proliferation and osteogenic differentiation of BMSCs. In vitro cytotoxicity test and in vivo intramuscular implantation showed that the composite scaffold had no toxicity with good biocompatibility. In conclusion, an osteopromotive phytomolecule, icaritin, was successfully incorporated into PLGA-TCP to form an innovative porous composite scaffold with sustained release of osteopromotive icaritin, and this scaffold had good biocompatibility and osteopromotion, suggesting its potential for orthopaedic

  12. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soilmore » water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.« less

  13. Development of near zero-order release PLGA-based microspheres of a novel antipsychotic.

    PubMed

    Zhao, Jinlong; Wang, Lexi; Fan, Chunyu; Yu, Kongtong; Liu, Ximing; Zhao, Xiaolei; Wang, Dan; Liu, Wenhua; Su, Zhengxing; Sun, Fengying; Li, Youxin

    2017-01-10

    The novel antipsychotic isoperidone, a prodrug of paliperidone, was designed to improve liposolubility for the development of poly(D,L-lactide-co-glycolide) (PLGA)-based microspheres to achieve near zero-order release behaviour in vivo. Microspheres with a smooth surface were obtained using the oil-in-water emulsion solvent evaporation method and yielded a high encapsulation efficiency of 92%. Pharmacokinetic studies in beagle dogs showed a one-week plateau phase followed by a two-week quasi-zero-order release with no burst release. The in vitro release method with a good in vitro-in vivo correlation was also established. Pharmacodynamic evaluation was performed using the MK-801-induced schizophrenic behavioural mouse model, and the sustained suppressive effect lasted two weeks. The pharmacokinetic-pharmacodynamic (PK-PD) relationship of isoperidone microspheres was compared to that of oral administration of free drug. The results revealed a strong correlation between the plasma drug level and the antipsychotic effect. A stable drug plasma concentration was detected in mice both intraday and interday from 8 to 22 d after a single injection of isoperidone microspheres, and a sustained suppressive effect on the schizophrenic model was also observed. In comparison, the mouse group receiving oral daily administration exhibited more dose-dependent effects, and the pharmacological effect diminished rapidly in conjunction with a reduction of the plasma drug levels 8h after the last administration of isoperidone on day 3. The above results confirm the superiority of long-acting release over oral administration and indicate a valuable alternative for the clinical treatment of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Role of Public Health Nutrition in Achieving the Sustainable Development Goals in the Asia Pacific Region.

    PubMed

    Binns, Colin; Lee, Mi Kyung; Low, Wah Yun; Zerfas, Alfred

    2017-10-01

    The Sustainable Development Goals (SDGs) replaced the Millennium Development Goals (MDCs) in 2015, which included several goals and targets primarily related to nutrition: to eradicate extreme poverty and hunger and to reduce child mortality and improve maternal health. In the Asia-Pacific Academic Consortium for Public Health (APACPH) member countries as a group, infant and child mortality were reduced by more than 65% between 1990 and 2015, achieving the MDG target of two-thirds reduction, although these goals were not achieved by several smaller countries. The SDGs are broader in focus than the MDGs, but include several goals that relate directly to nutrition: 2 (zero hunger-food), 3 (good health and well-being-healthy life), and 12 (responsible consumption and production-sustainability). Other SDGs that are closely related to nutrition are 4 and 5 (quality education and equality in gender-education and health for girls and mothers, which is very important for infant health) and 13 (climate action). Goal 3 is "good health and well-being," which includes targets for child mortality, maternal mortality, and reducing chronic disease. The Global Burden of Disease Project has confirmed that the majority of risk for these targets can be attributed to nutrition-related targets. Dietary Guidelines were developed to address public health nutrition risk in the Asia Pacific region at the 48th APACPH 2016 conference and they are relevant to the achievement of the SDGs. Iron deficiency increases the risk of maternal death from haemorrhage, a cause of 300000 deaths world-wide each year. Improving diets and iron supplementation are important public health interventions in the APACPH region. Chronic disease and obesity rates in the APACPH region are now a major challenge and healthy life course nutrition is a major public health priority in answering this challenge. This article discusses the role of public health nutrition in achieving the SDGs. It also examines the role of

  15. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro.

    PubMed

    Xing, James Z; Lu, Lei; Unsworth, Larry D; Major, Paul W; Doschak, Michael R; Kaipatur, Neelambar R

    2017-02-01

    To develop a nanofiber hydrogel (NF-hydrogel) for sustained and controlled release of the recombinant receptor activator of NF-kB ligand; (RANKL) and to characterize the release kinetics and bioactivity of the released RANKL. Various concentrations of fluorescently-labelled RANKL protein were added to NF-hydrogels, composed of Acetyl-(Arg-Ala-Asp-Ala) 4 -CONH 2 [(RADA) 4 ] of different concentrations, to investigate the resulting in vitro release rates. The nano-structures of NF-hydrogel, with and without RANKL, were determined using atomic force microscopy (AFM). Released RANKL was further analyzed for changes in secondary and tertiary structure using CD spectroscopy and fluorescent emission spectroscopy, respectively. Bioactivity of released RANKL protein was determined using NFATc1 gene expression and tartrate resistant acid phosphatase (TRAP) activity of osteoclast cells as biomarkers. NF-hydrogel concentration dependent sustained release of RANKL protein was measured at concentrations between 0.5 and 2%(w/v). NF-hydrogel at 2%(w/v) concentration exhibited a sustained and slow-release of RANKL protein up to 48h. Secondary and tertiary structure analyses confirmed no changes to the RANKL protein released from NF-hydrogel in comparison to native RANKL. The results of NFATc1 gene mRNA expression and TRAP activities of osteoclast, showed that the release process did not affect the bioactivity of released RANKL. This novel study is the first of its kind to attempt in vitro characterization of NF-hydrogel based delivery of RANKL protein to induce osteoclastogenesis. We have shown the self-assembling NF-hydrogel peptide system is amenable to the sustained and controlled release of RANKL locally; that could in turn increase local concentration of RANKL to induce osteoclastogenesis, for application to the controlled mobilization of tooth movement in orthodontic procedures. Orthodontic tooth movement (OTM) occurs through controlled application of light forces to teeth

  16. Crossing scales and disciplines to achieve forest sustainability

    Treesearch

    Michael J. Papaik; Brian Sturtevant; Christian Messier

    2008-01-01

    Forest land managers are faced with unprecedented global pressures to produce resources for human consumption (e.g., Liu and Diamond 2005), while still maintaining essential ecosystem services benefiting society at multiple spatial scales (Costanza et al. 1997). These global pressures alone present daunting challenges to sustainable forest management (SFM) worldwide (...

  17. Preparation and evaluation of a timolol maleate drug-resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo.

    PubMed

    Qin, Fuhong; Zeng, Li; Zhu, Yongtao; Cao, Jingjing; Wang, Xiaohui; Liu, Wei

    2016-01-01

    The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug-resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8 ± 1.2 μm and drug loading at 43.00 ± 0.09%. The results indicate that drug released from the drug-resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug-resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.

  18. Concentration of ofloxacin in canine prostate tissue and prostate fluid after intraprostatic injection of biodegradable sustained-releasing microspheres containing ofloxacin.

    PubMed

    Bahk, J Y; Hyun, J S; Lee, J Y; Kim, J; Cho, Y H; Lee, J H; Park, J S; Kim, M O

    2000-05-01

    Excellent treatment results in chronic prostatitis by direct intra-prostatic injection of antibiotic were reported several decades ago with only minimal scientific background. We examined the distribution, in prostatic tissue and fluid, of the antibiotic in canines after intra-prostatic injection of biodegradable sustained-releasing microspheres containing 12 mg. of ofloxacin. A total of 36 male dogs, 12 controls and 24 experimental, older than 2 years, were used. Experimental dogs were given biodegradable sustained releasing microspheres containing ofloxacin 12 mg. and poly(D,L-lactic) acid 28 mg., designed to release over more than a 4 week period. The 12 control animals were divided into 2 groups, and oral ofloxacin 100 mg. was given twice a day for 2 and 4 weeks. The 24 experimental animals were divided into 4 subgroups of 6 dogs each, 4 for prostatic tissue and 2 for prostatic fluid level of ofloxacin determination. Anesthesia was initiated with ketamine HCl and xylazine, and maintained with intermittent ketamine HCl. In the experimental groups, 1 ml. of resolved formula was injected into one lobe of surgically exposed prostates. The concentration of ofloxacin was measured by high performance liquid chromatography (HPLC) of blood, prostatic tissue and prostatic fluid. Pilocarpine 0.5 mg./kg. was used for the collection of the prostatic fluid. The total ofloxacin of controls were 2,800 (2 weeks) and 5,600 (4 weeks) mg. In control groups, tissue concentrations of ofloxacin were relatively even at all segments of prostate, 7.4 +/- 0.8 (2 weeks) and 9.2 +/- 1.1 microg./ml. (4 weeks). The blood level ranged between 3.6 to 5.1 microg./ml. The prostatic fluid level ranged from 3.1 to 5.7 microg. /ml. In the experimental groups, the tissue levels of ofloxacin were 10.5 +/- 3.0 (1 week), 13.8 +/- 4.5 (2 weeks), 7.1 +/- 0.9 (3 weeks) and 7.7 +/- 3.0 microg./ml. (4 weeks) in the injected lobe. The opposite lobes were 8.0 +/- 1.1 (1 week), 10.2 +/- 4.2 (2 weeks), 5. 1

  19. Effects of once-weekly sustained-release growth hormone: a double-blind, placebo-controlled study in adult growth hormone deficiency.

