Sample records for achromatic color perception

  1. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception. 2012 Elsevier Ltd. All rights reserved

  2. Chromaticity of color perception and object color knowledge.

    PubMed

    Hsu, Nina S; Frankland, Steven M; Thompson-Schill, Sharon L

    2012-01-01

    Sensorimotor theories of semantic memory require overlap between conceptual and perceptual representations. One source of evidence for such overlap comes from neuroimaging reports of co-activation during memory retrieval and perception; for example, regions involved in color perception (i.e., regions that respond more to colored than grayscale stimuli) are activated by retrieval of object color. One unanswered question from these studies is whether distinctions that are observed during perception are likewise observed during memory retrieval. That is, are regions defined by a chromaticity effect in perception similarly modulated by the chromaticity of remembered objects (e.g., lemons more than coal)? Subjects performed color perception and color retrieval tasks while undergoing fMRI. We observed increased activation during both perception and memory retrieval of chromatic compared to achromatic stimuli in overlapping areas of the left lingual gyrus, but not in dorsal or anterior regions activated during color perception. These results support sensorimotor theories but suggest important distinctions within the conceptual system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The achromatic locus: Effect of navigation direction in color space

    PubMed Central

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-01

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes. PMID:24464164

  4. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  5. What #theDress reveals about the role of illumination priors in color perception and color constancy

    PubMed Central

    Aston, Stacey; Hurlbert, Anya

    2018-01-01

    The disagreement between people who named #theDress (the Internet phenomenon of 2015) “blue and black” versus “white and gold” is thought to be caused by individual differences in color constancy. It is hypothesized that observers infer different incident illuminations, relying on illumination “priors” to overcome the ambiguity of the image. Different experiences may drive the formation of different illumination priors, and these may be indicated by differences in chronotype. We assess this hypothesis, asking whether matches to perceived illumination in the image and/or perceived dress colors relate to scores on the morningness-eveningness questionnaire (a measure of chronotype). We find moderate correlations between chronotype and illumination matches (morning types giving bluer illumination matches than evening types) and chronotype and dress body matches, but these are significant only at the 10% level. Further, although inferred illumination chromaticity in the image explains variation in the color matches to the dress (confirming the color constancy hypothesis), color constancy thresholds obtained using an established illumination discrimination task are not related to dress color perception. We also find achromatic settings depend on luminance, suggesting that subjective white point differences may explain the variation in dress color perception only if settings are made at individually tailored luminance levels. The results of such achromatic settings are inconsistent with their assumed correspondence to perceived illumination. Finally, our results suggest that perception and naming are disconnected, with observers reporting different color names for the dress photograph and their isolated color matches, the latter best capturing the variation in the matches. PMID:28793353

  6. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes.

    PubMed

    Heo, Jun Hyuk; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon

    2014-12-21

    We report the development of achromatic colorimetric sensors; sensors changing their colors from achromatic black to other chromatic colors. An achromatic colorimetric sensor was prepared by mixing a general colorimetric indicator, whose color changes between chromatic colors, and a complementary colored dye with no reaction to the targeted analyte. As the color of an achromatic colorimetric sensor changes from black to a chromatic color, the color change could be much easily recognized than general colorimetric sensors with naked eyes. More importantly, the achromatic colorimetric sensors enable on-off type recognition of the presence of analytes, which have not been achieved from most colorimetric sensors. In addition, the color changes from some achromatic colorimetric sensors (achromatic Eriochrome Black T and achromatic Benedict's solution) could be recognized with naked eyes at much lower concentration ranges than normal chromatic colorimetric sensors. These results provide new opportunities in the use of colorimetric sensors for diverse applications, such as harsh industrial, environmental, and biological detection.

  7. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Perception of Fechner Illusory Colors in Alzheimer Disease Patients

    PubMed Central

    Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas

    2016-01-01

    Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677

  9. Perception of Fechner Illusory Colors in Alzheimer Disease Patients.

    PubMed

    Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas

    2016-11-30

    BACKGROUND Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. MATERIAL AND METHODS W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham's disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. RESULTS Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ²=26.87, p<0.001 clockwise, χ²=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham's disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. CONCLUSIONS AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment.

  10. Color vision in ADHD: part 2--does attention influence color perception?

    PubMed

    Kim, Soyeon; Al-Haj, Mohamed; Fuller, Stuart; Chen, Samantha; Jain, Umesh; Carrasco, Marisa; Tannock, Rosemary

    2014-10-24

    To investigate the impact of exogenous covert attention on chromatic (blue and red) and achromatic visual perception in adults with and without Attention Deficit Hyperactivity Disorder (ADHD). Exogenous covert attention, which is a transient, automatic, stimulus-driven form of attention, is a key mechanism for selecting relevant information in visual arrays. 30 adults diagnosed with ADHD and 30 healthy adults, matched on age and gender, performed a psychophysical task designed to measure the effects of exogenous covert attention on perceived color saturation (blue, red) and contrast sensitivity. The effects of exogenous covert attention on perceived blue and red saturation levels and contrast sensitivity were similar in both groups, with no differences between males and females. Specifically, exogenous covert attention enhanced the perception of blue saturation and contrast sensitivity, but it had no effect on the perception of red saturation. The findings suggest that exogenous covert attention is intact in adults with ADHD and does not account for the observed impairments in the perception of chromatic (blue and red) saturation.

  11. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.

  12. Achromatical Optical Correlator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    Signal-to-noise ratio exceeds that of monochromatic correlator. Achromatical optical correlator uses multiple-pinhole diffraction of dispersed white light to form superposed multiple correlations of input and reference images in output plane. Set of matched spatial filters made by multiple-exposure holographic process, each exposure using suitably-scaled input image and suitable angle of reference beam. Recording-aperture mask translated to appropriate horizontal position for each exposure. Noncoherent illumination suitable for applications involving recognition of color and determination of scale. When fully developed achromatical correlators will be useful for recognition of patterns; for example, in industrial inspection and search for selected features in aerial photographs.

  13. Broadband achromatic optical metasurface devices.

    PubMed

    Wang, Shuming; Wu, Pin Chieh; Su, Vin-Cent; Lai, Yi-Chieh; Hung Chu, Cheng; Chen, Jia-Wern; Lu, Shen-Hung; Chen, Ji; Xu, Beibei; Kuan, Chieh-Hsiung; Li, Tao; Zhu, Shining; Tsai, Din Ping

    2017-08-04

    Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.

  14. Newborns' Discrimination of Chromatic from Achromatic Stimuli.

    ERIC Educational Resources Information Center

    Adams, Russell J.; And Others

    1986-01-01

    Two experiments assessed the extent of newborns' ability to discriminate color. Results imply that newborns have some, albeit limited, capacity to discriminate chromatic from achromatic stimuli, and hence, are at least dichromats. (Author/DR)

  15. The elementary representation of spatial and color vision in the human retina.

    PubMed

    Sabesan, Ramkumar; Schmidt, Brian P; Tuten, William S; Roorda, Austin

    2016-09-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units-the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength-sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system.

  16. The elementary representation of spatial and color vision in the human retina

    PubMed Central

    Sabesan, Ramkumar; Schmidt, Brian P.; Tuten, William S.; Roorda, Austin

    2016-01-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units—the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength–sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system. PMID:27652339

  17. Natural Colorants: Food Colorants from Natural Sources.

    PubMed

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  18. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    PubMed

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  19. #TheDress: Categorical perception of an ambiguous color image.

    PubMed

    Lafer-Sousa, Rosa; Conway, Bevil R

    2017-10-01

    We present a full analysis of data from our preliminary report (Lafer-Sousa, Hermann, & Conway, 2015) and test whether #TheDress image is multistable. A multistable image must give rise to more than one mutually exclusive percept, typically within single individuals. Clustering algorithms of color-matching data showed that the dress was seen categorically, as white/gold (W/G) or blue/black (B/K), with a blue/brown transition state. Multinomial regression predicted categorical labels. Consistent with our prior hypothesis, W/G observers inferred a cool illuminant, whereas B/K observers inferred a warm illuminant; moreover, subjects could use skin color alone to infer the illuminant. The data provide some, albeit weak, support for our hypothesis that day larks see the dress as W/G and night owls see it as B/K. About half of observers who were previously familiar with the image reported switching categories at least once. Switching probability increased with professional art experience. Priming with an image that disambiguated the dress as B/K biased reports toward B/K (priming with W/G had negligible impact); furthermore, knowledge of the dress's true colors and any prior exposure to the image shifted the population toward B/K. These results show that some people have switched their perception of the dress. Finally, consistent with a role of attention and local image statistics in determining how multistable images are seen, we found that observers tended to discount as achromatic the dress component that they did not attend to: B/K reporters focused on a blue region, whereas W/G reporters focused on a golden region.

  20. #TheDress: Categorical perception of an ambiguous color image

    PubMed Central

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2017-01-01

    We present a full analysis of data from our preliminary report (Lafer-Sousa, Hermann, & Conway, 2015) and test whether #TheDress image is multistable. A multistable image must give rise to more than one mutually exclusive percept, typically within single individuals. Clustering algorithms of color-matching data showed that the dress was seen categorically, as white/gold (W/G) or blue/black (B/K), with a blue/brown transition state. Multinomial regression predicted categorical labels. Consistent with our prior hypothesis, W/G observers inferred a cool illuminant, whereas B/K observers inferred a warm illuminant; moreover, subjects could use skin color alone to infer the illuminant. The data provide some, albeit weak, support for our hypothesis that day larks see the dress as W/G and night owls see it as B/K. About half of observers who were previously familiar with the image reported switching categories at least once. Switching probability increased with professional art experience. Priming with an image that disambiguated the dress as B/K biased reports toward B/K (priming with W/G had negligible impact); furthermore, knowledge of the dress's true colors and any prior exposure to the image shifted the population toward B/K. These results show that some people have switched their perception of the dress. Finally, consistent with a role of attention and local image statistics in determining how multistable images are seen, we found that observers tended to discount as achromatic the dress component that they did not attend to: B/K reporters focused on a blue region, whereas W/G reporters focused on a golden region. PMID:29090319

  1. Eleven Colors That Are Almost Never Confused

    NASA Astrophysics Data System (ADS)

    Boynton, Robert M.

    1989-08-01

    1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.

  2. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    PubMed

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  3. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  4. Searching through synaesthetic colors.

    PubMed

    Laeng, Bruno

    2009-10-01

    Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.

  5. Is the Lateralized Categorical Perception of Color a Situational Effect of Language on Color Perception?

    PubMed

    Zhong, Weifang; Li, You; Huang, Yulan; Li, He; Mo, Lei

    2018-01-01

    This study investigated whether and how a person's varied series of lexical categories corresponding to different discriminatory characteristics of the same colors affect his or her perception of colors. In three experiments, Chinese participants were primed to categorize four graduated colors-specifically dark green, light green, light blue, and dark blue-into green and blue; light color and dark color; and dark green, light green, light blue, and dark blue. The participants were then required to complete a visual search task. Reaction times in the visual search task indicated that different lateralized categorical perceptions (CPs) of color corresponded to the various priming situations. These results suggest that all of the lexical categories corresponding to different discriminatory characteristics of the same colors can influence people's perceptions of colors and that color perceptions can be influenced differently by distinct types of lexical categories depending on the context. Copyright © 2017 Cognitive Science Society, Inc.

  6. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.

    PubMed

    Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T

    2006-05-01

    We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.

  7. Grapheme-color synesthesia influences overt visual attention.

    PubMed

    Carriere, Jonathan S A; Eaton, Daniel; Reynolds, Michael G; Dixon, Mike J; Smilek, Daniel

    2009-02-01

    For individuals with grapheme-color synesthesia, achromatic letters and digits elicit vivid perceptual experiences of color. We report two experiments that evaluate whether synesthesia influences overt visual attention. In these experiments, two grapheme-color synesthetes viewed colored letters while their eye movements were monitored. Letters were presented in colors that were either congruent or incongruent with the synesthetes' colors. Eye tracking analysis showed that synesthetes exhibited a color congruity bias-a propensity to fixate congruently colored letters more often and for longer durations than incongruently colored letters-in a naturalistic free-viewing task. In a more structured visual search task, this congruity bias caused synesthetes to rapidly fixate and identify congruently colored target letters, but led to problems in identifying incongruently colored target letters. The results are discussed in terms of their implications for perception in synesthesia.

  8. Relating color working memory and color perception.

    PubMed

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Color: Physics and Perception

    NASA Astrophysics Data System (ADS)

    Gilbert, Pupa

    Unless we are colorblind, as soon as we look at something, we know what color it is. Simple, isn't it? No, not really. The color we see is rarely just determined by the physical color, that is, the wavelength of visible light associated with that color. Other factors, such as the illuminating light, or the brightness surrounding a certain color, affect our perception of that color. Most striking, and useful, is understanding how the retina and the brain work together to interpret the color we see, and how they can be fooled by additive color mixing, which makes it possible to have color screens and displays. I will show the physical origin of all these phenomena and give live demos as I explain how they work. Bring your own eyes! For more information: (1) watch TED talk: ``Color: Physics and Perception'' and (2) read book: PUPA Gilbert and W Haeberli ``Physics in the Arts'', ISBN 9780123918789.

  10. Gamut relativity: a new computational approach to brightness and lightness perception.

    PubMed

    Vladusich, Tony

    2013-01-09

    This article deconstructs the conventional theory that "brightness" and "lightness" constitute perceptual dimensions corresponding to the physical dimensions of luminance and reflectance, and builds in its place the theory that brightness and lightness correspond to computationally defined "modes," rather than dimensions, of perception. According to the theory, called gamut relativity, "blackness" and "whiteness" constitute the perceptual dimensions (forming a two-dimensional "blackness-whiteness" space) underlying achromatic color perception (black, white, and gray shades). These perceptual dimensions are postulated to be related to the neural activity levels in the ON and OFF channels of vision. The theory unifies and generalizes a number of extant concepts in the brightness and lightness literature, such as simultaneous contrast, anchoring, and scission, and quantitatively simulates several challenging perceptual phenomena, including the staircase Gelb effect and the effects of task instructions on achromatic color-matching behavior, all with a single free parameter. The theory also provides a new conception of achromatic color constancy in terms of the relative distances between points in blackness-whiteness space. The theory suggests a host of striking conclusions, the most important of which is that the perceptual dimensions of vision should be generically specified according to the computational properties of the brain, rather than in terms of "reified" physical dimensions. This new approach replaces the computational goal of estimating absolute physical quantities ("inverse optics") with the goal of computing object properties relatively.

  11. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex

    PubMed Central

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722

  12. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    PubMed

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  13. Children's color perception in relation to habitat and skin color.

    PubMed

    Gaines, R; Powell, G J

    1981-09-01

    Developmental color perception of negroid and caucasoid children in 3 societies is examined in relation to the theories that proximity to the equator and fundus pigmentation (as measured by skin color) reduce shortwave (blue-green) in comparison with long-wave perception. The 278 4- and 8-year-old native-born, urban, English-speaking children were from latitudes 6 degrees 27' N (Enugu, Nigeria), 17 degrees 18' N (Basseterre, Saint Kitts, East Caribbean), and 34 degrees 3' N (Los Angeles, Calif.). Equal numbers of boys and girls from middle socioeconomic homes were medically examined for normal nutritional status and near vision. Children were individually tested on the Gaines Color Perception Test. The results show that short-wavelength perception is less accurate than long-wave-length perception in all locations, but most of the variance is attributable to conditions of low value or chroma stimuli rather than to proximity to the equator. There were no significant differences between Nigerian, Saint Kittitian and California caucasoid children. In accord with the pigmentation theory, young California negroid children had less accurate short-wavelength color perception than California caucasoid children. However, Nigerian and Saint Kittitian negroid children's perceptual accuracy was at least as accurate as that of caucasoid children. Amount of pigmentation does not appear to be a universal variable in children's color perception. Socioeconomic status, nutritional variables, developmental growth of the eye, or controlled stimulus conditions of the present research could account for the lack of positive relationships between color perception and habitat or skin color.

  14. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    PubMed Central

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  15. Psychophysical Evaluation of Achromatic and Chromatic Vision of Workers Chronically Exposed to Organic Solvents

    PubMed Central

    Lacerda, Eliza Maria da Costa Brito; Lima, Monica Gomes; Rodrigues, Anderson Raiol; Teixeira, Cláudio Eduardo Correa; de Lima, Lauro José Barata; Ventura, Dora Fix; Silveira, Luiz Carlos de Lima

    2012-01-01

    The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test—FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10–30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction. PMID:22220188

  16. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  17. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia

    2018-02-01

    In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.

  18. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical

    PubMed Central

    Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M

    2011-01-01

    The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188

  19. Children's Color Perception in Relation to Habitat and Skin Color.

    ERIC Educational Resources Information Center

    Gaines, Rosslyn; Powell, Gloria J.

    1981-01-01

    Developmental color perception of 278 four- and eight-year-old Black and White children in three societies was examined in relation to the theories that proximity to the equator and that fundus pigmentation (as measured by skin color) reduce shortwave (blue-green) in comparison to long-wave perception. (Author/MP)

  20. Interaction of color and geometric cues in depth perception: when does "red" mean "near"?

    PubMed

    Guibal, Christophe R C; Dresp, Birgitta

    2004-12-01

    Luminance and color are strong and self-sufficient cues to pictorial depth in visual scenes and images. The present study investigates the conditions under which luminance or color either strengthens or overrides geometric depth cues. We investigated how luminance contrast associated with the color red and color contrast interact with relative height in the visual field, partial occlusion, and interposition to determine the probability that a given figure presented in a pair is perceived as "nearer" than the other. Latencies of "near" responses were analyzed to test for effects of attentional selection. Figures in a pair were supported by luminance contrast (Experiment 1) or isoluminant color contrast (Experiment 2) and combined with one of the three geometric cues. The results of Experiment 1 show that the luminance contrast of a color (here red), when it does not interact with other colors, produces the same effects as achromatic luminance contrasts. The probability of "near" increases with the luminance contrast of the color stimulus, the latencies for "near" responses decrease with increasing luminance contrast. Partial occlusion is found to be a strong enough pictorial cue to support a weaker red luminance contrast. Interposition cues lose out against cues of spatial position and partial occlusion. The results of Experiment 2, with isoluminant displays of varying color contrast, reveal that red color contrast on a light background supported by any of the three geometric cues wins over green or white supported by any of the three geometric cues. On a dark background, red color contrast supported by the interposition cue loses out against green or white color contrast supported by partial occlusion. These findings reveal that color is not an independent depth cue, but is strongly influenced by luminance contrast and stimulus geometry. Systematically shorter response latencies for stronger "near" percepts demonstrate that selective visual attention reliably

  1. Subjective perception of natural scenes: the role of color

    NASA Astrophysics Data System (ADS)

    Bianchi-Berthouze, Nadia

    2003-01-01

    The subjective perception of colors has been extensively studied, with a focus on single colors or on combinations of a few colors. Not much has been done, however, to understand the subjective perception of colors in other contexts, where color is not a single feature. This is what the Kansei community in Japan has set itself to, by exploring subjective experiences of perceptions, and colors in particular, given its obvious influence on humans' emotional changes. The motivation is to create computational models of user visual perceptions, so that computers can be endowed with the ability to personalize visual aspects of their computational task, according to their user. Such a capability is hypothesized to be very important in fields such as printing, information search, design support, advertisement, etc. In this paper, we present our experimental results in the study of color as a contextual feature of images, rather than in isolation. The experiments aim at understanding the mechanisms linked to the personal perception of colors in complex images, and to understand the formation of color categories when labeling experiences related to color perception.

  2. Building achromatic refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Shealy, David

    2014-10-01

    Achromatic beam shapers can provide beam shaping in a certain spectral band and are very important for various laser techniques, such as, applications based on ultra-short pulse lasers with pulse width <100 fs, confocal microscopy, multicolour holography, life sciences fluorescence techniques, where several lasers in spectrum 405-650 nm are used simultaneously, for example 405-650 nm. Conditions of energy re-distribution and zero wave aberration are strictly fulfilled in ordinary plano-aspheric lens pair beam shapers for a definite wavelength only. Hence, these beam shapers work efficiently in relatively narrow, few nm spectrum. To provide acceptable beam quality for refractive beam shaping over a wide spectrum, an achromatizing design condition should be added. Consequently, the typical beam shaper design contains more than two-lenses, to avoid any damaging and other undesirable effects the lenses of beam shaper should be air-spaced. We suggest a two-step method of designing the beam shaper: 1) achromatizing of each plano-aspheric lens using a buried achromatizing surface ("chromatic radius"), then each beam shaper component presents a cemented doublet lens, 2) "splitting" the cemented lenses and realizing air-spaced lens design using optical systems design software. This method allows for using an achromatic design principle during the first step of the design, and then, refining the design by using optimization software. We shall present examples of this design procedure for an achromatic Keplerian beam shaper and for the design of an achromatic Galilean type of beam shaper. Experimental results of operation of refractive beam shapers will be presented as well.

  3. The role of color and attention-to-color in mirror-symmetry perception.

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A; Remkes, Aaron; Li, Hyung-Chul O; Rainville, Stéphane

    2016-07-11

    The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) 'segregated' - symmetric blobs were of one color, random blobs of the other color(s); (2) 'random-segregated' - as above but with the symmetric color randomly selected on each trial; (3) 'non-segregated' - symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) 'anti-symmetric' - symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective.

  4. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach: A fMRI Study.

    PubMed

    Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N

    2016-01-01

    In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.

  5. The role of color and attention-to-color in mirror-symmetry perception

    PubMed Central

    Gheorghiu, Elena; Kingdom, Frederick A. A.; Remkes, Aaron; Li, Hyung-Chul O.; Rainville, Stéphane

    2016-01-01

    The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) ‘segregated’ – symmetric blobs were of one color, random blobs of the other color(s); (2) ‘random-segregated’ – as above but with the symmetric color randomly selected on each trial; (3) ‘non-segregated’ – symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) ‘anti-symmetric’ – symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective. PMID:27404804

  6. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  7. Gray Bananas and a Red Letter A - From Synesthetic Sensation to Memory Colors.

    PubMed

    Weiss, Franziska; Greenlee, Mark W; Volberg, Gregor

    2018-01-01

    Grapheme-color synesthesia is a condition in which objectively achromatic graphemes induce concurrent color experiences. While it was long thought that the colors emerge during perception, there is growing support for the view that colors are integral to synesthetes' cognitive representations of graphemes. In this work, we review evidence for two opposing theories positing either a perceptual or cognitive origin of concurrent colors: the cross-activation theory and the conceptual-mediation model. The review covers results on inducer and concurrent color processing as well as findings concerning the brain structure and grapheme-color mappings in synesthetes and trained mappings in nonsynesthetes. The results support different aspects of both theories. Finally, we discuss how research on memory colors could provide a new perspective in the debate about the level of processing at which the synesthetic colors occur.

  8. Brightness perception of unrelated self-luminous colors.

    PubMed

    Withouck, Martijn; Smet, Kevin A G; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Koenderink, Jan; Hanselaer, Peter

    2013-06-01

    The perception of brightness of unrelated self-luminous colored stimuli of the same luminance has been investigated. The Helmholtz-Kohlrausch (H-K) effect, i.e., an increase in brightness perception due to an increase in saturation, is clearly observed. This brightness perception is compared with the calculated brightness according to six existing vision models, color appearance models, and models based on the concept of equivalent luminance. Although these models included the H-K effect and half of them were developed to work with unrelated colors, none of the models seemed to be able to fully predict the perceived brightness. A tentative solution to increase the prediction accuracy of the color appearance model CAM97u, developed by Hunt, is presented.

  9. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  10. Color perception involves color representations firstly at a semantic level and then at a lexical level.

    PubMed

    Heurley, Loïc P; Brouillet, Thibaut; Chesnoy, Gabrielle; Brouillet, Denis

    2013-03-01

    Studies and models have suggested that color perception first involves access to semantic representations of color. This result leads to two questions: (1) is knowledge able to influence the perception of color when associated with a color? and (2) can the perception of color really involve only semantic representations? We developed an experiment where participants have to discriminate the color of a patch (yellow vs. green). The target patch is preceded either by a black-and-white line drawing or by a word representing a natural object associated with the same or a different color (banana vs. frog). We expected a priming effect for pictures because, with a 350-ms SOA, they only involve access to semantic representations of color, whereas words seem only elicit an access to lexical representations. As expected, we found a priming effect for pictures, but also for words. Moreover, we found a general slowdown of response times in the word-prime-condition suggesting the need of an additional processing step to produce priming. In a second experiment, we manipulated the SOA in order to preclude a semantic access in the word-prime-condition that could explain the additional step of processing. We also found a priming effect, suggesting that interaction with perception occurs at a lexical level and the additional step occurs at a color perception level. In the discussion, we develop a new model of color perception assuming that color perception involves access to semantic representations and then access to lexical representations.

  11. Gray Bananas and a Red Letter A — From Synesthetic Sensation to Memory Colors

    PubMed Central

    Weiss, Franziska; Volberg, Gregor

    2018-01-01

    Grapheme–color synesthesia is a condition in which objectively achromatic graphemes induce concurrent color experiences. While it was long thought that the colors emerge during perception, there is growing support for the view that colors are integral to synesthetes’ cognitive representations of graphemes. In this work, we review evidence for two opposing theories positing either a perceptual or cognitive origin of concurrent colors: the cross-activation theory and the conceptual-mediation model. The review covers results on inducer and concurrent color processing as well as findings concerning the brain structure and grapheme–color mappings in synesthetes and trained mappings in nonsynesthetes. The results support different aspects of both theories. Finally, we discuss how research on memory colors could provide a new perspective in the debate about the level of processing at which the synesthetic colors occur. PMID:29899968

  12. Color Perception in Children with Autism

    ERIC Educational Resources Information Center

    Franklin, Anna; Sowden, Paul; Burley, Rachel; Notman, Leslie; Alder, Elizabeth

    2008-01-01

    This study examined whether color perception is atypical in children with autism. In experiment 1, accuracy of color memory and search was compared for children with autism and typically developing children matched on age and non-verbal cognitive ability. Children with autism were significantly less accurate at color memory and search than…

  13. Color Vision and Performance on Color-Coded Cockpit Displays.

    PubMed

    Gaska, James P; Wright, Steven T; Winterbottom, Marc D; Hadley, Steven C

    Although there are numerous studies that demonstrate that color vision deficient (CVD) individuals perform less well than color vision normal (CVN) individuals in tasks that require discrimination or identification of colored stimuli, there remains a need to quantify the relationship between the type and severity of CVD and performance on operationally relevant tasks. Participants were classified as CVN (N = 45) or CVD (N = 49) using the Rabin cone contrast test, which is the standard color vision screening test used by the United States Air Force. In the color condition, test images that were representative of the size, shape, and color of symbols and lines used on fifth-generation fighter aircraft displays were used to measure operational performance. In the achromatic condition, all symbols and lines had the same chromaticity but differed in luminance. Subjects were asked to locate and discriminate between friend vs. foe symbols (red vs. green, or brighter vs. dimmer) while speed and accuracy were recorded. Increasing color deficiency was associated with decreasing speed and accuracy for the color condition (R 2 > 0.2), but not for the achromatic condition. Mean differences between CVN and CVD individuals showed the same pattern. Although lower CCT scores are clearly associated with lower performance in color related tasks, the magnitude of the performance loss was relatively small and there were multiple examples of high-performing CVD individuals who had higher operational scores than low-performing CVN individuals. Gaska JP, Wright ST, Winterbottom MD, Hadley SC. Color vision and performance on color-coded cockpit displays. Aerosp Med Hum Perform. 2016; 87(11):921-927.

  14. Color categories affect pre-attentive color perception.

    PubMed

    Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna

    2010-10-01

    Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Short-Term Memory Affects Color Perception in Context

    PubMed Central

    Olkkonen, Maria; Allred, Sarah R.

    2014-01-01

    Color-based object selection — for instance, looking for ripe tomatoes in the market — places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly. PMID:24475131

  16. Short-term memory affects color perception in context.

    PubMed

    Olkkonen, Maria; Allred, Sarah R

    2014-01-01

    Color-based object selection - for instance, looking for ripe tomatoes in the market - places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly.

  17. An analytical study of double bend achromat lattice.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  18. Surface color perception under two illuminants: the second illuminant reduces color constancy

    NASA Technical Reports Server (NTRS)

    Yang, Joong Nam; Shevell, Steven K.

    2003-01-01

    This study investigates color perception in a scene with two different illuminants. The two illuminants, in opposite corners, simultaneously shine on a (simulated) scene with an opaque dividing wall, which controls how much of the scene is illuminated by each source. In the first experiment, the height of the dividing wall was varied. This changed the amount of each illuminant reaching objects on the opposite side of the wall. Results showed that the degree of color constancy decreased when a region on one side of the wall had cues to both illuminants, suggesting that cues from the second illuminant are detrimental to color constancy. In a later experiment, color constancy was found to improve when the specular highlight cues from the second illuminant were altered to be consistent with the first illuminant. This corroborates the influence of specular highlights in surface color perception, and suggests that the reduced color constancy in the first experiment is due to the inconsistent, though physically correct, cues from the two illuminants.

  19. Hair Color and Skin Color Together Influence Perceptions of Age, Health, and Attractiveness in Lightly-Pigmented, Young Women.

    PubMed

    Fink, Bernhard; Liebner, Katharina; Müller, Ann-Kathrin; Hirn, Thomas; McKelvey, Graham; Lankhof, John

    2018-05-17

    Research documents that even subtle changes in visible skin condition affect perceptions of age, health, and attractiveness. There is evidence that hair quality also affects the assessment of physical appearance, as variations in hair diameter, hair density, and hair style have systematic effects on perception. Here, we consider combined effects of hair color and skin color on the perception of female physical appearance. In two experiments, we digitally manipulated facial skin color of lightly-pigmented, young women, both between-subjects (Experiment 1) and within-subjects (Experiment 2), and investigated possible interactions with hair color in regard to age, health, and attractiveness perception. In both experiments, we detected hair color and skin color interaction effects on men's and women's assessments. For between-subjects comparisons, participants with lighter hair color were judged to be younger than those with darker shades; this effect was more pronounced in women with light skin color. No such effect was observed for within-subjects variation in skin color. Both experiments showed that smaller perceived contrast between hair color and skin color resulted in more positive responses. We conclude that hair color and facial skin color together have an effect on perceptions of female age, health, and attractiveness in young women, and we discuss these findings with reference to the literature on the role of hair and skin in the assessment of female physical appearance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Gray-world-assumption-based illuminant color estimation using color gamuts with high and low chroma

    NASA Astrophysics Data System (ADS)

    Kawamura, Harumi; Yonemura, Shunichi; Ohya, Jun; Kojima, Akira

    2013-02-01

    A new approach is proposed for estimating illuminant colors from color images under an unknown scene illuminant. The approach is based on a combination of a gray-world-assumption-based illuminant color estimation method and a method using color gamuts. The former method, which is one we had previously proposed, improved on the original method that hypothesizes that the average of all the object colors in a scene is achromatic. Since the original method estimates scene illuminant colors by calculating the average of all the image pixel values, its estimations are incorrect when certain image colors are dominant. Our previous method improves on it by choosing several colors on the basis of an opponent-color property, which is that the average color of opponent colors is achromatic, instead of using all colors. However, it cannot estimate illuminant colors when there are only a few image colors or when the image colors are unevenly distributed in local areas in the color space. The approach we propose in this paper combines our previous method and one using high chroma and low chroma gamuts, which makes it possible to find colors that satisfy the gray world assumption. High chroma gamuts are used for adding appropriate colors to the original image and low chroma gamuts are used for narrowing down illuminant color possibilities. Experimental results obtained using actual images show that even if the image colors are localized in a certain area in the color space, the illuminant colors are accurately estimated, with smaller estimation error average than that generated in the conventional method.

  1. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  2. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  3. Color discrimination with broadband photoreceptors.

    PubMed

    Schnaitmann, Christopher; Garbers, Christian; Wachtler, Thomas; Tanimoto, Hiromu

    2013-12-02

    Color vision is commonly assumed to rely on photoreceptors tuned to narrow spectral ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband spectral sensitivity and were thought to exclusively mediate achromatic vision. Using computational models and behavioral experiments, we demonstrate that the broadband outer photoreceptors contribute to color vision in Drosophila. The model of opponent processing that includes the opsin of the outer photoreceptors scored the best fit to wavelength discrimination data. To experimentally uncover the contribution of individual photoreceptor types, we restored phototransduction of targeted photoreceptor combinations in a blind mutant. Dichromatic flies with only broadband photoreceptors and one additional receptor type can discriminate different colors, indicating the existence of a specific output comparison of the outer and inner photoreceptors. Furthermore, blocking interneurons postsynaptic to the outer photoreceptors specifically impaired color but not intensity discrimination. Our findings show that receptors with a complex and broad spectral sensitivity can contribute to color vision and reveal that chromatic and achromatic circuits in the fly share common photoreceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  5. Reward priming eliminates color-driven affect in perception.

    PubMed

    Hu, Kesong

    2018-01-03

    Brain and behavior evidence suggests that colors have distinct affective properties. Here, we investigated how reward influences color-driven affect in perception. In Experiment 1, we assessed competition between blue and red patches during a temporal-order judgment (TOJ) across a range of stimulus onset asynchronies (SOAs). During the value reinforcement, reward was linked to either blue (version 1) or red (version 2) in the experiment. The same stimuli then served as test ones in the following unrewarded, unspeeded TOJ task. Our analysis showed that blue patches were consistently seen as occurring first, even when objectively appearing 2nd at short SOAs. This accelerated perception of blue over red was disrupted by prior primes related to reward (vs. neutral) but not perceptional (blue vs. red) priming. Experiment 2 replicated the findings of Experiment 1 while uncoupling action and stimulus values. These results are consistent with the blue-approach and red-avoidance motivation hypothesis and highlight an active nature of the association of reward priming and color processing. Together, the present study implies a link between reward and color affect and contributes to the understanding of how reward influences color affect in visual processing.

  6. The physiology and psychophysics of the color-form relationship: a review.

    PubMed

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies.

  7. When visual perception causes feeling: enhanced cross-modal processing in grapheme-color synesthesia.

    PubMed

    Weiss, Peter H; Zilles, Karl; Fink, Gereon R

    2005-12-01

    In synesthesia, stimulation of one sensory modality (e.g., hearing) triggers a percept in another, non-stimulated sensory modality (e.g., vision). Likewise, perception of a form (e.g., a letter) may induce a color percept (i.e., grapheme-color synesthesia). To date, the neural mechanisms underlying synesthesia remain to be elucidated. We disclosed by fMRI, while controlling for surface color processing, enhanced activity in the left intraparietal cortex during the experience of grapheme-color synesthesia (n = 9). In contrast, the perception of surface color per se activated the color centers in the fusiform gyrus bilaterally. The data support theoretical accounts that grapheme-color synesthesia may originate from enhanced cross-modal binding of form and color. A mismatch of surface color and grapheme induced synesthetically felt color additionally activated the left dorsolateral prefrontal cortex (DLPFC). This suggests that cognitive control processes become active to resolve the perceptual conflict resulting from synesthesia.

  8. Synesthetic grapheme-color percepts exist for newly encountered Hebrew, Devanagari, Armenian and Cyrillic graphemes

    PubMed Central

    Blair, Christopher David; Berryhill, Marian E.

    2013-01-01

    Grapheme-color synesthetes experience color, not physically present, when viewing symbols. Synesthetes cannot remember learning these associations. Must synesthetic percepts be formed during a sensitive period? Can they form later and be consistent? What determines their nature? We tested grapheme-color synesthete, MC2, before, during and after she studied Hindi abroad. We investigated whether novel graphemes elicited synesthetic percepts, changed with familiarity, and/or benefited from phonemic information. MC2 reported color percepts to novel Devanagari and Hebrew graphemes. MC2 monitored these percepts over 6 months in a Hindi-speaking environment. MC2 and synesthete DN, reported synesthetic percepts for Armenian graphemes, or Cyrillic graphemes + phonemes over time. Synesthetes, not controls, reported color percepts for novel graphemes that gained consistency over time. Phonemic information did not enhance consistency. Thus, synesthetes can form and consolidate percepts to novel graphemes as adults. These percepts may depend on pre-existing grapheme-color relationships but they can flexibly shift with familiarity. PMID:23860303

  9. Extrafoveally applied flashing light affects contrast thresholds of achromatic and S-cone isolating, but not L-M cone modulated stimuli.

    PubMed

    Őze, A; Puszta, A; Buzás, P; Kóbor, P; Braunitzer, G; Nagy, A

    2018-06-21

    Flashing light stimulation is often used to investigate the visual system. However, the magnitude of the effect of this stimulus on the various subcortical pathways is not well investigated. The signals of conscious vision are conveyed by the magnocellular, parvocellular and koniocellular pathways. Parvocellular and koniocellular pathways (or more precisely, the L-M opponent and S-cone isolating channels) can be accessed by isoluminant red-green (L-M) and S-cone isolating stimuli, respectively. The main goal of the present study was to explore how costimulation with strong white extrafoveal light flashes alters the perception of stimuli specific to these pathways. Eleven healthy volunteers with negative neurological and ophthalmological history were enrolled for the study. Isoluminance of L-M and S-cone isolating sine-wave gratings was set individually, using the minimum motion procedure. The contrast thresholds for these stimuli as well as for achromatic gratings were determined by an adaptive staircase procedure where subjects had to indicate the orientation (horizontal, oblique or vertical) of the gratings. Thresholds were then determined again while a strong white peripheral light flash was presented 50 ms before each trial. Peripheral light flashes significantly (p < 0.05) increased the contrast thresholds of the achromatic and S-cone isolating stimuli. The threshold elevation was especially marked in case of the achromatic stimuli. However, the contrast threshold for the L-M stimuli was not significantly influenced by the light flashes. We conclude that extrafoveally applied light flashes influence predominantly the perception of achromatic stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Color polymorphic lures target different visual channels in prey.

    PubMed

    White, Thomas E; Kemp, Darrell J

    2016-06-01

    Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  11. The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin.

    PubMed

    Bruno, Nicola; Martani, Margherita; Corsini, Claudia; Oleari, Claudio

    2013-12-01

    Recent literature suggests that individuals may consume less food when this is served on red plates. We explored this intriguing effect in three experiments. Independent groups of participants were presented with constant amounts of popcorns, chocolate chips, or moisturizing cream, on red, blue, or white plates. They were asked to sample the foods (by tasting them) or the cream (by rubbing it on the hand and forearm) as they wished and to complete mock "sensory analysis" questionnaires. Results confirmed that red plates reduce taste-related consumption and extended this effect to the touch-related consumption of moisturizing cream. Suggesting that the effect was not due to a decrease in the consciously experienced appeal of products on red plates, overall appreciation of the foods or cream did not differ according to plate color. After careful photometric measures of the materials used for each food-plate pairing, we determined that food and cream consumption was not predicted by Michelson (achromatic) contrast. Although the origin of the intriguing effect of the color red on consumption remains unclear, our results may prove useful to future potential explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Preliminary Experimental Investigation of Quasi Achromat scheme at Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Shang, Hairong

    Next generation storage rings require weaker dipolemagnets and stronger quadrupole focusing to achieve very low emittance. To suppress the geometric and chromatic optics aberrations introduced by the strong sextupoles, achromat and quasi achromat schemes are applied in the lattice design to improve the beam dynamics performance. In this paper, some preliminary experimental investigation of the quasi achromat scheme at the Advanced Photon Source (APS) are presented. Three different operation lattices are compared on their beam dynamics performance. Although none of these operation lattices achieve ideal quasi achromat condition, they have certain relevant features. It is observed that fewer resonances aremore » present in the nominal operation lattice which is most close to quasi achromat required conditions.« less

  13. Color segmentation in the HSI color space using the K-means algorithm

    NASA Astrophysics Data System (ADS)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  14. A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed From Saturation-Weighted Statistics.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2015-07-01

    In digital histopathology, tasks of segmentation and disease diagnosis are achieved by quantitative analysis of image content. However, color variation in image samples makes it challenging to produce reliable results. This paper introduces a complete normalization scheme to address the problem of color variation in histopathology images jointly caused by inconsistent biopsy staining and nonstandard imaging condition. Method : Different from existing normalization methods that either address partial cause of color variation or lump them together, our method identifies causes of color variation based on a microscopic imaging model and addresses inconsistency in biopsy imaging and staining by an illuminant normalization module and a spectral normalization module, respectively. In evaluation, we use two public datasets that are representative of histopathology images commonly received in clinics to examine the proposed method from the aspects of robustness to system settings, performance consistency against achromatic pixels, and normalization effectiveness in terms of histological information preservation. As the saturation-weighted statistics proposed in this study generates stable and reliable color cues for stain normalization, our scheme is robust to system parameters and insensitive to image content and achromatic colors. Extensive experimentation suggests that our approach outperforms state-of-the-art normalization methods as the proposed method is the only approach that succeeds to preserve histological information after normalization. The proposed color normalization solution would be useful to mitigate effects of color variation in pathology images on subsequent quantitative analysis.

  15. The physiology and psychophysics of the color-form relationship: a review

    PubMed Central

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies. PMID:26578989

  16. Do graphemes attract spatial attention in grapheme-color synesthesia?

    PubMed

    Volberg, G; Chockley, A S; Greenlee, M W

    2017-05-01

    Grapheme-color synesthetes perceive concurrent colors for some objectively achromatic graphemes (inducers). Using oscillatory responses in the electroencephalogram, we tested the hypothesis that inducers automatically attract spatial attention and, thus, favor a conscious experience of color. Achromatic inducers and real-colored non-inducers were presented to the left or to the right visual hemifield and orientation judgments were required for subsequently presented Gabor patches. The graphemes were irrelevant for the task so that the related brain response was purely stimulus-driven. Synesthetes (n =12), but not an equal number of controls, showed an early theta power increase for inducers presented to the right compared to the left hemifield, with sources in left fusiform gyrus. Alpha power asymmetries indicative of shifts of spatial attention were not observed. Together, synesthetes showed an increased responsiveness to inducers in grapheme processing areas. However, contrary to our hypothesis, inducers did not attract spatial attention in synesthetes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of interior colors on mood and preference: comparisons of two living rooms.

    PubMed

    Yildirim, Kemal; Hidayetoglu, M Lutfi; Capanoglu, Aysen

    2011-04-01

    The purpose was to assess whether various colors across room interiors do, in fact, evoke different moods. Digital images of two imaginary living rooms were used as the experimental settings. For each of the experiments, the rooms' spatial characteristics were fixed, with only the colors changed: either warm, cool, or achromatic colors. As predicted, warm colors tended to produce stronger participant responses when rating the scene on "high arousal," "exciting," and "stimulating." Cool colors tended be associated with "not very arousing," but to be rated higher on "spacious" and "restful." It is generally assumed that cool and achromatic colors evoke calmer and more peaceful emotions. The study's results show that the spatial characteristics of the imaginary spaces themselves affected participants' responses only on measures of "happiness" and "vividness." Lastly, sex differences were also found, with women's ratings generally more positive than those of men.

  18. Effects of color combination and ambient illumination on visual perception time with TFT-LCD.

    PubMed

    Lin, Chin-Chiuan; Huang, Kuo-Chen

    2009-10-01

    An empirical study was carried out to examine the effects of color combination and ambient illumination on visual perception time using TFT-LCD. The effect of color combination was broken down into two subfactors, luminance contrast ratio and chromaticity contrast. Analysis indicated that the luminance contrast ratio and ambient illumination had significant, though small effects on visual perception. Visual perception time was better at high luminance contrast ratio than at low luminance contrast ratio. Visual perception time under normal ambient illumination was better than at other ambient illumination levels, although the stimulus color had a confounding effect on visual perception time. In general, visual perception time was better for the primary colors than the middle-point colors. Based on the results, normal ambient illumination level and high luminance contrast ratio seemed to be the optimal choice for design of workplace with video display terminals TFT-LCD.

  19. Chromatic and achromatic monocular deprivation produce separable changes of eye dominance in adults.

    PubMed

    Zhou, Jiawei; Reynaud, Alexandre; Kim, Yeon Jin; Mullen, Kathy T; Hess, Robert F

    2017-11-29

    Temporarily depriving one eye of its input, in whole or in part, results in a transient shift in eye dominance in human adults, with the patched eye becoming stronger and the unpatched eye weaker. However, little is known about the role of colour contrast in these behavioural changes. Here, we first show that the changes in eye dominance and contrast sensitivity induced by monocular eye patching affect colour and achromatic contrast sensitivity equally. We next use dichoptic movies, customized and filtered to stimulate the two eyes differentially. We show that a strong imbalance in achromatic contrast between the eyes, with no colour content, also produces similar, unselective shifts in eye dominance for both colour and achromatic contrast sensitivity. Interestingly, if this achromatic imbalance is paired with similar colour contrast in both eyes, the shift in eye dominance is selective, affecting achromatic but not chromatic contrast sensitivity and revealing a dissociation in eye dominance for colour and achromatic image content. On the other hand, a strong imbalance in chromatic contrast between the eyes, with no achromatic content, produces small, unselective changes in eye dominance, but if paired with similar achromatic contrast in both eyes, no changes occur. We conclude that perceptual changes in eye dominance are strongly driven by interocular imbalances in achromatic contrast, with colour contrast having a significant counter balancing effect. In the short term, eyes can have different dominances for achromatic and chromatic contrast, suggesting separate pathways at the site of these neuroplastic changes. © 2017 The Author(s).

  20. Precision of synesthetic color matching resembles that for recollected colors rather than physical colors.

    PubMed

    Arnold, Derek H; Wegener, Signy V; Brown, Francesca; Mattingley, Jason B

    2012-10-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but hearing the name of a grapheme does not. This dissociation allowed us to compare the precision with which synesthetes are able to match their color experiences triggered by visible graphemes, with the precision of their matches for recalled colors based on the same graphemes spoken aloud. In six synesthetes, color matching for printed graphemes was equally variable relative to recalled experiences. In a control experiment, synesthetes and age-matched controls either matched the color of a circular patch while it was visible on a screen, or they judged its color from memory after it had disappeared. Both synesthetes and controls were more variable when matching from memory, and the variance of synesthetes' recalled color judgments matched that associated with their synesthetic judgments for visible graphemes in the first experiment. Results suggest that synesthetic experiences of color triggered by achromatic graphemes are analogous to recollections of color.

  1. Color and luminance in the perception of 1- and 2-dimensional motion.

    PubMed

    Farell, B

    1999-08-01

    An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.

  2. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  3. Slow updating of the achromatic point after a change in illumination

    PubMed Central

    Lee, R. J.; Dawson, K. A.; Smithson, H. E.

    2015-01-01

    For a colour constant observer, the colour appearance of a surface is independent of the spectral composition of the light illuminating it. We ask how rapidly colour appearance judgements are updated following a change in illumination. We obtained repeated binary colour classifications for a set of stimuli defined by their reflectance functions and rendered under either sunlight or skylight. We used these classifications to derive boundaries in colour space that identify the observer’s achromatic point. In steady-state conditions of illumination, the achromatic point lay close to the illuminant chromaticity. In our experiment the illuminant changed abruptly every 21 seconds (at the onset of every 10th trial), allowing us to track changes in the achromatic point that were caused by the cycle of illuminant changes. In one condition, the test reflectance was embedded in a spatial pattern of reflectance samples under consistent illumination. The achromatic point migrated across colour space between the chromaticities of the steady-state achromatic points. This update took several trials rather than being immediate. To identify the factors that governed perceptual updating of appearance judgements we used two further conditions, one in which the test reflectance was presented in isolation and one in which the surrounding reflectances were rendered under an inconsistent and unchanging illumination. Achromatic settings were not well predicted by the information available from scenes at a single time-point. Instead the achromatic points showed a strong dependence on the history of chromatic samples. The strength of this dependence differed between observers and was modulated by the spatial context. PMID:22275468

  4. Color and emotion: effects of hue, saturation, and brightness.

    PubMed

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  5. Surface gloss and color perception of 3D objects.

    PubMed

    Xiao, Bei; Brainard, David H

    2008-01-01

    Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers' color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1.

  6. Surface gloss and color perception of 3D objects

    PubMed Central

    Xiao, Bei; Brainard, David H.

    2008-01-01

    Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers’ color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1. PMID:18598406

  7. Posthypnotic suggestion alters conscious color perception in an automatic manner.

    PubMed

    Kallio, Sakari; Koivisto, Mika

    2013-01-01

    The authors studied whether a posthypnotic suggestion to see a brief, masked target as gray can change the color experience of a hypnotic virtuoso. The visibility of the target was manipulated by varying the delay between the target and the mask that followed it. The virtuoso's subjective reports indicated that her conscious color experience was altered already at short delays between the target and the subsequent mask. The virtuoso's objectively measured pattern of responding under posthypnotic suggestion could not be mimicked either by control participants nor the virtuoso herself. Due to posthypnotic amnesia, the virtuoso was unaware of suggestions given during hypnosis. Importantly, the virtuoso could not alter her color perception without a hypnotic suggestion. These results suggest that hypnosis can affect even a highly automatic process such as color perception.

  8. Object knowledge changes visual appearance: semantic effects on color afterimages.

    PubMed

    Lupyan, Gary

    2015-10-01

    According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phenomenal transparency in achromatic checkerboards.

    PubMed

    Masin, S C

    1999-04-01

    The study explored the luminance relations that determine the occurrence of achromatic transparency in phenomenal surfaces on complex backgrounds. Let the luminances of the left and right parts of a transparent surface on a bipartite background and those of the left and right parts of the bipartite background be p and q and m and n, respectively. Metelli proposed that this surface looks transparent when the rule p < q if m < n (or p > q if m > n) is satisfied, and Masin and Fukuda that it looks transparent when the inclusion rule is satisfied, that is, when p epsilon (m, q) or q epsilon (p, n). These rules also apply to achromatic checkerboards formed by one checkerboard enclosed in another checkerboard. This study shows that only the inclusion rule correctly predicted the occurrence of transparency in these checkerboards.

  10. Relationship between Color and Emotion: A Study of College Students

    ERIC Educational Resources Information Center

    Kaya, Naz; Epps, Helen H.

    2004-01-01

    Ninety-eight college students were asked to indicate their emotional responses to five principle hues (i.e., red, yellow, green, blue, purple), five intermediate hues (i.e., yellow-red, green-yellow, blue-green, purple-blue, and red-purple), and three achromatic colors (white, gray, and black) and the reasons for their choices. The color stimuli…

  11. Working Memory Is Related to Perceptual Processing: A Case from Color Perception

    ERIC Educational Resources Information Center

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and…

  12. Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1990-01-01

    A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.

  13. Grounding context in face processing: color, emotion, and gender.

    PubMed

    Gil, Sandrine; Le Bigot, Ludovic

    2015-01-01

    In recent years, researchers have become interested in the way that the affective quality of contextual information transfers to a perceived target. We therefore examined the effect of a red (vs. green, mixed red/green, and achromatic) background - known to be valenced - on the processing of stimuli that play a key role in human interactions, namely facial expressions. We also examined whether the valenced-color effect can be modulated by gender, which is also known to be valenced. Female and male adult participants performed a categorization task of facial expressions of emotion in which the faces of female and male posers expressing two ambiguous emotions (i.e., neutral and surprise) were presented against the four different colored backgrounds. Additionally, this task was completed by collecting subjective ratings for each colored background in the form of five semantic differential scales corresponding to both discrete and dimensional perspectives of emotion. We found that the red background resulted in more negative face perception than the green background, whether the poser was female or male. However, whereas this valenced-color effect was the only effect for female posers, for male posers, the effect was modulated by both the nature of the ambiguous emotion and the decoder's gender. Overall, our findings offer evidence that color and gender have a common valence-based dimension.

  14. Grounding context in face processing: color, emotion, and gender

    PubMed Central

    Gil, Sandrine; Le Bigot, Ludovic

    2015-01-01

    In recent years, researchers have become interested in the way that the affective quality of contextual information transfers to a perceived target. We therefore examined the effect of a red (vs. green, mixed red/green, and achromatic) background – known to be valenced – on the processing of stimuli that play a key role in human interactions, namely facial expressions. We also examined whether the valenced-color effect can be modulated by gender, which is also known to be valenced. Female and male adult participants performed a categorization task of facial expressions of emotion in which the faces of female and male posers expressing two ambiguous emotions (i.e., neutral and surprise) were presented against the four different colored backgrounds. Additionally, this task was completed by collecting subjective ratings for each colored background in the form of five semantic differential scales corresponding to both discrete and dimensional perspectives of emotion. We found that the red background resulted in more negative face perception than the green background, whether the poser was female or male. However, whereas this valenced-color effect was the only effect for female posers, for male posers, the effect was modulated by both the nature of the ambiguous emotion and the decoder’s gender. Overall, our findings offer evidence that color and gender have a common valence-based dimension. PMID:25852625

  15. Predator perception and the interrelation between different forms of protective coloration

    PubMed Central

    Stevens, Martin

    2007-01-01

    Animals possess a range of defensive markings to reduce the risk of predation, including warning colours, camouflage, eyespots and mimicry. These different strategies are frequently considered independently, and with little regard towards predator vision, even though they may be linked in various ways and can be fully understood only in terms of predator perception. For example, camouflage and warning coloration need not be mutually exclusive, and may frequently exploit similar features of visual perception. This paper outlines how different forms of protective markings can be understood from predator perception and illustrates how this is fundamental in determining the mechanisms underlying, and the interrelation between, different strategies. Suggestions are made for future work, and potential mechanisms discussed in relation to various forms of defensive coloration, including disruptive coloration, eyespots, dazzle markings, motion camouflage, aposematism and mimicry. PMID:17426012

  16. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  17. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  18. The interplay of holistic shape, local feature and color information in object categorization.

    PubMed

    Rokszin, Adrienn Aranka; Győri-Dani, Dóra; Linnert, Szilvia; Krajcsi, Attila; Tompa, Tamás; Csifcsák, Gábor

    2015-07-01

    Although it is widely accepted that colors facilitate object and scene recognition under various circumstances, several studies found no effects of color removal in tasks requiring categorization of briefly presented animals in natural scenes. In this study, three experiments were performed to test the assumption that the discrepancy between empirical data is related to variations of the available meaningful global information such as object shapes and contextual cues. Sixty-one individuals categorized chromatic and achromatic versions of intact and scrambled images containing either cars or birds. While color removal did not affect the classification of intact stimuli, the recognition of moderately scrambled achromatic images was more difficult. This effect was accompanied by amplitude modulations of occipital event-related potentials emerging from approximately 150ms post-stimulus. Our results indicate that colors facilitate stimulus classification, but this effect becomes prominent only in cases when holistic processing is not sufficient for stimulus recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Three-dimensional shape perception from chromatic orientation flows

    PubMed Central

    Zaidi, Qasim; Li, Andrea

    2010-01-01

    The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963

  20. Spatial attention facilitates assembly of the briefest percepts: Electrophysiological evidence from color fusion.

    PubMed

    Akyürek, Elkan G; van Asselt, E Manon

    2015-12-01

    When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.

  1. Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia.

    PubMed

    Amsel, Ben D; Kutas, Marta; Coulson, Seana

    2017-10-01

    In grapheme-color synesthesia, seeing particular letters or numbers evokes the experience of specific colors. We investigate the brain's real-time processing of words in this population by recording event-related brain potentials (ERPs) from 15 grapheme-color synesthetes and 15 controls as they judged the validity of word pairs ('yellow banana' vs. 'blue banana') presented under high and low visual contrast. Low contrast words elicited delayed P1/N170 visual ERP components in both groups, relative to high contrast. When color concepts were conveyed to synesthetes by individually tailored achromatic grapheme strings ('55555 banana'), visual contrast effects were like those in color words: P1/N170 components were delayed but unchanged in amplitude. When controls saw equivalent colored grapheme strings, visual contrast modulated P1/N170 amplitude but not latency. Color induction in synesthetes thus differs from color perception in controls. Independent from experimental effects, all orthographic stimuli elicited larger N170 and P2 in synesthetes than controls. While P2 (150-250ms) enhancement was similar in all synesthetes, N170 (130-210ms) amplitude varied with individual differences in synesthesia and visual imagery. Results suggest immediate cross-activation in visual areas processing color and shape is most pronounced in so-called projector synesthetes whose concurrent colors are experienced as originating in external space.

  2. Ensemble perception of color in autistic adults.

    PubMed

    Maule, John; Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna

    2017-05-01

    Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839-851. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Ensemble perception of color in autistic adults

    PubMed Central

    Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna

    2016-01-01

    Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839–851. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:27874263

  4. Clinical vision characteristics of the congenital achromatopsias. II. Color vision.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Twelve X-linked (XL) achromats and 43 autosomal recessive (AR) achromats were tested using the Farnsworth D-15, Nagel anomaloscope, Sloan achromatopsia test, and Berson test using standard procedures. All of the tests identify achromatopsia, but very few differentially diagnose the various types. AR achromats were subclassified as complete (rods only) or incomplete (residual cone function present) by additional psychophysical testing. Complete and incomplete ARs do not perform differently on any clinical color vision measure, indicating that (1) rods predominantly mediate vision in both groups and (2) these tests are not useful for distinguishing between the groups. Both groups show considerable interindividual variation on all measures. Only one of the measures, the Berson test, designed to distinguish XLs from ARs, does so reliably. XLs and ARs do not differ significantly on the Nagel anomaloscope or most of the Sloan plates. The confusion angles of the D-15 do differ for the two groups, but the variability in each group makes the measure unreliable for classifying individuals. The Berson test is recommended to distinguish the XL from AR achromats.

  5. Neurophysiological Evidence for Categorical Perception of Color

    ERIC Educational Resources Information Center

    Holmes, Amanda; Franklin, Anna; Clifford, Alexandra; Davies, Ian

    2009-01-01

    The aim of this investigation was to examine the time course and the relative contributions of perceptual and post-perceptual processes to categorical perception (CP) of color. A visual oddball task was used with standard and deviant stimuli from same (within-category) or different (between-category) categories, with chromatic separations for…

  6. Simultaneous recording of multifocal VEP responses to short-wavelength and achromatic stimuli

    PubMed Central

    Wang, Min; Hood, Donald C.

    2010-01-01

    A paradigm is introduced that allows for simultaneous recording of the pattern-onset multifocal visual evoked potentials (mfVEP) to both short-wavelength (SW) and achromatic (A) stimuli. There were 5 sets of stimulus conditions, each of which is defined by two semi-concurrently presented stimuli, A64/SW (a 64% contrast achromatic stimulus and a short-wavelength stimulus), A64/A8 (64% achromatic/8% achromatic), A0/A8 (0% (gray) achromatic/8% achromatic), A64/A0 and A0/SW. When paired with A64 as part of A64/SW, the SW stimulus yielded mfVEP responses (SWmfVEP) with diminished amplitude in the fovea, consistent with the known sensitivity of the S-cone system. In addition, when A8, which is approximately equal to the L and M cone contribution of the SW stimulus, was recorded alone, the response to A8 was small, but significantly larger than noise. However, when A8 was paired with A64, the response to A8 was reduced to close to noise level, suggesting that the LM cone contribution of the SWmfVEP can be suppressed by A64. When A64 was recorded alone, the response to A64 was about 32% larger than the mfVEP for A64 when paired with the SW. Likewise, the presence of A64 stimulus also reduces the response of SWmfVEP by 35%. Finally, an intense narrow-band yellow background prolonged the latency of SW response for the A0/SW stimulus but not the latency of SW response for the A64/SW stimulus. These results indicate that it is possible to simultaneously record an SWmfVEP with little LM cone contribution along with an achromatic mfVEP. PMID:20499134

  7. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach

    PubMed Central

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019

  8. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.

    PubMed

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.

  9. Green love is ugly: emotions elicited by synesthetic grapheme-color perceptions.

    PubMed

    Callejas, Alicia; Acosta, Alberto; Lupiáñez, Juan

    2007-01-05

    Synesthetes who experience grapheme-color synesthesia often report feeling uneasy when dealing with incongruently colored graphemes although no empirical data is available to confirm this phenomenon. We studied this affective reaction related to synesthetic perceptions by means of an evaluation task. We found that the perception of an incorrectly colored word affects the judgments of emotional valence. Furthermore, this effect competed with the word's emotional valence in a categorization task thus supporting the automatic nature of this synesthetically elicited affective reaction. When manipulating word valence and word color-photism congruence, we found that responses were slower (and less accurate) for inconsistent conditions than for consistent conditions. Inconsistent conditions were defined as those where semantics and color-photism congruence did not produce a similar assessment and therefore gave rise to a negative affective reaction (i.e., positive-valence words presented in a color different from the synesthete's photism or negative-valence words presented in the photism's color). We therefore observed a modulation of the congruency effect (i.e., faster reaction times to congruently colored words than incongruently colored words). Although this congruence effect has been taken as an index of the true experience of synesthesia, we observed that it can be reversed when the experimental manipulations turn an incongruently colored word into a consistent stimulus. To our knowledge, this is the first report of an affective reaction elicited by the congruency between the synesthetically induced color of a word and the color in which the word is actually presented. The underlying neural mechanisms that might be involved in this phenomenon are discussed.

  10. Memory color effect induced by familiarity of brand logos.

    PubMed

    Kimura, Atsushi; Wada, Yuji; Masuda, Tomohiro; Goto, Sho-Ichi; Tsuzuki, Daisuke; Hibino, Haruo; Cai, Dongsheng; Dan, Ippeita

    2013-01-01

    When people are asked to adjust the color of familiar objects such as fruits until they appear achromatic, the subjective gray points of the objects are shifted away from the physical gray points in a direction opposite to the memory color (memory color effect). It is still unclear whether the discrepancy between memorized and actual colors of objects is dependent on the familiarity of the objects. Here, we conducted two experiments in order to examine the relationship between the degree of a subject's familiarity with objects and the degree of the memory color effect by using logographs of food and beverage companies. In Experiment 1, we measured the memory color effects of logos which varied in terms of their familiarity (high, middle, or low). Results demonstrate that the memory color effect occurs only in the high-familiarity condition, but not in the middle- and low-familiarity conditions. Furthermore, there is a positive correlation between the memory color effect and the actual number of domestic stores of the brand. In Experiment 2, we assessed the semantic association between logos and food/beverage names by using a semantic priming task to elucidate whether the memory color effect of logos relates to consumer brand cognition, and found that the semantic associations between logos and food/beverage names in the high-familiarity brands were stronger than those in the low-familiarity brands only when the logos were colored correctly, but not when they were appropriately or inappropriately colored, or achromatic. The current results provide behavioral evidence of the relationship between the familiarity of objects and the memory color effect and suggest that the memory color effect increases with the familiarity of objects, albeit not constantly.

  11. Memory Color Effect Induced by Familiarity of Brand Logos

    PubMed Central

    Kimura, Atsushi; Wada, Yuji; Masuda, Tomohiro; Goto, Sho-ichi; Tsuzuki, Daisuke; Hibino, Haruo; Cai, Dongsheng; Dan, Ippeita

    2013-01-01

    Background When people are asked to adjust the color of familiar objects such as fruits until they appear achromatic, the subjective gray points of the objects are shifted away from the physical gray points in a direction opposite to the memory color (memory color effect). It is still unclear whether the discrepancy between memorized and actual colors of objects is dependent on the familiarity of the objects. Here, we conducted two experiments in order to examine the relationship between the degree of a subject’s familiarity with objects and the degree of the memory color effect by using logographs of food and beverage companies. Methods and Findings In Experiment 1, we measured the memory color effects of logos which varied in terms of their familiarity (high, middle, or low). Results demonstrate that the memory color effect occurs only in the high-familiarity condition, but not in the middle- and low-familiarity conditions. Furthermore, there is a positive correlation between the memory color effect and the actual number of domestic stores of the brand. In Experiment 2, we assessed the semantic association between logos and food/beverage names by using a semantic priming task to elucidate whether the memory color effect of logos relates to consumer brand cognition, and found that the semantic associations between logos and food/beverage names in the high-familiarity brands were stronger than those in the low-familiarity brands only when the logos were colored correctly, but not when they were appropriately or inappropriately colored, or achromatic. Conclusion The current results provide behavioral evidence of the relationship between the familiarity of objects and the memory color effect and suggest that the memory color effect increases with the familiarity of objects, albeit not constantly. PMID:23874638

  12. Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2015-09-01

    Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extrasolar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided.

  13. Analysis of grating doublets for achromatic beam-splitting

    PubMed Central

    Pacheco, Shaun; Milster, Tom; Liang, Rongguang

    2015-01-01

    Achromatic beam-splitting grating doublets are designed for both continuous phase and binary phase gratings. By analyzing the sensitivity to lateral shifts between the two grating layers, it is shown that continuous-profile grating doublets are extremely difficult to fabricate. Achromatic grating doublets that have profiles with a constant first spatial derivative are significantly more resistant to lateral shifts between grating layers, where one design case showed a 17 times improvement in performance. Therefore, binary phase, multi-level phase, and blazed grating doublets perform significantly better than continuous phase grating doublets in the presence of a lateral shift between two grating layers. By studying the sensitivity to fabrication errors in the height of both grating layers, one grating layer height can be adjusted to maintain excellent performance over a large wavelength range if the other grating layer is fabricated incorrectly. It is shown in one design case that the performance of an achromatic Dammann grating doublet can be improved by a factor of 215 if the heights of the grating layers are chosen to minimize the performance change in the presence of fabrication errors. PMID:26368261

  14. An experimental method for the assessment of color simulation tools.

    PubMed

    Lillo, Julio; Alvaro, Leticia; Moreira, Humberto

    2014-07-22

    The Simulcheck method for evaluating the accuracy of color simulation tools in relation to dichromats is described and used to test three color simulation tools: Variantor, Coblis, and Vischeck. A total of 10 dichromats (five protanopes, five deuteranopes) and 10 normal trichromats participated in the current study. Simulcheck includes two psychophysical tasks: the Pseudoachromatic Stimuli Identification task and the Minimum Achromatic Contrast task. The Pseudoachromatic Stimuli Identification task allows determination of the two chromatic angles (h(uv) values) that generate a minimum response in the yellow–blue opponent mechanism and, consequently, pseudoachromatic stimuli (greens or reds). The Minimum Achromatic Contrast task requires the selection of the gray background that produces minimum contrast (near zero change in the achromatic mechanism) for each pseudoachromatic stimulus selected in the previous task (L(R) values). Results showed important differences in the colorimetric transformations performed by the three evaluated simulation tools and their accuracy levels. Vischeck simulation accurately implemented the algorithm of Brettel, Viénot, and Mollon (1997). Only Vischeck appeared accurate (similarity in huv and L(R) values between real and simulated dichromats) and, consequently, could render reliable color selections. It is concluded that Simulcheck is a consistent method because it provided an equivalent pattern of results for huv and L(R) values irrespective of the stimulus set used to evaluate a simulation tool. Simulcheck was also considered valid because real dichromats provided expected huv and LR values when performing the two psychophysical tasks included in this method. © 2014 ARVO.

  15. Physiological modeling for detecting degree of perception of a color-deficient person.

    PubMed

    Rajalakshmi, T; Prince, Shanthi

    2017-04-01

    Physiological modeling of retina plays a vital role in the development of high-performance image processing methods to produce better visual perception. People with normal vision have an ability to discern different colors. The situation is different in the case of people with color blindness. The aim of this work is to develop a human visual system model for detecting the level of perception of people with red, green and blue deficiency by considering properties like luminance, spatial and temporal frequencies. Simulation results show that in the photoreceptor, outer plexiform and inner plexiform layers, the energy and intensity level of the red, green and blue component for a normal person is proved to be significantly higher than for dichromats. The proposed method explains with appropriate results that red and blue color blindness people could not perceive red and blue color completely.

  16. The influence of color on emotional perception of natural scenes.

    PubMed

    Codispoti, Maurizio; De Cesarei, Andrea; Ferrari, Vera

    2012-01-01

    Is color a critical factor when processing the emotional content of natural scenes? Under challenging perceptual conditions, such as when pictures are briefly presented, color might facilitate scene segmentation and/or function as a semantic cue via association with scene-relevant concepts (e.g., red and blood/injury). To clarify the influence of color on affective picture perception, we compared the late positive potentials (LPP) to color versus grayscale pictures, presented for very brief (24 ms) and longer (6 s) exposure durations. Results indicated that removing color information had no effect on the affective modulation of the LPP, regardless of exposure duration. These findings imply that the recognition of the emotional content of scenes, even when presented very briefly, does not critically rely on color information. Copyright © 2011 Society for Psychophysiological Research.

  17. Color dependence with horizontal-viewing angle and colorimetric characterization of two displays using different backlighting

    NASA Astrophysics Data System (ADS)

    Castro, José J.; Pozo, Antonio M.; Rubiño, Manuel

    2013-11-01

    In this work we studied the color dependence with a horizontal-viewing angle and colorimetric characterization of two liquid-crystal displays (LCD) using two different backlighting: Cold Cathode Fluorescent Lamps (CCFLs) and light-emitting diodes (LEDs). The LCDs studied had identical resolution, size, and technology (TFT - thin film transistor). The colorimetric measurements were made with the spectroradiometer SpectraScan PR-650 following the procedure recommended in the European guideline EN 61747-6. For each display, we measured at the centre of the screen the chromaticity coordinates at horizontal viewing angles of 0, 20, 40, 60 and 80 degrees for the achromatic (A), red (R), green (G) and blue (B) channels. Results showed a greater color-gamut area for the display with LED backlight, compared with the CCFL backlight, showing a greater range of colors perceptible by human vision. This color-gamut area diminished with viewing angle for both displays. Higher differences between trends for viewing angles were observed in the LED-backlight, especially for the R- and G-channels, demonstrating a higher variability of the chromaticity coordinates with viewing angle. The best additivity was reached by the LED-backlight display (a lower error percentage). LED-backlight display provided better color performance of visualization.

  18. Sensory Drive, Color, and Color Vision.

    PubMed

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  19. Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes.

    PubMed

    Cabezos, Inmaculada; Luque, Maria Jos; de Fez, Dolores; Moncho, Vicenta; Camps, Vicente

    2015-02-01

    Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin). The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry.

  20. The Role of Skin Color on Hispanic Women's Perceptions of Attractiveness

    ERIC Educational Resources Information Center

    Stephens, Dionne P.; Fernandez, Paula

    2012-01-01

    This study relies on qualitative methods to investigate Hispanic women's skin color perceptions. The primary goal is to identify the relevance of these perceptions on their beliefs about their own physical attractiveness. Thirty-four self-identified White-Hispanic women attending a large Hispanic Serving Institution in the southeastern United…

  1. Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott

    2016-09-01

    An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.

  2. Cross-orientation masking in human color vision: application of a two-stage model to assess dichoptic and monocular sources of suppression.

    PubMed

    Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T

    2013-05-28

    Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.

  3. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  4. Evolution of the circuitry for conscious color vision in primates

    PubMed Central

    Neitz, J; Neitz, M

    2017-01-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision. PMID:27935605

  5. Evolution of the circuitry for conscious color vision in primates.

    PubMed

    Neitz, J; Neitz, M

    2017-02-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.

  6. See no evil: color blindness and perceptions of subtle racial discrimination in the workplace.

    PubMed

    Offermann, Lynn R; Basford, Tessa E; Graebner, Raluca; Jaffer, Salman; De Graaf, Sumona Basu; Kaminsky, Samuel E

    2014-10-01

    Workplace discrimination has grown more ambiguous, with interracial interactions often perceived differently by different people. The present study adds to the literature by examining a key individual difference variable in the perception of discrimination at work, namely individual color-blind attitudes. We examined relationships between 3 dimensions of color-blind attitudes (Racial Privilege, Institutional Discrimination, and Blatant Racial Issues) and perceptions of racial microaggressions in the workplace as enacted by a White supervisor toward a Black employee (i.e., discriminatory actions ranging from subtle to overt). Findings showed that observer views on institutional discrimination fully mediated, and blatant racial issues partially mediated, the relationships between racial group membership and the perception of workplace microaggressions. Non-Hispanic Whites endorsed color blindness as institutional discrimination and blatant racial issues significantly more than members of racioethnic minority groups, and higher levels of color-blind worldviews were associated with lower likelihoods of perceiving microaggressions. Views on racial privilege did not differ significantly between members of different racial groups or affect microaggression perceptions. Implications for organizations concerned about promoting more inclusive workplaces are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  7. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  8. Visual wetness perception based on image color statistics.

    PubMed

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  9. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    PubMed

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  10. The Role of Perception, Language, and Preference in the Developmental Acquisition of Basic Color Terms

    ERIC Educational Resources Information Center

    Pitchford, N. J.; Mullen, K. T.

    2005-01-01

    When learning basic color vocabulary, young children show a selective delay in the acquisition of brown and gray relative to other basic color terms. In this study, we first establish the robustness of this finding and then investigate the extent to which perception, language, and color preference may influence color conceptualization.…

  11. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  12. A suggested color scheme for reducing perception-related accidents on construction work sites.

    PubMed

    Yi, June-seong; Kim, Yong-woo; Kim, Ki-aeng; Koo, Bonsang

    2012-09-01

    Changes in workforce demographics have led to the need for more sophisticated approaches to addressing the safety requirements of the construction industry. Despite extensive research in other industry domains, the construction industry has been passive in exploring the impact of a color scheme; perception-related accidents have been effectively diminished by its implementation. The research demonstrated that the use of appropriate color schemes could improve the actions and psychology of workers on site, thereby increasing their perceptions of potentially dangerous situations. As a preliminary study, the objects selected by rigorous analysis on accident reports were workwear, safety net, gondola, scaffolding, and safety passage. The colors modified on site for temporary facilities were adopted from existing theoretical and empirical research that suggests the use of certain colors and their combinations to improve visibility and conspicuity while minimizing work fatigue. The color schemes were also tested and confirmed through two workshops with workers and managers currently involved in actual projects. The impacts of color schemes suggested in this paper are summarized as follows. First, the color schemes improve the conspicuity of facilities with other on site components, enabling workers to quickly discern and orient themselves in their work environment. Secondly, the color schemes have been selected to minimize the visual work fatigue and monotony that can potentially increase accidents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  14. Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception

    NASA Astrophysics Data System (ADS)

    Livingstone, Margaret; Hubel, David

    1988-05-01

    Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.

  15. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos [Center Moriches, NY; Kayran, Dmitry [Rocky Point, NY; Litvinenko, Vladimir [Mt. Sinai, NY; MacKay, William W [Wading River, NY

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  16. Working memory is related to perceptual processing: a case from color perception.

    PubMed

    Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K

    2011-07-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher WM individuals than for lower WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and it provides a first account of the individual differences in color constancy known about for decades.

  17. Working memory is related to perceptual processing: A case from color perception

    PubMed Central

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher-WM individuals than for lower-WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and provides a first account of the individual differences in color constancy known about for decades. PMID:21480748

  18. Perceptions of drug color among drug sellers and consumers in rural southwestern Nigeria.

    PubMed

    Brieger, William R; Salami, Kabiru K; Oshiname, Frederick O

    2007-09-01

    Color is commonly used for branding and coding consumer products including medications. People associate certain colors in tablets and capsules with the effect of the drug and the illness for which it is meant. Color coding was introduced in age-specific prepacked antimalarial drugs for preschool aged children in Nigeria by the National Malaria Control Committee. Yellow was designated for the younger ages and blue for the older. The National Malaria Control Committee did not perform market research to learn how their color codes would be perceived by consumers. The study aimed at determining perceptions of both consumers and sellers of medicines at the community level to learn about color likes and dislikes that might influence acceptance of new color-coded child prepacks of antimalarial drugs. Qualitative methods were used to determine perceptions of drug colors. A series of focus group interviews were conducted with male and female community members, and in-depth interviews were held with medicine sellers in the Igbo-Ora community in southwestern Nigeria. Respondents clearly associated medicines with their effects and purpose, for example white drugs for pain relief, red for building blood, blue to aid sleep, and yellow for malaria treatment. Medicine vendors had a low opinion of white colored medicines, but community members were ultimately more concerned about efficacy. The perceived association between yellow and malaria, because of local symptom perceptions of eyes turning yellowish during malaria, yielded a favorable response when consumers were shown the yellow prepacks. The response to blue was noncommittal but consumers indicated that if they were properly educated on the efficacy and function of the new drugs they would likely buy them. Community members will accept yellow as an antimalarial drug but health education will be needed for promoting the idea of blue for malaria and the notion of age-specific packets. Therefore, the strong medicine vendor

  19. Double-double bend achromat cell upgrade at the Diamond Light Source: From design to commissioning

    NASA Astrophysics Data System (ADS)

    Bartolini, R.; Abraham, C.; Apollonio, M.; Bailey, C. P.; Cox, M. P.; Day, A.; Fielder, R. T.; Hammond, N. P.; Heron, M. T.; Holdsworth, R.; Kay, J.; Martin, I. P. S.; Mhaskar, S.; Miller, A.; Pulampong, T.; Rehm, G.; Rial, E. C. M.; Rose, A.; Shahveh, A.; Singh, B.; Thomson, A.; Walker, R. P.