    PubMed

    Biller, Beverly M K; Ji, Hyi-Jeong; Ahn, Hyunji; Savoy, Conrad; Siepl, E Christine; Popovic, Vera; Coculescu, Mihail; Roemmler, Josefine; Gavrila, Catalin; Cook, David M; Strasburger, Christian J

    2011-06-01

    A sustained-release recombinant human GH formulation, LB03002, has been recently developed, with pharmacokinetics and pharmacodynamic activity appropriate for once-weekly administration. LB03002 is a long-acting GH that is administered once a week by s.c. injection. This study evaluated efficacy and safety of LB03002 in adult patients with GH deficiency. A total of 152 patients were randomized to receive LB03002 or placebo once weekly for 26 wk. Changes in body composition were evaluated from DXA (dual-energy x-ray absorptiometry). IGF-I was assessed at each study visit. Safety was assessed from adverse events, glucose homeostasis, and antibody development. IGF-I increased significantly (P < 0.001) with LB03002 and remained unchanged with placebo. Mean fat mass (FM) decreased by 1.052 kg [95% confidence interval (CI) = -1.614 to -0.491] in the LB03002 group vs. an increase of 0.570 kg (95% CI = -0.205-1.345) in the placebo group; treatment difference was 1.622 kg (95% CI = -2.527 to -0.717; P < 0.001). FM change was mainly due to decreased trunk fat. Least square mean treatment difference was 1.032 kg (95% CI = -1.560 to -0.515; P < 0.001). LBM (lean body mass) was significantly increased with LB03002 vs. placebo (least square mean difference was 1.393 kg; 95% CI = 0.614-2.171; P < 0.001). No concerning safety issues arose during the study. Weekly GH replacement with the sustained-release preparation LB03002 in adults significantly reduced FM over 6 months and was well tolerated.

  20. Ocular Inserts for Sustained Release of the Angiotensin-Converting Enzyme 2 Activator, Diminazene Aceturate, to Treat Glaucoma in Rats

    PubMed Central

    Nogueira, José Carlos; Fulgêncio, Gustavo de Oliveira; Ribeiro, Tatiana Gomes; Castilho, Rachel Oliveira; Yoshida, Maria Irene; Fuscaldi, Leonardo Lima; Fernandes, Simone Odília Antunes; Cardoso, Valbert Nascimento; Cronemberger, Sebastião; Faraco, André Augusto Gomes; Ferreira, Anderson José

    2015-01-01

    The aim of this study was to develop and evaluate the effects of chitosan inserts for sustained release of the angiotensin-converting enzyme 2 (ACE2) activator, diminazene aceturate (DIZE), in experimental glaucoma. Monolayer DIZE loaded inserts (D+I) were prepared and characterized through swelling, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and in vitro drug release. Functionally, the effects of D+I were tested in glaucomatous rats. Glaucoma was induced by weekly injections of hyaluronic acid (HA) into the anterior chamber and intraocular pressure (IOP) measurements were performed. Retinal ganglion cells (RGC) and optic nerve head cupping were evaluated in histological sections. Biodistribution of the drug was accessed by scintigraphic images and ex vivo radiation counting. We found that DIZE increased the swelling index of the inserts. Also, it was molecularly dispersed and interspersed in the polymeric matrix as a freebase. DIZE did not lose its chemical integrity and activity when loaded in the inserts. The functional evaluation demonstrated that D+I decreased the IOP and maintained the IOP lowered for up to one month (last week: 11.0±0.7 mmHg). This effect of D+I prevented the loss of RGC and degeneration of the optic nerve. No toxic effects in the eyes related to application of the inserts were observed. Moreover, biodistribution studies showed that D+I prolonged the retention of DIZE in the corneal site. We concluded that D+I provided sustained DIZE delivery in vivo, thereby evidencing the potential application of polymeric-based DIZE inserts for glaucoma management. PMID:26204514

  1. Showcasing Sustainability in Your Toxics Release Inventory Report

    EPA Pesticide Factsheets

    From a June 2012 webinar, these slides contain guidance for reporting Pollution Prevention and Source Reduction data on the Toxics Release Inventory Form R and a synopsis of EPA's use of this information.

  2. Effects of sustained-release composite on the oxygen levels and sediment phosphorus fractions of an urban river in Shanghai.

    PubMed

    Li, Yang; Zhou, Yanbo; Zhou, Zhenhua; Wang, Ningsheng; Zhou, Qiang; Wang, Fuchen

    2014-01-01

    The eutrophication of many rivers and lakes is attributed to the anoxia and the increasing internal loading of nutrients from sediment. A novel sustained-release composite (SRC) synthesis of stearic acid and calcium peroxide (CaO2) was applied to supply a water body with oxygen endured in this study. The influences of SRC on the dissolved oxygen (DO) level, pH and total phosphorus (TP) of an urban river in Shanghai were studied. The results show that SRC has a longer oxygen-releasing cycle and a more tender effect on pH with the comparison of CaO2 powder. Reduction of 79.6% in the concentration of TP was observed in the water column. After 35 days of SRC addition, there was a significant positive correlation between TP and DO. As a consequence, the phosphorus fractions in sediment, including loosely sorbed P (NH4Cl-P), redox-sensitive P (Fe-P), calcium bound P (Ca-P), aluminium bound P (Al-P) and residual P (organic and refractory P) were affected by the addition of SRC. The NH4Cl-P and Fe-P fractions in the sediment that could release P easily were well constrained under the positive effect of SRC.

  3. Achieving and sustaining full employment.

    PubMed

    Rosen, S M

    1995-01-01

    Human rights and public health considerations provide strong support for policies that maximize employment. Ample historical and conceptual evidence supports the feasibility of full employment policies. New factors affecting the labor force, the rate of technological change, and the globalization of economic activity require appropriate policies--international as well as national--but do not invalidate the ability of modern states to apply the measures needed. Among these the most important include: (I) systematic reduction in working time with no loss of income, (2) active labor market policies, (3) use of fiscal and monetary measures to sustain the needed level of aggregate demand, (4) restoration of equal bargaining power between labor and capital, (5) social investment in neglected and outmoded infrastructure, (6) accountability of corporations for decisions to shift or reduce capital investment, (7) major reductions in military spending, to be replaced by socially needed and economically productive expenditures, (8) direct public sector job creation, (9) reform of monetary policy to restore emphasis on minimizing unemployment and promoting full employment. None are without precedent in modern economies. The obstacles are ideological and political. To overcome them will require intellectual clarity and effective advocacy.

  4. Adverse Events With Sustained-Release Donepezil in Alzheimer Disease: Relation to Body Mass Index.

    PubMed

    Lee, Chunsoo; Lee, Kyungsang; Yu, Hyewon; Ryu, Seung-Ho; Moon, Seok Woo; Han, Changsu; Lee, Jun-Young; Lee, Young Min; Kim, Shin-Gyeom; Kim, Ki Woong; Lee, Dong Woo; Kim, Seong Yoon; Lee, Sang-Yeol; Bae, Jae Nam; Jung, Young-Eun; Kim, Jeong Lan; Kim, Byung-Soo; Shin, Il-Seon; Kim, Young Hoon; Kim, Bong Jo; Kang, Hyo Shin; Myung, Woojae; Carroll, Bernard J; Kim, Doh Kwan

    2017-08-01

    Sustained-release, high-dose (23 mg/d) donepezil has been approved for treatment of moderate to severe Alzheimer disease (AD). Based on a previous clinical trial, body weight of less than 55 kg is a risk factor for adverse events with donepezil 23 mg/d treatment in global population. To clarify whether this finding is consistent across ethnic groups that vary in absolute body mass, we recruited Korean patients aged 45 to 90 years with moderate to severe AD who had been receiving standard donepezil immediate release 10 mg/d for at least 3 months. After screening, we analyzed a final cohort of 166 patients who received donepezil 23 mg/d for 24 weeks to compare the occurrence of treatment-emergent adverse events (TEAEs) between patients with high versus low body mass index (BMI) based on the World Health Organization overweight criteria for Asian populations (23 kg/m). Treatment-emergent adverse events were reported by 79.45% of patients in the lower BMI group and 58.06% of patients in the higher BMI group (odds ratio, 2.79; 95% confidence interval, 1.39-5.63; χ = 7.58, P = 0.006). In a multivariable survival analysis, the group with lower BMI showed a higher occurrence of TEAEs (hazard ratio, 1.83; 95% confidence interval, 1.25-2.68; P = 0.002). In Korean patients with moderate to severe AD receiving high-dose donepezil over 24 weeks, TEAEs were significantly more common in those with lower BMI (not clinically overweight), especially nausea. This finding may inform clinical practice for Asian patients.

  5. Photoimages and the release characteristics of lipophilic matrix tablets containing highly water-soluble potassium citrate with high drug loadings.

    PubMed

    Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin

    2007-07-18

    Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.

  6. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs.