    2018-05-01

    Diamond has recently successfully commissioned a major change in the lattice consisting of the substitution of a standard double-bend achromat (DBA) cell with a modified four-bend achromat (4BA) cell called "double-double bend achromat" (DDBA). This work stems from the original studies initiated in 2012 towards a Diamond upgrade and provides the benefit of an additional straight section in the ring available for insertion devices. This paper reviews the DDBA design and layout, the implications for technical subsystems, the associated engineering challenges and the main results of the commissioning completed in April 2017.

  20. Categorical color constancy for simulated surfaces.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2009-11-12

    Color constancy is the ability to perceive constant surface colors under varying lighting conditions. Color constancy has traditionally been investigated with asymmetric matching, where stimuli are matched over two different contexts, or with achromatic settings, where a stimulus is made to appear gray. These methods deliver accurate information on the transformations of single points of color space under illuminant changes, but can be cumbersome and unintuitive for observers. Color naming is a fast and intuitive alternative to matching, allowing data collection from a large portion of color space. We asked observers to name the colors of 469 Munsell surfaces with known reflectance spectra simulated under five different illuminants. Observers were generally as consistent in naming the colors of surfaces under different illuminants as they were naming the colors of the same surfaces over time. The transformations in category boundaries caused by illuminant changes were generally small and could be explained well with simple linear models. Finally, an analysis of the pattern of naming consistency across color space revealed that largely the same hues were named consistently across illuminants and across observers even after correcting for category size effects. This indicates a possible relationship between perceptual color constancy and the ability to consistently communicate colors.

  1. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  2. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  3. Assessment of perceptibility and acceptability of color variations between matched teeth among trainee dentist and lay person.

    PubMed

    Ramesh, A S; Sharma, Aruna; Rijesh, K; Prakash, R; Devi, Lakshmi; Raja, Edilbert

    2015-08-01

    The aim of this study was to find the difference in perceptibility and acceptability of changes done to various color coordinates of matched teeth, between trainee dental surgeons, and lay person. A photograph with a set of matched central incisor teeth was selected. In one of the central incisors, the color coordinates (hue, value, and chroma) were altered to a preset value. These pictures were presented to trainee dental surgeons and lay person and their level of perception of color change and acceptance of color change was registered and compared. It was found that trainee dental surgeons fared better in perceiving the color change and accepted less of the color changed specimens. The dimension of color that was more discerned both by lay person and trainee dental surgeons was value, hue, and last chroma. When compared to a lay person, dental surgeons are more acute in perceiving color changes and do not accept the color difference between teeth to a higher degree.

  4. Visual attention to and perception of undamaged and damaged versions of natural and colored female hair.

    PubMed

    Fink, Bernhard; Neuser, Frauke; Deloux, Gwenelle; Röder, Susanne; Matts, Paul J

    2013-03-01

    Female hair color is thought to influence physical attractiveness, and although there is some evidence for this assertion, research has yet not addressed the question if and how physical damaging affects the perception of female hair color. Here we investigate whether people are sensitive (in terms of visual attention and age, health and attractiveness perception) to subtle differences in hair images of natural and colored hair before and after physical damaging. We tracked the eye-gaze of 50 men and 50 women aged 31-50 years whilst they viewed randomized pairs of images of 20 natural and 20 colored hair tresses, each pair displaying the same tress before and after controlled cuticle damage. The hair images were then rated for perceived health, attractiveness, and age. Undamaged versions of natural and colored hair were perceived as significantly younger, healthier, and more attractive than corresponding damaged versions. Visual attention to images of undamaged colored hair was significantly higher compared with their damaged counterparts, while in natural hair, the opposite pattern was found. We argue that the divergence in visual attention to undamaged colored female hair and damaged natural female hair and associated ratings is due to differences in social perception and discuss the source of apparent visual difference between undamaged and damaged hair. © 2013 Wiley Periodicals, Inc.

  5. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  6. The modern Japanese color lexicon.

    PubMed

    Kuriki, Ichiro; Lange, Ryan; Muto, Yumiko; Brown, Angela M; Fukuda, Kazuho; Tokunaga, Rumi; Lindsey, Delwin T; Uchikawa, Keiji; Shioiri, Satoshi

    2017-03-01

    Despite numerous prior studies, important questions about the Japanese color lexicon persist, particularly about the number of Japanese basic color terms and their deployment across color space. Here, 57 native Japanese speakers provided monolexemic terms for 320 chromatic and 10 achromatic Munsell color samples. Through k-means cluster analysis we revealed 16 statistically distinct Japanese chromatic categories. These included eight chromatic basic color terms (aka/red, ki/yellow, midori/green, ao/blue, pink, orange, cha/brown, and murasaki/purple) plus eight additional terms: mizu ("water")/light blue, hada ("skin tone")/peach, kon ("indigo")/dark blue, matcha ("green tea")/yellow-green, enji/maroon, oudo ("sand or mud")/mustard, yamabuki ("globeflower")/gold, and cream. Of these additional terms, mizu was used by 98% of informants, and emerged as a strong candidate for a 12th Japanese basic color term. Japanese and American English color-naming systems were broadly similar, except for color categories in one language (mizu, kon, teal, lavender, magenta, lime) that had no equivalent in the other. Our analysis revealed two statistically distinct Japanese motifs (or color-naming systems), which differed mainly in the extension of mizu across our color palette. Comparison of the present data with an earlier study by Uchikawa & Boynton (1987) suggests that some changes in the Japanese color lexicon have occurred over the last 30 years.

  7. Event-related potentials reveal linguistic suppression effect but not enhancement effect on categorical perception of color.

    PubMed

    Lu, Aitao; Yang, Ling; Yu, Yanping; Zhang, Meichao; Shao, Yulan; Zhang, Honghong

    2014-08-01

    The present study used the event-related potential technique to investigate the nature of linguistic effect on color perception. Four types of stimuli based on hue differences between a target color and a preceding color were used: zero hue step within-category color (0-WC); one hue step within-category color (1-WC); one hue step between-category color (1-BC); and two hue step between-category color (2-BC). The ERP results showed no significant effect of stimulus type in the 100-200 ms time window. However, in the 200-350 ms time window, ERP responses to 1-WC target color overlapped with that to 0-WC target color for right visual field (RVF) but not left visual field (LVF) presentation. For the 1-BC condition, ERP amplitudes were comparable in the two visual fields, both being significantly different from the 0-WC condition. The 2-BC condition showed the same pattern as the 1-BC condition. These results suggest that the categorical perception of color in RVF is due to linguistic suppression on within-category color discrimination but not between-category color enhancement, and that the effect is independent of early perceptual processes. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  8. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  9. Enhanced Fine-Form Perception Does Not Contribute to Gestalt Face Perception in Autism Spectrum Disorder

    PubMed Central

    Maekawa, Toshihiko; Miyanaga, Yuka; Takahashi, Kenji; Takamiya, Naomi; Ogata, Katsuya; Tobimatsu, Shozo

    2017-01-01

    Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD. PMID:28146575

  10. A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a qCSF Approach.

    PubMed

    Kim, Yeon Jin; Reynaud, Alexandre; Hess, Robert F; Mullen, Kathy T

    2017-07-01

    The measurement of achromatic sensitivity has been an important tool for monitoring subtle changes in vision as the result of disease or response to therapy. In this study, we aimed to provide a normative data set for achromatic and chromatic contrast sensitivity functions within a common cone contrast space using an abbreviated measurement approach suitable for clinical practice. In addition, we aimed to provide comparisons of achromatic and chromatic binocular summation across spatial frequency. We estimated monocular cone contrast sensitivity functions (CCSFs) using a quick Contrast Sensitivity Function (qCSF) approach for achromatic as well as isoluminant, L/M cone opponent, and S cone opponent stimuli in a healthy population of 51 subjects. We determined the binocular CCSFs for achromatic and chromatic vision to evaluate the degree of binocular summation across spatial frequency for these three different mechanisms in a subset of 20 subjects. Each data set shows consistent contrast sensitivity across the population. They highlight the extremely high cone contrast sensitivity of L/M cone opponency compared with the S-cone and achromatic responses. We also find that the two chromatic sensitivities are correlated across the healthy population. In addition, binocular summation for all mechanisms depends strongly on stimulus spatial frequency. This study, using an approach well suited to the clinic, is the first to provide a comparative normative data set for the chromatic and achromatic contrast sensitivity functions, yielding quantitative comparisons of achromatic, L/M cone opponent, and S cone opponent chromatic sensitivities as a function of spatial frequency.

  11. Assessment of perceptibility and acceptability of color variations between matched teeth among trainee dentist and lay person

    PubMed Central

    Ramesh, A. S.; Sharma, Aruna; Rijesh, K.; Prakash, R.; Devi, Lakshmi; Raja, Edilbert

    2015-01-01

    Aim: The aim of this study was to find the difference in perceptibility and acceptability of changes done to various color coordinates of matched teeth, between trainee dental surgeons, and lay person. Materials and Methods: A photograph with a set of matched central incisor teeth was selected. In one of the central incisors, the color coordinates (hue, value, and chroma) were altered to a preset value. These pictures were presented to trainee dental surgeons and lay person and their level of perception of color change and acceptance of color change was registered and compared. Results: It was found that trainee dental surgeons fared better in perceiving the color change and accepted less of the color changed specimens. The dimension of color that was more discerned both by lay person and trainee dental surgeons was value, hue, and last chroma. Conclusion: When compared to a lay person, dental surgeons are more acute in perceiving color changes and do not accept the color difference between teeth to a higher degree. PMID:26538933

  12. Relation between consumers' perceptions of color and texture of dairy desserts and instrumental measurements using a generalized procrustes analysis.

    PubMed

    González-Tomás, L; Costell, E

    2006-12-01

    Consumers' perceptions of the color and texture of 8 commercial vanilla dairy desserts were studied and related to color and rheological measurements. First, the 8 desserts were evaluated by a group of consumers by means of the Free Choice Profile. For both color and texture, a 2-dimensional solution was chosen, with dimension 1 highly related to yellow color intensity in the case of color and to thickness in the case of texture. Second, mechanical spectra, flow behavior, and instrumental color were determined. All the samples showed a time-dependent and shear-thinning flow and a mechanical spectrum typical of a weak gel. Differences were found in the flow index, in the apparent viscosity at 10 s(-1), and in the values of the storage modulus, the loss modulus, the loss angle tangent, and the complex viscosity at 1 Hz, as well as in the color parameters. Finally, sensory and instrumental relationships were investigated by a generalized Procrustes analysis. For both color and texture, a 3-dimensional solution explained a high percentage of the total variance (>80%). In these particular samples, the instrumental color parameters provided more accurate information on consumers' color perceptions than was provided by the rheological parameters of consumers' perceptions of texture.

  13. Categorical perception of color: evidence from secondary category boundary

    PubMed Central

    Al-rasheed, Abdulrahman Saud

    2015-01-01

    Despite a plethora of behavioral research exploring the phenomenon of color categorical perception (CP) known as “better discrimination between pair of colors stimuli from different categories and pair of colors stimuli from the same category even when the stimulus differences between the pairs of stimuli are equal”, most of the evidence for the CP of color was derived from Roman or top-to-down script readers and very rarely from right-to-left script readers in primary category. To date, no studies of color CP have been conducted on right-to-left script readers in secondary category boundary to support this theory. Three experiments have been conducted: Experiments 1 and 2 established the Arabic blue–purple secondary category boundary, and Experiment 3 tested the CP of color in the blue–purple category boundary. Sixty participants (30 men and 30 women) took part in this study. All spoke Arabic as their first language, and all were undergraduate or postgraduate students at King Saud University. Their ages ranged from 18–35 years with a mean age of 21.9 years (SD =5.2). The result indicated that for Experiments 1 and 2, it appeared that the Arabic blue–purple category boundary was approximately 10PB and it is in the same location as for English. For Experiment 3, reaction times in the between-categories condition were significantly faster than those in the within-category condition; this suggested that CP of color was shown in the Arabic’s blue–purple secondary category boundary. PMID:26648764

  14. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  15. Is attention essential for inducing synesthetic colors? Evidence from oculomotor distractors.

    PubMed

    Nijboer, Tanja C W; Van der Stigchel, Stefan

    2009-06-30

    In studies investigating visual attention in synesthesia, the targets usually induce a synesthetic color. To measure to what extent attention is necessary to induce synesthetic color experiences, one needs a task in which the synesthetic color is induced by a task-irrelevant distractor. In the current study, an oculomotor distractor task was used in which an eye movement was to be made to a physically colored target while ignoring a single physically colored or synesthetic distractor. Whereas many erroneous eye movements were made to distractors with an identical hue as the target (i.e., capture), much less interference was found with synesthetic distractors. The interference of synesthetic distractors was comparable with achromatic non-digit distractors. These results suggest that attention and hence overt recognition of the inducing stimulus are essential for the synesthetic color experience to occur.

  16. Categorical Perception Beyond the Basic Level: The Case of Warm and Cool Colors.

    PubMed

    Holmes, Kevin J; Regier, Terry

    2017-05-01

    Categories can affect our perception of the world, rendering between-category differences more salient than within-category ones. Across many studies, such categorical perception (CP) has been observed for the basic-level categories of one's native language. Other research points to categorical distinctions beyond the basic level, but it does not demonstrate CP for such distinctions. Here we provide such a demonstration. Specifically, we show CP in English speakers for the non-basic distinction between "warm" and "cool" colors, claimed to represent the earliest stage of color lexicon evolution. Notably, the advantage for discriminating colors that straddle the warm-cool boundary was restricted to the right visual field-the same behavioral signature previously observed for basic-level categories. This pattern held in a replication experiment with increased power. Our findings show that categorical distinctions beyond the basic-level repertoire of one's native language are psychologically salient and may be spontaneously accessed during normal perceptual processing. Copyright © 2016 Cognitive Science Society, Inc.

  17. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe

    PubMed Central

    LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.

    2014-01-01

    Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032

  18. Color universal design: analysis of color category dependency on color vision type (3)

    NASA Astrophysics Data System (ADS)

    Kojima, Natsuki; Ichihara, Yasuyo G.; Ikeda, Tomohiro; Kamachi, Miyuki G.; Ito, Kei

    2012-01-01

    We report on the results of a study investigating the color perception characteristics of people with red-green color confusion. We believe that this is an important step towards achieving Color Universal Design. In Japan, approximately 5% of men and 0.2% of women have red-green confusion. The percentage for men is higher in Europe and the United States; up to 8% in some countries. Red-green confusion involves a perception of colors different from normal color vision. Colors are used as a means of disseminating clear information to people; however, it may be difficult to convey the correct information to people who have red-green confusion. Consequently, colors should be chosen that minimize accidents and that promote more effective communication. In a previous survey, we investigated color categories common to each color vision type, trichromat (C-type color vision), protan (P-type color vision) and deuteran (D-type color vision). In the present study, first, we conducted experiments in order to verify a previous survey of C-type color vision and P-type color vision. Next, we investigated color difference levels within "CIE 1976 L*a*b*" (the CIELAB uniform color space), where neither C-type nor P-type color vision causes accidents under certain conditions (rain maps/contour line levels and graph color legend levels). As a result, we propose a common chromaticity of colors that the two color vision types are able to categorize by means of color names common to C-type color vision. We also offer a proposal to explain perception characteristics of color differences with normal color vision and red-green confusion using the CIELAB uniform color space. This report is a follow-up to SPIE-IS & T / Vol. 7528 7528051-8 and SPIE-IS & T /vol. 7866 78660J-1-8.

  19. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  20. Color vision in children and the Lanthony New Color Test.

    PubMed

    Ling, Barbara Y; Dain, Stephen J

    2008-01-01

    Much is known about color vision in infants, adolescents, and adults, but very few studies report the changes, which occur in color perception of children in their early schooling years. There is also a shortage of suitable color vision tests for children. This study investigated the changes in color vision of school students between 5-12 years old using the Lanthony New Color Test (NCT). Subjects of all ages were able to complete a shortened form of this test adequately. The Vingrys and King-Smith (1988) method of panel test analysis and Adams and Rodic (1982) color confusion score were adapted to analyze their performance of the test. This study confirmed that there are changes in color perception occurring in this age group. Color perception abilities increased as a function of age and there was also an improvement in the performance on the NCT with age. This can be attributed to both cognitive development and changes occurring to the color vision system.

  1. Priming Letters by Colors: Evidence for the Bidirectionality of Grapheme-Color Synesthesia

    ERIC Educational Resources Information Center

    Weiss, Peter H.; Kalckert, Andreas; Fink, Gereon R.

    2009-01-01

    In synesthesia, stimulation of one sensory modality leads to a percept in another nonstimulated modality, for example, graphemes trigger an additional color percept in grapheme-color synesthesia, which encompasses the variants letter-color and digit-color synesthesia. Until recently, it was assumed that synesthesia occurs strictly unidirectional:…

  2. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors.

    PubMed

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synesthetic colors. We tested five Korean multilingual synesthetes on a color-matching task using graphemes from Korean, English, and Japanese orthography. We then compared the similarity of synesthetic colors induced by those characters sharing a phonetic feature. Results showed that graphemes associated with the same phonetic feature tend to induce synesthetic color in both within- and cross-script analyses. Moreover, this tendency was consistent for graphemes that are not transliterable into each other as well as graphemes that are. These results suggest that it is the perceptual-i.e., phonetic-properties associated with graphemes, not just conceptual associations such as transliteration, that determine synesthetic color.

  3. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors

    PubMed Central

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synesthetic colors. We tested five Korean multilingual synesthetes on a color-matching task using graphemes from Korean, English, and Japanese orthography. We then compared the similarity of synesthetic colors induced by those characters sharing a phonetic feature. Results showed that graphemes associated with the same phonetic feature tend to induce synesthetic color in both within- and cross-script analyses. Moreover, this tendency was consistent for graphemes that are not transliterable into each other as well as graphemes that are. These results suggest that it is the perceptual—i.e., phonetic—properties associated with graphemes, not just conceptual associations such as transliteration, that determine synesthetic color. PMID:28348537

  4. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  5. Color Improves Speed of Processing But Not Perception in a Motion Illusion

    PubMed Central

    Perry, Carolyn J.; Fallah, Mazyar

    2012-01-01

    When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored. PMID:22479255

  6. Color improves speed of processing but not perception in a motion illusion.

    PubMed

    Perry, Carolyn J; Fallah, Mazyar

    2012-01-01

    When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.

  7. Color synesthesia. Insight into perception, emotion, and consciousness.

    PubMed

    Safran, Avinoam B; Sanda, Nicolae

    2015-02-01

    Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians.

  8. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms.

    PubMed

    Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-08-10

    Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.

  9. Hearing and Seeing Tone through Color: An Efficacy Study of Web-Based, Multimodal Chinese Tone Perception Training

    ERIC Educational Resources Information Center

    Godfroid, Aline; Lin, Chin-Hsi; Ryu, Catherine

    2017-01-01

    Multimodal approaches have been shown to be effective for many learning tasks. In this study, we compared the effectiveness of five multimodal methods for second language (L2) Mandarin tone perception training: three single-cue methods (number, pitch contour, color) and two dual-cue methods (color and number, color and pitch contour). A total of…

  10. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    NASA Astrophysics Data System (ADS)

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  11. [Effect of transparent yellow and orange colored contact lenses on color discrimination in the yellow color range].

    PubMed

    Schürer, M; Walter, A; Brünner, H; Langenbucher, A

    2015-08-01

    Colored transparent filters cause a change in color perception and have an impact on the perceptible amount of different colors and especially on the ability to discriminate between them. Yellow or orange tinted contact lenses worn to enhance contrast vision by reducing or blocking short wavelengths also have an effect on color perception. The impact of the yellow and orange tinted contact lenses Wöhlk SPORT CONTRAST on color discrimination was investigated with the Erlangen colour measurement system in a study with 14 and 16 subjects, respectively. In relation to a yellow reference color located at u' = 0.2487/v' = 0.5433, measurements of color discrimination thresholds were taken in up to 6 different color coordinate axes. Based on these thresholds, color discrimination ellipses were calculated. These results are given in the Derrington, Krauskopf and Lennie (DKL) color system. Both contact lenses caused a shift of the reference color towards higher saturated colors. Color discrimination ability with the yellow and orange colored lenses was significantly enhanced along the blue-yellow axis in comparison to the reference measurements without a tinted filter. Along the red-green axis only the orange lens caused a significant reduction of color discrimination threshold distance to the reference color. Yellow and orange tinted contact lenses enhance the ability of color discrimination. If the transmission spectra and the induced changes are taken into account, these results can also be applied to other filter media, such as blue filter intraocular lenses.

  12. Perceptions of racial confrontation: the role of color blindness and comment ambiguity.

    PubMed

    Zou, Linda X; Dickter, Cheryl L

    2013-01-01

    Because of its emphasis on diminishing race and avoiding racial discourse, color-blind racial ideology has been suggested to have negative consequences for modern day race relations. The current research examined the influence of color blindness and the ambiguity of a prejudiced remark on perceptions of a racial minority group member who confronts the remark. One hundred thirteen White participants responded to a vignette depicting a White character making a prejudiced comment of variable ambiguity, after which a Black target character confronted the comment. Results demonstrated that the target confronter was perceived more negatively and as responding less appropriately by participants high in color blindness, and that this effect was particularly pronounced when participants responded to the ambiguous comment. Implications for the ways in which color blindness, as an accepted norm that is endorsed across legal and educational settings, can facilitate Whites' complicity in racial inequality are discussed.

  13. Color adaptation induced from linguistic description of color

    PubMed Central

    Zheng, Liling; Huang, Ping; Zhong, Xiao; Li, Tianfeng; Mo, Lei

    2017-01-01

    Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience. PMID:28358807

  14. Color adaptation induced from linguistic description of color.

    PubMed

    Zheng, Liling; Huang, Ping; Zhong, Xiao; Li, Tianfeng; Mo, Lei

    2017-01-01

    Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience.

  15. Visual Color Comparisons in Forensic Science.

    PubMed

    Thornton, J I

    1997-06-01

    Color is used extensively in forensic science for the characterization and comparison of physical evidence, and should thus be well understood. Fundamental elements of color perception and color comparison systems are first reviewed. The second portion of this article discusses instances in which defects in color perception may occur, and the recognition of opportunities by means of which color perception and color discrimination may be expressed and enhanced. Application and limitations of color comparisons in forensic science, including soil, paint, and fibers comparisons and color tests, are reviewed. Copyright © 1997 Central Police University.

  16. Color synesthesia. Insight into perception, emotion, and consciousness

    PubMed Central

    Safran, Avinoam B.; Sanda, Nicolae

    2015-01-01

    Purpose of review Synesthesia is an extraordinary perceptual phenomenon, in which individuals experience unusual percepts elicited by the activation of an unrelated sensory modality or by a cognitive process. Emotional reactions are commonly associated. The condition prompted philosophical debates on the nature of perception and impacted the course of art history. It recently generated a considerable interest among neuroscientists, but its clinical significance apparently remains underevaluated. This review focuses on the recent studies regarding variants of color synesthesia, the commonest form of the condition. Recent findings Synesthesia is commonly classified as developmental and acquired. Developmental forms predispose to changes in primary sensory processing and cognitive functions, usually with better performances in certain aspects and worse in others, and to heightened creativity. Acquired forms of synesthesia commonly arise from drug ingestion or neurological disorders, including thalamic lesions and sensory deprivation (e.g., blindness). Cerebral exploration using structural and functional imaging has demonstrated distinct patterns in cortical activation and brain connectivity for controls and synesthetes. Artworks of affected painters are most illustrative of the nature of synesthetic experiences. Summary Results of the recent investigations on synesthesia offered a remarkable insight into the mechanisms of perception, emotion and consciousness, and deserve attention both from neuroscientists and from clinicians. PMID:25545055

  17. Color Perception in Pediatric Patient Room Design: American versus Korean Pediatric Patients.

    PubMed

    Phillip Park, Jin Gyu; Park, Changbae

    2013-01-01

    This study simultaneously addresses the issues of the scarcity of information about pediatric patient color preferences, conflicting findings about the impact of culture on color preferences, and limitations of previous research instruments. Effects of culture and gender on color preferences were investigated using American and Korean pediatric patients. Much of the existing research in environmental design has focused on environments for healthy children and adults, but those findings cannot be confidently applied to environments for pediatric patients. In previous studies, the impact of culture on color preferences has been suggested, though the effects appear to vary. Moreover, the results of previous studies were typically based on perceptions of small color chips, which are different from seeing a color on wall surfaces. Previous studies also failed to control for confounding variables such as color attributes and light sources. Instead of using color chips, this study used physical model simulation to investigate environmental color preferences in real contexts. Cultural difference was found in white. Other than white, no significant cultural difference was found. Gender differences were found across both of the groups. Korean pediatric patients showed significantly higher preference scores for white than Americans did. Other than white, both groups reported blue and green as their most preferred colors; white was the least preferred. Both groups reported similar gender effects. Overall, male patients reported significantly lower preference scores for red and purple than female patients did. These results can help healthcare providers and professionals better understand appropriate colors for pediatric populations. Evidence-based design, healing environment, patients, pediatric, satisfaction.

  18. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  19. Back to the USSR: How Colors Might Shape the Political Perception of East versus West.

    PubMed

    Gebauer, Fabian; Raab, Marius H; Carbon, Claus-Christian

    2016-01-01

    People typically process information to confirm their prior held attitudes and stereotypes. As the political relations between NATO and Russia have distinctively drifted apart in recent years, we were interested in how far old-established color depictions referring to the Cold War's demarcations (USSR = red; NATO = blue) might reinforce people's political perception of an East versus West antagonism nowadays. Participants received a fabricated news article in which both world powers were either depicted on a map as Russia = red and NATO = blue or vice versa (Study 1). Testing a different sample in Study 2, we fully removed color assignments and used hachured distinctions or no distinctions at all. We revealed that perceived political distance between both sides increased particularly for participants with negative attitudes toward Russia, but only when Russia was depicted in red. Thus, colors referring to the old-established Cold War patterns can indeed shape the political perception and reinforce stereotypical East versus West thinking.

  20. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  1. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.

    PubMed

    Shawkey, Matthew D; Maia, Rafael; D'Alba, Liliana

    2011-11-01

    Colors of living organisms are produced by selective light absorption from pigments and/or by light scattering from highly ordered nanostructures (i.e., structural color). While the physical bases of metallic colors of arthropods and fish are fairly well-known, those of birds are not. Here we examine structurally based silver color and its production in feathers of the waterbird species Anhinga. This achromatic color is distinguished from grey by high specular reflectance, from white by low diffuse reflectance, and from both by high gloss. Light and electron microscopy revealed three modifications of feathers likely leading to silver color. First, proximal barbules were highly elongated and contained glossy black color at their base and white color at their pennulum. Second, this glossy black portion contained a single outer layer of keratin weakly bounded by melanosomes. Finally, the white portion contained a disordered amorphous matrix of keratin and air. Optical analyzes suggest that these structures produce, respectively, glossy black color through thin-film interference and white color through incoherent light scattering. Silver color likely results from the combined reflectance of these adjacent structures. This represents a distinct mechanism for attaining silver colors that may have been partially derived through selection for display, thermoregulation or decreased hydrophobicity. Copyright © 2011 Wiley-Liss, Inc.

  2. [Study on color of thermosetting resin for veneer crown].

    PubMed

    Kamitomai, H

    1989-02-01

    Based on the viewpoint that stresses the importance of achieving natural colors and forms for veneer crown, four representative kinds of thermosetting resins were investigated colorimetrically in an attempt to clarify the relationship between the thickness and color of resins in opaque, dentin and enamel colors respectively. A spectrophotometer was used to measure the colors, the CIE colorimetric system employed to show the readings, and the CIE 1964 U*V*W* space was utilized to indicate the color differences, with the following results. 1. In the case of dentin, certain specific colors were observed for thickness of 1.3 to 1.8 mm when used alone, but when applied over opaque the range was 0.2 to 0.5 mm lower than when used alone. 2. Enamel resins were grouped into two types according to different color groups, one group similar to achromatic color with low limpidity and the other similar to the dentin color with high limpidity. The former type became more grayer with an increase in thickness when applied over dentin. The latter type showed no difference in color even when the thickness increased. This study has shown that the facing color results vary depending on the color properties of the different resins used. Therefore, it is advisable that careful consideration be given to these differencies in order to achieve the intended color facing.

  3. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    PubMed Central

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  4. Color in graphic design: an analysis of meaning and trends

    NASA Astrophysics Data System (ADS)

    Martinson, Barbara; Waldron, Carol C.

    2002-06-01

    Graphic design is visual communication through the selection, arrangement, and presentation of words and images, most often for the printed page which offer the designer almost limitless options for color use. The objective of this project is to identify patterns of color use. Ethnographic content analysis was used to document color use in annual reports represented in two publications, Print and Communication Arts, 1993-2000. The analysis focuses on the selection, combination, and contrast of hues; and their use with achromatic values. An analysis of the entire sample indicates that one-third of the annual reports used a palette that include black, white, and a hue from quadrant one (red to yellow). Nearly one-fifth of the designs used black, white, and colors from quadrants one and three (cyan to blue). The large samples for Technology, Health Sciences, Financial, and Civic organizations follow the first pattern. Food Service, Business products and services, and Transportation industries favor the second pattern.

  5. Alternate Lattice Design for Advanced Photon Source Multi-Bend Achromat Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Borland, Michael

    2015-01-01

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is proposed for a futureAdvanced Photon Source (APS)multibend- achromat (MBA) upgrade. This lattice requires use of a swap-out (on-axis) injection scheme. Alternate lattice design work has also been performed to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow beam accumulation. One of such alternate H7BA lattice designs, which still targets a very low emittance of 76 pm, is discussed in this paper. With these lattices, existing APS injector complex can be employed without the requirement of a very high charge operation. Studies show that an emittance belowmore » 76 pm can be achieved with the employment of reverse bends in an alternate lattice. We discuss the predicted performance and requirements for these lattices and compare them to the nominal lattice.« less

  6. Romantic red: red enhances men's attraction to women.

    PubMed

    Elliot, Andrew J; Niesta, Daniela

    2008-11-01

    In many nonhuman primates, the color red enhances males' attraction to females. In 5 experiments, the authors demonstrate a parallel effect in humans: Red, relative to other achromatic and chromatic colors, leads men to view women as more attractive and more sexually desirable. Men seem unaware of this red effect, and red does not influence women's perceptions of the attractiveness of other women, nor men's perceptions of women's overall likeability, kindness, or intelligence. The findings have clear practical implications for men and women in the mating game and, perhaps, for fashion consultants, product designers, and marketers. Furthermore, the findings document the value of extending research on signal coloration to humans and of considering color as something of a common language, both within and across species. (c) 2008 APA, all rights reserved.

  7. What Can We Learn from Toddlers about Categorical Perception of Color? Comments on Goldstein, Davidoff, and Roberson

    ERIC Educational Resources Information Center

    Franklin, Anna; Wright, Oliver; Davies, Ian R. L.

    2009-01-01

    We comment on Goldstein, Davidoff, and Roberson's replication and extension ("Journal of Experimental Child Psychology, 102", 219-238 [2009]) of our study of the effect of toddlers' color term knowledge on their categorical perception (CP) of color ("Journal of Experimental Child Psychology, 90", 114-141 [2005]). First, we discuss how best to…

  8. Filter presence and tipping paper color influence consumer perceptions of cigarettes.

    PubMed

    O'Connor, Richard J; Bansal-Travers, Maansi; Cummings, K Michael; Hammond, David; Thrasher, James F; Tworek, Cindy

    2015-12-22

    Cigarettes are marketed in a wide array of packaging and product configurations, and these may impact consumers' perceptions of product health effects and attractiveness. Filtered cigarettes are typically perceived as less hazardous and white tipping paper (as opposed to cork) often conveys 'lightness'. This study examined cigarette-related perceptions among 1220 young adult (age 18-35) current, ever, and never smokers recruited from three eastern U.S. cities (Buffalo NY, Columbia SC, Morgantown WV). Participants rated three cigarette sticks: two filtered cigarettes 85 mm in length, differing only in tipping paper color (cork versus white), and an unfiltered 70 mm cigarette. Overall, the cork-tipped cigarette was most commonly selected on taste and attractiveness, the white-tipped on least dangerous, and the unfiltered on most dangerous. Current smokers were more likely to select white-tipped (OR = 1.98) and cork-tipped (OR = 3.42) cigarettes, while ever smokers more commonly selected the cork-tipped (OR = 1.96), as most willing to try over the other products. Those willing to try the filtered white-tipped cigarette were more likely to have rated that cigarette as best tasting (OR = 11.10), attracting attention (OR = 17.91), and lowest health risk (OR = 1.94). Similarly, those willing to try cork tipped or unfiltered cigarettes rated those as best testing, attracting attention, and lowest health risk, respectively. Findings from this study demonstrate that consumer product perceptions can be influenced by elements of cigarette design, such as the presence and color of the filter tip.

  9. "Shades of beauty": examining the relationship of skin color to perceptions of physical attractiveness.

    PubMed

    Frisby, Cynthia M

    2006-08-01

    The purpose of this research project was to investigate the relationship between skin color and level of perceived physical attractiveness. Previous research suggested that skin color plays an important role in how we perceive an individual's physical attractiveness. The current study was conducted to determine how influential the role of race is on perceptions of physical attractiveness. In this study, 79 subjects were asked to evaluate images of potential endorsers to be used in an upcoming advertising campaign. The images were those of females of varying skin tones. Data were then collected and analyzed to determine whether skin tone and level of skin color can in fact influence the physical attractiveness stereotype.

  10. Color of low-fat cheese influences flavor perception and consumer liking.

    PubMed

    Wadhwani, R; McMahon, D J

    2012-05-01

    The present study examines the effect of color on low-fat cheese flavor perception and consumer acceptability. To understand the flavor preferences of the consumer population participating in the sensory testing, 4 brands of retail full-fat Cheddar cheeses labeled as mild, medium, or sharp were obtained. These cheeses were evaluated by a trained descriptive panel to generate a flavor profile for each cheese and then by consumer sensory panels. Overall and color liking were measured using a 9-point hedonic scale, and flavor, chewiness, level of sharpness measured using a 5-point just-about-right (JAR) scale (with 1 being not enough, 3 being just about right, and 5 being too much of the attribute). Subsequently, 9 low-fat Cheddar cheeses were manufactured using 3 levels of annatto (0, 7.34, and 22 g/100 kg) and 3 levels of titanium dioxide (0, 7.67, and 40 g/100 kg) using a randomized block design in duplicate. Cheeses were then evaluated by descriptive and consumer sensory panels. Each consumer testing consisted of 120 panelists who were mainly 18 to 35 yr of age (>90% of total populace) with >60% being frequent cheese consumers. Overall liking preference of the consumer group was for mild to medium cheese. Using the JAR scale, the medium cheeses were considered closest to JAR with a mean score of 3.0, compared with 2.4 for mild cheese and 3.6 for sharp cheese. Among low-fat cheeses, color was shown to be important with consumer liking being negatively influenced when the cheese appearance was too translucent (especially when normal levels of annatto were used) or too white. Matching the level of titanium dioxide with the annatto level gave the highest liking scores and flavor perception closest to JAR. This study established a significant effect of color on overall liking of low-fat versions of Cheddar cheese. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.

    2016-05-01

    Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.

  12. Segregating animals in naturalistic surroundings: interaction of color distributions and mechanisms.

    PubMed

    Jansen, Michael; Giesel, Martin; Zaidi, Qasim

    2016-03-01

    Humans have been shown to rapidly detect animals in naturalistic scenes, but the role of color in this task is unclear. We first analyze the color information contained in a large number of images of salient and camouflaged animals in generic backgrounds. We found that color distributions of most animals and of their immediate backgrounds were oriented along other than the cardinal directions of color space. In addition, the maximum distances between animals and background distributions also tended to be along noncardinal directions, suggesting a role for higher-order cortical color mechanisms whose preferred axes are distributed widely in color space. We measured temporal thresholds for segmenting animal color distributions from background distributions in the absence of spatial cues. Combined over all observers and all images in our sample, thresholds for segmenting isoluminant projections of these distributions were lower than for segmenting the original distributions and considerably lower than for segmenting achromatic projections. Color information is thus likely to be useful in segregating animals in generic views, i.e., views not purposely chosen by the photographer to enhance the visibility of the animal. However, a comparison of thresholds with distances between distributions failed to reveal any advantage conferred by higher-order color mechanisms.

  13. Features of color reflection in psychogenic pain in patients with somatoform disorders during psychotherapeutic treatment.

    PubMed

    Ishinova, Vera A; Svyatogor, Irina A; Reznikova, Tatiana N

    2009-11-01

    The present work examines the change in color reflection in psychogenic pain in patients with somatoform disorders (SFD) during psychotherapeutic treatment, for which empatho-techniques were used. At the start and end of the course the psychophysiological condition was determined according to psychological parameters and assessment of bioelectrical brain activity. All initial indicators for the patients significantly differed from those for the healthy subjects. At the same time, color reflection in the psychogenic pain was characterised by colors in the longwave part of the spectrum, in contradistinction to healthy subjects for whom achromatic and shortwave colors predominated. After the completed course patients with SFD had a significant improvement of all psychophysiological indicators and a lack of color reflectons in the longwave part of the spectrum. The data obtained permits the proposition that there exists a link between the psychogenic pain, its color reflection and anxiety, and also changes in the functional condition of the CNS.

  14. The ecological drivers of nuptial color evolution in darters (Percidae: Etheostomatinae).

    PubMed

    Ciccotto, Patrick J; Mendelson, Tamra C

    2016-04-01

    Closely related animal lineages often vary in male coloration, and ecological selection is hypothesized to shape this variation. The role of ecological selection in inhibiting male color has been documented extensively at the population level, but relatively few studies have investigated the evolution of male coloration across a clade of closely related species. Darters are a diverse group of fishes that vary in the presence of elaborate male nuptial coloration, with some species exhibiting vivid color patterns and others mostly or entirely achromatic. We used phylogenetic logistic regression to test for correlations between the presence/absence of color traits across darter species and the ecological conditions in which these species occur. Environmental variables were correlated with the presence of nuptial color in darters with colorful species tending to inhabit environments that would support fewer predators and potentially transmit a broader spectrum of natural light compared to species lacking male coloration. We also tested the color preferences of a common darter predator, largemouth bass, and found that it exhibits a strong preference for red, providing further evidence of predation as a source of selection on color evolution in darters. Ecological selection therefore appears to be an important factor in dictating the presence or absence of male coloration in this group of fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  16. Modeling Color Difference for Visualization Design.

    PubMed

    Szafir, Danielle Albers

    2018-01-01

    Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

  17. A conflict-based model of color categorical perception: evidence from a priming study.

    PubMed

    Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi

    2014-10-01

    Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.

  18. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization

    PubMed Central

    Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-01-01

    Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296

  19. Achromatic wave plates for the mid-infrared

    NASA Astrophysics Data System (ADS)

    Beasley, J. Donald; Marlowe, Philip D.

    2012-06-01

    Achromatic wave plates are useful in various mid-IR applications, such as analyzing or controlling the spectrum available from CO2 and other lasers, and for the study of IR spectra from distant stars. Their production relies upon the technical skills of those who grow the required high quality crystals and upon those who fabricate the optical parts to the needed precision. Two materials are described - one useful for light in the spectral range of the visible through the near IR and another that functions well in mid-IR applications from 2.5 μm to 11.5 μm. Some limitations imposed by inherent material properties will also be discussed.

  20. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  1. A common neural substrate for perceiving and knowing about color

    PubMed Central

    Simmons, W. Kyle; Ramjee, Vimal; Beauchamp, Michael S.; McRae, Ken; Martin, Alex; Barsalou, Lawrence W.

    2013-01-01

    Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain’s modality-specific systems. PMID:17575989

  2. A common neural substrate for perceiving and knowing about color.

    PubMed

    Simmons, W Kyle; Ramjee, Vimal; Beauchamp, Michael S; McRae, Ken; Martin, Alex; Barsalou, Lawrence W

    2007-09-20

    Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain's modality-specific systems.

  3. Towards representation of a perceptual color manifold using associative memory for color constancy.

    PubMed

    Seow, Ming-Jung; Asari, Vijayan K

    2009-01-01

    In this paper, we propose the concept of a manifold of color perception through empirical observation that the center-surround properties of images in a perceptually similar environment define a manifold in the high dimensional space. Such a manifold representation can be learned using a novel recurrent neural network based learning algorithm. Unlike the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete locations in the state space, the dynamics of the proposed learning algorithm represent memory as a nonlinear line of attraction. The region of convergence around the nonlinear line is defined by the statistical characteristics of the training data. This learned manifold can then be used as a basis for color correction of the images having different color perception to the learned color perception. Experimental results show that the proposed recurrent neural network learning algorithm is capable of color balance the lighting variations in images captured in different environments successfully.

  4. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  5. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Memory for color reactivates color processing region.

    PubMed

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  7. Perception of color emotions for single colors in red-green defective observers.

    PubMed

    Sato, Keiko; Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  8. Perception of color emotions for single colors in red-green defective observers

    PubMed Central

    Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  9. Color reproduction system based on color appearance model and gamut mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  10. Investigating affective color association of media content in language and perception based on online RGB experiment

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Jae

    2005-03-01

    As an investigation of color categorization in language and perception, this research intends to study the affective associations between certain colors and different media content (i.e., movie genres). Compared to non-entertainment graphics (medical imaging and engineering graphics), entertainment graphics (video games and movies) are designed to deliver emotionally stimulating content to audiences. Based on an online color survey of 19 subjects, this study investigated whether or not subjects had different color preferences on diverse movie genres. Instead of providing predefined limited number of color chips (or pictures) as stimuli, this study was conducted by asking the subjects to visualize their own images of movie genres and to select their preferred colors through an online RGB color palette. By providing a combined application interface of three color slides (red, green, blue) and 216 digital color cells, the subjects were interactively able to select their preferred colors of different movie genres. To compare the distribution of movie genres, the user selected colors were mapped on CIE chromaticity diagram. This study also investigated preferred color naming of different movie genres as well as three primary color names of the subjects" most favorite genre. The results showed that the subjects had different color associations with specific movie genres as well as certain genres showed higher individual differences. Regardless of genre differences, the subjects selected blue, red or green as their three primary color names that represent their favorite movie genres. Also, the results supports Berlin & Kay"s eleven color terms.

  11. When concepts lose their color: A case of object color knowledge impairment

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.

    2014-01-01

    Color is important in our daily interactions with objects, and plays a role in both low- and high-level visual processing. Previous neuropsychological studies have shown that color perception and object-color knowledge can doubly dissociate, and that both can dissociate from processing of object form. We present a case study of an individual who displayed an impairment for knowledge of the typical colors of objects, with preserved color perception and color naming. Our case also presented with a pattern of, if anything, worse performance for naming living items compared to nonliving things. The findings of the experimental investigation are evaluated in light of two theories of conceptual organization in the brain: the Sensory Functional Theory and the Domain-Specific Hypothesis. The dissociations observed in this case compel a model in which sensory/motor modality and semantic domain jointly constrain the organization of object knowledge. PMID:25058612

  12. Esthetics and psyche-part 1: assessment of the influence of patients' perceptions of body image and body experience on selection of existing natural tooth color.

    PubMed

    Bauer, Julia; Vasilache, Iliana; Schlegel, Andreas Karl; Wichmann, Manfred; Eitner, Stephan

    2012-01-01

    The aim of this research was to test the hypothesis that patients' attitudes toward their body affect their capacity to accurately select their existing natural tooth color. Standard validated psychologic assessments were used to determine a person's perception of body image and experience. Oral images were compared with the patients' perceptions of their natural tooth color, which were then compared with the actual tooth color judged by a dental professional. For the vital body dynamic and disliking body experience subscales, women exhibited a significantly more negative attitude toward their bodies than men (P = .000). Patients with a negative attitude toward their body tended to choose a lighter tooth color. The correlation between patients' and the testing physician's choices of color was r = 0.540 for women and r = 0.746 for men. Unhappiness with body image and experience results in poor perception of a patient's own oral image, which in turn results in a patient perceiving that his or her natural tooth color is lighter than that judged by a dental professional. This has clinical implications when trying to achieve patient satisfaction with dental prostheses.

  13. What can we learn from toddlers about categorical perception of color? Comments on Goldstein, Davidoff, and Roberson.

    PubMed

    Franklin, Anna; Wright, Oliver; Davies, Ian R L

    2009-02-01

    We comment on Goldstein, Davidoff, and Roberson's replication and extension (Journal of Experimental Child Psychology, 102, 219-238 [2009]) of our study of the effect of toddlers' color term knowledge on their categorical perception (CP) of color (Journal of Experimental Child Psychology, 90, 114-141 [2005]). First, we discuss how best to assess color term knowledge when concerned with the effects of language on color CP. A reanalysis of our data indicates that even toddlers who do not know the terms for the relevant focal colors still show CP. Second, we comment on Goldstein and colleagues' finding of blue-purple CP, as we did, but not of blue-green CP in Himba toddlers. We present contrasting data from Wright (unpublished PhD thesis, University of Surrey, 2006) that demonstrates blue-green CP in Himba toddlers. Finally, we discuss the limitations of the approach taken by all of these investigations and discuss theoretical accounts of the origin and nature of color CP.

  14. Color discrimination, color naming and color preferences in 80-year olds.

    PubMed

    Wijk, H; Berg, S; Sivik, L; Steen, B

    1999-06-01

    The aim of the present study was to investigate color discrimination, color naming and color preference in a random sample of 80-year-old men and women. Knowledge of color perception in old age can be of value when using color contrast, cues and codes in the environment to promote orientation and function. The color naming test indicated that the colors white, black, yellow, red, blue and green promoted recognition to the highest degree among all subjects. A gender-related difference, in favor of women, occurred in naming five of the mixed colors. Women also used more varied color names than men. Color discrimination was easier in the red and yellow area than in the blue and green area. This result correlates positively with visual function on far sight, and negatively with diagnosis of a cataract. The preference order for seven colors put blue, green and red at the top, and brown at the bottom, hence agreeing with earlier studies, and indicating that the preference order for colors remains relatively stable also in old age. This result should be considered when designing environments for old people.

  15. Animal coloration research: why it matters

    PubMed Central

    2017-01-01

    While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’. PMID:28533451

  16. Animal coloration research: why it matters.

    PubMed

    Caro, Tim; Stoddard, Mary Caswell; Stuart-Fox, Devi

    2017-07-05

    While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  17. Utilizing typical color appearance models to represent perceptual brightness and colorfulness for digital images

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Wang, Qing; Shao, Xiaopeng; Zhou, Conghao

    2016-12-01

    This study aims to expand the applications of color appearance models to representing the perceptual attributes for digital images, which supplies more accurate methods for predicting image brightness and image colorfulness. Two typical models, i.e., the CIELAB model and the CIECAM02, were involved in developing algorithms to predict brightness and colorfulness for various images, in which three methods were designed to handle pixels of different color contents. Moreover, massive visual data were collected from psychophysical experiments on two mobile displays under three lighting conditions to analyze the characteristics of visual perception on these two attributes and to test the prediction accuracy of each algorithm. Afterward, detailed analyses revealed that image brightness and image colorfulness were predicted well by calculating the CIECAM02 parameters of lightness and chroma; thus, the suitable methods for dealing with different color pixels were determined for image brightness and image colorfulness, respectively. This study supplies an example of enlarging color appearance models to describe image perception.

  18. Color constancy for an unseen surface.

    PubMed

    Norman, Liam J; Akins, Kathleen; Heywood, Charles A; Kentridge, Robert W

    2014-12-01

    The illumination of a scene strongly affects our perception of objects in that scene, e.g., the pages of a book illuminated by candlelight will appear quite yellow relative to other types of artificial illuminants. Yet at the same time, the reader still judges the pages as white, their surface color unaffected by the interplay of paper and illuminant. It has been shown empirically that we can indeed report two quite different interpretations of "color": one is dependent on the constant surface spectral reflectance of an object (surface color) and the other on the power of light of different wavelengths reflected from that object (reflected color). How then are these two representations related? The common view, dating from Aristotle, is that our experience of surface color is derived from reflected color or, in more familiar terms, that color perception follows from color sensation. By definition, color constancy requires that vision "discounts the illuminant"; thus, it seems reasonable that vision begins with the color of objects as they naively appear and that we infer from their appearances their surface color. Here, we question this classic view. We use metacontrast-masked priming and, by presenting the unseen prime and the visible mask under different illuminants, dissociate two ways in which the prime matched the mask: in surface color or in reflected color. We find that priming of the mask occurs when it matches the prime in surface color, not reflected color. It follows that color perception can arise without prior color sensation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Background matching by means of dorsal color change in treefrog populations (Hyla japonica).

    PubMed

    Choi, Noori; Jang, Yikweon

    2014-02-01

    Treefrogs change dorsal coloration to match background colors, presumably for predator avoidance. Dorsal coloration in treefrogs results from rearrangement of pigment granules in dermal chromatophores. This physiological basis for color change suggests that brightness and chroma are the color components that may change in response to background color. However, results of experiments are conflicting in that there is no consensus as to which color component is critical for color change in treefrogs. We tested predictions of the physiological model for color change in treefrogs by investigating dorsal color change under five background colors in three different populations of the treefrog Hyla japonica. Differences in color components between background colors and frogs were used as a measure of background matching. Throughout a 1-week experimental period, brightness and chroma differences decreased monotonically, while hue difference remained constant for all background colors. Chroma differences were smaller with the natural colors such as green and brown than with achromatic colors. Moreover, variation in color change among frogs from three localities that differed in land cover suggested that chroma change capacity may be sensitive to environmental conditions. Under the white background color, however, decreasing brightness difference seemed to be crucial to background matching. Furthermore, chroma difference and brightness difference did not decrease indefinitely, suggesting a trade-off between chroma difference and brightness difference under the white background. Thus, background matching may generally occur by decreasing chroma difference under most background colors in H. japonica, but brightness matching may be important under the white color. © 2013 Wiley Periodicals, Inc.

  20. A Study on Visibility Estimation of Web-Safe Colors using Paired Comparison and Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Saito, Keiichi; Notomi, Kazuhiro; Saito, Masao

    This paper presents the visibility ordering of several web safe colors. The research of web page visibility is important because of the rapid dissemination of the World Wide Web. The combination of a foreground color and a background color is an important factor in providing sufficient visibility. Therefore, the rating of color combination visibility is necessary when developing accessible web sites. In this study, the visibility of several web-safe color combinations was examined using psychological methodology, i.e., paired comparison. Eighteen chromatic and 3 achromatic web-safe colors were employed for visual stimuli. Twenty-eight subjects ranging from ages 21 to 75 were recruited, and all were with normal color sensation. They looked at two different colored characters simultaneously on the white background and were instructed to identify which one enabled them to see more clearly. In examining the relationship between the psychological rankings of the color combinations and the visual sensations, each color combination was first scored as to the visibility by Thurstone's paired comparison technique. Secondly, the visual sensation was deduced by applying Weber-Fechner's law to the luminance of the foreground colors. As results, the luminance of a foreground color influenced the visibility; however the visibility rating is difficult only using the luminance of web-safe colors. These indicate that the chromaticity and chroma saturation are necessary in rating of chromatic web-safe color visibility.

  1. Perception of dental esthetics: influence of restoration type, symmetry, and color in four different countries.

    PubMed

    Mehl, Christian; Harder, Sönke; Lin, Jun; Vollrath, Oliver; Kern, Matthias

    2015-01-01

    In this study, the influence of restoration type, symmetry, and color on the perception of dental appearance was evaluated. An esthetic questionnaire was completed by 29 patients before and after esthetic rehabilitation. In addition, 94 dentists from four countries (Germany, the United Kingdom [UK], China, and Switzerland) evaluated the influence of the above factors using before-and-after rehabilitation pictures. The most invasive treatment was recommended by Chinese dentists, while German, Swiss, and UK dentists recommended comparable treatment options. As for restorative symmetry, restoration type, and color, significant differences could be found among and within the dentists of the four countries (P ± .05).

  2. Why some colors appear more memorable than others: A model combining categories and particulars in color working memory.

    PubMed

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Flombaum, Jonathan I

    2015-08-01

    Categorization with basic color terms is an intuitive and universal aspect of color perception. Yet research on visual working memory capacity has largely assumed that only continuous estimates within color space are relevant to memory. As a result, the influence of color categories on working memory remains unknown. We propose a dual content model of color representation in which color matches to objects that are either present (perception) or absent (memory) integrate category representations along with estimates of specific values on a continuous scale ("particulars"). We develop and test the model through 4 experiments. In a first experiment pair, participants reproduce a color target, both with and without a delay, using a recently influential estimation paradigm. In a second experiment pair, we use standard methods in color perception to identify boundary and focal colors in the stimulus set. The main results are that responses drawn from working memory are significantly biased away from category boundaries and toward category centers. Importantly, the same pattern of results is present without a memory delay. The proposed dual content model parsimoniously explains these results, and it should replace prevailing single content models in studies of visual working memory. More broadly, the model and the results demonstrate how the main consequence of visual working memory maintenance is the amplification of category related biases and stimulus-specific variability that originate in perception. (c) 2015 APA, all rights reserved).

  3. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  4. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  5. Visual Perception and Reading: New Clues to Patterns of Dysfunction Across Multiple Visual Channels in Developmental Dyslexia.

    PubMed

    Pina Rodrigues, Ana; Rebola, José; Jorge, Helena; Ribeiro, Maria José; Pereira, Marcelino; van Asselen, Marieke; Castelo-Branco, Miguel

    2017-01-01

    The specificity of visual channel impairment in dyslexia has been the subject of much controversy. The purpose of this study was to determine if a differential pattern of impairment can be verified between visual channels in children with developmental dyslexia, and in particular, if the pattern of deficits is more conspicuous in tasks where the magnocellular-dorsal system recruitment prevails. Additionally, we also aimed at investigating the association between visual perception thresholds and reading. In the present case-control study, we compared perception thresholds of 33 children diagnosed with developmental dyslexia and 34 controls in a speed discrimination task, an achromatic contrast sensitivity task, and a chromatic contrast sensitivity task. Moreover, we addressed the correlation between the different perception thresholds and reading performance, as assessed by means of a standardized reading test (accuracy and fluency). Group comparisons were performed by the Mann-Whitney U test, and Spearman's rho was used as a measure of correlation. Results showed that, when compared to controls, children with dyslexia were more impaired in the speed discrimination task, followed by the achromatic contrast sensitivity task, with no impairment in the chromatic contrast sensitivity task. These results are also consistent with the magnocellular theory since the impairment profile of children with dyslexia in the visual threshold tasks reflected the amount of magnocellular-dorsal stream involvement. Moreover, both speed and achromatic thresholds were significantly correlated with reading performance, in terms of accuracy and fluency. Notably, chromatic contrast sensitivity thresholds did not correlate with any of the reading measures. Our evidence stands in favor of a differential visual channel deficit in children with developmental dyslexia and contributes to the debate on the pathophysiology of reading impairments.

  6. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents.

    PubMed

    Maglione, Anton G; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas.

  7. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents

    PubMed Central

    Maglione, Anton G.; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas. PMID:28790907

  8. Color categories and color appearance

    PubMed Central

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  9. Skin Color and Self-Perceptions of Immigrant and U.S.-Born Latinas: The Moderating Role of Racial Socialization and Ethnic Identity

    ERIC Educational Resources Information Center

    Telzer, Eva H.; Vazquez Garcia, Heidie A.

    2009-01-01

    Research has increasingly identified race as a salient characteristic that affects one's life experiences and psychological well-being. However, little is known about how skin color affects the emotional health of Latinos. The present study examined how skin color relates to the self-perceptions of immigrant (N = 26) and U.S.-born (N = 55) Latina…

  10. Color planner for designers based on color emotions

    NASA Astrophysics Data System (ADS)

    Cheng, Ka-Man; Xin, John H.; Taylor, Gail

    2002-06-01

    During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.

  11. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  12. Facts About Color Blindness

    MedlinePlus

    ... color perception of its employees, such as graphic design, photography, and food quality inspection. The Farnsworth Lantern ... challenging. Color blindness can go undetected for some time since children will often try to hide their ...

  13. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    PubMed

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  14. Brilliance, contrast, colorfulness, and the perceived volume of device color gamut

    NASA Astrophysics Data System (ADS)

    Heckaman, Rodney L.

    With the advent of digital video and cinema media technologies, much more is possible in achieving brighter and more vibrant colors, colors that transcend our experience. The challenge is in the realization of these possibilities in an industry rooted in 1950s technology where color gamut is represented with little or no insight into the way an observer perceives color as a complex mixture of the observer's intentions, desires, and interests. By today's standards, five perceptual attributes---brightness, lightness, colorfulness, chroma, and hue---are believed to be required for a complete specification. As a compelling case for such a representation, a display system is demonstrated that is capable of displaying color beyond the realm of object color, perceptually even beyond the spectrum locus of pure color. All this begs the question: Just what is meant by perceptual gamut? To this end, the attributes of perceptual gamut are identified through psychometric testing and the color appearance models CIELAB and CIECAM02. Then, by way of demonstration, these attributes were manipulated to test their application in wide gamut displays. In concert with these perceptual attributes and their manipulation, Ralph M. Evans' concept of brilliance as an attribute of perception that extends beyond the realm of everyday experience, and the theoretical studies of brilliance by Y. Nayatani, a method was developed for producing brighter, more colorful colors and deeper, darker colors with the aim of preserving object color perception---flesh tones in particular. The method was successfully demonstrated and tested in real images using psychophysical methods in the very real, practical application of expanding the gamut of sRGB into an emulation of the wide gamut, xvYCC encoding.

  15. Illuminant color estimation based on pigmentation separation from human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  16. How to identify up to 30 colors without training: color concept retrieval by free color naming

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Swartling, Tiina

    1994-05-01

    Used as a redundant code, color is shown to be advantageous in visual search tasks. It enhances attention, detection, and recall of information. Neuropsychological and neurophysiological findings have shown color and spatial perception to be interrelated functions. Studies on eye movements show that colored symbols are easier to detect and that eye fixations are more correctly directed to color-coded symbols. Usually between 5 and 15 colors have been found useful in classification tasks, but this umber can be increased to between 20 to 30 by careful selection of colors, and by a subject's practice with the identification task and familiarity with the particular colors. Recent neurophysiological findings concerning the language-concept connection in color suggest that color concept retrieval would be enhanced by free color naming or by the use of natural associations between color concepts and color words. To test this hypothesis, we had subjects give their own free associations to a set of 35 colors presented on a display. They were able to identify as many as 30 colors without training.

  17. What predicts the strength of simultaneous color contrast?

    PubMed Central

    Ratnasingam, Sivalogeswaran; Anderson, Barton L.

    2017-01-01

    The perceived color of a uniform image patch depends not only on the spectral content of the light that reaches the eye but also on its context. One of the most extensively studied forms of context dependence is a simultaneous contrast display: a center-surround display containing a homogeneous target embedded in a homogenous surround. A number of models have been proposed to account for the chromatic transformations of targets induced by such surrounds, but they were typically derived in the restricted context of experiments using achromatic targets with surrounds that varied along the cardinal axes of color space. There is currently no theoretical consensus that predicts the target color that produces the largest perceived color difference for two arbitrarily chosen surround colors, or what surround would give the largest color induction for an arbitrarily chosen target. Here, we present a method for assessing simultaneous contrast that avoids some of the methodological issues that arise with nulling and matching experiments and diminishes the contribution of temporal adaption. Observers were presented with pairs of center-surround patterns and ordered them from largest to smallest in perceived dissimilarity. We find that the perceived difference for two arbitrarily chosen surrounds is largest when the target falls on the line connecting the two surrounds in color space. We also find that the magnitude of induction is larger for larger differences between chromatic targets and surrounds of the same hue. Our results are consistent with the direction law (Ekroll & Faul, 2012b), and with a generalization of Kirschmann's fourth law, even for viewing conditions that do not favor temporal adaptation. PMID:28245494

  18. User’s Guide Engineering Data Compendium Human Perception and Performance

    DTIC Science & Technology

    1988-01-01

    covered (CRef. 1.222) by large wedges of sound-absorbing material to minimize Achromatic. (1) Characterized by an absence of chroma reflections and...walk model. A model of the perception and Risley prism. A prism assembly comprised of two thin decision response components in reaction time tasks... wedge prisms (generally identical) arranged in series. According to the model, an ideal detector accumulates Rotating the two prisms in opposite

  19. Color-binding errors during rivalrous suppression of form.

    PubMed

    Hong, Sang Wook; Shevell, Steven K

    2009-09-01

    How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.

  20. Color difference threshold determination for acrylic denture base resins.

    PubMed

    Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang

    2015-01-01

    This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.

  1. Physics and psychophysics of color reproduction

    NASA Astrophysics Data System (ADS)

    Giorgianni, Edward J.

    1991-08-01

    The successful design of a color-imaging system requires knowledge of the factors used to produce and control color. This knowledge can be derived, in part, from measurements of the physical properties of the imaging system. Color itself, however, is a perceptual response and cannot be directly measured. Though the visual process begins with physics, as radiant energy reaching the eyes, it is in the mind of the observer that the stimuli produced from this radiant energy are interpreted and organized to form meaningful perceptions, including the perception of color. A comprehensive understanding of color reproduction, therefore, requires not only a knowledge of the physical properties of color-imaging systems but also an understanding of the physics, psychophysics, and psychology of the human observer. The human visual process is quite complex; in many ways the physical properties of color-imaging systems are easier to understand.

  2. Visual cortex activity predicts subjective experience after reading books with colored letters.

    PubMed

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke

    2016-07-29

    One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Color “Fruit”: Object Memories Defined by Color

    PubMed Central

    Lewis, David E.; Pearson, Joel; Khuu, Sieu K.

    2013-01-01

    Most fruits and other highly color-diagnostic objects have color as a central aspect of their identity, which can facilitate detection and visual recognition. It has been theorized that there may be a large amount of overlap between the neural representations of these objects and processing involved in color perception. In accordance with this theory we sought to determine if the recognition of highly color diagnostic fruit objects could be facilitated by the visual presentation of their known color associates. In two experiments we show that color associate priming is possible, but contingent upon multiple factors. Color priming was found to be maximally effective for the most highly color diagnostic fruits, when low spatial-frequency information was present in the image, and when determination of the object's specific identity, not merely its category, was required. These data illustrate the importance of color for determining the identity of certain objects, and support the theory that object knowledge involves sensory specific systems. PMID:23717677

  4. Theoretical aspects of color vision

    NASA Technical Reports Server (NTRS)

    Wolbarsht, M. L.

    1972-01-01

    The three color receptors of Young-Helmholtz and the opponent colors type of information processing postulated by Hering are both present in the human visual system. This mixture accounts for both the phenomena of color matching or hue discrimination and such perceptual qualities of color as the division of the spectrum into color bands. The functioning of the cells in the visual system, especially within the retina, and the relation of this function to color perception are discussed.

  5. Message framing and color combination in the perception of medical information.

    PubMed

    Chien, Yu-Hung

    2011-04-01

    A 2 x 2 between-subjects design was used to examine the effects of message framing (gain vs loss) and color combination (red background with white characters vs white background with black characters) on 120 university students' perception of materials promoting the H1N1 flu vaccine and their willingness to receive the vaccine after they had read the materials. Each participant completed a 6-item questionnaire, and the results of an analysis of variance showed that participants rated vaccine information presented through loss-framed messages as having greater interest and leading to greater understanding. Loss-framed messages presented on a white background with black characters significantly increased the willingness of the participants to receive the vaccine.

  6. Does sadness impair color perception? Flawed evidence and faulty methods.

    PubMed

    Holcombe, Alex O; Brown, Nicholas J L; Goodbourn, Patrick T; Etz, Alexander; Geukes, Sebastian

    2016-01-01

    In their 2015 paper, Thorstenson, Pazda, and Elliot offered evidence from two experiments that perception of colors on the blue-yellow axis was impaired if the participants had watched a sad movie clip, compared to participants who watched clips designed to induce a happy or neutral mood. Subsequently, these authors retracted their article, citing a mistake in their statistical analyses and a problem with the data in one of their experiments. Here, we discuss a number of other methodological problems with Thorstenson et al.'s experimental design, and also demonstrate that the problems with the data go beyond what these authors reported. We conclude that repeating one of the two experiments, with the minor revisions proposed by Thorstenson et al., will not be sufficient to address the problems with this work.

  7. A color-communication scheme for digital imagery

    USGS Publications Warehouse

    Acosta, Alex

    1987-01-01

    Color pictures generated from digital images are frequently used by geologists, foresters, range managers, and others. These color products are preferred over black and white pictures because the human eye is more sensitive to color differences than to various shades of gray. Color discrimination is a function of perception, and therefore colors in these color composites are generally described subjectively, which can lead to ambiguous color communication. Numerous color-coordinate systems are available that quantitively relate digital triplets representing amounts of red, free, and blue to the parameters of hue, saturation, and intensity perceived by the eye. Most of these systems implement a complex transformation of the primary colors to a color space that is hard to visualize, thus making it difficult to relate digital triplets to perception parameters. This paper presents a color-communcation scheme that relates colors on a color triangle to corresponding values of "hue" (H), "saturation" (S), and chromaticity coordinates (x,y,z). The scheme simplifies the relation between red, green, and blue (RGB) digital triplets and the color generated by these triplets. Some examples of the use of the color-communication scheme in digital image processing are presented.

  8. Color perception differentiates Alzheimer's Disease (AD) from Vascular Dementia (VaD) patients.

    PubMed

    Arnaoutoglou, N A; Arnaoutoglou, M; Nemtsas, P; Costa, V; Baloyannis, S J; Ebmeier, K P

    2017-08-01

    Alzheimer's Disease (AD) and Vascular Dementia (VaD) are the most common causes of dementia in older people. Both diseases appear to have similar clinical symptoms, such as deficits in attention and executive function, but specific cognitive domains are affected. Current cohort studies have shown a close relationship between αβ deposits and age-related macular degeneration (Johnson et al., 2002; Ratnayaka et al., 2015). Additionally, a close link between the thinning of the retinal nerve fiber (RNFL) and AD patients has been described, while it has been proposed that AD patients suffer from a non-specific type of color blindness (Pache et al., 2003). Our study included 103 individuals divided into three groups: A healthy control group (n = 35), AD (n = 32) according to DSM-IV-TR, NINCDS-ADRDA criteria, and VaD (n = 36) based on ΝΙΝDS-AIREN, as well as Magnetic Resonance Imaging (MRI) results. The severity of patient's cognitive impairment, was measured with the Mini-Mental State Examination (MMSE) and was classified according to the Reisberg global deterioration scale (GDS). Visual perception was examined using the Ishihara plates: "Ishihara Color Vision Test - 38 Plate." The three groups were not statistically different for demographic data (age, gender, and education). The Ishihara color blindness test has a sensitivity of 80.6% and a specificity of 87.5% to discriminate AD and VaD patients when an optimal (32.5) cut-off value of performance is used. Ishihara Color Vision Test - 38 Plate is a promising potential method as an easy and not time-consuming screening test for the differential diagnosis of dementia between AD and VaD.

  9. Does contrast between eggshell ground and spot coloration affect egg rejection?

    PubMed

    Dainson, Miri; Hauber, Mark E; López, Analía V; Grim, Tomáš; Hanley, Daniel

    2017-08-01

    Obligate avian brood parasitic species impose the costs of incubating foreign eggs and raising young upon their unrelated hosts. The most common host defence is the rejection of parasitic eggs from the nest. Both egg colours and spot patterns influence egg rejection decisions in many host species, yet no studies have explicitly examined the role of variation in spot coloration. We studied the American robin Turdus migratorius, a blue-green unspotted egg-laying host of the brown-headed cowbird Molothrus ater, a brood parasite that lays non-mimetic spotted eggs. We examined host responses to model eggs with variable spot coloration against a constant robin-mimetic ground colour to identify patterns of rejection associated with perceived contrast between spot and ground colours. By using avian visual modelling, we found that robins were more likely to reject eggs whose spots had greater chromatic (hue) but not achromatic (brightness) contrast. Therefore, egg rejection decision rules in the American robin may depend on the colour contrast between parasite eggshell spot and host ground coloration. Our study also suggests that egg recognition in relation to spot coloration, like ground colour recognition, is tuned to the natural variation of avian eggshell spot colours but not to unnatural spot colours.

  10. Emotion colors time perception unconsciously.

    PubMed

    Yamada, Yuki; Kawabe, Takahiro

    2011-12-01

    Emotion modulates our time perception. So far, the relationship between emotion and time perception has been examined with visible emotional stimuli. The present study investigated whether invisible emotional stimuli affected time perception. Using continuous flash suppression, which is a kind of dynamic interocular masking, supra-threshold emotional pictures were masked or unmasked depending on whether the retinal position of continuous flashes on one eye was consistent with that of the pictures on the other eye. Observers were asked to reproduce the perceived duration of a frame stimulus that was concurrently presented with a masked or unmasked emotional picture. As a result, negative emotional stimuli elongated the perceived duration of the frame stimulus in comparison with positive and neutral emotional stimuli, regardless of the visibility of emotional pictures. These results suggest that negative emotion unconsciously accelerates an internal clock, altering time perception. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.

    PubMed

    Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J

    2013-05-03

    Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.

  12. Reflectance, illumination, and appearance in color constancy

    PubMed Central

    McCann, John J.; Parraman, Carinna; Rizzi, Alessandro

    2013-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. PMID:24478738

  13. Geometry of illumination, luminance contrast, and gloss perception.

    PubMed

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2010-09-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.

  14. Color appearance in stereoscopy

    NASA Astrophysics Data System (ADS)

    Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano

    2011-03-01

    The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.

  15. Color Functionality Used in Visual Display for Occupational and Environmental Safety and Managing Color Vision Deficiency.

    PubMed

    Ochiai, Nobuhisa; Kondo, Hiroyuki

    2017-01-01

    The effects of color perception are utilized in visual displays for the purpose of safety in the workplace and in daily life. These effects, generally known as color functionality, are divided into four classifications: visibility, legibility, conspicuity and discriminability. This article focuses on the relationship between the color functionality of color schemes used in visual displays for occupational and environmental safety and color vision deficiency (particularly congenital red-green color deficiency), a critical issue in ophthalmology, and examines the effects of color functionality on the perception of the color red in individuals with protan defects. Due to abrupt system reforms, current Japanese clinical ophthalmology finds itself in a situation where it is insufficiently prepared to handle congenital red-green color deficiencies. Indeed, occupational problems caused by color vision deficiencies have been almost completely neglected, and are an occupational safety and health concern that will need to be solved in the future. This report will present the guidelines for the color vision testing established by the British Health and Safety Executive (HSE), a pioneering example of a model meant to solve these problems. Issues relating to the creation of guidelines adapted to Japanese clinical ophthalmology will also be examined, and we will discuss ways to utilize color functionality used in visual displays for occupational and environmental safety to help manage color vision deficiency.

  16. Grapheme-color synesthetes show peculiarities in their emotional brain: cortical and subcortical evidence from VBM analysis of 3D-T1 and DTI data.

    PubMed

    Melero, Helena; Peña-Melián, Ángel; Ríos-Lago, Marcos; Pajares, Gonzalo; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan

    2013-06-01

    Grapheme-color synesthesia is a neurological phenomenon in which viewing achromatic letters/numbers leads to automatic and involuntary color experiences. In this study, voxel-based morphometry analyses were performed on T1 images and fractional anisotropy measures to examine the whole brain in associator grapheme-color synesthetes. These analyses provide new evidence of variations in emotional areas (both at the cortical and subcortical levels), findings that help understand the emotional component as a relevant aspect of the synesthetic experience. Additionally, this study replicates previous findings in the left intraparietal sulcus and, for the first time, reports the existence of anatomical differences in subcortical gray nuclei of developmental grapheme-color synesthetes, providing a link between acquired and developmental synesthesia. This empirical evidence, which goes beyond modality-specific areas, could lead to a better understanding of grapheme-color synesthesia as well as of other modalities of the phenomenon.

  17. Retention of Faculty of Color in Rehabilitation Counselor Education as It Relates to Their Perception of the Academic Climate

    ERIC Educational Resources Information Center

    Minor, Tameika D.

    2016-01-01

    This study investigates the relationships between demographic characteristics, perceptions of the academic climate, and the employment continuation plans of tenured and tenure-track faculty of color in CORE accredited rehabilitation counselor education (RCE) programs. Furthermore, this study aims to identify which factors best predict the…

  18. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  19. The Color of Safety: Ingroup Associated Colors make Beer Safer

    PubMed Central

    Loersch, Chris; Bartholow, Bruce D.

    2010-01-01

    Individuals display high levels of trust and express feelings of safety when interacting with social ingroup members. Here, we investigated whether cues related to ingroup membership would change perceptions of the safety of alcohol. Participants were exposed to images of beer in either a standard can or a can featuring the colors of their university (i.e., ‘fan cans’). We hypothesized that exposure to fan cans would change perceptions of the risks of beer drinking. Results showed that participants exposed to fan cans rated beer consumption as less dangerous (Experiment 1), were more likely to automatically activate safety-related mental content after unconscious perception of beer cues (Experiment 2), and viewed their ingroup’s party practices as less dangerous (Experiment 3). These results provide evidence that ingroup-associated colors can serve as a safety cue for alcohol, which may in theory perpetuate alcohol-related risk-taking, already a cause for concern on college and university campuses. PMID:21499547

  20. Color categories only affect post-perceptual processes when same- and different-category colors are equally discriminable.

    PubMed

    He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna

    2014-04-01

    Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.

  1. Color Reproduction System Based on Color Appearance Model and Gamut Mapping

    DTIC Science & Technology

    2000-07-01

    and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human

  2. Changing the color of textiles with realistic visual rendering

    NASA Astrophysics Data System (ADS)

    Hébert, Mathieu; Henckens, Lambert; Barbier, Justine; Leboulleux, Lucie; Page, Marine; Roujas, Lucie; Cazier, Anthony

    2015-03-01

    Fast and easy preview of a fabric without having to produce samples would be very profitable for textile designers, but remains a technological challenge. As a first step towards this objective, we study the possibility of making images of a real sample, and changing virtually the colors of its yarns while preserving the shine and shadow texture. We consider two types of fabrics: Jacquard weave fabrics made of polyester warp and weft yarns of different colors, and satin ribbons made of polyester and metallic yarns. For the Jacquard fabric, we make a color picture with a scanner on a sample in which the yarns have contrasted colors, threshold this image in order to distinguish the pixels corresponding to each yarn, and accordingly modify their hue and chroma values. This method is simple to operate but do not enable to simulate the angle-dependent shine. A second method, tested on the satin ribbon made of black polyester and achromatic metallic yarns, is based on polarized imaging. We analyze the polarization state of the reflected light which is different for dielectric and metallic materials illuminated by polarized light. We then add a fixed color value to the pixels representing the polyester yarns and modify the hue and chroma of the pixels representing the metallic yarns. This was performed for many incident angles of light, in order to render the twinkling effect displayed by these ribbons. We could verify through a few samples that the simulated previews reproduce real pictures with visually acceptable accuracy.

  3. The locus of color sensation: Cortical color loss and the chromatic visual evoked potential

    PubMed Central

    Crognale, Michael A.; Duncan, Chad S.; Shoenhard, Hannah; Peterson, Dwight J.; Berryhill, Marian E.

    2013-01-01

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color. PMID:23986535

  4. Advances in color science: from retina to behavior

    PubMed Central

    Chatterjee, Soumya; Field, Greg D.; Horwitz, Gregory D.; Johnson, Elizabeth N.; Koida, Kowa; Mancuso, Katherine

    2010-01-01

    Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incompletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color computations in the retina, primary visual cortex and higher-order visual areas, focusing on non-human primates, a model of human color vision. PMID:21068298

  5. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  6. Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  7. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y.; Westferro, F.; Lee, S. H.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  8. The effects of treatment room lighting color on time perception and emotion.

    PubMed

    Han, Seulki; Lee, Daehee

    2017-07-01

    [Purpose] The purpose of this study was to investigate the perceived treatment times and emotional reactions under different light colors in the treatment room. [Subjects and Methods] Subjects in this study were 20 healthy young students in their 20s. Under each lighting condition (blue, red, white, and yellow) differentiated by color, each subject laid on a therapeutic bed and underwent ultrasound therapy. Subjects were instructed to press a stopwatch every 1 minute, for a total of 5 times, after therapy started according to their perception of time while the stopwatch's time indicator was blocked. After the experiments, self-administered questionnaires were given to subjects to measure their emotional reactions. [Results] In terms of K-POMS scores, the mood states of depression-dejection, anger-hostility, and confusion-bewilderment were higher scores for blue and red lights compared to yellow light. The mood state of vigor-activity were higher scores for yellow and white lights compared to blue and red lights. [Conclusion] Therefore, it is important to take necessary measures to prevent the negative effects that blue and red light-based therapy can have on patient mood.

  9. A Simple Principled Approach for Modeling and Understanding Uniform Color Metrics

    PubMed Central

    Smet, Kevin A.G.; Webster, Michael A.; Whitehead, Lorne A.