    PubMed

    Li, Qingrui; Zhan, Shuyao; Liu, Qing; Su, Hao; Dai, Xi; Wang, Hai; Beng, Huimin; Tan, Wen

    2018-01-01

    An aerosolized liposome formulation for the pulmonary delivery of an anti-asthmatic medication was developed. Asthma treatment usually requires frequent administration of medication for a sustained bronchodilator response. Liposomes are known for their sustained drug release capability and thus would be a suitable delivery system for prolonging the therapeutic effect of anti-asthmatic medication. Liposomes prepared by thin film hydration were loaded with a model drug, R-terbutaline hydrochloride(R-TBH), using an ammonium sulfate-induced transmembrane electrochemical gradient. This technique provided an encapsulation efficiency of up to 71.35% and yielded R-TBH liposomes with a particle size of approximately 145 ± 20 nm. According to stability studies, these R-TBH liposomes should be stored at 4°C before usage. Compared to R-TBH solution, which showed 90.84% release within 8 h, liposomal R-TBH had a cumulative release of 73.53% at 37°C over 192 h. A next generation impactor (NGI) was used to analyze the particle size distribution in the lungs of R-TBH liposome aerosol in vitro at 5°C. The therapeutic efficacy of the nebulized aerosol of the R-TBH liposomes was assessed via pulmonary delivery in guinea pigs. The results showed that, compared to the R-TBH solution group, the R-TBH liposome group had a prolonged anti-asthma effect.

  7. Drug release from porous silicon for stable neural interface

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Tsang, Wei Mong; Park, Woo-Tae

    2014-02-01

    70 μm-thick porous Si (PSi) layer with the pore size of 11.1 ± 7.6 nm was formed on an 8-in. Si wafer via an anodization process for the microfabrication of a microelectrode to record neural signals. To reduce host tissue responses to the microelectrode and achieve a stable neural interface, water-soluble dexamethesone (Dex) was loaded into the PSi via incubation with the drug solution overnight. After the drug loading process, the pore size of PSi reduced to 4.7 ± 2.6 nm on the basis of scanning electron microscopic (SEM) images, while its wettability was remarkably enhanced. Fluorescence images demonstrated that Dex was loaded into the porous structure of the PSi. Degradation rate of the PSi was investigated by incubation in distilled water for 21 days. Moreover, the drug release profile of the Dex-loaded PSi was a combination of an initial burst release and subsequent sustained release. To evaluate cellular responses to the drug release from the PSi, primary astrocytes were seeded on the surface of samples. After 2 days of culture, the Dex-loaded PSi could not only moderately prevent astrocyte adhesion in comparison with Si, but also more effectively suppress the activation of primary astrocytes than unloaded PSi due to the drug release. Therefore, it might be an effective method to reduce host tissue responses and stabilize the quality of the recorded neural signal by means of loading drugs into the PSi component of the microelectrode.

  8. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.

    PubMed

    Chen, Zhi; Wang, Ting; Yan, Qing

    2018-02-01

    Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.

  9. The role of social message using norm abstraction level and ecological value orientation to achieve sustainable consumption

    NASA Astrophysics Data System (ADS)

    Ekasari, A.

    2018-01-01

    Pro-environmental behavior is one of human activities to achieve sustainability. In order to encourage people to do so, it needs contribution from marketing discipline using social message. The research aims to investigate the effect of social message framed by norm abstraction level and ecological value orientation on attitude and intention to act pro-environmental behavior in the context of littering. This study implemented a 3 (message framing: biospheric/altruistic/egoistic) × 2 (norm abstraction level : abstract/concrete) between subject experimental design to collect the data. An independent sample t test was used to analyze the data. The results indicate that a social message using concrete norm combined with the three ecological value orientation gains more positive response than the use of abstract norm with the same ecological value orientations. Findings of the research are expected to help government or other institutions to create an appropriate social message in anti littering campaign and motivates people to change their behavior in practicing sustainable consumption.

  10. Kinetic and theoretical studies of novel biodegradable thermo-sensitive xerogels based on PEG/PVP/silica for sustained release of enrofloxacin

    NASA Astrophysics Data System (ADS)

    Ebadi, Azra; Rafati, Amir Abbas; Bavafa, Sadeghali; Mohammadi, Masoumah

    2017-12-01

    This study involves the synthesis of a new silica-based colloidal hybrid system. In this new hybrid system, poly (ethylene glycol) (PEG) and thermo-sensitive amphiphilic biocompatible poly (vinyl pyrrolidone) (PVP) were used to create suitable storage for hydrophobic drugs. The possibility of using variable PVP/PEG molar ratios to modulate drug release rate from silica nanoparticles was a primary goal of the current research. In addition, an investigation of the drug release kinetic was conducted. To achieve this, silica nanoparticles were synthesized in poly (ethylene glycol) (PEG) and poly (vinyl pyrrolidone) (PVP) solution incorporated with enrofloxacin (EFX) (as a model hydrophobic drug), using a simple synthetic strategy of hybrid materials which avoided waste and multi-step processes. The impacts of PVP/PEG molar ratios, temperature, and pH of the release medium on release kinetic were investigated. The physicochemical properties of the drug-loaded composites were studied by Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). In vitro drug release studies demonstrated that the drug release rate, which was evaluated by analyzing the experimental data with seven kinetic models in a primarily non-Fickian diffusion-controlled process, aligned well with both Ritger-Peppas and Sahlin-Peppas equations.

  11. Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners

    PubMed Central

    Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun

    2010-01-01

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719

  12. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    PubMed Central

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  13. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles.

    PubMed

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection.

  14. An international waste convention: measures for achieving sustainable development.

    PubMed

    Meyers, Gary D; McLeod, Glen; Anbarci, Melanie A

    2006-12-01

    Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.

  15. Development of a simple analytical methodology for determination of glucosamine release from modified release matrix tablets.

    PubMed

    Wu, Yunqi; Hussain, Munir; Fassihi, Reza

    2005-06-15

    A simple spectrophotometric method for determination of glucosamine release from sustained release (SR) hydrophilic matrix tablet based on reaction with ninhydrin is developed, optimized and validated. The purple color (Ruhemann purple) resulted from the reaction was stabilized and measured at 570 nm. The method optimization was essential as many procedural parameters influenced the accuracy of determination including the ninhydrin concentration, reaction time, pH, reaction temperature, purple color stability period, and glucosamine/ninhydrin ratio. Glucosamine tablets (600 mg) with different hydrophilic polymers were formulated and manufactured on a rotary press. Dissolution studies were conducted (USP 26) using deionized water at 37+/-0.2 degrees C with paddle rotation of 50 rpm, and samples were removed manually at appropriate time intervals. Under given optimized reaction conditions that appeared to be critical, glucosamine was quantitatively analyzed and the calibration curve in the range of 0.202-2.020 mg (r=0.9999) was constructed. The recovery rate of the developed method was 97.8-101.7% (n=6). Reproducible dissolution profiles were achieved from the dissolution studies performed on different glucosamine tablets. The developed method is easy to use, accurate and highly cost-effective for routine studies relative to HPLC and other techniques.

  16. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds.

    PubMed

    Hlavaty, K A; Gibly, R F; Zhang, X; Rives, C B; Graham, J G; Lowe, W L; Luo, X; Shea, L D

    2014-07-01

    Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides.

    PubMed

    Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J

    2018-04-17

    Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.

  18. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies

    PubMed Central

    Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng

    2014-01-01

    We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790

  19. Incorporation of Levodopa into Biopolymer Coatings Based on Carboxylated Carbon Nanotubes for pH-Dependent Sustained Release Drug Delivery.

    PubMed

    Tan, Julia Meihua; Saifullah, Bullo; Kura, Aminu Umar; Fakurazi, Sharida; Hussein, Mohd Zobir

    2018-05-31

    Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson's disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34⁻41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.

  20. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite.

    PubMed

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO 4 ) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV-Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl>NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO 4 material also observed to be decreased in the order K + >Na + and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO 4 matrix, as the material can release up to 87% of its total loaded drug over a 90min period. Finally, the cell viability and proliferation studies tested

  1. Petit receives Robert C. Cowen Award for Sustained Achievement in Science Journalism: Response

    NASA Astrophysics Data System (ADS)

    Petit, Charles W.

    2012-01-01

    Charles W. Petit, a veteran science writer, received the 2011 Robert C. Cowan Award for Sustained Achievement in Science Journalism at the AGU Fall Meeting Honors Ceremony, held on 7 December 2011 in San Francisco, Calif. Petit covered earthquakes for the San Francisco Chronicle during the 1980s and 1990s and has recently served as "head tracker" for the Knight Science Journalism Tracker, a Massachusetts Institute of Technology-based daily blog that compiles and critiques science reporting worldwide. Petit was previously honored by AGU in 2003 when he received the David Perlman Award for an article about a new finding in oceanography. The Cowan Award, named for a former science editor of the Christian Science Monitor, is given no more than every 2 years and recognizes a journalist who has made "significant, lasting, and consistent contributions to accurate reporting or writing" on the Earth and space sciences for the general public.

  2. Petit receives Robert C. Cowen Award for Sustained Achievement in Science Journalism: Citation

    NASA Astrophysics Data System (ADS)

    Rademacher, Horst

    2012-01-01

    Charles W. Petit, a veteran science writer, received the 2011 Robert C. Cowan Award for Sustained Achievement in Science Journalism at the AGU Fall Meeting Honors Ceremony, held on 7 December 2011 in San Francisco, Calif. Petit covered earthquakes for the San Francisco Chronicle during the 1980s and 1990s and has recently served as "head tracker" for the Knight Science Journalism Tracker, a Massachusetts Institute of Technology-based daily blog that compiles and critiques science reporting worldwide. Petit was previously honored by AGU in 2003 when he received the David Perlman Award for an article about a new finding in oceanography. The Cowan Award, named for a former science editor of the Christian Science Monitor, is given no more than every 2 years and recognizes a journalist who has made "significant, lasting, and consistent contributions to accurate reporting or writing" on the Earth and space sciences for the general public.