    2016-01-01

    An important goal in characterizing human color vision is to order color percepts in a way that captures their similarities and differences. This has resulted in the continuing evolution of “uniform color spaces,” in which the distances within the space represent the perceptual differences between the stimuli. While these metrics are now very successful in predicting how color percepts are scaled, they do so in largely empirical, ad hoc ways, with limited reference to actual mechanisms of color vision. In this article our aim is to instead begin with general and plausible assumptions about color coding, and then develop a model of color appearance that explicitly incorporates them. We show that many of the features of empirically-defined color order systems (such as those of Munsell, Pantone, NCS, and others) as well as many of the basic phenomena of color perception, emerge naturally from fairly simple principles of color information encoding in the visual system and how it can be optimized for the spectral characteristics of the environment. PMID:26974939

  10. Exogenous attention and color perception: performance and appearance of saturation and hue.

    PubMed

    Fuller, Stuart; Carrasco, Marisa

    2006-11-01

    Exogenous covert attention is an automatic, transient form of attention that can be triggered by sudden changes in the periphery. Here we test for the effects of attention on color perception. We used the methodology developed by Carrasco, Ling, and Read [Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7 (3) 308-313] to explore the effects of exogenous attention on appearance of saturation (Experiment 1) and of hue (Experiment 2). We also tested orientation discrimination performance for single stimuli defined by saturation or hue (Experiment 3). The results indicate that attention increases apparent saturation, but does not change apparent hue, notwithstanding the fact that it improves orientation discrimination for both saturation and hue stimuli.

  11. Holistic face perception is modulated by experience-dependent perceptual grouping.

    PubMed

    Curby, Kim M; Entenman, Robert J; Fleming, Justin T

    2016-07-01

    What role do general-purpose, experience-sensitive perceptual mechanisms play in producing characteristic features of face perception? We previously demonstrated that different-colored, misaligned framing backgrounds, designed to disrupt perceptual grouping of face parts appearing upon them, disrupt holistic face perception. In the current experiments, a similar part-judgment task with composite faces was performed: face parts appeared in either misaligned, different-colored rectangles or aligned, same-colored rectangles. To investigate whether experience can shape impacts of perceptual grouping on holistic face perception, a pre-task fostered the perception of either (a) the misaligned, differently colored rectangle frames as parts of a single, multicolored polygon or (b) the aligned, same-colored rectangle frames as a single square shape. Faces appearing in the misaligned, differently colored rectangles were processed more holistically by those in the polygon-, compared with the square-, pre-task group. Holistic effects for faces appearing in aligned, same-colored rectangles showed the opposite pattern. Experiment 2, which included a pre-task condition fostering the perception of the aligned, same-colored frames as pairs of independent rectangles, provided converging evidence that experience can modulate impacts of perceptual grouping on holistic face perception. These results are surprising given the proposed impenetrability of holistic face perception and provide insights into the elusive mechanisms underlying holistic perception.

  12. Context-dependent crypsis: a prey's perspective of a color polymorphic predator.

    PubMed

    Rodríguez-Morales, D; Rico-Gray, V; García-Franco, J G; Ajuria-Ibarra, H; Hernández-Salazar, L T; Robledo-Ospina, L E; Rao, D

    2018-05-12

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  13. Context-dependent crypsis: a prey's perspective of a color polymorphic predator

    NASA Astrophysics Data System (ADS)

    Rodríguez-Morales, D.; Rico-Gray, V.; García-Franco, J. G.; Ajuria-Ibarra, H.; Hernández-Salazar, L. T.; Robledo-Ospina, L. E.; Rao, D.

    2018-06-01

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  14. Quantitative measurement of binocular color fusion limit for non-spectral colors.

    PubMed

    Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook

    2011-04-11

    Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram. © 2011 Optical Society of America

  15. A sensory origin for color-word stroop effects in aging: simulating age-related changes in color-vision mimics age-related changes in Stroop.

    PubMed

    Ben-David, Boaz M; Schneider, Bruce A

    2010-11-01

    An increase in Stroop effects with age can be interpreted as reflecting age-related reductions in selective attention, cognitive slowing, or color-vision. In the present study, 88 younger adults performed a Stroop test with two color-sets, saturated and desaturated, to simulate an age-related decrease in color perception. This color manipulation with younger adults was sufficient to lead to an increase in Stroop effects that mimics age-effects. We conclude that age-related changes in color perception can contribute to the differences in Stroop effects observed in aging. Finally, we suggest that the clinical applications of Stroop take this factor into account.

  16. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2017-01-01

    In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

  17. The Chemistry of Color Photography

    ERIC Educational Resources Information Center

    Guida, Wayne C.; Raber, Douglas J.

    1975-01-01

    Presents several topics in color photography which can serve as an introduction of scientific concepts into the classroom, such as: photochemistry (energy transport), organic chemistry (dye formation), physics (nature of light), psychology (color perception), and engineering (isolation of different chemical processes within layers of the film).…

  18. Effects of chromatic image statistics on illumination induced color differences.

    PubMed

    Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels

    2013-09-01

    We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.

  19. Human preferences for colorful birds: Vivid colors or pattern?

    PubMed

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  20. Classifying Color Materials: Children Are Less Holistic than Adults.

    ERIC Educational Resources Information Center

    Ward, Thomas B.; Vela, Edward

    1986-01-01

    Describes two studies that demonstrate young children's perception of color materials differs from that of adults in two ways: (1) the stimulus dimensions of hue, chroma, and value appear to result in somewhat more separable perception for young children than for adults, and (2) the perceived similarities the color materials are not the same for…

  1. Color signals through dorsal and ventral visual pathways

    PubMed Central

    Conway, Bevil R.

    2014-01-01

    Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417

  2. Factors that determin color appearance and color classification.

    PubMed

    Janelidze, D

    2011-11-01

    The purpose of this work was to consider the objective and subjective factors involved in color perception and on their basis offer a color classification that would allow for determining which of these factors are significant for each particular class of colors. In the first part of the article it is considered that physical correlates of subjective sensation of color have mainly a dual nature and sometimes correlate with spectral-power content of light coming from a given area of visual scene to retina, and sometimes with surface reflectance of the given area. Other objective and subjective factors which participate in the formation of color appearance are also considered. According to the characteristics of the visual stimulus, viewing conditions and functional state of visual system, composition of objective and subjective factors participating in the formation of color appearance, as well as the share of each factor in this process are changeable. In the second part of the article one of the possible version of color classification according to which it is possible to distinguish nine different classes of colors is proposed. Among differences between these classes, the most noticeable is that in the case of all classes of color except constant colors, the physical parameter that determines the color category of a given area is the spectral-power distribution of the light coming from this area to the retina. However, in the case of constant colors, the physical parameter that determines the color category of a given area is its reflectance. In the case of considered different classes of colors, composition of objective and subjective factors participating in the formation of color appearance is different. The proposed classification allows determining which of these factors are significant in the case of each specific class of color.

  3. An Easy Way to Show Memory Color Effects.

    PubMed

    Witzel, Christoph

    2016-01-01

    This study proposes and evaluates a simple stimulus display that allows one to measure memory color effects (the effect of object knowledge and memory on color perception). The proposed approach is fast and easy and does not require running an extensive experiment. It shows that memory color effects are robust to minor variations due to a lack of color calibration.

  4. Contributions of early Arab scholars to color science

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan

    2017-09-01

    The Islamic world made important discoveries in the field of color science during the medieval era. These included many fundamental ideas on the nature of color. Some of the first hue scales, though partial were developed by these scholars. They also showed that color was a percept and light and color were ontologically distinct. Other contributions by these scholars include descriptions of the color mixtures, color tops, color theory, etc. A few of these contributions will be discussed in this paper with particular attention to the work of Ibn al-Haytham on color.

  5. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  6. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  7. Color categories are not universal: new evidence from traditional and western cultures

    NASA Astrophysics Data System (ADS)

    Roberson, Debi D.; Davidoff, Jules; Davies, Ian R. L.

    2002-06-01

    Evidence presented supports the linguistic relativity of color categories in three different paradigms. Firstly, a series of cross-cultural investigations, which had set out to replicate the seminal work of Rosch Heider with the Dani of New Guinea, failed to find evidence of a set of universal color categories. Instead, we found evidence of linguistic relativity in both populations tested. Neither participants from a Melanesian hunter-gatherer culture, nor those from an African pastoral tribe, whose languages both contain five color terms, showed a cognitive organization of color resembling that of English speakers. Further, Melanesian participants showed evidence of Categorical Perception, but only at their linguistic category boundaries. Secondly, in native English speakers verbal interference was found to selectively remove the defining features of Categorical Perception. Under verbal interference, the greater accuracy normally observed for cross-category judgements compared to within-category judgements disappeared. While both visual and verbal codes may be employed in the recognition memory of colors, participants only make use of verbal coding when demonstrating Categorical Perception. Thirdly, in a brain- damaged patient suffering from a naming disorder, the loss of labels radically impaired his ability to categorize colors. We conclude that language affects both the perception of and memory for colors.

  8. Database of synesthetic color associations for Japanese kanji.

    PubMed

    Hamada, Daisuke; Yamamoto, Hiroki; Saiki, Jun

    2017-02-01

    Synesthesia is a neurological phenomenon in which certain types of stimuli elicit involuntary perceptions in an unrelated pathway. A common type of synesthesia is grapheme-color synesthesia, in which the visual perception of letters and numbers stimulates the perception of a specific color. Previous studies have often collected relatively small numbers of grapheme-color associations per synesthete, but the accumulation of a large quantity of data has greater promise for uncovering the mechanisms underlying synesthetic association. In this study, we therefore collected large samples of data from a total of eight synesthetes. All told, we obtained over 1000 synesthetic colors associated with Japanese kanji characters from each of two synesthetes, over 100 synesthetic colors form each of three synesthetes, and about 80 synesthetic colors associated with Japanese hiragana, Latin letters, and Arabic numerals from each of three synesthetes. We then compiled the data into a database, called the KANJI-Synesthetic Colors Database (K-SCD), which has a total of 5122 colors for 483, 46, and 46 Japanese kanji, hiragana, and katakana characters, respectively, as well as for 26 Latin letters and ten Arabic numerals. In addition to introducing the K-SCD, this article demonstrates the database's merits by using two examples, in which two new rules for synesthetic association, "shape similarity" and "synesthetic color clustering," were found. The K-SCD is publicly accessible ( www.cv.jinkan.kyoto-u.ac.jp/site/uploads/K-SCD.xlsm ) and will be a valuable resource for those who wish to conduct statistical analyses using a rich dataset in order to uncover the rules governing synesthetic association and to understand its mechanisms.

  9. Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task.

    PubMed

    Bimler, David; Kirkland, John; Pichler, Shaun

    2004-02-01

    The structure of color perception can be examined by collecting judgments about color dissimilarities. In the procedure used here, stimuli are presented three at a time on a computer monitor and the spontaneous grouping of most-similar stimuli into gestalts provides the dissimilarity comparisons. Analysis with multidimensional scaling allows such judgments to be pooled from a number of observers without obscuring the variations among them. The anomalous perceptions of color-deficient observers produce comparisons that are represented well by a geometric model of compressed individual color spaces, with different forms of deficiency distinguished by different directions of compression. The geometrical model is also capable of accommodating the normal spectrum of variation, so that there is greater variation in compression parameters between tests on normal subjects than in those between repeated tests on individual subjects. The method is sufficiently sensitive and the variations sufficiently large that they are not obscured by the use of a range of monitors, even under somewhat loosely controlled conditions.

  10. Differential effects of gender on entropy perception

    NASA Astrophysics Data System (ADS)

    Satcharoen, Kleddao

    2017-12-01

    The purpose of this research is to examine differences in perception of entropy (color intensity) between male and female computer users. The objectives include identifying gender-based differences in entropy intention and exploring the potential effects of these differences (if any) on user interface design. The research is an effort to contribute to an emerging field of interest in gender as it relates to science, engineering and technology (SET), particularly user interface design. Currently, there is limited evidence on the role of gender in user interface design and in use of technology generally, with most efforts at gender-differentiated or customized design based on stereotypes and assumptions about female use of technology or the assumption of a default position based on male preferences. Image entropy was selected as a potential characteristic where gender could be a factor in perception because of known differences in color perception acuity between male and female individuals, even where there is no known color perception abnormality (which is more common with males). Although the literature review suggested that training could offset differences in color perception and identification, tests in untrained subject groups routinely show that females are more able to identify, match, and differentiate colors, and that there is a stronger emotional and psychosocial association of color for females. Since image entropy is associated with information content and image salience, the ability to identify areas of high entropy could make a difference in user perception and technological capabilities.

  11. Surface Color Perception and Equivalent Illumination Models

    PubMed Central

    Brainard, David H.; Maloney, Laurence T.

    2011-01-01

    Vision provides information about the properties and identity of objects. The ease with which we make such judgments belies the difficulty of the information-processing task that accomplishes it. In the case of object color, retinal information about object reflectance is confounded with information about the illumination as well as about the object’s shape and pose. Because of these factors, there is no obvious rule that allows transformation of the retinal images of an object to a color representation that depends primarily on the object’s surface reflectance properties. Despite the difficulty of this task, however, under many circumstances object color appearance is remarkably stable across scenes in which the object is viewed. Here we review experiments and theory that aim to understand how the visual system stabilizes the color appearance of object surfaces. Our emphasis is on a class of models derived from explicit analysis of the computational problem of estimating the physical properties of illuminants and surfaces from the information available in the retinal image and experiments that test these models. We argue that this approach has considerable promise for allowing generalization from simplified laboratory experiments to richer scenes that more closely approximate natural viewing. PMID:21536727

  12. Human preference for individual colors

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-02-01

    Color preference is an important aspect of human behavior, but little is known about why people like some colors more than others. Recent results from the Berkeley Color Project (BCP) provide detailed measurements of preferences among 32 chromatic colors as well as other relevant aspects of color perception. We describe the fit of several color preference models, including ones based on cone outputs, color-emotion associations, and Palmer and Schloss's ecological valence theory. The ecological valence theory postulates that color serves an adaptive "steering' function, analogous to taste preferences, biasing organisms to approach advantageous objects and avoid disadvantageous ones. It predicts that people will tend to like colors to the extent that they like the objects that are characteristically that color, averaged over all such objects. The ecological valence theory predicts 80% of the variance in average color preference ratings from the Weighted Affective Valence Estimates (WAVEs) of correspondingly colored objects, much more variance than any of the other models. We also describe how hue preferences for single colors differ as a function of gender, expertise, culture, social institutions, and perceptual experience.

  13. Both "나" and "な" are yellow: cross-linguistic investigation in search of the determinants of synesthetic color.

    PubMed

    Shin, Eun-hye; Kim, Chai-Youn

    2014-12-01

    Individuals with grapheme-color synesthesia experience "colors" when viewing achromatic letters and digits. Despite the large individual difference in synesthetic association between inducing graphemes and induced colors, the search for the determinants of synesthetic experience has begun. So far, however, research has drawn an inconsistent picture; some studies have shown that graphemes of similar visual shape tend to induce similar synesthetic colors, while others suggested sound as an important factor. Moreover, meaning seems to affect synesthetic color. In the present work, we sought to investigate the determinants of synesthetic color by testing four multilingual grapheme-color synesthetes who experience "colors" upon viewing Korean (hangul), Japanese (katakana and hiragana), and English (Latin alphabet) characters on a standardized color-matching procedure. Results showed that pairs of characters of matched sound tended to induce similar synesthetic colors. This was the case not only between two scripts within the same language (Japanese hiragana and katakana) but also between two different languages (Japanese and Korean). In addition, pairs of characters with similar initial phonemes tended to induce similar colors; this was general across multiple languages. Results also showed that pairs of sequential words in Korean, Japanese, English, and Chinese that have the same meaning tended to elicit similar synesthetic colors. When those pairs of words shared not only meaning but also sound, the similarity of the induced synesthetic colors was even greater. Our work is one of the few initial attempts to examine the influence of visual shape, sound, meaning, and their interaction on synesthetic color induced by characters across multiple languages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Prediction of the spectral reflectance of laser-generated color prints by combination of an optical model and learning methods.

    PubMed

    Nébouy, David; Hébert, Mathieu; Fournel, Thierry; Larina, Nina; Lesur, Jean-Luc

    2015-09-01

    Recent color printing technologies based on the principle of revealing colors on pre-functionalized achromatic supports by laser irradiation offer advanced functionalities, especially for security applications. However, for such technologies, the color prediction is challenging, compared to classic ink-transfer printing systems. The spectral properties of the coloring materials modified by the lasers are not precisely known and may strongly vary, depending on the laser settings, in a nonlinear manner. We show in this study, through the example of the color laser marking (CLM) technology, based on laser bleaching of a mixture of pigments, that the combination of an adapted optical reflectance model and learning methods to get the model's parameters enables prediction of the spectral reflectance of any printable color with rather good accuracy. Even though the pigment mixture is formulated from three colored pigments, an analysis of the dimensionality of the spectral space generated by CLM printing, thanks to a principal component analysis decomposition, shows that at least four spectral primaries are needed for accurate spectral reflectance predictions. A polynomial interpolation is then used to relate RGB laser intensities with virtual coordinates of new basis vectors. By studying the influence of the number of calibration patches on the prediction accuracy, we can conclude that a reasonable number of 130 patches are enough to achieve good accuracy in this application.

  15. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.

    PubMed

    Bonfiglio, Luca; Bocci, Tommaso; Minichilli, Fabrizio; Crecchi, Alessandra; Barloscio, Davide; Spina, Donata Maria; Rossi, Bruno; Sartucci, Ferdinando

    2017-01-01

    As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.

  16. African American Adolescents and Skin Color.

    ERIC Educational Resources Information Center

    Robinson, Tracy L.; Ward, Janie V.

    1995-01-01

    Determines if skin-color perception in the lives of African American adolescents affects self-esteem and dating relationships. Findings from 123 adolescents show the existence of relationships between satisfaction of skin color and self-esteem and dating. Findings also show more males than females desired lighter skin tone. Implications are…

  17. Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.

    PubMed

    Bannert, Michael M; Bartels, Andreas

    2018-04-11

    Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an

  18. [Colors and their meaning in culture and psychology--a historical outline and contemporary status of color vision theories].

    PubMed

    Grzybowski, Andrzej; Lewicka, Romana; Torlińska, Teresa; Stelcer, Bogusław

    2008-01-01

    The mechanism of color perception has intrigued scholars from antiquity. However, the understanding of this phenomena only came with the recognition of the nature of light and visual perception. Ancient concepts, present in science until the Renaissance, were based more on philosophical considerations and theoretical speculations than on anatomical studies and a matter-of-fact assessment of physiological functions of the visual system. From antiquity to 17th century scientific approach to the concept of vision was dominated by two theories: intromission and extramission (emanation). Intromission theory, propagated by Alhazen (lbn al.-Haythama), Vitello, John Peckham, Roger Bacon and Leonardo da Vinci, assumed that the light was transmitted from the observed object perpendicularly to the transparent eye structures. Johannes Kepler was the first scholar to propose that the retina was the receptive part of the eye. In the first half of the 17th century, Kepler's groundbreaking optical achievements and anatomical discoveries of many other scientists cast new light on the understanding of the role of different eye structures, finally wiping out the intromission theory. A further major achievement contributing to the recognition of the true nature of colors was a theory presented by Newton in 1688. He argued that they were colored rays, and not white light, that were composed of homogenous and pure light. It was, however, not until the 19th century when two modern theories of color appeared, i.e. a trichromatic theory mostly associated with the names of Young and Hemlholtz, and an opponent colors theory of Hering. In the 20th century, the two theories--previously assumed as contradictory--were joined into the zone theories of color vision. Colors have their cultural and social meanings, as far as a very individual and personal interpretation. In the former function they are used to illustrate some cultural and sociological phenomena; in the latter, they are helpful in

  19. Effects of spatial cues on color-change detection in humans

    PubMed Central

    Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.

    2015-01-01

    Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359

  20. Video enhancement method with color-protection post-processing

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin; Kwak, Youngshin

    2015-01-01

    The current study is aimed to propose a post-processing method for video enhancement by adopting a color-protection technique. The color-protection intends to attenuate perceptible artifacts due to over-enhancements in visually sensitive image regions such as low-chroma colors, including skin and gray objects. In addition, reducing the loss in color texture caused by the out-of-color-gamut signals is also taken into account. Consequently, color reproducibility of video sequences could be remarkably enhanced while the undesirable visual exaggerations are minimized.

  1. The perception of subjective contours and neon color spreading figures in young infants.

    PubMed

    Kavsek, Michael

    2009-02-01

    The goal of the present habituation-dishabituation study was to explore sensitivity to subjective contours and neon color spreading patterns in infants. The first experiment was a replication of earlier investigations that showed evidence that even young infants are capable of perceiving subjective contours. Participants 4 months of age were habituated to a subjective Kanizsa square and were tested afterward for their ability to differentiate between the subjective square and a nonsubjective pattern that was constructed by rotating some of the inducing elements. Data analysis indicated a significant preference for the nonsubjective pattern. A control condition ensured that this result was not generated by the difference in figural symmetry or by the local differences between the test displays. In the second experiment, infant perception of a neon color spreading display was analyzed. Again, 4-month-old infants could discriminate between the illusory figure and a nonillusory pattern. Furthermore, infants in a control group did not respond to the difference in symmetry and the local differences between two nonillusory targets. Overall, the results show that young infants respond to illusory figures that are generated by either implicit T-junctions (Experiment 1) or implicit X-junctions (Experiment 2). The findings are interpreted against the background of the neurophysiological model proposed by Grossberg and Mingolla (1985).

  2. Emotion-Color Associations in the Context of the Face.

    PubMed

    Thorstenson, Christopher A; Elliot, Andrew J; Pazda, Adam D; Perrett, David I; Xiao, Dengke

    2017-11-27

    Facial expressions of emotion contain important information that is perceived and used by observers to understand others' emotional state. While there has been considerable research into perceptions of facial musculature and emotion, less work has been conducted to understand perceptions of facial coloration and emotion. The current research examined emotion-color associations in the context of the face. Across 4 experiments, participants were asked to manipulate the color of face, or shape, stimuli along 2 color axes (i.e., red-green, yellow-blue) for 6 target emotions (i.e., anger, disgust, fear, happiness, sadness, surprise). The results yielded a pattern that is consistent with physiological and psychological models of emotion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Electrophysiological evidence for the left-lateralized effect of language on preattentive categorical perception of color

    PubMed Central

    Mo, Lei; Xu, Guiping; Kay, Paul; Tan, Li-Hai

    2011-01-01

    Previous studies have shown that the effect of language on categorical perception of color is stronger when stimuli are presented in the right visual field than in the left. To examine whether this lateralized effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity, which is a component of the event-related potential of the brain to an unfamiliar stimulus among a temporally presented series of stimuli. In the oddball paradigm we used, the deviant stimuli were unrelated to the explicit task. A significant interaction between color-pair type (within-category vs. between-category) and visual field (left vs. right) was found. The amplitude of the visual mismatch negativity component evoked by the within-category deviant was significantly smaller than that evoked by the between-category deviant when displayed in the right visual field, but no such difference was observed for the left visual field. This result constitutes electroencephalographic evidence that the lateralized Whorf effect per se occurs out of awareness and at an early stage of processing. PMID:21844340

  4. Mood perception of interior colors in a gym

    NASA Astrophysics Data System (ADS)

    Ohno, Haruyo; Koizumi, Naoko

    2002-06-01

    When people enter a gym, they feel more like exercising in some cases than other cases. The interior color of the space may be a contributing factor. This paper discusses how the interior color of a gym affects female subjects in their twenties and forties to fifties both physiologically and psychologically.

  5. Spatial filtering, color constancy, and the color-changing dress.

    PubMed

    Dixon, Erica L; Shapiro, Arthur G

    2017-03-01

    The color-changing dress is a 2015 Internet phenomenon in which the colors in a picture of a dress are reported as blue-black by some observers and white-gold by others. The standard explanation is that observers make different inferences about the lighting (is the dress in shadow or bright yellow light?); based on these inferences, observers make a best guess about the reflectance of the dress. The assumption underlying this explanation is that reflectance is the key to color constancy because reflectance alone remains invariant under changes in lighting conditions. Here, we demonstrate an alternative type of invariance across illumination conditions: An object that appears to vary in color under blue, white, or yellow illumination does not change color in the high spatial frequency region. A first approximation to color constancy can therefore be accomplished by a high-pass filter that retains enough low spatial frequency content so as to not to completely desaturate the object. We demonstrate the implications of this idea on the Rubik's cube illusion; on a shirt placed under white, yellow, and blue illuminants; and on spatially filtered images of the dress. We hypothesize that observer perceptions of the dress's color vary because of individual differences in how the visual system extracts high and low spatial frequency color content from the environment, and we demonstrate cross-group differences in average sensitivity to low spatial frequency patterns.

  6. Real-time multiple human perception with color-depth cameras on a mobile robot.

    PubMed

    Zhang, Hao; Reardon, Christopher; Parker, Lynne E

    2013-10-01

    The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an

  7. Skin Color and Pigmentation in Ethnic Skin.

    PubMed

    Visscher, Marty O

    2017-02-01

    Skin coloration is highly diverse, partly due to the presence of pigmentation. Color variation is related to the extent of ultraviolet radiation exposure, as well as other factors. Inherent skin coloration arises from differences in basal epidermal melanin amount and type. Skin color is influenced by both the quantity and distribution of melanocytes. The effectiveness of inherent pigmentation for protecting living cells also varies. This article discusses skin color, pigmentation, and ethnicity in relation to clinical practice. Color perception, skin typing/classification, and quantitation of pigmentation are reviewed in relation to ethnicity, environmental stresses/irritants, and potential treatment effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Common Neural Substrate for Perceiving and Knowing about Color

    ERIC Educational Resources Information Center

    Simmons, W. Kyle; Ramjee, Vimal; Beauchamp, Michael S.; McRae, Ken; Martin, Alex; Barsalou, Lawrence W.

    2007-01-01

    Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color…

  9. Difference between highlight and object colors enhances glossiness.

    PubMed

    Hanada, Mitsuhiko

    2012-06-01

    The effect of highlight and object colors on perception of glossiness was examined. Ten participants rated glossiness of object images. The color coordinates of objects and highlights were varied while luminance of each pixel was unchanged. Four colors were used for objects and highlights. Objects were perceived as glossier when the highlight color was different from the object color than when they were the same. Objects with some unnatural combinations of highlight and object colors were perceived to be as glossy as those with natural color combinations. The results suggested that differences between highlight and object colors enhance perceived glossiness and that perceived glossiness does not depend on naturalness of color combination for highlights and objects.

  10. Coherent modulation of stimulus colour can affect visually induced self-motion perception.

    PubMed

    Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji

    2010-01-01

    The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.

  11. Color of scents: chromatic stimuli modulate odor responses in the human brain.

    PubMed

    Osterbauer, Robert A; Matthews, Paul M; Jenkinson, Mark; Beckmann, Christian F; Hansen, Peter C; Calvert, Gemma A

    2005-06-01

    Color has a profound effect on the perception of odors. For example, strawberry-flavored drinks smell more pleasant when colored red than green and descriptions of the "nose" of a wine are dramatically influenced by its color. Using functional magnetic resonance imaging, we demonstrate a neurophysiological correlate of these cross-modal visual influences on olfactory perception. Subjects were scanned while exposed either to odors or colors in isolation or to color-odor combinations that were rated on the basis of how well they were perceived to match. Activity in caudal regions of the orbitofrontal cortex and in the insular cortex increased progressively with the perceived congruency of the odor-color pairs. These findings demonstrate the neuronal correlates of olfactory response modulation by color cues in brain areas previously identified as encoding the hedonic value of smells.

  12. The Verriest Lecture: Color lessons from space, time, and motion

    PubMed Central

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  13. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  14. The biology of color.

    PubMed

    Cuthill, Innes C; Allen, William L; Arbuckle, Kevin; Caspers, Barbara; Chaplin, George; Hauber, Mark E; Hill, Geoffrey E; Jablonski, Nina G; Jiggins, Chris D; Kelber, Almut; Mappes, Johanna; Marshall, Justin; Merrill, Richard; Osorio, Daniel; Prum, Richard; Roberts, Nicholas W; Roulin, Alexandre; Rowland, Hannah M; Sherratt, Thomas N; Skelhorn, John; Speed, Michael P; Stevens, Martin; Stoddard, Mary Caswell; Stuart-Fox, Devi; Talas, Laszlo; Tibbetts, Elizabeth; Caro, Tim

    2017-08-04

    Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics

    PubMed Central

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-01-01

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods. PMID:29155715

  16. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-10-27

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods.

  17. A color prediction model for imagery analysis

    NASA Technical Reports Server (NTRS)

    Skaley, J. E.; Fisher, J. R.; Hardy, E. E.

    1977-01-01

    A simple model has been devised to selectively construct several points within a scene using multispectral imagery. The model correlates black-and-white density values to color components of diazo film so as to maximize the color contrast of two or three points per composite. The CIE (Commission Internationale de l'Eclairage) color coordinate system is used as a quantitative reference to locate these points in color space. Superimposed on this quantitative reference is a perceptional framework which functionally contrasts color values in a psychophysical sense. This methodology permits a more quantitative approach to the manual interpretation of multispectral imagery while resulting in improved accuracy and lower costs.

  18. Effects of color information on face processing using event-related potentials and gamma oscillations.

    PubMed

    Minami, T; Goto, K; Kitazaki, M; Nakauchi, S

    2011-03-10

    In humans, face configuration, contour and color may affect face perception, which is important for social interactions. This study aimed to determine the effect of color information on face perception by measuring event-related potentials (ERPs) during the presentation of natural- and bluish-colored faces. Our results demonstrated that the amplitude of the N170 event-related potential, which correlates strongly with face processing, was higher in response to a bluish-colored face than to a natural-colored face. However, gamma-band activity was insensitive to the deviation from a natural face color. These results indicated that color information affects the N170 associated with a face detection mechanism, which suggests that face color is important for face detection. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  20. How colorful! A feature it is, isn't it?

    NASA Astrophysics Data System (ADS)

    Lebowsky, Fritz

    2015-01-01

    A display's color subpixel geometry provides an intriguing opportunity for improving readability of text. True type fonts can be positioned at the precision of subpixel resolution. With such a constraint in mind, how does one need to design font characteristics? On the other hand, display manufactures try hard in addressing the color display's dilemma: smaller pixel pitch and larger display diagonals strongly increase the total number of pixels. Consequently, cost of column and row drivers as well as power consumption increase. Perceptual color subpixel rendering using color component subsampling may save about 1/3 of color subpixels (and reduce power dissipation). This talk will try to elaborate the following questions, based on simulation of several different layouts of subpixel matrices: Up to what level are display device constraints compatible with software specific ideas of rendering text? How much of color contrast will remain? How to best consider preferred viewing distance for readability of text? How much does visual acuity vary at 20/20 vision? Can simplified models of human visual color perception be easily applied to text rendering on displays? How linear is human visual contrast perception around band limit of a display's spatial resolution? How colorful does the rendered text appear on the screen? How much does viewing angle influence the performance of subpixel layouts and color subpixel rendering?

  1. Contact Lenses for Color Blindness.

    PubMed

    Badawy, Abdel-Rahman; Hassan, Muhammad Umair; Elsherif, Mohamed; Ahmed, Zubair; Yetisen, Ali K; Butt, Haider

    2018-06-01

    Color vision deficiency (color blindness) is an inherited genetic ocular disorder. While no cure for this disorder currently exists, several methods can be used to increase the color perception of those affected. One such method is the use of color filtering glasses which are based on Bragg filters. While these glasses are effective, they are high cost, bulky, and incompatible with other vision correction eyeglasses. In this work, a rhodamine derivative is incorporated in commercial contact lenses to filter out the specific wavelength bands (≈545-575 nm) to correct color vision blindness. The biocompatibility assessment of the dyed contact lenses in human corneal fibroblasts and human corneal epithelial cells shows no toxicity and cell viability remains at 99% after 72 h. This study demonstrates the potential of the dyed contact lenses in wavelength filtering and color vision deficiency management. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A model of color vision with a robot system

    NASA Astrophysics Data System (ADS)

    Wang, Haihui

    2006-01-01

    In this paper, we propose to generalize the saccade target method and state that perceptual stability in general arises by learning the effects one's actions have on sensor responses. The apparent visual stability of color percept across saccadic eye movements can be explained by positing that perception involves observing how sensory input changes in response to motor activities. The changes related to self-motion can be learned, and once learned, used to form stable percepts. The variation of sensor data in response to a motor act is therefore a requirement for stable perception rather than something that has to be compensated for in order to perceive a stable world. In this paper, we have provided a simple implementation of this sensory-motor contingency view of perceptual stability. We showed how a straightforward application of the temporal difference enhancement learning technique yielding color percepts that are stable across saccadic eye movements, even though the raw sensor input may change radically.

  3. Color: an exosomatic organ?

    NASA Astrophysics Data System (ADS)

    van Brakel, Jaap; Saunders, Barbara

    2001-12-01

    According to the dominant view in cognitive science, in particular in its more popularized versions, color sensings or perceptions are located in a 'quality space'. This space has three dimensions: hue (the chromatic aspect of color), saturation (the 'intensity' of hue), and brightness. This space is structured further via a small number of primitive hues or landmark colors, usually four (red, yellow, green, blue) or six (if white and black are included). It has also been suggested that there are eleven semantic universals - the six colors previously mentioned plus orange, pink, brown, purple, and grey. Scientific evidence for these widely accepted theories is at best minimal, based on sloppy methodology and at worst non-existent. Against the standard view, it is argued that color might better be regarded as the outcome of a social-historical developmental trajectory in which there is mutual shaping of philosophical presuppositions, scientific theories, experimental practices, technological tools, industrial products, rhetorical frameworks, and their intercalated and recursive interactions with the practices of daily life. That is: color, the domain of color, is the outcome of interactive processes of scientific, instrumental, industrial, and everyday lifeworlds. That is: color might better be called an exosomatic organ, a second nature.

  4. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  5. Astronomy with the color blind

    NASA Astrophysics Data System (ADS)

    Smith, Donald A.; Melrose, Justyn

    2014-12-01

    The standard method to create dramatic color images in astrophotography is to record multiple black and white images, each with a different color filter in the optical path, and then tint each frame with a color appropriate to the corresponding filter. When combined, the resulting image conveys information about the sources of emission in the field, although one should be cautious in assuming that such an image shows what the subject would "really look like" if a person could see it without the aid of a telescope. The details of how the eye processes light have a significant impact on how such images should be understood, and the step from perception to interpretation is even more problematic when the viewer is color blind. We report here on an approach to manipulating stacked tricolor images that, while abandoning attempts to portray the color distribution "realistically," do result in enabling those suffering from deuteranomaly (the most common form of color blindness) to perceive color distinctions they would otherwise not be able to see.

  6. The Munsell Color System: a scientific compromise from the world of art.

    PubMed

    Cochrane, Sally

    2014-09-01

    Color systems make accurate color specification and matching possible in science, art, and industry by defining a coordinate system for all possible color perceptions. The Munsell Color System, developed by the artist Albert Henry Munsell in the early twentieth century, has influenced color science to this day. I trace the development of the Munsell Color System from its origins in the art world to its acceptance in the scientific community. Munsell's system was the first to accurately and quantitatively describe the psychological experience of color. By considering the problems that color posed for Munsell's art community and examining his diaries and published material, I conclude that Munsell arrived at his results by remaining agnostic as to the scientific definition of color, while retaining faith that color perceptions could be objectively quantified. I argue that Munsell was able to interest the scientific community in his work because color had become a controversial topic between physicists and psychologists. Parts of Munsell's system appealed to each field, making it a workable compromise. For contrast, I suggest that three contemporary scientists with whom Munsell had contact--Wilhelm Ostwald, Ogden Rood, and Edward Titchener--did not reach the same conclusions in their color systems because they started from scientific assumptions about the nature of color.

  7. The Organization of Shape and Color in Vision and Art

    PubMed Central

    Pinna, Baingio

    2011-01-01

    The aim of this work is to study the phenomenal organization of shape and color in vision and art in terms of microgenesis of the object perception and creation. The idea of “microgenesis” is that the object perception and creation takes time to develop. Our hypothesis is that the roles of shape and color are extracted in sequential order and in the same order these roles are also used by artists to paint objects. Boundary contours are coded before color contours. The microgenesis of the object formation was demonstrated (i) by introducing new conditions derived from the watercolor illusion, where the juxtaposed contours are displaced horizontally or vertically, and based on variations of Matisse’s Woman, (ii) by studying descriptions and replications of visual objects in adults and children of different ages, and (iii) by analyzing the linguistic sequence and organization in a free naming task of the attributes related to shape and color. The results supported the idea of the microgenesis of the object perception, namely the temporal order in the formation of the roles of the object properties (shape before color). Some general principles were extracted from the experimental results. They can be a starting point to explore a new domain focused on the microgenesis of shape and color within the more general problem of object organization, where integrated and multidisciplinary studies based on art and vision science can be very useful. PMID:22065954

  8. Role-play facilitates children's mindreading of those with atypical color perception.

    PubMed

    Furumi, Fumikazu; Koyasu, Masuo

    2014-01-01

    The present study examined the effects of role-play experience on children's mindreading ability. Forty-one primary school children (20 boys, 21 girls, mean age: 9.37 years, range: 8-11 years) were introduced to a communication task in which the use of mindreading was essential. During each trial, participants viewed a shelf, presented on a laptop, which contained several familiar objects, and they were instructed to touch an object on the shelf following an order issued by a "manager" who stood at the opposite side of the shelf. There were two managers: one was a monkey manager with normal color vision, and the other was a dog manager with restricted color vision. The monkey manager could see all the objects in the same colors as the participants, whereas the dog manager saw some objects in different colors. Participants were required to respond according to the manager's instruction. In the restricted color vision condition, the dog manager saw the colors of objects differently; thus, participants had to work out his intentions, according to his different perspective. In the normal color vision condition, all objects were in the same colors as those seen by the monkey manager. Before the test phase, participants in the role-play group were provided a role-play experience in which they assumed the role of the dog manager with restricted color vision. The experimental data were analyzed using a 2 × 2 mixed-design ANOVA (role-play condition × communication partner condition) to examine differences in the error rate. Both main effects and its interaction were significant. According to the post-hoc analyses, participants in the no-role-play condition made significantly more errors in the restricted color vision condition than in the normal color vision condition, whereas no such difference was found among participants in the role-play condition. These results suggest that role-play experience could facilitate mindreading of characters with restricted color vision.

  9. A review of color blindness for microscopists: guidelines and tools for accommodating and coping with color vision deficiency.