  3. Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease.

    PubMed

    Gareb, Bahez; Eissens, Anko C; Kosterink, Jos G W; Frijlink, Hendrik W

    2016-06-01

    Ulcerative colitis (UC) and Crohn's disease (CD) are diseases affecting the gastrointestinal tract. Treatment depends on the severity of the disease, site of inflammation, and patient's response. The aim of this study was to develop a zero-order sustained-release tablet containing both the anti-inflammatory drugs mesalazine and budesonide as a new treatment option for ileo-colonic CD and UC. Tablets were attained by wet granulation with hydroxypropyl methylcellulose and direct compression. Our newly developed tablet core was coated with different ColoPulse® coating thicknesses and the mesalazine and budesonide release profiles were investigated in a 600-min gastrointestinal simulation system (GISS) experiment, together with commercially available MMX®-mesalazine and MMX®-budesonide. Lag-time, release rate (k0), completeness of release, and zero-order correlation coefficient (R(2)0) could be manipulated by varying ColoPulse® coating thickness. Our newly developed combination preparation (C[4.92]) complied with all conducted European Pharmacopoeia tests as well as an accelerated 6-month stability test and had a lag-time of 250min (simulated ileum targeted), a linear release profile (mesalazine R(2)0=0.9002; budesonide R(2)0=0.9481), and drug release of 100% mesalazine and 77% budesonide. Like C[4.92], MMX®-mesalazine had a linear (R(2)0=0.9883) and complete release profile (96%). However, C[4.92] lag-time was longer (250 vs. 210min), assuring simulated ileum specificity. Remarkably, MMX®-budesonide lag-time was 480min and release was only 7% with a linear character (R(2)0=0.9906). The in vitro results suggest that MMX®-budesonide effectiveness may be improved if budesonide release in the aqueous phase would be increased and that C[4.92] is a potential, new treatment option for ileo-colonic CD and UC. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Early stage design decisions: the way to achieve sustainable buildings at lower costs.

    PubMed

    Bragança, Luís; Vieira, Susana M; Andrade, Joana B

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle.

  5. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications.

    PubMed

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Controlled nerve growth factor release from multi-ply alginate/chitosan-based nerve conduits.

    PubMed

    Pfister, Lukas A; Alther, Eva; Papaloïzos, Michaël; Merkle, Hans P; Gander, Bruno

    2008-06-01

    The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.

  7. Decreased absorption as a possible cause for the lower bioavailability of a sustained-release propranolol.

    PubMed

    Takahashi, H; Ogata, H; Warabioka, R; Kashiwada, K; Ohira, M; Someya, K

    1990-03-01

    The influence of sustained absorption on the oral availability of propranolol (P) and the metabolic disposition of P were investigated by obtaining the partial metabolic clearances (CLm) following long-acting P (LA) dosing in comparison with the conventional propranolol tablet (CP). Ten healthy volunteers were given a single oral dose of an LA capsule (60 mg) and CP (20 mg x 3) using a crossover design. Blood and urine samples were collected over 24- and 48-h postdose periods, respectively. Concentrations of P, propranolol glucuronide (PG), 4-hydroxypropranolol (4P), 4-hydroxypropranolol glucuronide (4PG), 4-hydroxypropranolol sulfate (4PS), and naphthoxylactic acid (NLA) were determined by HPLC with fluorescence and UV detection. Significant differences were observed between LA and CP in the area under the plasma concentration-time curves (AUCs) for P, PG, and NLA and in the amounts excreted into urine (Ae) for all measured metabolites (i.e., PG, 4P, 4PG, 4PS, and NLA). The parallel decrease of the AUC for P and the excreted amounts of all measured metabolites following LA dosing resulted in partial metabolic clearances (CLm) and renal clearances (CL) for P and its metabolites that were similar to those observed for CP. Therefore, the hepatic metabolism of P would not be affected by the slower absorption at a single oral dose of 60 mg. These results indicate that the poor absorption of P from the gastrointestinal tract might be one of the factors causing the low bioavailability of P observed after administration of the sustained-release formulation.

  8. Sustained Local Release of Methylprednisolone From a Thiol-Acrylate Poly(Ethylene Glycol) Hydrogel for Treating Chronic Compressive Radicular Pain.

    PubMed

    Slotkin, Jonathan R; Ness, Jennifer K; Snyder, Kristin M; Skiles, Amanda A; Woodard, Eric J; OʼShea, Timothy; Layer, Rick T; Aimetti, Alex A; Toms, Steven A; Langer, Robert; Tapinos, Nikos

    2016-04-01

    A preclinical animal model of chronic ligation of the sciatic nerve was used to compare the effectiveness of a slow-release hydrogel carrying methylprednisolone to methylprednisolone injection alone, which simulates the current standard of care for chronic compressive radiculopathy (CR). To extend the short-term benefits of steroid injections by using a nonswelling, biodegradable hydrogel as carrier to locally release methylprednisolone in a regulated and sustained way at the site of nerve compression. CR affects millions worldwide annually, and is a cause of costly disability with significant societal impact. Currently, a leading nonsurgical therapy involves epidural injection of steroids to temporarily alleviate the pain associated with CR. However, an effective way to extend the short-term effect of steroid treatment to address the chronic component of CR does not exist. We induced chronic compression injury of the sciatic nerves of rats by permanent ligation. Forty-eight hours later we injected our methylprednisolone infused hydrogel and assessed the effectiveness of our treatment for 4 weeks. We quantified mechanical hyperalgesia using a Dynamic Plantar Aesthesiometer (Ugo Basile, Stoelting Co., IL, USA), whereas gait analysis was conducted using the Catwalk automated gait analysis platform (Noldus, Leesburg, VA, USA). Macrophage staining was performed with immunohistochemistry and quantification of monocyte chemoattractant protein-1 in sciatic nerve lysates was performed with multiplex immunoassay using a SECTOR Imager 2400A (Meso Scale Discovery, Rockville, MA, USA). We demonstrate that using the hydrogel to deliver methylprednisolone results in significant (P < 0.05) reduction of hyperalgesia and improvement in the gait pattern of animals with chronic lesions as compared with animals treated with steroid alone. In addition, animals treated with hydrogel plus steroid showed significant reduction in the number of infiltrating macrophages at the sciatic

  9. A bioactive implant in situ and long-term releases combined drugs for treatment of osteoarticular tuberculosis.

    PubMed

    Zhou, Chao-Xi; Li, Litao; Ma, Yi-Guang; Li, Bing-Nan; Li, Guang; Zhou, Zhihang; Shi, Feng; Weng, Jie; Zhang, Cong; Wang, Fenghua; Cui, Xu; Wang, Lei; Wang, Hao

    2018-05-24

    Anti-tuberculosis chemotherapy with a long duration and adequate dosing is the mainstay for treatment of osteoarticular tuberculosis (TB). However, it is difficult for systemic administration to reach adequate local drug concentrations and achieve effective treatment. Herein, a hydroxyapatite (HA) scaffold implant combined with a drug-releasing system was designed to achieve in situ and long-term anti-TB drug release and highly efficient therapeutic activity in vitro and in vivo. The clinical anti-TB drugs hydrophilic isoniazid (INH) and hydrophobic rifampicin (RFP) were molecularly dispersed into polyvinyl alcohol (PVA) through immersion-curing techniques and were steadily adhered onto the surfaces of HA scaffolds (HA-drug@PVA). The HA-drug@PVA scaffolds showed a long-term, sustained drug release profile and killed proliferating Mycobacteriumin vitro. In vivo experimental results revealed that the HA-drug@PVA scaffolds provided over 10- and 100-fold higher concentrations in muscles and bones, respectively, as well as a much lower concentration (<0.025) in blood. Furthermore, the HA-drug@PVA scaffold implanted in an osteoarticular TB rabbit model showed obvious bone regeneration and fusion due to the inhibition of TB-associated inflammatory changes. The excellent therapeutic effects indicate that in situ implant materials combined with a long-term drug release system are promising for the treatment of osteoarticular TB and other osteoarticular infections. Copyright © 2018. Published by Elsevier Ltd.

  10. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides

    PubMed Central

    Sirsi, Shashank R; Schray, Rebecca C; Wheatley, Margaret A; Lutz, Gordon J

    2009-01-01

    Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD. PMID:19351396

  11. Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals.

    PubMed

    Pérez Quiñones, Javier; Brüggemann, Oliver; Kjems, Jørgen; Shahavi, Mohammad Hassan; Peniche Covas, Carlos

    2018-02-21

    Two synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity. Spectroscopic studies confirmed quantitative disubstitution of studied PEGs with the brassinosteroids, while elemental analysis assessed purity of the synthesized conjugates. Conjugates were also characterized by X-ray diffraction and thermal analysis. Dynamic and static light scattering showed stable and homogeneous approximately spherical micelles with average hydrodynamic diameters of 22-120 nm and almost neutral ζ potential. Spherical 30-140 nm micelles were observed by electron microscopy. Sustained in vitro releases at pH 5.5 were extended up to 96 h. Prepared PEG micelles showed good agrochemical activity in the radish seed bioassay and no cytotoxicity to the human microvascular endothelial cell line in the MTS test.