    PubMed

    Keene, Douglas R

    2015-04-01

    "Color blindness" is a variable trait, including individuals with just slight color vision deficiency to those rare individuals with a complete lack of color perception. Approximately 75% of those with color impairment are green diminished; most of those remaining are red diminished. Red-Green color impairment is sex linked with the vast majority being male. The deficiency results in reds and greens being perceived as shades of yellow; therefore red-green images presented to the public will not illustrate regions of distinction to these individuals. Tools are available to authors wishing to accommodate those with color vision deficiency; most notable are components in FIJI (an extension of ImageJ) and Adobe Photoshop. Using these tools, hues of magenta may be substituted for red in red-green images resulting in striking definition for both the color sighted and color impaired. Web-based tools may be used (importantly) by color challenged individuals to convert red-green images archived in web-accessible journal articles into two-color images, which they may then discern.

  10. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  11. Color preferences are not universal.

    PubMed

    Taylor, Chloe; Clifford, Alexandra; Franklin, Anna

    2013-11-01

    Claims of universality pervade color preference research. It has been argued that there are universal preferences for some colors over others (e.g., Eysenck, 1941), universal sex differences (e.g., Hurlbert & Ling, 2007), and universal mechanisms or dimensions that govern these preferences (e.g., Palmer & Schloss, 2010). However, there have been surprisingly few cross-cultural investigations of color preference and none from nonindustrialized societies that are relatively free from the common influence of global consumer culture. Here, we compare the color preferences of British adults to those of Himba adults who belong to a nonindustrialized culture in rural Namibia. British and Himba color preferences are found to share few characteristics, and Himba color preferences display none of the so-called "universal" patterns or sex differences. Several significant predictors of color preference are identified, such as cone-contrast between stimulus and background (Hurlbert & Ling, 2007), the valence of color-associated objects (Palmer & Schloss, 2010), and the colorfulness of the color. However, the relationship of these predictors to color preference was strikingly different for the two cultures. No one model of color preference is able to account for both British and Himba color preferences. We suggest that not only do patterns of color preference vary across individuals and groups but the underlying mechanisms and dimensions of color preference vary as well. The findings have implications for broader debate on the extent to which our perception and experience of color is culturally relative or universally constrained. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Color consilience: color through the lens of art practice, history, philosophy, and neuroscience.

    PubMed

    Conway, Bevil R

    2012-03-01

    Paintings can be interpreted as the product of the complex neural machinery that translates physical light signals into behavior, experience, and emotion. The brain mechanisms responsible for vision and perception have been sculpted during evolution and further modified by cultural exposure and development. By closely examining artists' paintings and practices, we can discover hints to how the brain works, and achieve insight into the discoveries and inventions of artists and their impact on culture. Here, I focus on an integral aspect of color, color contrast, which poses a challenge for artists: a mark situated on an otherwise blank canvas will appear a different color in the context of the finished painting. How do artists account for this change in color during the production of a painting? In the broader context of neural and philosophical considerations of color, I discuss the practices of three modern masters, Henri Matisse, Paul Cézanne, and Claude Monet, and suggest that the strategies they developed not only capitalized on the neural mechanisms of color, but also influenced the trajectory of western art history. © 2012 New York Academy of Sciences.

  13. Tenure and Promotion Experiences of Academic Librarians of Color

    ERIC Educational Resources Information Center

    Damasco, Ione T.; Hodges, Dracine

    2012-01-01

    This study broadly examines factors impacting work-life experiences of library faculty of color within the framework of tenure policies and processes. An online survey was sent out to academic librarians of color to gauge perceptions of tenure and promotion policies and processes, professional activities and productivity, organizational climate…

  14. Color constancy: phenomenal or projective?

    PubMed

    Reeves, Adam J; Amano, Kinjiro; Foster, David H

    2008-02-01

    Naive observers viewed a sequence of colored Mondrian patterns, simulated on a color monitor. Each pattern was presented twice in succession, first under one daylight illuminant with a correlated color temperature of either 16,000 or 4000 K and then under the other, to test for color constancy. The observers compared the central square of the pattern across illuminants, either rating it for sameness of material appearance or sameness of hue and saturation or judging an objective property-that is, whether its change of color originated from a change in material or only from a change in illumination. Average color constancy indices were high for material appearance ratings and binary judgments of origin and low for hue-saturation ratings. Individuals' performance varied, but judgments of material and of hue and saturation remained demarcated. Observers seem able to separate phenomenal percepts from their ontological projections of mental appearance onto physical phenomena; thus, even when a chromatic change alters perceived hue and saturation, observers can reliably infer the cause, the constancy of the underlying surface spectral reflectance.

  15. Lightness modification of color image for protanopia and deuteranopia

    NASA Astrophysics Data System (ADS)

    Tanaka, Go; Suetake, Noriaki; Uchino, Eiji

    2010-01-01

    In multimedia content, colors play important roles in conveying visual information. However, color information cannot always be perceived uniformly by all people. People with a color vision deficiency, such as dichromacy, cannot recognize and distinguish certain color combinations. In this paper, an effective lightness modification method, which enables barrier-free color vision for people with dichromacy, especially protanopia or deuteranopia, while preserving the color information in the original image for people with standard color vision, is proposed. In the proposed method, an optimization problem concerning lightness components is first defined by considering color differences in an input image. Then a perceptible and comprehensible color image for both protanopes and viewers with no color vision deficiency or both deuteranopes and viewers with no color vision deficiency is obtained by solving the optimization problem. Through experiments, the effectiveness of the proposed method is illustrated.

  16. "The normative idea of queer is a white person": understanding perceptions of white privilege among lesbian, bisexual, and queer women of color in Toronto, Canada.

    PubMed

    Logie, Carmen H; Rwigema, Marie-Jolie

    2014-01-01

    White privilege constructs whiteness as normative and central to lesbian, gay, bisexual, and queer (LGBQ) identities and is reproduced through social norms, media representations, and daily interactions. We aimed to enhance understanding of the processes by which white privilege was experienced among lesbian, bisexual, and queer (LBQ) women of color in Toronto, Canada. We conducted two focus groups with LBQ women of color, one with participants who self-identified as masculine of center (n = 8) and the second with participants who identified as feminine of center (n = 8). Findings indicate that LBQ women of color experience intersectional stigma (e.g., homophobia, racism, sexism) on a daily basis. Participant narratives revealed that white privilege shaped the representations of women of color in a particular way that promoted their exclusion from white LBQ spaces and broader society. By representing queerness as white, LBQ women of color were rendered invisible in both queer and racialized communities. LBQ women of color were further marginalized by constructions of "real" women as passive, feminine and white, and conversely perceptions of women of color as aggressive, emotional, and hypersexualized. These representations inform spatialized practices and social interactions through constructing racialized communities as discriminatory and "backwards" while maintaining the invisibility of white privilege and racism in LBQ spaces.

  17. Global shape information increases but color information decreases the composite face effect.

    PubMed

    Retter, Talia L; Rossion, Bruno

    2015-01-01

    The separation of visual shape and surface information may be useful for understanding holistic face perception--that is, the perception of a face as a single unit (Jiang, Blanz, & Rossion, 2011, Visual Cognition, 19, 1003-1034). A widely used measure of holistic face perception is the composite face effect (CFE), in which identical top face halves appear different when aligned with bottom face halves from different identities. In the present study the influences of global face shape (ie contour of the face) and color information on the CFE are investigated, with the hypothesis that global face shape supports but color impairs holistic face perception as measured in this paradigm. In experiment 1 the CFE is significantly increased when face stimuli possess natural global shape information than when cropped to a generic (ie oval) global shape; this effect is not found when the stimuli are presented inverted. In experiment 2 the CFE is significantly decreased when face stimuli are presented with color information than when presented in grayscale. These findings indicate that grayscale stimuli maintaining natural global face shape information provide the most adept measure of holistic face perception in the behavioral composite face paradigm. More generally, they show that reducing different types of information diagnostic for individual face perception can have opposite effects on the CFE, illustrating the functional dissociation between shape and surface information in face perception.

  18. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  19. Perceptual color difference metric including a CSF based on the perception threshold

    NASA Astrophysics Data System (ADS)

    Rosselli, Vincent; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2008-01-01

    The study of the Human Visual System (HVS) is very interesting to quantify the quality of a picture, to predict which information will be perceived on it, to apply adapted tools ... The Contrast Sensitivity Function (CSF) is one of the major ways to integrate the HVS properties into an imaging system. It characterizes the sensitivity of the visual system to spatial and temporal frequencies and predicts the behavior for the three channels. Common constructions of the CSF have been performed by estimating the detection threshold beyond which it is possible to perceive a stimulus. In this work, we developed a novel approach for spatio-chromatic construction based on matching experiments to estimate the perception threshold. It consists in matching the contrast of a test stimulus with that of a reference one. The obtained results are quite different in comparison with the standard approaches as the chromatic CSFs have band-pass behavior and not low pass. The obtained model has been integrated in a perceptual color difference metric inspired by the s-CIELAB. The metric is then evaluated with both objective and subjective procedures.

  20. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware.

  1. Methods of scaling threshold color difference using printed samples

    NASA Astrophysics Data System (ADS)

    Huang, Min; Cui, Guihua; Liu, Haoxue; Luo, M. Ronnier

    2012-01-01

    A series of printed samples on substrate of semi-gloss paper and with the magnitude of threshold color difference were prepared for scaling the visual color difference and to evaluate the performance of different method. The probabilities of perceptibly was used to normalized to Z-score and different color differences were scaled to the Z-score. The visual color difference was got, and checked with the STRESS factor. The results indicated that only the scales have been changed but the relative scales between pairs in the data are preserved.

  2. Perceived assessment metrics for visible and infrared color fused image quality without reference image

    NASA Astrophysics Data System (ADS)

    Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao

    2015-02-01

    Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.

  3. Using Color as Information in Computer Displays: Problems with Perception and Communication.

    ERIC Educational Resources Information Center

    Adkins, Mark; Pease, Warren

    The advancement of microcomputer technology has reached the point where color monitors and color computer software are fast becoming the norm in our information society. Color is another channel for communication, and can be used for enhancement of both aesthetic characteristics and productivity. The advantage to the use of color for communication…

  4. Development of softcopy environment for primary color banding visibility assessment

    NASA Astrophysics Data System (ADS)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy

  5. Structures in color space

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander P.

    1996-09-01

    Classic colorimetry and the traditionally used color space do not represent all perceived colors (for example, browns look dark yellow in colorimetric conditions of observation) so, the specific goal of this work is to suggest another concept of color and to prove that the corresponding set of colors is complete. The idea of our approach attributing color to surface patches (not to the light) immediately ties all the problems of color perception and vision geometry. The equivalence relation in the linear space of light fluxes F established by a procedure of colorimetry gives us a 3D color space H. By definition we introduce a sample (sigma) (surface patch) as a linear mapping (sigma) : L yields H, where L is a subspace of F called the illumination space. A Dedekind structure of partial order can be defined in the set of the samples: two samples (alpha) and (Beta) belong to one chromatic class if ker(alpha) equals ker(Beta) and (alpha) > (Beta) if ker(alpha) ker(Beta) . The maximal elements of this chain create the chromatic class BLACK. There can be given geometrical arguments for L to be 3D and it can be proved that in this case the minimal element of the above Dedekind structure is unique and the corresponding chromatic class is called WHITE containing the samples (omega) such that ker(omega) equals {0} L. Color is defined as mapping C: H yields H and assuming color constancy the complete set of perceived colors is proved to be isomorphic to a subset C of 3 X 3 matrices. This subset is convex, limited and symmetrical with E/2 as the center of symmetry. The problem of metrization of the color space C is discussed and a color metric related to shape, i.e., to vision geometry, is suggested.

  6. Colour also matters for nocturnal birds: owlet bill coloration advertises quality and influences parental feeding behaviour in little owls.

    PubMed

    Avilés, J M; Parejo, D

    2013-10-01

    Chromatic signals of offspring quality have been shown to play a role in parent-offspring communication in diurnal birds, but are assumed to be useless in dim light conditions because colour-based discrimination probably requires more light. A major ecological and evolutionary conundrum in this scenario is why the nestlings of some nocturnal owls display colourful beaks. Here, we test the hypothesis that yellow bill coloration of owlets of the nocturnal little owl Athene noctua may function as a chromatic signal revealing to parents aspects of quality of their offspring. In a first step, we examined physical variation in bill coloration and its covariation with owlet quality. Secondly, we studied parental provisioning in relation to an experimental manipulation of bill coloration of owlets. Bills of owlets showed higher within-nest variation in yellow-red chroma than in brightness. Plasma carotenoid concentration and nestling immunological status were not associated with chromatic or achromatic features of the bill. Interestingly, however, heavier owlets displayed more yellow bills than lighter ones. The effect of bill coloration on parental favouritism changed with brood size. Parents holding large broods preferentially fed owlets with enhanced over reduced yellow bill coloration, whereas those with small broods did not significantly bias feeding in relation to owlet bill coloration. Our results, based on integration of objective spectrophotometric assessment of colour and experimental procedures, confirm that parent little owls use bill coloration to reveal information on owlet body mass to adjust their feeding strategies, thus highlighting the importance of considering potential chromatic signals for a full comprehension of parent-offspring communication processes in nocturnal bird species.

  7. Advances in understanding the molecular basis of the first steps in color vision

    PubMed Central

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  8. Discriminating colors through a red filter by protanopes and colour normals.

    PubMed

    Diaconu, Vasile; Sullivan, David; Bouchard, Jean F; Vucea, Valentina

    2010-01-01

    Individuals with color vision deficiency have difficulties in differentiating colour in their daily activities. Through certain coloured filters, dichromats may report an improvement of their capacity to differentiate colors, but it is not known if this is achieved by means of a chromatic mechanism. The present study attempts to explain the mechanism by which a coloured filter can produce a beneficial effect in dichromatic visual perception and what is the nature of this improvement. Four male protanopes and four normal trichromats (two males and two females) participated in the present study. We evaluated the effect of the red filter (with a spectral transmittance similar to that of the X-Chrom filter) on the detection thresholds for monochromatic light stimuli from 420 to 660 nm in 20 nm steps. The increment spectral sensitivity functions were measured for 1.2 degrees diameter test flashes presented for 300 ms on a 60-cd m(-2) illuminant C background using an optical bench with a monochromator, for both filter and no filter conditions. The capacity to correctly name green, yellow and red for the monochromatic lights of 550, 575 and 625 nm presented for 300 ms on a 60 cd m(-2) illuminant C background screen was also evaluated with and without the red filter. The spectral sensitivity data suggest that, the use of a red filter improves the protanope's capacity to detect long wavelength light stimuli. The results on the colors naming procedure demonstrate that the red filter modifies colour perception in normal and protanope subjects. In normals, only the red color perception is preserved, and typical colour perception for the green and the yellow is lost. Without the filter, all the protanopes demonstrated a residual colour perception for red and green colours. Through the red filter only red colour perception remains. A red filter does not improve the protanopic red-green perception, but it does improve the ability of the protanope to detect long-wavelength light

  9. Stereoscopic depth perception varies with hues

    NASA Astrophysics Data System (ADS)

    Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun

    2012-09-01

    The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.

  10. Legibility Evaluation with Oculomotor Analysis

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Saito, Keiichi; Saito, Masao

    Web page legibility is important because of WWW dissemination and color combinations between a foreground and a background are the crucial factors to provide sufficient legibility. In our previous studies, the visibilities of several web-safe color combinations were examined using a psychological method. In those studies, simple stimuli were used because of experimental restriction. In this study, legibility of sentences on Web sites was examined using a psychophisiological method by oculomotor and the effect of the achromatic color combinations, that is contrast, was examined with calculated reading time. The presentation stimuli were positive coloration whose font color luminance is lower than background color, and negative coloration whose font color luminance is higher than background color. And the number of characters per line in each page was arranged in the same number, and the four achromatic colors that is, the contrast between the background color and font color are 92.5, 75.0, 50.0 and 25.0 percent, were examined. As the results, it was shown that reading time of became long when the contrast. However, in the negative coloration, there were great differences between individuals. Therefore, considering web accessibility, the legibility is found to be useful for using a positive coloration.

  11. Perceptions of Desegregated School Students Regarding Color and Occupational Status.

    ERIC Educational Resources Information Center

    Sciara, Frank J.

    1978-01-01

    To gauge their acceptance or rejection of dark skin color, Black and White sixth graders matched high and low status jobs to pictured individuals. Females, both Black and White, ascribed high status to light-skinned men more than male subjects did. Instructional materials on skin color are suggested. (SJL)

  12. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  13. Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.

    PubMed

    Kraft, James M; Maloney, Shannon I; Brainard, David H

    2002-01-01

    Two experiments were conducted to study how scene complexity and cues to depth affect human color constancy. Specifically, two levels of scene complexity were compared. The low-complexity scene contained two walls with the same surface reflectance and a test patch which provided no information about the illuminant. In addition to the surfaces visible in the low-complexity scene, the high-complexity scene contained two rectangular solid objects and 24 paper samples with diverse surface reflectances. Observers viewed illuminated objects in an experimental chamber and adjusted the test patch until it appeared achromatic. Achromatic settings made tinder two different illuminants were used to compute an index that quantified the degree of constancy. Two experiments were conducted: one in which observers viewed the stimuli directly, and one in which they viewed the scenes through an optical system that reduced cues to depth. In each experiment, constancy was assessed for two conditions. In the valid-cue condition, many cues provided valid information about the illuminant change. In the invalid-cue condition, some image cues provided invalid information. Four broad conclusions are drawn from the data: (a) constancy is generally better in the valid-cue condition than in the invalid-cue condition: (b) for the stimulus configuration used, increasing image complexity has little effect in the valid-cue condition but leads to increased constancy in the invalid-cue condition; (c) for the stimulus configuration used, reducing cues to depth has little effect for either constancy condition: and (d) there is moderate individual variation in the degree of constancy exhibited, particularly in the degree to which the complexity manipulation affects performance.

  14. [Research on developping the spectral dataset for Dunhuang typical colors based on color constancy].

    PubMed

    Liu, Qiang; Wan, Xiao-Xia; Liu, Zhen; Li, Chan; Liang, Jin-Xing

    2013-11-01

    The present paper aims at developping a method to reasonably set up the typical spectral color dataset for different kinds of Chinese cultural heritage in color rendering process. The world famous wall paintings dating from more than 1700 years ago in Dunhuang Mogao Grottoes was taken as typical case in this research. In order to maintain the color constancy during the color rendering workflow of Dunhuang culture relics, a chromatic adaptation based method for developping the spectral dataset of typical colors for those wall paintings was proposed from the view point of human vision perception ability. Under the help and guidance of researchers in the art-research institution and protection-research institution of Dunhuang Academy and according to the existing research achievement of Dunhuang Research in the past years, 48 typical known Dunhuang pigments were chosen and 240 representative color samples were made with reflective spectral ranging from 360 to 750 nm was acquired by a spectrometer. In order to find the typical colors of the above mentioned color samples, the original dataset was devided into several subgroups by clustering analysis. The grouping number, together with the most typical samples for each subgroup which made up the firstly built typical color dataset, was determined by wilcoxon signed rank test according to the color inconstancy index comprehensively calculated under 6 typical illuminating conditions. Considering the completeness of gamut of Dunhuang wall paintings, 8 complementary colors was determined and finally the typical spectral color dataset was built up which contains 100 representative spectral colors. The analytical calculating results show that the median color inconstancy index of the built dataset in 99% confidence level by wilcoxon signed rank test was 3.28 and the 100 colors are distributing in the whole gamut uniformly, which ensures that this dataset can provide reasonable reference for choosing the color with highest

  15. Quality assessment of color images based on the measure of just noticeable color difference

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien; Hsu, Yun-Hsiang

    2014-01-01

    Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.

  16. Does the chromatic Mach bands effect exist?

    PubMed

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  17. Quantifying nonhomogeneous colors in agricultural materials part I: method development.

    PubMed

    Balaban, M O

    2008-11-01

    Measuring the color of food and agricultural materials using machine vision (MV) has advantages not available by other measurement methods such as subjective tests or use of color meters. The perception of consumers may be affected by the nonuniformity of colors. For relatively uniform colors, average color values similar to those given by color meters can be obtained by MV. For nonuniform colors, various image analysis methods (color blocks, contours, and "color change index"[CCI]) can be applied to images obtained by MV. The degree of nonuniformity can be quantified, depending on the level of detail desired. In this article, the development of the CCI concept is presented. For images with a wide range of hue values, the color blocks method quantifies well the nonhomogeneity of colors. For images with a narrow hue range, the CCI method is a better indicator of color nonhomogeneity.

  18. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  19. Associative memory advantage in grapheme-color synesthetes compared to older, but not young adults

    PubMed Central

    Pfeifer, Gaby; Rothen, Nicolas; Ward, Jamie; Chan, Dennis; Sigala, Natasha

    2014-01-01

    People with grapheme-color synesthesia perceive enriched experiences of colors in response to graphemes (letters, digits). In this study, we examined whether these synesthetes show a generic associative memory advantage for stimuli that do not elicit a synesthetic color. We used a novel between group design (14 young synesthetes, 14 young, and 14 older adults) with a self-paced visual associative learning paradigm and subsequent retrieval (immediate and delayed). Non-synesthesia inducing, achromatic fractal pair-associates were manipulated in visual similarity (high and low) and corresponded to high and low memory load conditions. The main finding was a learning and retrieval advantage of synesthetes relative to older, but not to younger, adults. Furthermore, the significance testing was supported with effect size measures and power calculations. Differences between synesthetes and older adults were found during dissimilar pair (high memory load) learning and retrieval at immediate and delayed stages. Moreover, we found a medium size difference between synesthetes and young adults for similar pair (low memory load) learning. Differences between young and older adults were also observed during associative learning and retrieval, but were of medium effect size coupled with low power. The results show a subtle associative memory advantage in synesthetes for non-synesthesia inducing stimuli, which can be detected against older adults. They also indicate that perceptual mechanisms (enhanced in synesthesia, declining as part of the aging process) can translate into a generic associative memory advantage, and may contribute to associative deficits accompanying healthy aging. PMID:25071664

  20. Aggression, academic behaviors, and popularity perceptions among boys of color during the transition to middle school.

    PubMed

    Xie, Hongling; Dawes, Molly; Wurster, Tabitha J; Shi, Bing

    2013-01-01

    The transition to middle school often presents behavioral and academic challenges to youths. Boys of color (i.e., African American and Hispanic in this study) may be especially vulnerable. In this study, peer nominations of aggressive and academic behaviors as well as youths' perceptions of how these behaviors were related to popularity in peer networks were obtained from the spring semester of fifth grade through the spring semester of seventh grade, with the transition occurring as the students entered the sixth grade. The sample included 188 boys (71 Caucasian, 90 African American, and 27 Hispanic) from an urban school district in the northeastern United States. Trajectory analyses showed that African American boys scored lower in studentship and higher in rule-breaking and aggressive (both physical and social) behaviors prior to the transition, and such differences among ethnic groups were largely maintained during the transition. Hispanic boys displayed decreases in their studentship during the transition. African American boys' perception of how studentship affects popularity was more positive than other boys prior to the transition, but it decreased during the transition. African American boys also endorsed rule breaking and physical and social aggression more positively for popularity prior to the transition, whereas Caucasian and Hispanic boys' endorsement increased during the transition and eventually caught up with those of African American boys in seventh grade. A positive within-individual association was found between youths' popularity perception and their behavior for studentship, rule breaking, and physical aggression, which did not differ by ethnicity. © 2013 American Orthopsychiatric Association.

  1. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Visual acuity, refractive error, and binocular status were determined in 43 autosomal recessive (AR) and 15 X-linked (XL) congenital achromats. The achromats were classified by color matching and spectral sensitivity data. Large interindividual variation in refractive error and visual acuity was present within each achromat group (complete AR, incomplete AR, and XL). However, the number of individuals with significant interocular acuity differences is very small. Most XLs are myopic; ARs show a wide range of refractive error from high myopia to high hyperopia. Acuity of the AR and XL groups was very similar. With-the-rule astigmatism of large amount is very common in achromats, particularly ARs. There is a close association between strabismus and interocular acuity differences in the ARs, with the fixating eye having better than average acuity. The large overlap of acuity and refractive error of XL and AR achromats suggests that these measures are less useful for differential diagnosis than generally indicated by the clinical literature.

  2. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  3. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. Copyright © 2015. Published by Elsevier Ltd.

  4. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry.

    PubMed Central

    Drummond-Borg, M; Deeb, S S; Motulsky, A G

    1989-01-01

    We used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes [Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., Jr., & Hogness, D.S. (1986) Science 232, 203-210]. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly (mild defect in green color perception), 2 (1.5%) had patterns characteristic of deuteranopia (severe defect in green color perception), and 6 (4.5%) had protan patterns (the red perception defects protanomaly and protanopia cannot be differentiated by current molecular methods). Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Only 2 of these patterns were considered as deuteranomalous. Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests. Some color vision gene arrays associated with hybrid genes are likely to mediate normal color vision. Images PMID:2915991

  5. Synesthesia and Number Cognition in Children

    ERIC Educational Resources Information Center

    Green, Jennifer A. K.; Goswami, Usha

    2008-01-01

    Grapheme-color synesthesia, when achromatic digits evoke an experience of a specific color (photisms), has been shown to be consistent, involuntary, and linked with number concept in adults, yet there have been no comparable investigations with children. We present a systematic study of grapheme-color synesthesia in children aged between 7 and 15…

  6. Human visual system-based color image steganography using the contourlet transform

    NASA Astrophysics Data System (ADS)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  7. Statistics of natural scenes and cortical color processing.

    PubMed

    Cecchi, Guillermo A; Rao, A Ravishankar; Xiao, Youping; Kaplan, Ehud

    2010-09-01

    We investigate the spatial correlations of orientation and color information in natural images. We find that the correlation of orientation information falls off rapidly with increasing distance, while color information is more highly correlated over longer distances. We show that orientation and color information are statistically independent in natural images and that the spatial correlation of jointly encoded orientation and color information decays faster than that of color alone. Our findings suggest that: (a) orientation and color information should be processed in separate channels and (b) the organization of cortical color and orientation selectivity at low spatial frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world. These findings are in agreement with biological observations, as form and color are thought to be represented by different classes of neurons in the primary visual cortex, and the receptive fields of color-selective neurons are larger than those of orientation-selective neurons. The agreement between our findings and biological observations supports the ecological theory of perception.

  8. Color vision deficiency compensation for Visual Processing Disorder using Hardy-Rand-Rittler test and color transformation

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Pinugu, Jasmine Nadja J.; Bautista, Joshua Ian C.; Nebres, Pauline D.; Rey Hipolito, Cipriano M.; Santella, Jose Anthony A.

    2017-06-01

    Visual processing skill is used to gather visual information from environment however, there are cases that Visual Processing Disorder (VPD) occurs. The so called visual figure-ground discrimination is a type of VPD where color is one of the factors that contributes on this type. In line with this, color plays a vital role in everyday living, but individuals that have limited and inaccurate color perception suffers from Color Vision Deficiency (CVD) and still not aware on their case. To resolve this case, this study focuses on the design of KULAY, a Head-Mounted Display (HMD) device that can assess whether a user has a CVD or not thru the standard Hardy-Rand-Rittler (HRR) test. This test uses pattern recognition in order to evaluate the user. In addition, color vision deficiency simulation and color correction thru color transformation is also a concern of this research. This will enable people with normal color vision to know how color vision deficient perceives and vice-versa. For the accuracy of the simulated HRR assessment, its results were validated thru an actual assessment done by a doctor. Moreover, for the preciseness of color transformation, Structural Similarity Index Method (SSIM) was used to compare the simulated CVD images and the color corrected images to other reference sources. The output of the simulated HRR assessment and color transformation shows very promising results indicating effectiveness and efficiency of the study. Thus, due to its form factor and portability, this device is beneficial in the field of medicine and technology.

  9. Nonlocal interactions in color perception: nonlinear processing of chromatic signals from remote inducers.

    PubMed

    Wachtler, T; Albright, T D; Sejnowski, T J

    2001-05-01

    The perceived color of an object depends on the chromaticity of its immediate background. But color appearance is also influenced by remote chromaticities. To quantify these influences, the effects of remote color fields on the appearance of a fixated 2 degrees test field were measured using a forced-choice method. Changes in the appearance of the test field were induced by chromaticity changes of the background and of 2 degrees color fields not adjacent to the test field. The appearance changes induced by the color of the background corresponded to a fraction of between 0.5 and 0.95 of the cone contrast of the background change, depending on the observer. The magnitude of induction by the background color was modulated on average by 7.6% by chromaticity changes in the remote color fields. Chromaticity changes in the remote fields had virtually no inducing effect when they occurred without a change in background color. The spatial range of these chromatic interactions extended over at least 10 degrees from the fovea. They were established within the first few hundred milliseconds after the change of background color and depended only weakly on the number of inducing fields. These results may be interpreted as reflecting rapid chromatic interactions that support robustness of color vision under changing viewing conditions.

  10. Neurobiological hypothesis of color appearance and hue perception

    PubMed Central

    Schmidt, Brian P.; Neitz, Maureen; Neitz, Jay

    2014-01-01

    DeValois and DeValois (1993) showed that to explain hue appearance, S-cone signals have to be combined with M vs. L opponent signals in two different ways to produce red-green and yellow-blue axes respectively. Recently, it has been shown that color appearance is normal for individuals with genetic mutations that block S-cone input to blue-on ganglion cells. This is inconsistent with the DeValois hypothesis in which S-opponent konio-geniculate signals are combined with L−M signals at a 3rd processing stage in cortex. Instead, here we show that color appearance, including individual differences never explained before, are predicted by a model in which S-cone signals are combined with L vs. M signals in the outer retina. PMID:24695170

  11. Comparison of Munsell(®) color chart assessments with primary schoolchildren's self-reported skin color.

    PubMed

    Wright, C Y; Reeder, A I; Gray, A R; Hammond, V A

    2015-11-01

    Skin color is related to human health outcomes, including the risks of skin cancer and vitamin D insufficiency. Self-perceptions of skin color may influence health behaviours, including the adoption of practices protective against harmful solar ultraviolet radiation levels. Misperception of personal risk may have negative health implications. The aim of this study is to determine whether Munsell(®) color chart assessments align with child self-reported skin color. Two-trained investigators, with assessed color acuity, visually classified student inner upper arm constitutive skin color. The Munsell(®) classifications obtained were converted to Individual Typology Angle (ITA) values and respective Del Bino skin color categories after spectrocolorimeter measurements based on published values/data. As part of a written questionnaire on sun protection knowledge, attitudes, and behaviours, self-completed in class time, students classified their end of winter skin color. Student self-reports were compared with the ITA-based Del Bino classifications. A total of 477 New Zealand primary students attending 27 randomly selected schools from five geographic regions. The main measures were self-reported skin color and visually observed skin color. A monotonic association was observed between the distribution of spectrophotometer ITA scores obtained for Munsell(®) tiles and child self-reports of skin color, providing some evidence for the validity of self-report among New Zealand primary school children, although the lighter colored ITA defined groups were most numerous in this study sample. Statistically significant differences in ITA scores were found by ethnicity, self-reported skin color, and geographic residence (P < 0.001). Certain Munsell(®) color tiles were frequently selected as providing a best match to skin color. Assessment using Munsell(®) color charts was simple, inexpensive, and practical for field use and acceptable to children. The results suggest that this

  12. Color rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-02-01

    Human perception of material colors depends heavily on the nature of the light sources used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. Based on state-of-the-art colorimetric methods we present a modern approach for calculating color rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: firstly, we use the CIELAB color space, secondly, we apply a Bradford transformation for chromatic adaptation, and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda1 have shown for the cube model that interreflections can influence the CRI of an illuminant. We analyze how color rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB based renderer for reasons of accuracy of CRI calculations.

  13. The Art and Science of Color in Multimedia Screen Design, Part 1: Art, Opinion, and Tradition.

    ERIC Educational Resources Information Center

    Schwier, Richard A.; Misanchuk, Earl R.

    This article discusses psychophysical aspects of color perception and critically examines the advice on color use in screen design found in non-empirical literature. There are four main characteristics of color: hue, brightness, saturation, and contrast. In multimedia screen design, color can be used to link logically-related data; differentiate…

  14. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus)

    PubMed Central

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets’ (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming “U” and inverted “U” patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period. PMID:26047350

  15. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus).

    PubMed

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets' (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming "U" and inverted "U" patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period.

  16. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  17. Impact of Xanthylium Derivatives on the Color of White Wine.

    PubMed

    Bührle, Franziska; Gohl, Anita; Weber, Fabian

    2017-08-19

    Xanthylium derivatives are yellow to orange pigments with a glyoxylic acid bridge formed by dimerization of flavanols, which are built by oxidative cleavage of tartaric acid. Although their structure and formation under wine-like conditions are well established, knowledge about their color properties and their occurrence and importance in wine is deficient. Xanthylium cations and their corresponding esters were synthesized in a model wine solution and isolated via high-performance countercurrent chromatography (HPCCC) and solid phase extraction (SPE). A Three-Alternative-Forced-Choice (3-AFC) test was applied to reveal the color perception threshold of the isolated compounds in white wine. Their presence and color impact was assessed in 70 different wines (58 white and 12 rosé wines) by UHPLC-DAD-ESI-MS n and the storage stability in wine was determined. The thresholds in young Riesling wine were 0.57 mg/L (cations), 1.04 mg/L (esters) and 0.67 mg/L (1:1 ( w / w ) mixture), respectively. The low thresholds suggest a possible impact on white wine color, but concentrations in wines were below the threshold. The stability study showed the degradation of the compounds during storage under several conditions. Despite the low perception threshold, xanthylium derivatives might have no direct impact on white wine color, but might play a role in color formation as intermediate products in polymerization and browning.

  18. The Influence of Skin Color on Heterosexual Black College Women’s Dating Beliefs

    PubMed Central

    Stephens, Dionne; Thomas, Tami L.

    2014-01-01

    Black women’s skin color perceptions were identified utilized qualitative methods. The primary goal was to identify the relevance of these perceptions on their understandings about dating preferences and related beliefs about appropriate scripts using a Black feminist thought framework. Twenty- eight self- identified Black women attending a large university in the southeastern United States were interviewed for this study. Lighter- skin was perceived as being more attractive, and associated with four themes about dating: (a) positive personality traits, (b) increased value in dating contexts, and (c) sexual appeal to men. Therapeutic considerations for addressing skin color concerns with Black female clients, including addressing within group differences and validation of skin color values, are addressed. PMID:24707076

  19. False Color Terrain Model of Phoenix Workspace

    NASA Image and Video Library

    2008-05-28

    This is a terrain model of Phoenix Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix Surface Stereo Imager SSI.

  20. Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets.

    PubMed

    Stilp, Christian E; Alexander, Joshua M; Kiefte, Michael; Kluender, Keith R

    2010-02-01

    Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds-extensively edited samples produced by a French horn and a tenor saxophone-following either resynthesized speech or a short passage of music. Preceding contexts were "colored" by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color.

  1. Social Work Students' Perceptions of Team-Based Learning

    ERIC Educational Resources Information Center

    Macke, Caroline; Taylor, Jessica Averitt; Taylor, James E.; Tapp, Karen; Canfield, James

    2015-01-01

    This study sought to examine social work students' perceptions of Team-Based Learning (N = 154). Aside from looking at overall student perceptions, comparative analyses examined differences in perceptions between BSW and MSW students, and between Caucasian students and students of color. Findings for the overall sample revealed favorable…

  2. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  3. Color obsessions and phobias in autism spectrum disorders: the case of J.G.

    PubMed

    Ludlow, Amanda K; Heaton, Pamela; Hill, Elisabeth; Franklin, Anna

    2014-06-01

    The current study is the first investigation of color 'obsessions' and 'phobias' in ASD. We investigate the color perception and cognition of J.G., a boy with ASD who has a strong obsession with blue, and a strong phobia of other colors. J.G.'s performance on a series of color tasks (color-entity association; chromatic discrimination; color classification) is compared to 13 children with and without autism who do not have color obsessions or phobias. The findings lead to the formalization of two hypotheses: (i) color obsessions and phobias in individuals with ASD are related to an unusually strong ability to associate colors with entities; (ii) color obsessions are related to hyposensitivity, and color phobias to hypersensitivity, in the affected regions of color space.

  4. Perception of ensemble statistics requires attention.

    PubMed

    Jackson-Nielsen, Molly; Cohen, Michael A; Pitts, Michael A

    2017-02-01

    To overcome inherent limitations in perceptual bandwidth, many aspects of the visual world are represented as summary statistics (e.g., average size, orientation, or density of objects). Here, we investigated the relationship between summary (ensemble) statistics and visual attention. Recently, it was claimed that one ensemble statistic in particular, color diversity, can be perceived without focal attention. However, a broader debate exists over the attentional requirements of conscious perception, and it is possible that some form of attention is necessary for ensemble perception. To test this idea, we employed a modified inattentional blindness paradigm and found that multiple types of summary statistics (color and size) often go unnoticed without attention. In addition, we found attentional costs in dual-task situations, further implicating a role for attention in statistical perception. Overall, we conclude that while visual ensembles may be processed efficiently, some amount of attention is necessary for conscious perception of ensemble statistics. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Skin color and makeup strategies of women from different ethnic groups.

    PubMed

    Caisey, L; Grangeat, F; Lemasson, A; Talabot, J; Voirin, A

    2006-12-01

    The development of a world-wide makeup foundation range requires a thorough understanding of skin color features of women around the world. To understand the cosmetic needs of women from different ethnic groups, we measured skin color in five different groups (French and American Caucasian, Japanese, African-American, and Hispanic-American) and compared the data obtained with women's self-perception of skin color, before or after applying their usual foundation product. Skin color was measured using a spectro-radiometer and a spheric lighting device with CCD camera ensuring a highly reliable imaging and data acquisition. The diversity of skin types involved in the study lead to define a large, continuous color space where color spectra from various ethnic groups overlap. Three types of complexion - dark, medium, or light - were distinguished in each group. Only Japanese women did not identify with this lightness scale and considered it makes more sense to classify their skin according to a pink-ocher-beige color scale. The approach however revealed the great variety of skin colors within each ethnic group and the extent of unevenness. A fairly good agreement appeared between women's self-perception and data from color measurements but in Hispanic-American group. Data recorded, after foundation was applied, showed overall consistency with makeup strategy as described by volunteers except for the latter group whose approach looked more uncertain and variable. The findings of the study demonstrate the advantage of combining qualitative and quantitative approach for assessing the cosmetic needs and expectations of women from different ethnic origin and cultural background.

  6. Color-coordinate system from a 13th-century account of rainbows.

    PubMed

    Smithson, Hannah E; Anderson, Philip S; Dinkova-Bruun, Greti; Fosbury, Robert A E; Gasper, Giles E M; Laven, Philip; McLeish, Tom C B; Panti, Cecilia; Tanner, Brian K

    2014-04-01

    We present a new analysis of Robert Grosseteste's account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste's De colore [see J. Opt. Soc. Am. A29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste's key terms.

  7. Human factors considerations for the use of color in display systems

    NASA Technical Reports Server (NTRS)

    Demars, S. A.

    1975-01-01

    Identified and assessed are those human factor considerations impacting an operator's ability to perform when information is displayed in color as contrasted to monochrome (black and white only). The findings provide valuable guidelines for the assessment of the advantages (and disadvantages) of using a color display system. The use of color provides an additional sensory channel (color perception) which is not available with black and white. The degree to which one can exploit the use of this channel is highly dependent on available display technology, mission information display requirements, and acceptable operational modes.

  8. Motivational incentives modulate age differences in visual perception.

    PubMed

    Spaniol, Julia; Voss, Andreas; Bowen, Holly J; Grady, Cheryl L

    2011-12-01

    This study examined whether motivational incentives modulate age-related perceptual deficits. Younger and older adults performed a perceptual discrimination task in which bicolored stimuli had to be classified according to their dominating color. The valent color was associated with either a positive or negative payoff, whereas the neutral color was not associated with a payoff. Effects of incentives on perceptual efficiency and response bias were estimated using the diffusion model (Ratcliff, 1978). Perception of neutral stimuli showed age-related decline, whereas perception of valent stimuli, both positive and negative, showed no age difference. This finding is interpreted in terms of preserved top-down control over the allocation of perceptual processing resources in healthy aging.

  9. Self-Esteem and Skin Color Perception of Advantaged Afro-American Children.

    ERIC Educational Resources Information Center

    Williams-Burns, Winona

    1980-01-01

    Describes a study that aimed to examine the relationship between perceived skin color and self-esteem among Black third graders. Reports that self-esteem was found to be generally low among the children studied, but that skin color differences did not correlate with differences in self-esteem. (GC)

  10. Seeing red: affect modulation and chromatic color responses on the Rorschach.

    PubMed

    Malone, Johanna C; Stein, Michelle B; Slavin-Mulford, Jenelle; Bello, Iruma; Sinclair, S Justin; Blais, Mark A

    2013-01-01

    Psychoanalytic theories suggest that color perception on the Rorschach relates to affective modulation. However, this idea has minimal empirical support. Using a clinical sample, the authors explored the cognitive and clinical correlates of Rorschach color determinants and differences among four affective modulation subtypes: Controlled, Balanced, Under-Controlled, and Flooded. Subtypes were differentiated by measures of affective regulation, reality testing/confusion, and personality traits. Initial support for the relationship of chromatic color response styles and affective modulation was found.

  11. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  12. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  13. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-10

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  14. Color-rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-10-01

    Human perception of material colors depends heavily on the nature of the light sources that are used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. On the basis of state-of-the-art colorimetric methods, we present a modern approach for the calculation of color-rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: first, we use the CIELAB color space; second, we apply a linearized Bradford transformation for chromatic adaptation; and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda [Proc. CGIV'06 Conf., Leeds, UK, pp. 283-286 (2006)] have shown for the cube model that diffuse interreflections can influence the CRI of a light source. We analyze how color-rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB-based renderer for reasons of accuracy of CRI calculations.

  15. Ebony and Ivory: Relationship between African American Young Women's Skin Color and Ratings of Self and Peers

    ERIC Educational Resources Information Center

    Nassar-McMillan, Sylvia; McFall-Roberts, Ebuni; Flowers, Claudia; Garrett, Michael T.

    2006-01-01

    Many individuals face discrimination because of their skin color; however, skin color of African American young adults has not been studied in detail. This study examines relationships between skin color and perceptions among African American college women. The study yielded a positive correlation between personal values and self-rated skin color

  16. Phylogenetic approach to the evolution of color term systems

    PubMed Central

    Haynie, Hannah J.

    2016-01-01

    The naming of colors has long been a topic of interest in the study of human culture and cognition. Color term research has asked diverse questions about thought and communication, but no previous research has used an evolutionary framework. We show that there is broad support for the most influential theory of color term development (that most strongly represented by Berlin and Kay [Berlin B, Kay P (1969) (Univ of California Press, Berkeley, CA)]); however, we find extensive evidence for the loss (as well as gain) of color terms. We find alternative trajectories of color term evolution beyond those considered in the standard theories. These results not only refine our knowledge of how humans lexicalize the color space and how the systems change over time; they illustrate the promise of phylogenetic methods within the domain of cognitive science, and they show how language change interacts with human perception. PMID:27849594

  17. The effect of appropriate and inappropriate stimulus color on odor discrimination.

    PubMed

    Stevenson, Richard J; Oaten, Megan

    2008-05-01

    Color can strongly affect participants' self-report of an odor's qualities. In Experiment 1, we examined whether color influences a more objective measure of odor quality, discrimination. Odor pairs, presented in their appropriate color (e.g., strawberry and cherry in red water), an inappropriate color (e.g., strawberry and cherry in green water), or uncolored water were presented for discrimination. Participants made significantly more errors when odors were discriminated in an inappropriate color. In Experiment 2, the same design was utilized, but with an articulatory suppression task (AST), to examine whether the effect of color was mediated by identification or by a more direct effect on the percept. Here, the AST significantly improved discrimination for the inappropriate color condition, relative to Experiment 1. Although color does affect a more objective measure of odor quality, this is mediated by conceptual, rather than perceptual, means.

  18. The Interface Theory of Perception.

    PubMed

    Hoffman, Donald D; Singh, Manish; Prakash, Chetan

    2015-12-01

    Perception is a product of evolution. Our perceptual systems, like our limbs and livers, have been shaped by natural selection. The effects of selection on perception can be studied using evolutionary games and genetic algorithms. To this end, we define and classify perceptual strategies and allow them to compete in evolutionary games in a variety of worlds with a variety of fitness functions. We find that veridical perceptions--strategies tuned to the true structure of the world--are routinely dominated by nonveridical strategies tuned to fitness. Veridical perceptions escape extinction only if fitness varies monotonically with truth. Thus, a perceptual strategy favored by selection is best thought of not as a window on truth but as akin to a windows interface of a PC. Just as the color and shape of an icon for a text file do not entail that the text file itself has a color or shape, so also our perceptions of space-time and objects do not entail (by the Invention of Space-Time Theorem) that objective reality has the structure of space-time and objects. An interface serves to guide useful actions, not to resemble truth. Indeed, an interface hides the truth; for someone editing a paper or photo, seeing transistors and firmware is an irrelevant hindrance. For the perceptions of H. sapiens, space-time is the desktop and physical objects are the icons. Our perceptions of space-time and objects have been shaped by natural selection to hide the truth and guide adaptive behaviors. Perception is an adaptive interface.

  19. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  20. Color and texture associations in voice-induced synesthesia

    PubMed Central

    Moos, Anja; Simmons, David; Simner, Julia; Smith, Rachel

    2013-01-01

    Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers. PMID:24032023

  1. Influence of background/surrounding area on accuracy of visual color matching.

    PubMed

    Dudea, Diana; Gasparik, Cristina; Botos, Alexandra; Alb, Florin; Irimie, Ada; Paravina, Rade D

    2016-07-01

    Visual shade selection is subjective and influenced by factors that might be operator-dependent or not. The objective was to evaluate influence of observer nonrelated factors (background/surrounding area, and light) and observer-related factors (gender and color competence) on shade-matching quality and to identify the most often mismatched shades in correlation with the background. Ten observers with average or superior color discrimination competence according to ISO TR 28642:2011 were asked to match 48 shade tabs of three VITA Classical shade guides, in a viewing booth under two light sources: D65 and D50. Gray, white, black, red, and light blue background/surrounding area simulated various clinical situations. The results were statistically analyzed using Kruskal-Wallis test and Mann-Whitney U test. Post hoc power analyses and sample size calculations were also conducted. The matching scores ranged between 72.7 % (using blue background) and 85.9 % (using white and black backgrounds). There was a statistically significant difference between matching scores on the five backgrounds (χ (2)(4) = 12.67, p = 0.01). When neutral gray was used as reference, Mann-Whitney U value was statistically significant only for the blue background (U = 107.00, Z = -2.52, p = 0.01). The influence of gender and lighting condition was also assessed, no statistically significance being found, but in both cases, the effect size and the achieved power were small. However, color discrimination competence did influence the results (p < 0.01). Background influenced shade matching results for tabs A3, B3, B4, and D4. Within the limitations of this study, it was concluded that 1. When it comes to the influence of the background/surround area on quality of color matching, no difference among achromatic backgrounds was recorded. Significantly worse results were recorded when the blue background was used. 2. Observers with superior color matching competence performed

  2. Variable environmental effects on a multicomponent sexually selected trait.

    PubMed

    Cole, Gemma L; Endler, John A

    2015-04-01

    Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.

  3. [Evaluation of color perception in individuals addicted to narcotic substances in the Farnsworth-Munsell 100-Hue test].

    PubMed

    Nadolska, Krystyna; Goś, Roman

    2016-12-22

    The aim of the study was to assess color perception in the Farnsworth-Munsell 100-Hue test in individuals addicted to narcotic substances, and to analyze the acquired color vision disorders, depending on the duration of addiction and abstinence. Ninety-five persons were qualified for the study. All the subjects were divided into 3 groups. Group I (drug addicts) comprised 45 individuals addicted to narcotic substances and nicotine. Group II (smokers) consisted of 30 individuals addicted only to nicotine, and group III (abstinents) included 20 individuals free of addictions. In all the study groups anamnesis, survey, standard ophthalmological examination and the Farnsworth-Munsell 100-Hue test were performed. In the Farnsworth-Munsell 100-Hue test the mean values of total error score (TES) for the purposes of the analysis, expressed in the values of square root (√TES), proved to be significantly higher in group I than in the two other groups (p < 0.001). In group I, the √TES values exceeding critical values of age norms occurred significantly more frequently than in groups II (p < 0.01) and III (p < 0.05). A positive correlation between duration of addiction and the √TES values was indicated (ρ = 0.234, p < 0.05). The longer was the period of abstinence, the lower were the √TES values, indicating the improved ability to distinguish between colors. The Farnsworth-Munsell 100-Hue test proved useful in the detection and assessment of acquired dyschromatopsy induced by narcotic substances. The observed disorders appeared to be dependent on the duration of addiction and abstinence. Med Pr 2016;67(6):777-785. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Perceptual evaluation of color transformed multispectral imagery

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.

    2014-04-01

    Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.

  5. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients.

  6. Reduced Discrimination in the Tritanopic Confusion Line for Congenital Color Deficiency Adults.

    PubMed

    Costa, Marcelo F; Goulart, Paulo R K; Barboni, Mirella T S; Ventura, Dora F

    2016-01-01

    In congenital color blindness the red-green discrimination is impaired resulting in an increased confusion between those colors with yellow. Our post-receptoral physiological mechanisms are organized in two pathways for color perception, a red-green (protanopic and deuteranopic) and a blue-yellow (tritanopic). We argue that the discrimination losses in the yellow area in congenital color vision deficiency subjects could generate a subtle loss of discriminability in the tritanopic channel considering discrepancies with yellow perception. We measured color discrimination thresholds for blue and yellow of tritanopic channel in congenital color deficiency subjects. Chromaticity thresholds were measured around a white background (0.1977 u', 0.4689 v' in the CIE 1976) consisting of a blue-white and white-yellow thresholds in a tritanopic color confusion line of 21 congenital colorblindness subjects (mean age = 27.7; SD = 5.6 years; 14 deuteranomalous and 7 protanomalous) and of 82 (mean age = 25.1; SD = 3.7 years) normal color vision subjects. Significant increase in the whole tritanopic axis was found for both deuteranomalous and protanomalous subjects compared to controls for the blue-white (F 2,100 = 18.80; p < 0.0001) and white-yellow (F 2,100 = 22.10; p < 0.0001) thresholds. A Principal Component Analysis (PCA) found a weighting toward to the yellow thresholds induced by deuteranomalous subjects. In conclusion, the discrimination in the tritanopic color confusion axis is significantly reduced in congenital color vision deficiency compared to normal subjects. Since yellow discrimination was impaired the balance of the blue-yellow channels is impaired justifying the increased thresholds found for blue-white discrimination. The weighting toward the yellow region of the color space with the deuteranomalous contributing to that perceptual distortion is discussed in terms of physiological mechanisms.

  7. Perceptual Pragmatism and the Naturalized Ontology of Color.

    PubMed

    Chirimuuta, Mazviita

    2017-01-01

    This paper considers whether there can be any such thing as a naturalized metaphysics of color-any distillation of the commitments of perceptual science with regard to color ontology. I first make some observations about the kinds of philosophical commitments that sometimes bubble to the surface in the psychology and neuroscience of color. Unsurprisingly, because of the range of opinions expressed, an ontology of color cannot simply be read off from scientists' definitions and theoretical statements. I next consider two alternative routes. First, conceptual pluralism inspired by Mark Wilson's analysis of scientific representation. I argue that these findings leave the prospects for a naturalized color ontology rather dim. Second, I outline a naturalized epistemology of perception. I ask how the correctness and informativeness of perceptual states is understood by contemporary perceptual science. I argue that the detectionist ideal of correspondence should be replaced by the pragmatic ideal of usefulness. I argue that this result has significant implications for the metaphysics of color. Copyright © 2016 Cognitive Science Society, Inc.

  8. The Sound and Feel of Titrations: A Smartphone Aid for Color-Blind and Visually Impaired Students

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Rathod, Balraj B.

    2017-01-01

    An Android-based application has been developed to provide color-blind and visually impaired students a multisensory perception of color change observed in a titration. The application records and converts the color information into beep sounds and vibration pulses, which are generated by the smartphone. It uses a range threshold of hue and…

  9. New Windows based Color Morphological Operators for Biomedical Image Processing

    NASA Astrophysics Data System (ADS)

    Pastore, Juan; Bouchet, Agustina; Brun, Marcel; Ballarin, Virginia

    2016-04-01

    Morphological image processing is well known as an efficient methodology for image processing and computer vision. With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. Many models have been proposed to extend morphological operators to the field of color images, dealing with some new problems not present previously in the binary and gray level contexts. These solutions usually deal with the lattice structure of the color space, or provide it with total orders, to be able to define basic operators with required properties. In this work we propose a new locally defined ordering, in the context of window based morphological operators, for the definition of erosions-like and dilation-like operators, which provides the same desired properties expected from color morphology, avoiding some of the drawbacks of the prior approaches. Experimental results show that the proposed color operators can be efficiently used for color image processing.

  10. Luminance cues constrain chromatic blur discrimination in natural scene stimuli.

    PubMed

    Sharman, Rebecca J; McGraw, Paul V; Peirce, Jonathan W

    2013-03-22

    Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties.

  11. Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques

    PubMed Central

    Conway, Bevil R.; Kanwisher, Nancy G.

    2016-01-01

    The existence of color-processing regions in the human ventral visual pathway (VVP) has long been known from patient and imaging studies, but their location in the cortex relative to other regions, their selectivity for color compared with other properties (shape and object category), and their relationship to color-processing regions found in nonhuman primates remain unclear. We addressed these questions by scanning 13 subjects with fMRI while they viewed two versions of movie clips (colored, achromatic) of five different object classes (faces, scenes, bodies, objects, scrambled objects). We identified regions in each subject that were selective for color, faces, places, and object shape, and measured responses within these regions to the 10 conditions in independently acquired data. We report two key findings. First, the three previously reported color-biased regions (located within a band running posterior–anterior along the VVP, present in most of our subjects) were sandwiched between face-selective cortex and place-selective cortex, forming parallel bands of face, color, and place selectivity that tracked the fusiform gyrus/collateral sulcus. Second, the posterior color-biased regions showed little or no selectivity for object shape or for particular stimulus categories and showed no interaction of color preference with stimulus category, suggesting that they code color independently of shape or stimulus category; moreover, the shape-biased lateral occipital region showed no significant color bias. These observations mirror results in macaque inferior temporal cortex (Lafer-Sousa and Conway, 2013), and taken together, these results suggest a homology in which the entire tripartite face/color/place system of primates migrated onto the ventral surface in humans over the course of evolution. SIGNIFICANCE STATEMENT Here we report that color-biased cortex is sandwiched between face-selective and place-selective cortex on the bottom surface of the brain in humans

  12. Central Brain Circuitry for Color-Vision-Modulated Behaviors.

    PubMed

    Longden, Kit D

    2016-10-24

    Color is famous for not existing in the external world: our brains create the perception of color from the spatial and temporal patterns of the wavelength and intensity of light. For an intangible quality, we have detailed knowledge of its origins and consequences. Much is known about the organization and evolution of the first phases of color processing, the filtering of light in the eye and processing in the retina, and about the final phases, the roles of color in behavior and natural selection. To understand how color processing in the central brain has evolved, we need well-defined pathways or circuitry where we can gauge how color contributes to the computations involved in specific behaviors. Examples of such pathways or circuitry that are dedicated to processing color cues are rare, despite the separation of color and luminance pathways early in the visual system of many species, and despite the traditional definition of color as being independent of luminance. This minireview presents examples in which color vision contributes to behaviors dominated by other visual modalities, examples that are not part of the canon of color vision circuitry. The pathways and circuitry process a range of chromatic properties of objects and their illumination, and are taken from a variety of species. By considering how color processing complements luminance processing, rather than being independent of it, we gain an additional way to account for the diversity of color coding in the central brain, its consequences for specific behaviors and ultimately the evolution of color vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.

    2017-07-01

    The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.

  14. Color profiles and stability of acylated and nonacylated anthocyanins as novel pigment sources in a lipstick model: A viable alternative to synthetic colorants.

    PubMed

    Westfall, Alexandra; Giusti, Mónica

    Cosmetics, such as lipstick, can affect an individual's perception of attractiveness and morale. Consumer concern with the safety of synthetic colorants has made the need for alternative natural color sources increasingly urgent. Our goal was to evaluate the feasibility of anthocyanin (ACN) extracts as colorants in lipstick formulations. Lipstick formulations were colored with ACN-rich materials. Accelerated environmental testing typical of the cosmetic industry were used: incubation at 20°, 37°, and 45°C for 12 weeks and temperature abuse cycles between 20°/37°C or -20°/20°C. Color (CIELab) and total monomeric ACN (pH-differential) changes were monitored to determine shelf stability of the product. All formulations exhibited acceptable color for lipsticks. Shelf stability was determined to exceed 2 year based on the accelerated testing conditions. Formulations containing cyanidin as their main ACN were the most stable (elderberry, purple corn, and purple sweet potato). ACNs could be used as suitable alternatives to synthetic colorants in lipid-based topical formulations.

  15. The genetics of normal and defective color vision

    PubMed Central

    Neitz, Jay; Neitz, Maureen

    2011-01-01

    The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectrum of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. PMID:21167193

  16. The genetics of normal and defective color vision.

    PubMed

    Neitz, Jay; Neitz, Maureen

    2011-04-13

    The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Wei, Minchen

    Of the many “components” of a color rendering measure, one is perhaps the most important: the set of color samples (spectral reflectance functions) that are employed as a standardized means of evaluating and rating a light source. At the same time, a standardized set of color samples can never apply perfectly to a real space or a real set of observed objects, meaning there will always be some level of mismatch between the predicted and observed color shifts. This mismatch is important for lighting specifiers to consider, but even more critical for experiments that seek to evaluate the relationship betweenmore » color rendering measures and human perception. This article explores how the color distortions of three possible experimental object sets compare to the color distortions predicted using the color evaluation samples of IES TM-30-15 (TM-30). The experimental object sets include those from Royer and colleagues [2016], a set of produce (10 fruits and vegetables), and the X-rite Color Checker Classic. The differences are traced back to properties of the samples sets, such as the coverage of color space, average chroma level, and specific spectral features. The consequence of the differences, that the visual evaluation is based on color distortions that are substantially different from what is predicted, can lead to inaccurate criteria or models of a given perception, such as preference. To minimize the error in using criteria or models when specifying color rendering attributes for a given application, the criteria or models should be developed using a set of experimental objects that matches the typical objects of the application as closely as possible. Alternatively, if typical objects of an application cannot be reasonably determined, an object set that matches the distortions predicted by TM-30 as close as possible is likely to provide the most meaningful results.« less

  18. Attractive skin coloration: harnessing sexual selection to improve diet and health.

    PubMed

    Whitehead, Ross D; Ozakinci, Gözde; Perrett, David I

    2012-12-20

    In this paper we review the mechanisms through which carotenoid coloration could provide a sexually selected cue to condition in species with elaborate color vision. Skin carotenoid pigmentation induced by fruit and vegetable consumption may provide a similar cue to health in humans (particularly light-skinned Asians and Caucasians). Evidence demonstrates that carotenoid-based skin coloration enhances apparent health, and that dietary change can perceptibly impact skin color within weeks. We find that the skin coloration associated with increased fruit and vegetable consumption benefits apparent health to a greater extent than melanin pigmentation. We argue that the benefits to appearance may motivate individuals to improve their diet and that this line of appearance research reveals a potentially powerful strategy for motivating a healthy lifestyle.

  19. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  20. The face-selective N170 component is modulated by facial color.

    PubMed

    Nakajima, Kae; Minami, Tetsuto; Nakauchi, Shigeki

    2012-08-01

    Faces play an important role in social interaction by conveying information and emotion. Of the various components of the face, color particularly provides important clues with regard to perception of age, sex, health status, and attractiveness. In event-related potential (ERP) studies, the N170 component has been identified as face-selective. To determine the effect of color on face processing, we investigated the modulation of N170 by facial color. We recorded ERPs while subjects viewed facial color stimuli at 8 hue angles, which were generated by rotating the original facial color distribution around the white point by 45° for each human face. Responses to facial color were localized to the left, but not to the right hemisphere. N170 amplitudes gradually increased in proportion to the increase in hue angle from the natural-colored face. This suggests that N170 amplitude in the left hemisphere reflects processing of facial color information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Achromatic watercolor effect: about requirement of formation of sumi painting effect].

    PubMed

    Takashima, Midori

    2008-10-01

    The watercolor effect (Pinna, Brelstaff, & Spillmann, 2001) is a new color spreading phenomenon. Pinna et al. (2001) proposed that the watercolor effect is a new Gestalt factor because it determines figure-ground organization more strongly than classical Gestalt factors. We used achroriatic watercolor patterns and varied the lightness of the background and two border lines to study the relationship between the color spreading effect and figure-ground organization. The results demonstrated (a)a bidirectional color spreading phenomenon when the background lightness was between the two border-lines' lightness, and that (b) some patterns elicit only a color spreading effect without organization of figure-ground, while others elicit only figure-ground organization without a color spreading effect.

  2. Expanding color design methods for architecture and allied disciplines

    NASA Astrophysics Data System (ADS)

    Linton, Harold E.

    2002-06-01

    The color design processes of visual artists, architects, designers, and theoreticians included in this presentation reflect the practical role of color in architecture. What the color design professional brings to the architectural design team is an expertise and rich sensibility made up of a broad awareness and a finely tuned visual perception. This includes a knowledge of design and its history, expertise with industrial color materials and their methods of application, an awareness of design context and cultural identity, a background in physiology and psychology as it relates to human welfare, and an ability to problem-solve and respond creatively to design concepts with innovative ideas. The broadening of the definition of the colorists's role in architectural design provides architects, artists and designers with significant opportunities for continued professional and educational development.

  3. A color coordinate system from a 13th century account of rainbows

    PubMed Central

    Smithson, Hannah E.; Anderson, Philip S.; Dinkova-Bruun, Greti; Fosbury, Robert A. E.; Gasper, Giles E. M.; Laven, Philip; McLeish, Tom C. B.; Panti, Cecilia; Tanner, Brian

    2015-01-01

    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride, On the Rainbow, dating from the early 13th century. The work explores color within the three-dimensional framework set out in Grosseteste’s De colore (see Smithson et al, 2012, A three-dimensional color space from the 13th century.” Journal of the Optical Society of America (A), 29 (2), A346-A352), but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms. PMID:24695192

  4. Domain learning naming game for color categorization.

    PubMed

    Li, Doujie; Fan, Zhongyan; Tang, Wallace K S

    2017-01-01

    Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents.

  5. Domain learning naming game for color categorization

    PubMed Central

    2017-01-01

    Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents. PMID:29136661

  6. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation).

  7. Impact of demographic, behavioral, and dental care utilization parameters on tooth color and personal satisfaction.

    PubMed

    Odioso, L L; Gibb, R D; Gerlach, R W

    2000-01-01

    A cross-sectional survey across broad age ranges was conducted to evaluate demographic, behavioral, and treatment parameters that impact tooth color and its perception. The sample included 180 US adults and teenagers, with a comparable representation of males and females in 6 different age strata, ranging from 13 to 64 years. Tooth color (L*a*b*) was measured on the maxillary central incisors using a spectrophotometer, and first-person satisfaction with tooth color was assessed using a five-point qualitative scale. Demographic, behavioral, and oral care parameters were modeled using multiple regression analysis. After adjusting for other explanatory variables, age, gender, coffee/tea consumption, and dental care all significantly affected yellowing (b*) and brightness (L*). Dental-visit frequency was the only factor that significantly predicted self-satisfaction with tooth color, explaining just 3% of the overall variability. First-person dissatisfaction with tooth color was common and found in most demographic and behavioral cohorts. Although age contributed to objectively measured tooth discoloration, personal satisfaction with tooth color was age-independent. These results suggest that the need or demand for esthetic dentistry may be broad-based and transcend stereotypical perceptions.

  8. Reader Response to Front Pages with Modular Format and Color [and] Newspaper Errors: Source Perception, Reporter Response and Some Causes. American Newspaper Publishers Association (ANPA) News Research Report No. 35.

    ERIC Educational Resources Information Center

    Click, J. W.; And Others

    Two studies were conducted, the first to determine reader response to newspaper front pages with modular format and color, and the second to examine source perception and reporter response to errors in news stories. Results of the first study revealed that respondents in three cities preferred modular front pages to other modern format pages and…

  9. Genomics of coloration in natural animal populations.

    PubMed

    San-Jose, Luis M; Roulin, Alexandre

    2017-07-05

    Animal coloration has traditionally been the target of genetic and evolutionary studies. However, until very recently, the study of the genetic basis of animal coloration has been mainly restricted to model species, whereas research on non-model species has been either neglected or mainly based on candidate approaches, and thereby limited by the knowledge obtained in model species. Recent high-throughput sequencing technologies allow us to overcome previous limitations, and open new avenues to study the genetic basis of animal coloration in a broader number of species and colour traits, and to address the general relevance of different genetic structures and their implications for the evolution of colour. In this review, we highlight aspects where genome-wide studies could be of major utility to fill in the gaps in our understanding of the biology and evolution of animal coloration. The new genomic approaches have been promptly adopted to study animal coloration although substantial work is still needed to consider a larger range of species and colour traits, such as those exhibiting continuous variation or based on reflective structures. We argue that a robust advancement in the study of animal coloration will also require large efforts to validate the functional role of the genes and variants discovered using genome-wide tools.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  10. Perceptual Fidelity for Digital Color Imagery

    DTIC Science & Technology

    1996-12-01

    34Margini Quasi-percettivi in campi con Stimolazione Omogenea," Rivista di Psicologia , 49: 7 -30 (1955). English translation by Walter Gerbino (1987) "Quasi...Simple achromatic HVS model ............................... 37 7 . "More anatomically correct" HVS model [37]. ....................... 38 8. Illusory...hue, saturation, and luminance form 7 a polar coordinate system. While this arrangement provides a psychophysical measurement of unit differences in hue

  11. A differential color flicker test for detecting acquired color vision impairment in multiple sclerosis and diabetic retinopathy.

    PubMed

    Gregori, Bruno; Papazachariadis, Odysseas; Farruggia, Alfonsa; Accornero, Neri

    2011-01-15

    Optic neuritis related to multiple sclerosis and diabetic retinopathy are relatively selective post-retinal and retinal vision disorders. Vision impairment in both conditions is reliably measured by testing critical fusion frequency (CFF). To examine color vision, we measured the CFF in response to red and blue stimuli, and tested CFF values in patients without evident vision impairment. To ensure that differences in CFF values in a given subject depended only on color perception we displayed red and blue flickering stimuli at equal luminance. CFF to red or blue stimuli were compared in patients with medical history of optic neuritis related to multiple sclerosis (post-retinal vision impairment), patients with diabetic retinopathy (retinal vision impairment) and healthy subjects. The test procedure disclosed altered CFF values for red and blue stimuli in both groups of patients studied. The comparison between the two groups disclosed a prevalent CFF impairment for red stimuli in patients with optic neuritis related to multiple sclerosis and for blue stimuli in patients with diabetic retinopathy. The differential color flicker test appears highly accurate in detecting color vision impairment. Comparison of the two color CFFs differentiates retinal from post-retinal visual disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The homogeneity effect on figure/ground perception in infancy.

    PubMed

    Takashima, Midori; Kanazawa, So; Yamaguchi, Masami K; Shiina, Ken

    2014-02-01

    We examined whether the homogeneity of the two profiles of Rubin's goblet affects figure/ground perception in infants. We modified the two profiles of Rubin's goblet in order to compare figure/ground perception under four test patterns: (1) two profiles painted with horizontal lines (horizontal-line condition), (2) two profiles painted middle gray (uni-color condition), (3) one profile painted light gray and the other dark gray (two-color condition), and (4) a goblet painted with concentric circles (concentric-circles condition). In the horizontal-line condition the homogeneity of the profile was strengthened, and in the two-color condition the homogeneity of the profile was weakened compared to the uni-color condition, which was an original Rubin's goblet. In the concentric-circles condition the homogeneity of the reversed areas of the horizontal-line were strengthened. After infants were familiarized with each Rubin's goblet, the infants were tested on their discrimination between the two profiles and the goblet in the post-familiarization test. In horizontal-line condition, uni-color condition and concentric-circles condition infants showed a novelty preference for the two profiles in the post-familiarization test. On the other hand, in the two-color condition no preference was observed in the post-familiarization test. This means that infants perceived the goblet as figure and the two profiles as ground in the horizontal-line condition, the uni-color condition and the concentric-circles condition. We found that infants could not perceive the goblet area as figure when the homogeneity of the two profiles was weakened. It can be said that figure/ground perception in infancy is not affected by strengthened homogeneity, but is affected by weakened homogeneity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Representation of Color across the Human Visual Cortex: Distinguishing Chromatic Signals Contributing to Object Form Versus Surface Color.

    PubMed

    Seymour, K J; Williams, M A; Rich, A N

    2016-05-01

    Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Support for Lateralization of the Whorf Effect beyond the Realm of Color Discrimination

    ERIC Educational Resources Information Center

    Gilbert, Aubrey L.; Regier, Terry; Kay, Paul; Ivry, Richard B.

    2008-01-01

    Recent work has shown that Whorf effects of language on color discrimination are stronger in the right visual field than in the left. Here we show that this phenomenon is not limited to color: The perception of animal figures (cats and dogs) was more strongly affected by linguistic categories for stimuli presented to the right visual field than…

  15. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  16. Child friendly colors in a pediatric dental practice.

    PubMed

    Umamaheshwari, N; Asokan, Sharath; Kumaran, Thanga S

    2013-01-01

    The child's perception of the dental environment is a significant factor causing dental anxiety. If the color of the dental environment can have a positive impact on the child's behavior, it is possible that those colors may add to the comfort of a child, thus reducing dental anxiety. To evaluate the association between color and emotions of children in a pediatric dental set-up. A total of 300 children aged 6-12 years were divided into 2 groups: Younger children (6-9 years, n = 156) and older children (9-12 years, n = 144). All the children were asked to shade two cartoon faces representing happiness and fear with their most preferred color. For the positive emotion, 44% (n = 132) of the children preferred yellow, followed by blue 32.67% (n = 98). For negative emotion, 56.67% (n = 170) of the children preferred black and 42.67% (n = 128) preferred red. Association between color and emotion was highly significant (P < 0.001). This study has attempted to advance the area of color research to dental anxiety in children visiting a dental clinic. The use of child friendly colors like yellow and blue in the dental work place could enhance a positive dental attitude in the child's mind.

  17. Red fluorescence of the triplefin Tripterygion delaisi is increasingly visible against background light with increasing depth.

    PubMed

    Bitton, Pierre-Paul; Harant, Ulrike K; Fritsch, Roland; Champ, Connor M; Temple, Shelby E; Michiels, Nico K

    2017-03-01

    The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.

  18. Visual grouping under isoluminant condition: impact of mental fatigue

    NASA Astrophysics Data System (ADS)

    Pladere, Tatjana; Bete, Diana; Skilters, Jurgis; Krumina, Gunta

    2016-09-01

    Instead of selecting arbitrary elements our visual perception prefers only certain grouping of information. There is ample evidence that the visual attention and perception is substantially impaired in the presence of mental fatigue. The question is how visual grouping, which can be considered a bottom-up controlled neuronal gain mechanism, is influenced. The main purpose of our study is to determine the influence of mental fatigue on visual grouping of definite information - color and configuration of stimuli in the psychophysical experiment. Individuals provided subjective data by filling in the questionnaire about their health and general feeling. The objective evidence was obtained in the specially designed visual search task were achromatic and chromatic isoluminant stimuli were used in order to avoid so called pop-out effect due to differences in light intensity. Each individual was instructed to define the symbols with aperture in the same direction in four tasks. The color component differed in the visual search tasks according to the goals of study. The results reveal that visual grouping is completed faster when visual stimuli have the same color and aperture direction. The shortest reaction time is in the evening. What is more, the results of reaction time suggest that the analysis of two grouping processes compete for selective attention in the visual system when similarity in color conflicts with similarity in configuration of stimuli. The described effect increases significantly in the presence of mental fatigue. But it does not have strong influence on the accuracy of task accomplishment.

  19. Clinical study on natural gingival color.

    PubMed

    Gómez-Polo, Cristina; Montero, Javier; Gómez-Polo, Miguel; Martín Casado, Ana María

    2018-05-29

    The aims of the study were: to describe the gingival color surrounding the upper incisors in three sites in the keratinized gingiva, analyzing the effect of possible factors which modulate (socio-demographic and behavioral) intersubject variability; to study whether the gingiva color is the same in all three locations and to describe intrasubject color differences in the keratinized gingiva band. Using the CIELAB color system, three reference areas (free gingival margin, keratinized gingival body, and birth or upper part of the keratinized gingiva) were studied in 259 individuals, as well as the related socio-demographic factors, oral habits and the chronic intake of medication. Shadepilot™ spectrophotometer was used. Descriptive and inferential statistical analysis was performed. There are statistically significant differences between males and females for coordinates L* and a* in the middle and free gingival margin. For the b* coordinate, there are differences between males and females in the three locations studied (p < 0.05). The minimum and maximum coordinates in which the CIELAB natural gingival space is delimited are L* minima 28.3, L* maximum 65.4, a* minimum 11.1, a* maximum 37.2, b* minimum 6.9, and b* maximum 25.2*. Age, smoking, and the chronic intake of medication had no significant effect on gum color. There are perceptible color differences within the keratinized gingiva band. These chromatic differences must be taken into account if the prosthetic characterization of gingival tissue is to be considered acceptable. There are significant differences between the color coordinates of the three sites studied in the keratinized gingiva of men and women.

  20. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus.

    PubMed

    Vergara, P; Fargallo, J A; Martínez-Padilla, J

    2015-01-01

    Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid-based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid-based traits. Using long-term individual-based data, we here explore the evolutionary potential of a dynamic, carotenoid-based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange-yellow eye ring coloration was significantly heritable (h2±SE=0.40±0.17), whereas neither hue (h2=0) nor brightness (h2=0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid-based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid-based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid-based coloration, these complexities need to be taken into account. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Safety sign designs for children by considering effect of the colors preferences: A case study

    NASA Astrophysics Data System (ADS)

    Iftadi, Irwan; Nugraha, Dian Cahya; Jauhari, Wakhid Ahmad

    2018-02-01

    Color has become a major consideration in ergonomics. Color conveys a message and it is an important element in safety signs. The importance of colors usage in safety sign designs makes the colors research into one of the things that must be done before designing them. So far, research in the related field only focused on the adult's perspective without involving children's perspective in designing the safety signs. This paper aims to find out how children's perception towards colors affects the safety sign designs. This study consist of eight sections which are literature study, direct observation, determining referents and other parameters, determining research respondents, making the booklet, assessing the colors preferences, determining the design's parameter value and creating the safety sign designs. Limitation of the research are the objects are the students with the age of 10 - 11 years old in Grade IV and then the research is conducted in the school day and hours that apply to the school. Chi square test and odds ratio are employed to assess the colors preferences. Twelve safety sign designs are proposed by considering the children's colors perception. The designs are grouped into three types of sign which are Mandatory Action Sign, Warning Sign and Prohibition Sign. Six colors are used to draw the safety signs i.e. red, orange, yellow, green, blue and black. On the basis of the study, it is concluded that the colors that often appears in safety signs is green with the percentage of 75% and that rarely appears is red with the percentage of 8.33%.

  2. Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue.

    PubMed

    Gunther, Karen L

    2014-04-01

    Cardinal color performance (reddish, greenish, bluish, yellowish, black, and white) has been shown to decline in peripheral viewing. What about non-cardinal color performance (e.g., orange, burgundy, and sky blue)? In visual search, performance on non-cardinal colors matched that of the cardinal colors in the (L-M)/(S-(L+M)) (isoluminant) color plane (Experiment 1, n=10, to 30°; Experiment 2, n=3, to 50°). However, performance in the (L-M)/(L+M) and (S-(L+M))/(L+M) color planes was worse for non-cardinal colors, at all eccentricities, even in the fovea. The implications that these results have for the existence of non-cardinal mechanisms in each color plane are discussed.

  3. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  4. A differential geometry model for the perceived colors space

    NASA Astrophysics Data System (ADS)

    Provenzi, Edoardo

    2016-06-01

    The space of perceived colors, before acquiring an industrial interest, has received a systematic theoretical attention from philosophers, physicists and mathematicians. The research about this topic is still active nowadays. In this paper, it will be presented a critical overview of a model based on differential geometry proposed by H. L. Resnikoff in 1974. It will be shown that, while some fundamental and elegant ideas behind this model can be still used as a guiding principle, some other parts of the model must be updated to comply with the modern findings about color perception.

  5. Characteristics of grouping colors for figure segregation on a multicolored background.

    PubMed

    Nagai, Takehiro; Uchikawa, Keiji

    2008-11-01

    A figure is segregated from its background when the colored elements belonging to the figure are grouped together. We investigated the range of color distribution conditions in which a figure could be segregated from its background using the color distribution differences. The stimulus was a multicolored texture composed of randomly shaped pieces. It was divided into two regions: a test region and a background region. The pieces in these two regions had different color distributions in the OSA Uniform Color Space. In our experiments, the subject segregated the figure of the test region using two different procedures. Since the Euclidean distance in the OSA Uniform Color Space corresponds to perceived color difference, if segregation thresholds are determined by only color difference, the thresholds should be independent of position and direction in the color space. In the results, however, the thresholds did depend on position and direction in the OSA Uniform Color Space. This suggests that color difference is not the only factor in figure segregation by color. Moreover, the threshold dependence on position and direction is influenced by the distances in the cone-opponent space whose axes are normalized by discrimination thresholds, suggesting that figure segregation threshold is determined by similar factors in the cone-opponent space for color discrimination. The analysis of the results by categorical color naming suggests that categorical color perception may affect figure segregation only slightly.