  12. Controlled release liquid dosage formulation

    DOEpatents

    Benton, Ben F.; Gardner, David L.

    1989-01-01

    A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.

  13. Prophylaxis versus pre-emptive treatment for infective and inflammatory complications of surgical third molar removal: a randomized, double-blind, placebo-controlled, clinical trial with sustained release amoxicillin/clavulanic acid (1000/62.5 mg).

    PubMed

    Lacasa, J M; Jiménez, J A; Ferrás, V; Bossom, M; Sóla-Morales, O; García-Rey, C; Aguilar, L; Garau, J

    2007-04-01

    The most common complications after surgical extraction of the third mandibular molar are trismus, oedema or swelling, local pain, dysphagia and infection. The aim of this comparative, double-blind, randomized clinical trial was to evaluate the efficacy of two sustained release amoxicillin/clavulanate regimens in the reduction of infection after third molar extractive surgery. A total of 225 patients were randomized into three equal groups: placebo, prophylaxis with single pre-surgical dose of two tablets amoxicillin/clavulanate 1000/62.5 mg, and pre-emptive post-surgery therapy with two tablets amoxicillin/clavulanate 1000/62.5 mg BID for 5 days. A higher rate of infection (P=0.006) was found among patients receiving placebo (16%) than those receiving single-dose prophylaxis (5.3%) or 5-day pre-emptive therapy (2.7%). A relationship between both the duration (13.8% for long versus 7.4% for medium versus 1.6% for short) and difficulty (12.7% with ostectomy versus 3.5% without ostectomy; P=0.011) of surgical procedure and incidence of subsequent infection was also observed. Both prophylactic and therapeutic regimens versus placebo achieved greater reduction of pain after surgery on day 3 (P=0.001). Logistic regression analysis revealed a risk of infection of 24%, 9% and 4% for ostectomy with placebo, prophylaxis and pre-emptive treatment, respectively, whereas it was 7%, 2% and 1% if ostectomy was not performed. Pre-emptive therapy with the oral sustained release amoxicillin/clavulanate formulation reduced the rate of subsequent infection in patients undergoing ostectomy. Prophylaxis was beneficial in simpler procedures and may be indicated in cases where ostectomy is not performed.

  14. Injectable, sustained-release naltrexone for the treatment of opioid dependence: a randomized, placebo-controlled trial

    PubMed Central

    Comer, Sandra D.; Sullivan, Maria A.; Yu, Elmer; Rothenberg, Jami L.; Kleber, Herbert D.; Kampman, Kyle; Dackis, Charles; O'Brien, Charles P.; Chiang, C. Nora; Hawks, Richard L.

    2013-01-01

    Context Naltrexone is a medication available in oral form that can completely block the effects produced by opioid agonists, such as heroin. However, poor medication compliance with naltrexone has been a major obstacle to the effective treatment of opioid dependence. Objective To evaluate the safety and efficacy of a sustained-release depot formulation of naltrexone in treating opioid dependence. Design, Setting, and Participants Randomized, double-blind, placebo-controlled, 8-week multi-center trial of male and female heroin-dependent patients who participated in the study between September 2000 and November 2003. Participants were stratified by years of heroin use (≥5, <4.9) and gender, and then randomized to receive one of three doses: placebo, 192 mg, or 384 mg depot naltrexone. Doses were administered at the beginning of Week 1 and then again four weeks later at the beginning of Week 5. All participants received twice-weekly relapse prevention therapy, provided observed urine samples, and completed other assessments at each visit. Main Outcome Measures Primary outcome measures were retention in treatment and percentage of opioid-negative urine samples. Results A total of 60 patients were randomized at two centers. Retention in treatment was dose related with 39%, 60%, and 68% of the patients in the placebo, naltrexone 192 mg, and naltrexone 384 mg groups, respectively, remaining in treatment at the end of the two-month treatment period. Analysis of the time to dropout revealed a significant main effect of dose with mean time to dropout of 27, 36, and 48 days, respectively, for the placebo, naltrexone 192 mg, and naltrexone 384 mg groups. The percentage of urine samples negative for opioids varied significantly as a function of dose, as did the percentage of urine samples negative for methadone, cocaine, benzodiazepines, and amphetamine. The percentage of urine samples negative for cannabinoids was not significantly different across groups. When the data were

  15. Decision Guidance for Sustainable Manufacturing

    ERIC Educational Resources Information Center

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,…

  16. Opioid use and harms associated with a sustained-release tapentadol formulation: a postmarketing study protocol

    PubMed Central

    Larance, Briony; Farrell, Michael; Cairns, Rose; Buckley, Nicholas; Degenhardt, Louisa

    2018-01-01

    Introduction It has been argued that tapentadol may pharmacologically have lower abuse potential than other pharmaceutical opioids currently available. However, there has been no comprehensive triangulation of data regarding use and harms associated with this formulation. A sustained-release formulation (SRF) of tapentadol (Palexia) was released in Australia in 2011 and listed for public subsidy in 2013. We summarise here the methods of a postmarketing study which will measure postintroduction: (1) population level availability, (2) extramedical use and diversion, (3) attractiveness for extramedical use and (4) associated harms, of tapentadol compared against other pharmaceutical opioids. Methods and analysis We evaluated key sources on pharmaceutical use and harms in Australia. This review indicateddata from four sources that disaggregate pharmaceutical opioid formulations and capture tapentadol SRF could be triangulated. These data sources comprised: (1) national pharmaceutical opioid community sales data from 2011 to 2017, (2) national pharmaceutical opioid poisonings reported to Poison Information Centres (PICs) from 2011 to 2017, (3) number of vendors on online marketplaces listing pharmaceutical opioids for sale and (4) data on pharmaceutical opioid extramedical use, attractiveness and harms from interviews with people who regularly inject drugs in Australia. Ethics and dissemination Ethics approval is not required for use of pharmaceutical sales data. Ethics approval has been obtained for use of national pharmaceutical opioid poisonings reported to PICs (LNR/16/SCHN/44) and for use of online marketplace data and interview data from people who inject drugs (HC12086). Key findings will be published mid-2018 in a peer-reviewed academic journal, and presented at various conferences and professional meetings. PMID:29574444

  17. Sustaining Excellence.

    ERIC Educational Resources Information Center

    Moorse, Rosemary; Reisenberger, Anna

    This publication outlines prerequisites for success, critical factors in achieving excellence, and strategies for sustaining excellence once high levels of performance have been achieved. It considers how quality and improvement models might be used to support colleges in this work and draws on the work of 10 colleges in the United Kingdom that…

  18. Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles.

    PubMed

    Sofokleous, Panagiotis; Ali, Shanom; Wilson, Peter; Buanz, Asma; Gaisford, Simon; Mistry, Dharmit; Fellows, Adrian; Day, Richard M

    2017-12-01

    The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a

  19. Implementing AACN's recommendations for environmental sustainability in colleges of nursing: from concept to impact.

    PubMed

    Butterfield, Patricia; Schenk, Elizabeth; Eide, Phyllis; Hahn, Laura; Postma, Julie; Fitzgerald, Cynthia; Oneal, Gail

    2014-01-01

    In 2011, the American Association of Colleges of Nursing (AACN) released a guidance report titled Toward an Environmentally Sustainable Academic Enterprise: An AACN Guide for Nursing Education. The report was developed in response to a vivid slide presentation at an AACN meeting depicting the deleterious public and environmental health effects of global industrialization. Following the presentation, AACN members capitalized on the opportunity to provide national leadership to U.S. colleges of nursing in regard to environmental sustainability and stewardship. This article summarizes key features of the AACN plan and outlines one college's multifaceted implementation plan. The goal of the implementation plan was to translate the AACN recommendations from concept into college-specific actions. Specific steps taken by the college included the following: (a) increasing student and faculty awareness, (b) greening business operations, (c) increased participation in media events, (d) leveraging the impact of national sustainability initiatives, and (e) enhancing curricula at the undergraduate and graduate levels. Through this work, the college achieved not only a higher standard of sustainability within its own walls but also a richer appreciation of the importance of educating nurses as future stewards in an environmentally sustainable health care system. © 2014.

  20. Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.

    PubMed

    Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R

    1998-03-01

    Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.

  1. Early Stage Design Decisions: The Way to Achieve Sustainable Buildings at Lower Costs

    PubMed Central

    Bragança, Luís; Vieira, Susana M.; Andrade, Joana B.

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle. PMID:24578630

  2. Sustainable and Healthy Communities (SHC) Topic 3 Fact Sheets

    EPA Pesticide Factsheets

    These documents provide a condensed overview of the Sustainable and Healthy Communities (SHC) Research Program's Projects 3.61 Contaminated Sites, 3.62 Environmental Releases of Oils and Fuels, and 3.63 Sustainable Materials Management.

  3. Diamond Nanogel-Embedded Contact Lenses Mediate Lysozyme-Dependent Therapeutic Release

    PubMed Central

    2015-01-01

    Temporarily implanted devices, such as drug-loaded contact lenses, are emerging as the preferred treatment method for ocular diseases like glaucoma. Localizing the delivery of glaucoma drugs, such as timolol maleate (TM), can minimize adverse effects caused by systemic administration. Although eye drops and drug-soaked lenses allow for local treatment, their utility is limited by burst release and a lack of sustained therapeutic delivery. Additionally, wet transportation and storage of drug-soaked lenses result in drug loss due to elution from the lenses. Here we present a nanodiamond (ND)-embedded contact lens capable of lysozyme-triggered release of TM for sustained therapy. We find that ND-embedded lenses composed of enzyme-cleavable polymers allow for controlled and sustained release of TM in the presence of lysozyme. Retention of drug activity is verified in primary human trabecular meshwork cells. These results demonstrate the translational potential of an ND-embedded lens capable of drug sequestration and enzyme activation. PMID:24506583

  4. Sintering of wax for controlling release from pellets.

    PubMed

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  5. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs.

    PubMed

    Xie, Jiajun; Wang, Changjun; Ning, Qingyao; Gao, Qi; Gao, Changyou; Gou, Zhongru; Ye, Juan

    2017-11-01

    To design an injectable hyaluronate (HA)-based hydrogel system that contains drug-loaded microcapsules as resorbable plugs to deliver ocular drugs. In-situ drug-loaded, core-shell-structured chitosan (CS)@HA microcapsules were fabricated via HA hydrosol collecting in electrospun bead-rich CS fibers under continuous stirring. An injectable and cytocompatible hydrogel system with different degrees of chemical crosslinking maintained viscoelastic and sustained drug release for a long-term period of time at body temperature in vitro. With the addition of adipic dihydrazide (ADH) or 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI), HA hydrosols transited from liquid to solid state at the gel point, with the G'/G″ ratio varying between 1.43 and 5.32 as a function of crosslinker concentration in the hydrogel phase. Ofloxacin (OFL) release from the mechanically mixed hydrosol system (CS-HA-A0-E0) and the micro-encapsulated hydrosol formulation (CS@HA-A0-E0) were respectively over 80% and 51% of the total drug load leaching out within 24 h. As for the drug-mixed hydrogel systems with low (CS-HA-A0.06-E0.15) and high (CS-HA-A0.06-E0.30) crosslinking density, the OFL release rate reached 38.5 and 46.6% respectively, while the micro-encapsulated hydrogel systems with low (CS@HA-A0.06-E0.15) and high (CS@HA-A0.6-E0.30) showed only (11.9 ± 2.7)% and (17.4 ± 3.5)% drug release respectively. A one-step in-situ drug-capsulizing method is developed to fabricate a resorbable hydrogel punctal plug with extended drug release. The chemistry of the crosslinking reaction involves the formation of highly biocompatible HA derivatives. Thus, the hydrogel can be used directly in the tear drainage canalicular system.

  6. A Longitudinal Study of School Districts' Sustained Improvement

    ERIC Educational Resources Information Center

    Sampson, Pauline M.

    2011-01-01

    In this longitudinal study of one region in the state of Texas, there was an examination of district leadership and the sustaining of high student achievement for their districts. The results of this study suggest that sustained improvement of student achievement is very difficult. The districts that had sustained improvement had stable district…

  7. Dementia-friendly communities: challenges and strategies for achieving stakeholder involvement.

    PubMed

    Heward, Michelle; Innes, Anthea; Cutler, Clare; Hambidge, Sarah

    2017-05-01

    Dementia-friendly communities (DFCs) are a UK policy initiative that aims to enable people with dementia to feel supported and included within their local community. Current approaches to DFC creation rely on stakeholder involvement, often requiring volunteer assistance. There is though a lack of evidence that examines the reality of achieving this. This paper critically assesses the challenges and strategies for achieving stakeholder involvement in DFCs. The evidence base is drawn from an inter-agency project funded by the National Health Service in the South of England where seven DFCs were developed by steering group partners and four part-time project workers (PWs). Data from the independent evaluation undertaken in the first year (2013-2014) of the project were analysed: 14 semi-structured interviews and a focus group examined PWs' experiences; while progress and key milestones are determined from monthly progress forms, good news stories, locality steering group minutes and press releases. Analysis was undertaken using a directed content analysis method, whereby data content for each locality was matched to the analytical framework that was drawn from Alzheimer's Society guidance. Challenges to achieving stakeholder involvement were identified as: establishing networks and including people representative of the local community; involving people affected by dementia; and gaining commitment from organisations. Strategies for achieving stakeholder involvement were recognised as: a sustainable approach; spreading the word; and sharing of ideas. By highlighting these challenges and the approaches that have been used within communities to overcome them, these findings form the foundation for the creation of DFC initiatives that will become embedded within communities. Stakeholder involvement is unpredictable and changeable; therefore, reliance on this approach questions the long-term sustainability of DFCs, and must be considered in future policies designed to

  8. Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies

    PubMed Central

    Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.

    2011-01-01

    The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering β-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004

  9. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.

    PubMed

    Bastami, Farshid; Paknejad, Zahrasadat; Jafari, Maissa; Salehi, Majid; Rezai Rad, Maryam; Khojasteh, Arash

    2017-03-01

    Fabrication of an ideal scaffold having proper composition, physical structure and able to have sustained release of growth factors still is challenging for bone tissue engineering. Current study aimed to design an appropriate three-dimensional (3-D) scaffold with suitable physical characteristics, including proper compressive strength, degradation rate, porosity, and able to sustained release of bone morphogenetic protein-2 (BMP2), for bone tissue engineering. A highly porous 3-D β-tricalcium phosphate (β-TCP) scaffolds, inside of which two perpendicular canals were created, was fabricated using foam-casting technique. Then, scaffolds were coated with gelatin layer. Next, BMP2-loaded chitosan (CS) nanoparticles were dispersed into collagen hydrogel and filled into the scaffold canals. Physical characteristics of fabricated constructs were evaluated. Moreover, the capability of given construct for bone regeneration has been evaluated in vitro in interaction with human buccal fat pad-derived stem cells (hBFPSCs). The results showed that gelatin-coated TCP scaffold with rhBMP2 delivery system not only could act as a mechanically and biologically compatible framework, but also act as an osteoinductive graft by sustained delivering of rhBMP2 in a therapeutic window for differentiation of hBFPSCs towards the osteoblast lineage. The proposed scaffold model can be suggested for delivering of cells and other growth factors such as vascular endothelial growth factor (VEGF), alone or in combination, for future investigations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion.

    PubMed

    Roblegg, Eva; Jäger, Evelyn; Hodzic, Aden; Koscher, Gerold; Mohr, Stefan; Zimmer, Andreas; Khinast, Johannes

    2011-11-01

    The objective of this study was the development of retarded release pellets using vegetable calcium stearate (CaSt) as a thermoplastic excipient. The matrix carrier was hot melt extruded and pelletized with a hot-strand cutter in a one step continuous process. Vegetable CaSt was extruded at temperatures between 100 and 130°C, since at these temperatures cutable extrudates with a suitable melt viscosity may be obtained. Pellets with a drug loading of 20% paracetamol released 11.54% of the drug after 8h due to the great densification of the pellets. As expected, the drug release was influenced by the pellet size and the drug loading. To increase the release rate, functional additives were necessary. Therefore, two plasticizers including glyceryl monostearate (GMS) and tributyl citrate (TBC) were investigated for plasticization efficiency and impact on the in vitro drug release. GMS increased the release rate due to the formation of pores at the surface (after dissolution) and showed no influence on the process parameters. The addition of TBC increased the drug release to a higher extent. After dissolving, the pellets exhibited pores at the surface and in the inner layer. Small- and Wide-Angle X-ray Scattering (SWAXS) revealed no major change in crystalline peaks. The results demonstrated that (nearly) spherical CaSt pellets could be successfully prepared by hot melt extrusion using a hot-strand cutter as downstreaming system. Paracetamol did not melt during the process indicating a solid suspension. Due to the addition of plasticizers, the in vitro release rate could be tailored as desired. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Water Sciences - Connecting the dots to achieve the 2030 Agenda for Sustainable Development

    NASA Astrophysics Data System (ADS)

    Uhlenbrook, Stefan; Ortigara, Angela; Minelli, Lucilla

    2017-04-01

    Land use change, urbanisation, climate change, demographic development and migration, conflicts and peace, change of diets, industry 4.0, globalisation etc. are among the challenges that water sciences need to address to serve societal needs. Water availability per capita is decreasing, water quality is deteriorating at many places, but water demand is continuously escalating. Business as usual in water science is not up to the related challenges. In fact, business as usual cannot be the answer in all aspects, i.e. also current policy making processes will need to improve and take stock of evidences provided by science in order to better address societal challenges. However, exciting developments have been taking place. The global community agreed on a new and ambitious agenda for development, which aims to be comprehensive and include the participation of all stakeholders in one integrated framework. The 2030 Agenda for Sustainable Development provides a stimulating new era, with unique opportunities to reconcile science, society and policy making. Hydrology and water management - in all its facets including wastewater - play a central role in the Agenda 2030, as it is not only central in Sustainable Development Goal (SDG) 6, but it is fundamental for the realization of other SDGs related to, for instance, poverty reduction, sustainable growth, health, food security, climate change, ecosystems (land and sea), gender equality, etc. Despite the recognition of the critical importance of water in this agenda, the implementation of related policies and use of scientific developments represent a difficult task. Two main challenges remain: (i) the utilization of the knowledge and developments already available, and (ii) the need to overcome current and future knowledge gaps ensuring that scientific results support sustainable development effectively. The UN system will produce a Synthesis Report for SDG 6, which is currently being prepared by a UN-Water Task Force that

  12. Effects of a sustained-release form of isosorbide dinitrate on left atrial pressure in dogs with experimentally induced mitral valve regurgitation.