  6. Experimental characterization of a F/1.5 geometric-phase lens with high-achromatic efficiency and low aberration

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.

    2017-02-01

    We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.

  7. How To Control Color Appearance With Instrumentation

    NASA Astrophysics Data System (ADS)

    Burns, Margaret E.

    1980-05-01

    Colorimetry, as defined by the International Commission on Illumination, is the measurement of colors, made possible by the properties of the eye and based on a set of conventions. Instrumentation for measuring object color, therefore, must be based on a human observer. The intent is to design an instrument that in effect responds as a person would, so that research development, production control and quality control areas have some means of assessing the acceptability of the appearance of a product. Investigations of a human observer's psychological response to color, and the manner in which visual observations are made, give the instrument designer and manufacturer data necessary to answer two questions: a. How can we put numbers (instrument read-out) on a perception that occurs in the brain of the observer? b. What can we learn from examination of a visual observing situation that will guide us in our design of an instrumental simulation of this situation? Involving as it does our own daily, almost unconscious, practice of making judgments concerning the things we see, the design and manufacture of color measurement instruments is an exceedingly interesting field. The advances being made concurrently today in research concerning human color vision and in optical and electronic technology will make possible increasingly useful instrumentation for quality control of product color.

  8. Automated color classification of urine dipstick image in urine examination

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.

    2018-03-01

    Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.

  9. Evaluation of agreement among dermatologists in the assessment of the color of port wine stains and their clearance after treatment with the flashlamp-pumped dye laser.

    PubMed

    Pérez, B; Abraira, V; Núñez, M; Boixeda, P; Perez Corral, F; Ledo, A

    1997-01-01

    Color classification and its subjective clearance evaluation in response to treatment are essential in the management of patients with port wine stains (PWS). But color perception by physicians is not an objective measurement so that it can change among observers. Agreement among physicians is essential for the reliability of the color classification and the clinical assessment of the response to laser treatment. The purpose of our study was to determine the reliability of the clinical color classification of port wine stains and of their color change or clearance in response to laser treatment. The study was not designed to evaluate the outcome of laser treatment in PWS or the factors that could predict the final response. We used the kappa index to evaluate the proportion of agreement in color and clearance perception among dermatologists. Six dermatologists classified the initial color of PWS in 80 patients. Three of them also assessed the amount of clearance achieved after treatment with the flashlamp-pumped dye laser. These three dermatologists were usually dedicated to treat patients with PWS, while the other three were not. The kappa index showed a substantial agreement in both cases. No difference in the initial color perception was observed between the group of dermatologists specialized in PWS and the other three dermatologists. These results favor the reliability of the clinical method in the assessment of PWS before and after laser treatment. So, although subjective, color perception by physicians can be used in the study of laser treatment outcome in PWS and its related factors, and the results of different authors can be compared.

  10. Abutment Material Effect on Peri-implant Soft Tissue Color and Perceived Esthetics.

    PubMed

    Kim, Aram; Campbell, Stephen D; Viana, Marlos A G; Knoernschild, Kent L

    2016-12-01

    The purpose of this study was to evaluate the effect of implant abutment material on peri-implant soft tissue color using intraoral spectrophotometric analysis and to compare the clinical outcomes with patient and clinician perception and satisfaction. Thirty patients and four prosthodontic faculty members participated. Abutments were zirconia, gold-hued titanium, and titanium. Peri-implant mucosa color of a single anterior implant restoration was compared to the patient's control tooth. Spectrophotometric analysis using SpectroShade TM Micro data determined the color difference (ΔE, ΔL*, Δa*, Δb*) between the midfacial peri-implant soft tissue for each abutment material and the marginal gingiva of the control tooth. Color difference values of the abutment groups were compared using ANOVA (α = 0.05). Patient and clinician satisfaction surveys were also conducted using a color-correcting light source. The results of each patient and clinician survey question were compared using chi-square analysis (α = 0.05). Pearson correlation analyses identified the relationship between the total color difference (ΔE) and the patient/clinician perception and satisfaction, as well as between ΔE and tissue thickness. Zirconia abutments displayed significantly smaller spectrophotometric gingival color difference (ΔE) compared to titanium and gold-hued titanium abutments (respectively, 3.98 ± 0.99; 7.22 ± 3.31; 5.65 ± 2.11; p < 0.05). Among ΔL*, Δa*, and Δb*, only Δa* (red-green spectrum) showed significant difference between groups. There was no significant correlation between measured soft tissue thickness and ΔE, but thick gingival phenotype, determined by a probe test, demonstrated a smaller ΔE than thin phenotype (4.82 ± 1.49; 6.41 ± 3.27; p = 0.097). There was no statistical difference in patient or clinician satisfaction among abutment materials, and no correlation between ΔE and the patient and clinician satisfaction. Patient satisfaction was

  11. Effects of facial color on the subliminal processing of fearful faces.

    PubMed

    Nakajima, K; Minami, T; Nakauchi, S

    2015-12-03

    Recent studies have suggested that both configural information, such as face shape, and surface information is important for face perception. In particular, facial color is sufficiently suggestive of emotional states, as in the phrases: "flushed with anger" and "pale with fear." However, few studies have examined the relationship between facial color and emotional expression. On the other hand, event-related potential (ERP) studies have shown that emotional expressions, such as fear, are processed unconsciously. In this study, we examined how facial color modulated the supraliminal and subliminal processing of fearful faces. We recorded electroencephalograms while participants performed a facial emotion identification task involving masked target faces exhibiting facial expressions (fearful or neutral) and colors (natural or bluish). The results indicated that there was a significant interaction between facial expression and color for the latency of the N170 component. Subsequent analyses revealed that the bluish-colored faces increased the latency effect of facial expressions compared to the natural-colored faces, indicating that the bluish color modulated the processing of fearful expressions. We conclude that the unconscious processing of fearful faces is affected by facial color. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Color discrimination performance in patients with Alzheimer's disease.

    PubMed

    Salamone, Giovanna; Di Lorenzo, Concetta; Mosti, Serena; Lupo, Federica; Cravello, Luca; Palmer, Katie; Musicco, Massimo; Caltagirone, Carlo

    2009-01-01

    Visual deficits are frequent in Alzheimer's disease (AD), yet little is known about the nature of these disturbances. The aim of the present study was to investigate color discrimination in patients with AD to determine whether impairment of this visual function is a cognitive or perceptive/sensory disturbance. A cross-sectional clinical study was conducted in a specialized dementia unit on 20 patients with mild/moderate AD and 21 age-matched normal controls. Color discrimination was measured by the Farnsworth-Munsell 100 hue test. Cognitive functioning was measured with the Mini-Mental State Examination (MMSE) and a comprehensive battery of neuropsychological tests. The scores obtained on the color discrimination test were compared between AD patients and controls adjusting for global and domain-specific cognitive performance. Color discrimination performance was inversely related to MMSE score. AD patients had a higher number of errors in color discrimination than controls (mean +/- SD total error score: 442.4 +/- 84.5 vs. 304.1 +/- 45.9). This trend persisted even after adjustment for MMSE score and cognitive performance on specific cognitive domains. A specific reduction of color discrimination capacity is present in AD patients. This deficit does not solely depend upon cognitive impairment, and involvement of the primary visual cortex and/or retinal ganglionar cells may be contributory.

  13. Brain MR image segmentation using NAMS in pseudo-color.

    PubMed

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  14. Experiences of Differential Treatment among College Students of Color.

    ERIC Educational Resources Information Center

    Suarez-Balcazar, Yolanda; Orellana-Damacela, Lucia; Portillo, Nelson; Rowan, Jean M.; Andrews-Guillen, Chelsea

    2003-01-01

    Studied perceptions of differential treatment of students of color through surveys completed by Caucasian (n=500) and non-Caucasian (n=495) college students. Findings show African Americans experienced more incidents of differential treatment in peer-faculty situations and females rated higher both the degree of offensiveness and degree of…

  15. From perceptive fields to Gestalt.

    PubMed

    Spillmann, Lothar

    2006-01-01

    Studies on visual psychophysics and perception conducted in the Freiburg psychophysics laboratory during the last 35 years are reviewed. Many of these were inspired by single-cell neurophysiology in cat and monkey. The aim was to correlate perceptual phenomena and their effects to possible neuronal mechanisms from retina to visual cortex and beyond. Topics discussed include perceptive field organization, figure-ground segregation and grouping, fading and filling-in, and long-range color interaction. While some of these studies succeeded in linking perception to neuronal response patterns, others require further investigation. The task of probing the human brain with perceptual phenomena continues to be a challenge for the future.

  16. Assessing the influence of skin color and tooth shade value on perceived smile attractiveness.

    PubMed

    Sabherwal, Ruchika S; Gonzalez, Juan; Naini, Farhad B

    2009-06-01

    The authors conducted a study to determine whether variations in skin color would influence perceptions of smile attractiveness for a given tooth shade value. Using a photograph of a woman smiling, the authors altered skin color to consist of four tones (fair, fair/medium, medium/dark and dark) and altered tooth shade value (brightness) to range from 00 (brightest) to 05 (darkest). Two groups of judges (70 dentists, 70 laypeople) completed a questionnaire and rated the images for smile attractiveness. For most tooth shade values (00, 01, 03, 04, 05), multiple mixed linear regression showed that variation in skin color influenced respondents' perceptions of smile attractiveness (P < .001). For images corresponding to tooth shade values 01, 02, 03, 04 and 05, men provided lower ratings than did women (P < .05). Attractiveness ratings increased with the age of participants (P < .05). Dentists rated images higher than did laypeople (P < .05). Variation in skin color for most tooth shade values influenced dentists' and laypeople's perceived smile attractiveness. Dentists and laypeople did not perceive the brightest tooth shade to be the most attractive, and they did not perceive all skin colors to be equally attractive with bright white teeth. Respondents perceived dark skin with bright white teeth and fair skin with dark teeth as relatively unattractive.

  17. Research on image complexity evaluation method based on color information

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo

    2017-11-01

    In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.

  18. Auto white balance method using a pigmentation separation technique for human skin color

    NASA Astrophysics Data System (ADS)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2017-02-01

    The human visual system maintains the perception of colors of an object across various light sources. Similarly, current digital cameras feature an auto white balance function, which estimates the illuminant color and corrects the color of a photograph as if the photograph was taken under a certain light source. The main subject in a photograph is often a person's face, which could be used to estimate the illuminant color. However, such estimation is adversely affected by differences in facial colors among individuals. The present paper proposes an auto white balance algorithm based on a pigmentation separation method that separates the human skin color image into the components of melanin, hemoglobin and shading. Pigment densities have a uniform property within the same race that can be calculated from the components of melanin and hemoglobin in the face. We, thus, propose a method that uses the subject's facial color in an image and is unaffected by individual differences in facial color among Japanese people.

  19. Postpartum unconscious dynamics emerging from the Lüscher color test in Ethiopian women.

    PubMed

    Zanardo, Vincenzo; Gabrieli, Catia; Volpe, Francesca; Savio, Francesca; Straface, Gianluca; Soldera, Gino

    2017-06-01

    The aim of this study was to explore the feasibility of the Lüscher color test (LCT), a psychological instrument based on theory that colors are selected in unconscious way and that the color sensory perception of color is objective and universal. The research has involved 24 Ethiopian women, which delivered at the Getche Health Center in Gurage. It seemed to be relevant for the majority of Ethiopian women identify the rejected color (58.66%), the gray, than the favorite color, the yellow 33.33%). The yellow color suggests that they better express their personality in a physical context, while the gray color indicates that they want to live this experience intensely. This exploratory work lays the foundations for further studies in disadvantaged women, both in developing low-income Countries as well as in industrialized Countries characterized by an high level of emigration, and for clinical applications by the complete LCT version.

  20. Color, context, and cognitive style: variations in color knowledge retrieval as a function of task and subject variables.

    PubMed

    Hsu, Nina S; Kraemer, David J M; Oliver, Robyn T; Schlichting, Margaret L; Thompson-Schill, Sharon L

    2011-09-01

    Neuroimaging tests of sensorimotor theories of semantic memory hinge on the extent to which similar activation patterns are observed during perception and retrieval of objects or object properties. The present study was motivated by the hypothesis that some of the seeming discrepancies across studies reflect flexibility in the systems responsible for conceptual and perceptual processing of color. Specifically, we test the hypothesis that retrieval of color knowledge can be influenced by both context (a task variable) and individual differences in cognitive style (a subject variable). In Experiment 1, we provide fMRI evidence for differential activity during color knowledge retrieval by having subjects perform a verbal task, in which context encouraged subjects to retrieve more- or less-detailed information about the colors of named common objects in a blocked experimental design. In the left fusiform, we found more activity during retrieval of more- versus less-detailed color knowledge. We also assessed preference for verbal or visual cognitive style, finding that brain activity in the left lingual gyrus significantly correlated with preference for a visual cognitive style. We replicated many of these effects in Experiment 2, in which stimuli were presented more quickly, in a random order, and in the auditory modality. This illustration of some of the factors that can influence color knowledge retrieval leads to the conclusion that tests of conceptual and perceptual overlap must consider variation in both of these processes.

  1. Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Kim, Soyeon; Chen, Samantha; Tannock, Rosemary

    2014-01-01

    Color vision and self-reported visual function in everyday life in young adults with Attention-Deficit/Hyperactivity Disorder (ADHD) were investigated. Participants were 30 young adults with ADHD and 30 controls matched for age and gender. They were tested individually and completed the Visual Activities Questionnaire (VAQ), Farnsworth-Munsell 100 Hue Test (FMT) and A Quick Test of Cognitive Speed (AQT). The ADHD group reported significantly more problems in 4 of 8 areas on the VAQ: depth perception, peripheral vision, visual search and visual processing speed. Further analyses of VAQ items revealed that the ADHD group endorsed more visual problems associated with driving than controls. Color perception difficulties on the FMT were restricted to the blue spectrum in the ADHD group. FMT and AQT results revealed slower processing of visual stimuli in the ADHD group. A comprehensive investigation of mechanisms underlying visual function and color vision in adults with ADHD is warranted, along with the potential impact of these visual problems on driving performance. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  2. Experimental and theoretical studies of perceptible color fading of decorative paints consisting of mixed pigments

    NASA Astrophysics Data System (ADS)

    Auger, Jean-Claude; McLoughlin, Daragh

    2017-01-01

    We study the color fading of paints films composed of mixtures of white rutile titanium dioxide and yellow arylide pigments dispersed in two polymer binders at different volume concentrations. The samples were exposed to ultraviolet radiations in an accelerated weathering tester during three weeks. The measured patterns in color variations appeared to be independent of the chemistry of the binders. We then developed a theoretical framework, based on the Radiative transfer Equation of light and the One Particle T-Matrix formalism to simulate the color fading process. The loss of color is correlated to the progressive decrease of the original colored pigment volume-filling fraction as the destructive UV radiations penetrate deeper into the films. The calculated patterns of color variations of paints film composed by mixtures of white pigments with yellow Cadmium Sulfate (CdS) and red Cerium Sulfide (Ce2S3) pigments showed the same trend as that seen experimentally.

  3. Comparison of two color-difference formulas using the Bland-Altman approach based on gingiva color space.

    PubMed

    Gómez Polo, Cristina; Montero, Javier; Martín Casado, Ana Maria

    2018-04-23

    The objectives of this study were to determine the relationship between the results provided by the classical CIELab (ΔE ab *) and the CIEDE2000 (ΔE00) formulas and the gingival color space using the Bland and Altman limits of agreement, to use this relationship to establish the equivalences between the gingival color thresholds of perceptibility of both formulas, and to evaluate whether the relationship between ΔE ab * and ΔE00 is modified depending on the axis in which the changes occur. The means of the L*, a*, and b* coordinates of the 21 gingiva porcelain samples (Heraceram, Heraeus Kulzer Mitsui Chemical Groups) were used and the differences in color were calculated in 210 pairs of samples using the CIELab (ΔE*ab) and CIEDE2000 (ΔE00) color-difference formulas. The results obtained with these formulas were compared and the limits of agreement after a logarithmic transformation of the data were obtained. The relationship between both formulas was ln ΔE 00  = - 0.22 + ln ΔE ab *. The results obtained with the CIELab formula were between 1.01 (95% confidence interval 0.98-1.03) and 1.54 (95% confidence interval 1.52-1.59) times higher than those obtained with the CIEDE200 formula. In the gingiva color space, the scale factor between the CIEDE2000 and CIELab values changes from 0.63 to 1.02, such that providing an accurate scale factor between both values proves difficult. The pairs with the highest ratio were those where the difference in color was mainly due to changes in lightness, whereas the pairs with the smallest ratio were those where the difference in color was mainly due to changes in the blue-yellow or green-red axes.

  4. Single-Layer Metasurface with Controllable Multiwavelength Functions.

    PubMed

    Shi, Zhujun; Khorasaninejad, Mohammadreza; Huang, Yao-Wei; Roques-Carmes, Charles; Zhu, Alexander Y; Chen, Wei Ting; Sanjeev, Vyshakh; Ding, Zhao-Wei; Tamagnone, Michele; Chaudhary, Kundan; Devlin, Robert C; Qiu, Cheng-Wei; Capasso, Federico

    2018-04-11

    In this paper, we report dispersion-engineered metasurfaces with distinct functionalities controlled by wavelength. Unlike previous approaches based on spatial multiplexing or vertical stacking of metasurfaces, we utilize a single phase profile with wavelength dependence encoded in the phase shifters' dispersion. We designed and fabricated a multiwavelength achromatic metalens (MAM) with achromatic focusing for blue (B), green (G), yellow (Y), and red (R) light and two wavelength-controlled beam generators (WCBG): one focuses light with orbital angular momentum (OAM) states ( l = 0,1,2) corresponding to three primary colors; the other produces ordinary focal spots ( l = 0) for red and green light, while generating a vortex beam ( l = 1) in the blue. A full color (RGB) hologram is also demonstrated in simulation. Our approach opens a path to applications ranging from near-eye displays and holography to compact multiwavelength beam generation.

  5. A Bayesian observer replicates convexity context effects in figure-ground perception.

    PubMed

    Goldreich, Daniel; Peterson, Mary A

    2012-01-01

    Peterson and Salvagio (2008) demonstrated convexity context effects in figure-ground perception. Subjects shown displays consisting of unfamiliar alternating convex and concave regions identified the convex regions as foreground objects progressively more frequently as the number of regions increased; this occurred only when the concave regions were homogeneously colored. The origins of these effects have been unclear. Here, we present a two-free-parameter Bayesian observer that replicates convexity context effects. The Bayesian observer incorporates two plausible expectations regarding three-dimensional scenes: (1) objects tend to be convex rather than concave, and (2) backgrounds tend (more than foreground objects) to be homogeneously colored. The Bayesian observer estimates the probability that a depicted scene is three-dimensional, and that the convex regions are figures. It responds stochastically by sampling from its posterior distributions. Like human observers, the Bayesian observer shows convexity context effects only for images with homogeneously colored concave regions. With optimal parameter settings, it performs similarly to the average human subject on the four display types tested. We propose that object convexity and background color homogeneity are environmental regularities exploited by human visual perception; vision achieves figure-ground perception by interpreting ambiguous images in light of these and other expected regularities in natural scenes.

  6. Development of a novel 2D color map for interactive segmentation of histological images.

    PubMed

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D

    2012-05-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  7. Salience of unique hues and implications for color theory

    PubMed Central

    Wool, Lauren E.; Komban, Stanley J.; Kremkow, Jens; Jansen, Michael; Li, Xiaobing; Alonso, Jose-Manuel; Zaidi, Qasim

    2015-01-01

    The unique hues—blue, green, yellow, red—form the fundamental dimensions of opponent-color theories, are considered universal across languages, and provide useful mental representations for structuring color percepts. However, there is no neural evidence for them from neurophysiology or low-level psychophysics. Tapping a higher prelinguistic perceptual level, we tested whether unique hues are particularly salient in search tasks. We found no advantage for unique hues over their nonunique complementary colors. However, yellowish targets were detected faster, more accurately, and with fewer saccades than their complementary bluish targets (including unique blue), while reddish-greenish pairs were not significantly different in salience. Similarly, local field potentials in primate V1 exhibited larger amplitudes and shorter latencies for yellowish versus bluish stimuli, whereas this effect was weaker for reddish versus greenish stimuli. Consequently, color salience is affected more by early neural response asymmetries than by any possible mental or neural representation of unique hues. PMID:25761328

  8. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    NASA Astrophysics Data System (ADS)

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  9. Color in present culture of European architecture

    NASA Astrophysics Data System (ADS)

    Schindler, Verena M.

    2002-06-01

    The influential architect Le Corbusier (1887 - 1965) was also involved in the adventure of contemporary painting, and color occupied half of his day, during twenty years, as he revealed in a study entitled 'Architectural Polychromy' written in the early thirties and recently published in 1997. In the present, contemporary architects in Central Europe are dealing with color in quite a different and exceptional way: most of them engage the artist to collaborate with them in their architectural projects. If painting is concerned with the interaction of color in the two-dimensional plane, architecture is deeply dependent on light and space, and deals entirely with the three- dimensional environment and its human perception. In the 1990s, the way architects and artists employed color in architecture was so striking that color offered a key to larger discussions and opened up an interesting aspect of architectural practice. It must be remembered that recent housing projects, such as the housing estate Pilotengasse in Vienna, Gigon & Guyer's Broelberg in Kilchberg (with Harald F. Muller), next to Zurich, and their Sport Center in Davos (with Adrian Schiess), Jean Nouvel's Cultural and Congress Center in Lucerne, or Sauerbruch & Hutton's Photonic Center and their GSW office building in Berlin have all been contributing to free color from its unconscious and dormant role. These works all impart qualities to color in architecture that were hitherto reserved to other materials and fields: they define the aspects of the interaction of visual and physical space, of materialization of volumes, and of the expression of wealth and luxury.

  10. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  11. [The effect of unconscious color hue saturation on emotional state of human].

    PubMed

    Khoroshikh, V V; Ivanova, V Iu; Kulikov, G A

    2012-01-01

    The aim of the study was to investigate influence of color hue saturation on emotional state of human. We use frontal EEG asymmetry to determine subject's emotional state. Our emotional stimuli summon opposite dynamics of frontal EEG asymmetry. Negative stimuli elicits decreasing of the value of frontal EEG asymmetry and positive stimuli increases the value of frontal EEG asymmetry in fronto-polar and frontal leads. Such dynamics of frontal EEG asymmetry point the emotional experience in accordance the stimulus modality. Blue and red color modification of stimuli leads changes in dynamics of frontal EEG asymmetry during presentation of emotional stimuli and after. In fact, that no one subject gave a report about color difference between stimuli during an experiment, we conclude that influence of color modification was unconscious. Our result shows the possibility of unconscious perception color modification to emotional state of human.

  12. Calculation of color difference and measurement of the spectrum of aerosol based on human visual system

    NASA Astrophysics Data System (ADS)

    Dai, Mengyan; Liu, Jianghai; Cui, Jianlin; Chen, Chunsheng; Jia, Peng

    2017-10-01

    In order to solve the problem of the quantitative test of spectrum and color of aerosol, the measurement method of spectrum of aerosol based on human visual system was proposed. The spectrum characteristics and color parameters of three different aerosols were tested, and the color differences were calculated according to the CIE1976-L*a*b* color difference formula. Three tested powders (No 1# No 2# and No 3# ) were dispersed in a plexglass box and turned into aerosol. The powder sample was released by an injector with different dosages in each experiment. The spectrum and color of aerosol were measured by the PRO 6500 Fiber Optic Spectrometer. The experimental results showed that the extinction performance of aerosol became stronger and stronger with the increase of concentration of aerosol. While the chromaticity value differences of aerosols in the experiment were so small, luminance was verified to be the main influence factor of human eye visual perception and contributed most in the three factors of the color difference calculation. The extinction effect of No 3# aerosol was the strongest of all and caused the biggest change of luminance and color difference which would arouse the strongest human visual perception. According to the sensation level of chromatic color by Chinese, recognition color difference would be produced when the dosage of No 1# powder was more than 0.10 gram, the dosage of No 2# powder was more than 0.15 gram, and the dosage of No 3# powder was more than 0.05 gram.

  13. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    PubMed Central

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. PMID:21685674

  14. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  15. Sharing Our Unheard Voices: Perceptions of the Lived Experience of Teachers of Color

    ERIC Educational Resources Information Center

    Berrios, Darline

    2016-01-01

    In public education, approximately 80% of teachers in the United States are White, yet close to half of the student population are students of color (U.S. Department of Education, 2011). Gaps in teacher diversity compared with students of color are found in every state across the country (Center for American Progress, 2011). In 2004, the National…

  16. Identities and Social Justice Values of Prospective Teachers of Color

    ERIC Educational Resources Information Center

    Agosto, Vonzell

    2009-01-01

    This empirical study of social justice values among three prospective teachers who identity as being "of color" emphasizes the constellations of social justice sensibilities (perceptions of injustice, concern for the situations of others, socio-political and cultural consciousness, sensitivity regarding the conditions of others) they derived from…

  17. Are the colors and shapes of current psychotropics designed to maximize the placebo response?

    PubMed

    Khan, Arif; Bomminayuni, Eswara Prasad; Bhat, Amritha; Faucett, James; Brown, Walter A

    2010-07-01

    Patient expectations are an important aspect of the placebo response. Color and shape of a medication lead to perceptions that an agent is stimulating or calming, strong or weak. We assessed the degree to which central nervous system medications match the perceived drug action and thereby harness the placebo response. We consulted the 2009 Physicians' Desk Reference and recorded the formulation and color of each referenced dose of central nervous system therapeutics approved for sale in the USA. On the basis of the expectations they engender, orange, yellow, and red pills were categorized stimulating; green, blue, and purple pills calming. White and gray pills were considered neutral. The majority of the 176 unique doses that were included in the study were in tablet (55%) and capsule (33%) form. Stimulants (75%) were the only drug category primarily formulated as capsules. Of the 176 unique doses included, 43% were stimulating, 23% calming, 23% neutral, and 12% were a formulation other than pill or capsule. There were no instances in which over 50% of the pills of an indication were stimulating or calming in color. Our study did not confirm the hypothesis that pharmaceutical companies color and formulate the shape of drugs to enhance the treatment response. In several instances, each approved dose of a given medication was a different color, and the majority of doses were in tablet form. Further research into the effect of different colors and formulations of medications on perceptions and efficacy evaluations should be considered.

  18. Binary Color Vision for Industrial Automation.

    DTIC Science & Technology

    1983-02-28

    A . and Kak, A .: Digital Picture Processing. Academic Press, New York, 1976. (17) Connah, D. M . and Fishbourne, C . A .: "The...TEST CHART NATIONAL RUR AU OF STANDAR[l, A - -IA • . . ........ ......... ’ ... ’" ( ( READ INSTR C IN R REPORT DOCUMENTATION PAGE H"’FORE COMPLETN...image is defined by a function of 2-D posi , say I( m ,n), defined at chosen grid points of the image. For a achromatic grey-scale image, the function

  19. Water Detection Based on Color Variation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.

    2012-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.

  20. Color vision with rapid-onset acceleration.

    PubMed

    Balldin, U I; Derefeldt, G; Eriksson, L; Werchan, P M; Andersson, P; Yates, J T

    2003-01-01

    Only sporadic information exists concerning perceived color shifts at increased G-loads. The purpose of this study was to investigate whether or not color vision is affected by rapid onset high G7-loads up to +9 Gz, and specifically whether perception of hue changes. There were 10 male subjects, 9 with normal color vision and 1 with red-green protanomaly, all accustomed to Gz-loads in a human centrifuge. Each subject was tested on a total of 60 Gz-exposures with 10 s periods at +3, +5, +7, and +9 Gz in the centrifuge on three different days. G-onset rate was 6 G x s(-1). The subjects wore an anti-G suit and performed straining maneuvers if necessary to maintain vision. Five square color stimuli of medium saturation (yellow, red, blue, green, and gray) were projected one at a time on a screen in front of the subject, who gave his hue response orally. In 96.6% of exposures to various Gz-loads, the subjects responded by correctly naming colors. (The statistical analyses of the results were done for the subjects with normal color vision, with the protanomalous subject excluded.) Hue shifts occurred at the higher +Gz-levels, including 7.7% of the +9 Gz exposures. Yellow was the hue most frequently perceived as changed. Hue shifts were reported for yellow in 11% and 16% of the +7 and +9 Gz exposures, respectively. Hue shifts at +9 Gz occurred as frequently as blackout and G-LOC together. However, statistical analyses showed no significant effects for +Gz-load. Absolute identification of the color stimuli of medium saturation was stable and was not significantly affected by the rapid onset +Gz-loads up to and including +9 Gz.

  1. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  2. Colors Identification for Blind People using Cell Phone

    NASA Astrophysics Data System (ADS)

    Dominguez, A. L.; Graffigna, J. P.

    2011-12-01

    Assistive Technology (AT) is an interdisciplinary research area that allows finding solutions to the individual with disability [1] by easing or improving the functions or the skills for accomplishing daily activities. A technology can be considered "assistive" if it is fit for the needs, skills and capabilities of the person, taking into account mainly the intended activity and the limitations of the context and environs where the person performs such activity. The current work intends to solve the problems of vision impaired persons to recognize colors. To this aim, a Java application for cell phones has been made which lets complement the mobiles' technology with that of image processing. The means to obtain the colors from a view are based on analysing the different color models join to a mechanism to reduce the collected data. This paper describes preliminary experiences, methodology and results considering the user perception.

  3. Quantifying nonhomogeneous colors in agricultural materials. Part II: comparison of machine vision and sensory panel evaluations.

    PubMed

    Balaban, M O; Aparicio, J; Zotarelli, M; Sims, C

    2008-11-01

    The average colors of mangos and apples were measured using machine vision. A method to quantify the perception of nonhomogeneous colors by sensory panelists was developed. Three colors out of several reference colors and their perceived percentage of the total sample area were selected by untrained panelists. Differences between the average colors perceived by panelists and those from the machine vision were reported as DeltaE values (color difference error). Effects of nonhomogeneity of color, and using real samples or their images in the sensory panels on DeltaE were evaluated. In general, samples with more nonuniform colors had higher DeltaE values, suggesting that panelists had more difficulty in evaluating more nonhomogeneous colors. There was no significant difference in DeltaE values between the real fruits and their screen image, therefore images can be used to evaluate color instead of the real samples.

  4. Impact of color hard copy on instructional technology applications

    NASA Astrophysics Data System (ADS)

    Lantz, Christopher J.

    1995-04-01

    Hard copy is still preeminent in the form of textbooks or lab manuals in most training environments despite inroads made by microcomputer delivery. Cost per copy is still a major factor but one that is offset by convenience and the capability of including a small number of crucial color illustrations for low run laboratory manuals. Overhead transparencies and color displays are other major educational applications in which electronically generated color hardcopy is just starting to make an impact. Color hardcopy has been perceived as out of reach to the average educator because of probatively high costs in the recent past. Another reason for the underutilization of color in instruction is research that suggests that color distracts instead of directing attention among learners. Much of this research compares visuals which are designed to convey simple visual information, and in this case complexity does often get in the way of comprehension. Color can also act as an advanced organizer that directs visual perception and comprehension to specific instructional objectives. Color can elicit emotional responses from viewers which will assist them in remembering visual detail. Not unlike any other instructional tool, color can add or distract from instructional objectives. Now that color is more accessible in the hard copy format, there are many new ways it can be utilized to benefit the public or corporate educator. In the sections that follow color hard copy is considered in its present areas of application, in context to the suitability of visuals for instruction, as a important component of visual literacy and lastly in the development of measures of picture readability.

  5. Synesthesia and number cognition in children.

    PubMed

    Green, Jennifer A K; Goswami, Usha

    2008-01-01

    Grapheme-color synesthesia, when achromatic digits evoke an experience of a specific color (photisms), has been shown to be consistent, involuntary, and linked with number concept in adults, yet there have been no comparable investigations with children. We present a systematic study of grapheme-color synesthesia in children aged between 7 and 15 years. Here we show that such children (but not children with phoneme-color synesthesia) experience involuntary difficulties in numerical tasks when digits are presented in colors incongruent with their photisms. Synesthesia in children may thus have important consequences for certain aspects of numerical cognition.

  6. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity.

    PubMed

    Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji

    2017-02-06

    Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of

  7. Shape encoding consistency across colors in primate V4

    PubMed Central

    Bushnell, Brittany N.

    2012-01-01

    Neurons in primate cortical area V4 are sensitive to the form and color of visual stimuli. To determine whether form selectivity remains consistent across colors, we studied the responses of single V4 neurons in awake monkeys to a set of two-dimensional shapes presented in two different colors. For each neuron, we chose two colors that were visually distinct and that evoked reliable and different responses. Across neurons, the correlation coefficient between responses in the two colors ranged from −0.03 to 0.93 (median 0.54). Neurons with highly consistent shape responses, i.e., high correlation coefficients, showed greater dispersion in their responses to the different shapes, i.e., greater shape selectivity, and also tended to have less eccentric receptive field locations; among shape-selective neurons, shape consistency ranged from 0.16 to 0.93 (median 0.63). Consistency of shape responses was independent of the physical difference between the stimulus colors used and the strength of neuronal color tuning. Finally, we found that our measurement of shape response consistency was strongly influenced by the number of stimulus repeats: consistency estimates based on fewer than 10 repeats were substantially underestimated. In conclusion, our results suggest that neurons that are likely to contribute to shape perception and discrimination exhibit shape responses that are largely consistent across colors, facilitating the use of simpler algorithms for decoding shape information from V4 neuronal populations. PMID:22673324

  8. The zebrafish world of colors and shapes: preference and discrimination.

    PubMed

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  9. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    PubMed

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  10. Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology

    PubMed Central

    Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683

  11. STEM Success: Perceptions of Women of Color at Community Colleges

    ERIC Educational Resources Information Center

    Cunningham, Nina Maria

    2017-01-01

    Women of color, particularly African-Americans and Hispanics, have a science, and engineering degree attainment rate of 11% whereas White women have a rate of 29%. Research has demonstrated that these underrepresented minorities experience various racial/ethnic and gender issues that impact their academic success in science, technology,…

  12. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    PubMed Central

    Lichtenstein, Leonie; Sommerlandt, Frank M. J.; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation. PMID:26230643

  13. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning.

    PubMed

    Lichtenstein, Leonie; Sommerlandt, Frank M J; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.

  14. Improvement in perception of image sharpness through the addition of noise and its relationship with memory texture

    NASA Astrophysics Data System (ADS)

    Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu

    2015-03-01

    In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.

  15. The perception of isoluminant coloured stimuli of amblyopic eye and defocused eye

    NASA Astrophysics Data System (ADS)

    Krumina, Gunta; Ozolinsh, Maris; Ikaunieks, Gatis

    2008-09-01

    In routine eye examination the visual acuity usually is determined using standard charts with black letters on a white background, however contrast and colour are important characteristics of visual perception. The purpose of research was to study the perception of isoluminant coloured stimuli in the cases of true and simulated amlyopia. We estimated difference in visual acuity with isoluminant coloured stimuli comparing to that for high contrast black-white stimuli for true amblyopia and simulated amblyopia. Tests were generated on computer screen. Visual acuity was detected using different charts in two ways: standard achromatic stimuli (black symbols on a white background) and isoluminant coloured stimuli (white symbols on a yellow background, grey symbols on blue, green or red background). Thus isoluminant tests had colour contrast only but had no luminance contrast. Visual acuity evaluated with the standard method and colour tests were studied for subjects with good visual acuity, if necessary using the best vision correction. The same was performed for subjects with defocused eye and with true amblyopia. Defocus was realized with optical lenses placed in front of the normal eye. The obtained results applying the isoluminant colour charts revealed worsening of the visual acuity comparing with the visual acuity estimated with a standard high contrast method (black symbols on a white background).

  16. Toward autonomous driving: The CMU Navlab. I - Perception

    NASA Technical Reports Server (NTRS)

    Thorpe, Charles; Hebert, Martial; Kanade, Takeo; Shafer, Steven

    1991-01-01

    The Navlab project, which seeks to build an autonomous robot that can operate in a realistic environment with bad weather, bad lighting, and bad or changing roads, is discussed. The perception techniques developed for the Navlab include road-following techniques using color classification and neural nets. These are discussed with reference to three road-following systems, SCARF, YARF, and ALVINN. Three-dimensional perception using three types of terrain representation (obstacle maps, terrain feature maps, and high-resolution maps) is examined. It is noted that perception continues to be an obstacle in developing autonomous vehicles.

  17. Color naming: color scientists do it between Munsell sheets of color

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Moroney, Nathan M.

    2010-01-01

    With the advent of high dynamic range imaging and wide gamut color spaces, gamut mapping algorithms have to nudge image colors much more drastically to constrain them within a rendering device's gamut. Classical colorimetry is concerned with color matching and the developed color difference metrics are for small distances. For larger distances, categorization becomes a more useful concept. In the gamut mapping case, lexical distance induced by color names is a more useful metric, which translates to the condition that a nudged color may not cross a name boundary. The new problem is to find these color name boundaries. We compare the experimental procedures used for color naming by linguists, ethnologists, and color scientists and propose a methodology that leads to robust repeatable experiments.

  18. The effect of memory and context changes on color matches to real objects.

    PubMed

    Allred, Sarah R; Olkkonen, Maria

    2015-07-01

    Real-world color identification tasks often require matching the color of objects between contexts and after a temporal delay, thus placing demands on both perceptual and memory processes. Although the mechanisms of matching colors between different contexts have been widely studied under the rubric of color constancy, little research has investigated the role of long-term memory in such tasks or how memory interacts with color constancy. To investigate this relationship, observers made color matches to real study objects that spanned color space, and we independently manipulated the illumination impinging on the objects, the surfaces in which objects were embedded, and the delay between seeing the study object and selecting its color match. Adding a 10-min delay increased both the bias and variability of color matches compared to a baseline condition. These memory errors were well accounted for by modeling memory as a noisy but unbiased version of perception constrained by the matching methods. Surprisingly, we did not observe significant increases in errors when illumination and surround changes were added to the 10-minute delay, although the context changes alone did elicit significant errors.

  19. Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    NASA Astrophysics Data System (ADS)

    Long, David L.

    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of

  20. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…