    PubMed

    Yamamoto, Y; Suzuki, S; Hamabe, L; Aytemiz, D; Huai-Che, H; Kim, S; Yoshiyuki, R; Fukayama, T; Fukushima, R; Tanaka, R

    2013-01-01

    The effects of isosorbide dinitrate (ISDN) have not been sufficiently investigated in conscious dogs with mitral valve regurgitation (MR). The objective was to investigate the effects of a sustained-release form of ISDN (sr-ISDN) on hemodynamics and the autonomic nervous system in dogs with MR. Six healthy Beagles weighing 11.2 ± 2.2 kg (2 years of age; 2 males and 4 females) were used. Experimental, crossover, and interventional study. Dogs with experimentally induced MR were administered placebo, 2, 5, and 10 mg/kg sr-ISDN PO on separate days with a 7-day washout period between randomized dosings. Left atrial pressure (LAP) had been recorded continuously from 30 minutes before administration of sr-ISDN to 12 hours after administration. LAP was significantly decreased after administration in the 5 and 10 mg/kg groups. Significant decrease was observed at 3 and 4 hours after administration in the 5 mg/kg group. In the 10 mg/kg group, significant decrease was observed at 2, 3, 4, 5, 6, 7, 10, and 11 hours after administration. The lowest value was observed at 4 hours after administration in the 5 and 10 mg/kg groups (20.9 ± 4.2 to 15.9 ± 3.9 mmHg, P < .01, and 21.3 ± 4.0 to 13.6 ± 4.2 mmHg, P < .001). Sustained-release form of ISDN showed significant decrease of LAP in the 5 mg/kg and 10 mg/kg groups, and duration of effect was dose related. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  13. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E₂-induced ocular inflammation.

    PubMed

    Mathurm, Manish; Gilhotra, Ritu Mehra

    2011-01-01

    An attempt has been made in the present study to formulate soluble ocular inserts of aceclofenac to facilitate the bioavailability of the drug into the eye, as no eye drop solution could be formulated. Glycero-gelatin ocular inserts/films were prepared and physicochemical parameters and drug release profiles of glycerol-gelatin films of aceclofenac were compared with surface cross-linked films of similar compositions. Ocular irritation of the developed formulation was also checked by HET-CAM test and efficacy of the developed formulation against prostaglandin-induced ocular inflammation in rabbit eye was determined. The non-cross-linked films showed poor mechanical, physicochemical properties, and very little potential of sustaining drug release, however cross-linking the films enhanced tensile strength by 70%, but elasticity decreased by 95%. The cross-linked ocular inserts showed less swelling than non-cross-linked. Formulation AF8 (20% gelatin and 70% glycerin, treated by cross-linker for 1 h) demonstrated the longest drug release for 24 h. As per the kinetic models all films showed a constant drug release with Higuchi diffusion mechanism. Formulation was found to be practically non-irritant. The optimized formulation was tested and compared with eye drops of aceclofenac for anti-inflammatory activity in rabbits against PGE₂-induced inflammation. In vivo studies with developed formulation indicated a significant inhibition of PGE₂-induced PMN migration as compared to eye drops. In conclusion, ocular inserts of aceclofenac was found promising as it achieved sustained drug release and better pharmacodynamic activity.

  14. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL'smore » Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.« less

  15. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  16. Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide.

    PubMed

    Awasthi, Rajendra; Kulkarni, Giriraj T; Ramana, Malipeddi Venkata; de Jesus Andreoli Pinto, Terezinha; Kikuchi, Irene Satiko; Molim Ghisleni, Daniela Dal; de Souza Braga, Marina; De Bank, Paul; Dua, Kamal

    2017-04-01

    Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin ® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    PubMed

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sustainability at BPA 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    THIS IS THE THIRD YEAR BPA has reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how much we can improve. The program has demonstrated maturation as the concepts of sustainability and resource conservation are communicated and understood. The sustainability program started as an employee-driven “grass roots” effort in 2010. Sustainability is becoming a consideration in how work is performed. The establishment of several policies supporting sustainability efforts proves the positive progress being made. In 2009, BPA became a founder and member of The Climatemore » Registry, a nonprofit collaboration that sets standards to calculate, verify and report greenhouse gas emissions. This year, BPA completed and published our Greenhouse Gas inventory for the years of 2009, 2010 and 2011. The 2012 inventory is currently in the process of third-party verification and scheduled for public release in January 2014. These inventories provide a concrete measure of the progress we are making.« less

  19. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study.

    PubMed

    Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi

    2007-08-01

    Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.

  20. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    NASA Astrophysics Data System (ADS)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  1. Preparation and application of sustained release microcapsules of potassium ferrate(VI) for dinitro butyl phenol (DNBP) wastewater treatment.

    PubMed

    Wang, Hui-Long; Liu, Shu-Qin; Zhang, Xiu-Yan

    2009-09-30

    The encapsulated potassium ferrate(VI) (K(2)FeO(4)) samples were successfully prepared by phase separation method in organic solvents. The ethyl cellulose and paraffin were selected for the microcapsule wall materials (WM). The as prepared microcapsules were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The stability can be enhanced greatly when ferrate(VI) was encapsulated in the microcapsules with a mass ratio of Fe(VI):WM in the range of 1:1-1:3 for the same conserved time in air compared for pure K(2)FeO(4). The sustained release behavior of the microcapsules with different Fe(VI):WM mass ratios in 8.0M KOH solution was also investigated. The results indicated that the Fe(VI) release was reduced with increase of Fe(VI):WM mass ratios from 1:1 to 1:3. The release kinetics of the microcapsules is found to obey Ritger-Peppas equation. The prepared Fe(VI) microcapsules has been used for the removal of a typical alkyl dinitro phenol compound, 2-sec-butyl-4,6-dinitrophenol (DNBP), from aqueous solution. The effect of pH, microcapsule concentration and reaction time was studied thoroughly. The optimal pH for DNBP degradation was 6.5, and at this pH and a microcapsule concentration of 1.2g/L, approximately 93% of the DNBP was degraded after 80 min. The encapsulated ferrate(VI) samples were found to be very effective in the decolorization and COD reduction of real wastewater from DNBP manufacturing. Thus, this study showed the feasible and potential use of encapsulated Fe(VI) samples in degradation of various toxic organic contaminants and industrial effluents.

  2. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  3. Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids.

    PubMed

    Yamagata, Y; Iga, K; Ogawa, Y

    2000-02-03

    In order to develop a novel delivery system for proteins based on polyglycerol esters of fatty acids (PGEFs), we studied a model system using interferon-alpha (IFN-alpha) as the test protein. A cylindrical matrix was prepared by a heat extrusion technique using a lyophilized powder of the protein and 11 different types of synthetic PGEFs, which varied in degree of glycerol polymerization (di- and tetra-), chain length of fatty acids (myristate, palmitate and stearate) and degree of fatty acid esterification (mono-, di- and tri-). In an in-vitro release study using an enzyme-linked immunosorbent assay (ELISA) as a detection method, the matrices prepared from a monoglyceride (used for comparison) and from diglycerol esters exhibited a biphasic release pattern with a large initial burst followed by slow release. In contrast, the matrices prepared from tetraglycerol esters showed a steady rate of release without a large initial burst. In an in vivo release study, initial bursts of IFN-alpha release were, also, dramatically reduced when the matrices were prepared from the tetraglycerol esters of palmitate and stearate, and the mean residence time (MRT) of IFN-alpha was prolonged, whereas the matrices prepared from monoglyceride and from diglycerol esters showed large initial bursts of IFN-alpha release. Since the release rates from the matrices prepared from the tetraglycerol esters of palmitate and stearate were governed by Jander's equation modified for a cylindrical matrix, the release from those matrices was concluded to be a diffusion-controlled process. The bioavailability of IFN-alpha after implantation of the matrix formulation prepared using all types of PGEFs, except for tetraglycerol triesters, was almost equivalent to that after injection of IFN-alpha solution; consequently, IFN-alpha in these matrices appears to remain stable during the release period.

  4. Characterization and optimization of GMO-based gels with long term release for intraarticular administration.

    PubMed

    Réeff, J; Gaignaux, A; Goole, J; Siepmann, J; Siepmann, F; Jerome, C; Thomassin, J M; De Vriese, C; Amighi, K

    2013-07-15

    Osteoarthritis is characterized by slow degenerative processes in the articular cartilage within synovial joints. It could be interesting to develop a sustained-release formulation that could be effective on both pain/inflammation and restoration of mechanical integrity of the joint. Recently, an injectable system based on glycerol monooleate (GMO), containing clonidine as a model hydrophilic analgesic/anti-inflammatory drug and hyaluronic acid as a viscoelastic scaffold, showed promising potential as a biodegradable and biocompatible preparation to sustain the drug activity. However, drug release from the system is relatively fast (complete within 1 week) and the underlying drug release mechanisms not fully understood. The aims of this study were: (i) to significantly improve this type of local controlled drug delivery system by further sustaining clonidine release, and (ii) to elucidate the underlying mass transport mechanisms. The addition of FDA-approved inactive ingredients such as sodium oleate or purified soybean oil was found to be highly effective. The release rate could be substantially reduced (e.g., 50% release after 10 days), due to the increased hydrophobicity of the systems, resulting in slower and reduced water uptake and reduced drug mobility. Interestingly, Fick's second law of diffusion could be used to quantitatively describe drug release. Copyright © 2013. Published by Elsevier B.V.

  5. [The enantioselective pharmacokinetic study of desvenlafaxine sustained release tablet in Chinese healthy male volunteers after oral administration].

    PubMed

    Chen, Yin-xia; Du, Jiang-bo; Zhang, Yi-fan; Chen, Xiao-yan; Zhong, Da-fang

    2015-04-01

    A chiral LC-MS/MS method for the simultaneous analysis of desvenlafaxine (DVS) enantiomers in human plasma was developed and applied to a pharmacokinetic study on 12 Chinese healthy volunteers. d6-Desvenlafaxine was used as internal standard (IS). Chromatographic separation was performed on the Astec Chirobiotic V chiral column (150 mm x 4.6 mm, 5 μm). The assay was linear over the concentration range of 0.500-150 ng x mL(-1) for both enantiomers (r2 > 0.99). The method was successfully applied to a stereoselective pharmacokinetic study of 100 mg desvenlafaxine sustained release tablets on 12 Chinese healthy volunteers under fasting conditions. The results showed that the pharmacokinetic parameters were similar to both enantiomers in Chinese healthy volunteers. The AUC(0-t), and C(max) of the two enantiomers were about 1.5 times higher than those of blacks and whites reported in the literature.

  6. Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics in dogs.

    PubMed

    Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei

    2013-08-16

    It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    PubMed

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model.

    PubMed

    Chou, Ying-Chao; Cheng, Yi-Shiun; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung

    2016-04-01

    The aim of this study was to evaluate the efficacy of a biodegradable, lidocaine-embedded, nanofibrous membrane for the sustainable analgesic release onto fragments of a segmental femoral fracture site. Membranes of three different lidocaine concentrations (10%, 30%, and 50%) were produced via an electrospinning technique. In vitro lidocaine release was assessed by high-performance liquid chromatography. A femoral segmental fracture, with intramedullary Kirschner-wire fixation and polycaprolactone stent enveloping the fracture site, was set-up in a rabbit model for in vivo assessment of post-operative recovery of activity. Eighteen rabbits were randomly assigned to three groups (six rabbits per group): group A comprised of rabbits with femoral fractures and underwent fixation; group B comprised of a comparable fracture model to that of group A with the implantation of lidocaine-loaded nanofibers; and group C, the control group, received only anesthesia. The following variables were measured: change in body weight, food and water intake before and after surgery, and total activity count post-surgery. All membranes eluted effective levels of lidocaine for more than 3 weeks post-surgery. Rabbits in group B showed faster recovery of activity post-operatively, compared with those in group A, which confirmed the pain relief efficacy of the lidocaine-embedded nanofibers. Nanofibers with sustainable lidocaine release have adequate efficacy and durability for pain relief in rabbits with segmental long bone fractures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    NASA Astrophysics Data System (ADS)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  10. Sustained release of nerve growth factor from biodegradable polymer microspheres.

    PubMed

    Camarata, P J; Suryanarayanan, R; Turner, D A; Parker, R G; Ebner, T J

    1992-03-01

    Although grafted adrenal medullary tissue to the striatum has been used both experimentally and clinically in parkinsonism, there is a definite need to augment long-term survival. Infusion of nerve growth factor (NGF) or implantation of NGF-rich tissue into the area of the graft prolongs survival and induces differentiation into neural-like cells. To provide for prolonged, site-specific delivery of this growth factor to the grafted tissue in a convenient manner, we fabricated biodegradable polymer microspheres of poly(L-lactide)co-glycolide (70:30) containing NGF. Biologically active NGF was released from the microspheres, as assayed by neurite outgrowth in a dorsal root ganglion tissue culture system. Anti-NGF could block this outgrowth. An enzyme-linked immunosorbent assay detected NGF still being released in vitro for longer than 5 weeks. In vivo immunohistochemical studies showed release over a 4.5-week period. This technique should prove useful for incorporating NGF and other growth factors into polymers and delivering proteins and other macromolecules intracerebrally over a prolonged time period. These growth factor-containing polymer microspheres can be used in work aimed at prolonging graft survival, treating experimental Alzheimer's disease, and augmenting peripheral nerve regeneration.

  11. Finding pathways to national-scale land-sector sustainability.

    PubMed

    Gao, Lei; Bryan, Brett A

    2017-04-12

    The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems

  12. Finding pathways to national-scale land-sector sustainability

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Bryan, Brett A.

    2017-04-01

    The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems

  13. Sustainability Research Under EPA/NRMRL

    EPA Science Inventory

    Sustainability means different things to different people, but most can agree that maintaining and supporting critical ecosystems over the long term is important for environmental and human health. Achieving sustainability involves a broad view of environmental stewardship. When ...

  14. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  15. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  16. Sustained release of bactericidal concentrations of penicillin in the pleural space via an antibiotic-eluting pigtail catheter coated with electrospun nanofibers: results from in vivo and in vitro studies.

    PubMed

    Chao, Yin-Kai; Lee, Cheng-Hung; Liu, Kuo-Sheng; Wang, Yi-Chuan; Wang, Chih-Wei; Liu, Shih-Jung

    2015-01-01

    Inadequate intrapleural drug concentrations caused by poor penetration of systemic antibiotics into the pleural cavity is a major cause of treatment failure in empyema. Herein, we describe a novel antibiotic-eluting pigtail catheter coated with electrospun nanofibers used for the sustained release of bactericidal concentrations of penicillin in the pleural space. Electrospun nanofibers prepared using polylactide-polyglycolide copolymer and penicillin G sodium dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol were used to coat the surface of an Fr6 pigtail catheter. The in vitro patterns of drug release were tested by placing the catheter in phosphate-buffered saline. In vivo studies were performed using rabbits treated with penicillin either intrapleurally (Group 1, 20 mg delivered through the catheter) or systemically (Group 2, intramuscular injection, 10 mg/kg). Penicillin concentrations in the serum and pleural fluid were then measured and compared. In vitro studies revealed a burst release of penicillin (10% of the total dose) occurring in the first 24 hours, followed by a sustained release in the subsequent 30 days. Intrapleural drug levels were significantly higher in Group 1 than in Group 2 (P<0.001). In the former, penicillin concentrations remained above the minimum inhibitory concentration breakpoint throughout the entire study period. In contrast, serum penicillin levels were significantly higher in Group 2 than in Group 1 (P<0.001). Notably, all Group 2 rabbits showed signs of systemic toxicity (paralytic ileus and weight loss). We conclude that our antibiotic-eluting catheter may serve as a novel therapeutic option to treat empyema.

  17. Evaluating the patient experience after implantation of a 0.4 mg sustained release dexamethasone intracanalicular insert (Dextenza™): results of a qualitative survey.

    PubMed

    Gira, Joseph P; Sampson, Reginald; Silverstein, Steven M; Walters, Thomas R; Metzinger, Jamie Lynne; Talamo, Jonathan H

    2017-01-01

    The purpose of this study is to evaluate the patient experience of sustained release dexamethasone intracanalicular insert (Dextenza™) following cataract surgery as part of a Phase III clinical trial program. This cross-sectional, qualitative evaluation involved individual interviews lasting approximately 45 minutes. Patients from four US investigational study sites who had previously received an insert were enrolled. There were no predesignated end points; this was a qualitative survey seeking a deeper understanding of patient experience. Twenty-five patients were interviewed. Most patients (92%) reported the highest level of satisfaction grade with regard to overall product satisfaction. All patients described the insert as comfortable. Most patients (96%) described their overall experience with the insert as very convenient or extremely convenient. Twenty-two of 23 (96%) participants rated their experience with the insert as "very" or "extremely convenient", compared to previous topical therapy, and 88% of patients stated that if they were to undergo cataract surgery again, they would request the insert. When asked if they would recommend the insert to family members or friends, 92% stated they would. The survey found that 84% of participants would be willing to pay more for the insert than for eye drop therapy. The dexamethasone insert was found by patients to be highly favorable with regard to overall satisfaction, convenience, and comfort. The insert was well received and largely preferred over topical therapy alternatives following surgery. More extensive evaluation of the patient experience is warranted, and future studies should help inform design of the next generation of sustained release drug delivery systems.

  18. Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release.

    PubMed

    Wang, Baolin; Zheng, Hongxia; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-09-01

    Hollow magnetic fibers for trigger based drug release were synthesized using one-step co-axial electrospinning (COX-ES). This was achieved by encapsulating the antifungal active 'ketoconazole' (KCZ) and iron oxide (Fe3O4) nanoparticles (NPs) in composite form within the core shell polymeric matrix material (polycaprolactone, PCL) during the COX-ES process. Dimethyl silicone oil was used as the inner core (liquid) of co-flowing solutions, which subsequently perfused out of the two-phase electrospun microstructures to form hollow fibers. Resulting drug-loaded magnetic hollow fibers were characterized using optical microscopy, scanning electron microscopy and Fourier Transform Infra-Red. The tensile strength and magnetization properties of composite fibers were also assessed. KCZ drug concentration in electrospinning solutions strongly influenced resulting fiber morphology, drug loading efficiency and release. Expedited drug release during a slow-sustained phase was demonstrated through the application of an auxiliary magnetic field. Variations in tensile strength (∼1.3-6.3MPa) were due to composite fiber components compromising polymer chain integrity. In-vitro cell studies (using human cervical carcinoma cell lines) demonstrated fiber biocompatibility. The present study demonstrates the potential application of magnetic hollow fibers for controlled treatment of fungal infections and antimicrobial indications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  20. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.