Sample records for achromatic phase shifters

  1. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware.

  2. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  3. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  4. Phase shifter for antenna beam steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jindal, Ravi, E-mail: rjindal21@gmail.com; Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aimmore » of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.« less

  5. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  6. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  7. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  8. High Power Squeeze Type Phase Shifter at W-Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Marc E

    2000-09-28

    We describe the design, fabrication and bench-study of a mm-wave phase-shifter employed as a high power recirculator for a traveling wave resonator circuit. The OFE copper phase shifter was prepared by electro-discharge machining. Measured phase-shifter characteristics are presented and compared with theory. The phase-shifter was employed in a traveling wave circuit at 91.4 GHz with circulating power of 0.2 MW and subjected to fields greater than 10 MV/m without evidence of breakdown.

  9. Monolithic GaAs dual-gate FET phase shifter

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Subbarao, S. N.; Menna, R.

    1981-09-01

    The objective of this program is to develop a monolithic GaAs dual-gate FET phase shifter, operating over the 4- to 8-GHz frequency band and capable of a continuously programmable phase shift from 0 deg through N times 360 deg where N is an integer. The phase shift is to be controllable to within +3 deg. This phase shifter will be capable of delivering an output power up to 0 dBm with an input and output VSWR of less than 1.5:1. Progress 1: The photomask of a 0 to 90 deg monolithic GaAs dual-gate FET phase shifter has been procured, and we are in the process of fabricating the phase shifter. 2: We have designed and fabricated a 50 ohm, 4-line interdigitated coupler. Also, we have designed and fabricated a 25-ohm, 6-line interdigitated coupler. The performance of both couplers agrees quite well with the theoretical results. Technical Problems: there was no major problem during this period.

  10. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie

    2016-12-01

    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four different phase shifters, including conventional inertance tube, gas-liquid and spring-oscillator phase shifters, as well as a power recovery displacer. Distributed models based on the electro-acoustic analogy are developed to estimate the phase shifting capacity and the acoustic power dissipation of the three phase shifters without power recovery. The results show that both gas-liquid and spring-oscillator phase shifters have the distinctive capacity of phase shifting with a significant reduction in the inertial component length. Furthermore, full distributed models of SPTCs connected with different phase shifters are developed. The cooling performance of SPTCs using all four phase shifters are presented and typical phase relations are analyzed. The comparison reveals that the power recovery displacer with a more complicated configuration provides the highest efficiency. The gas-liquid and spring-oscillator phase shifters show equivalent efficiency compared with the inertance tube phase shifter. Approximately 10-20% of the acoustic power is dissipated by the phase shifters without power recovery, while 15-20% of the acoustic power can be recovered by the power recovery displacer, leading to a maximum coefficient of performance (COP) above 0.14 at 80 K. A merit analysis is also done by presenting the pros and cons of different phase shifters.

  11. Fast ferroelectric phase shifters for energy recovery linacs

    DOE PAGES

    Kazakov, S. Yu; Shchelkunov, S. V.; Yakovlev, V. P.; ...

    2010-11-24

    Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ~10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL). Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ~30 ns for 77 deg, correspondingmore » to < 0.5 ns per deg of rf phase. As a result, other crucial issues (losses, phase shift values, etc.) are discussed.« less

  12. Demonstration of an optical phased array using electro-optic polymer phase shifters

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  13. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  14. Analysis and Optimization of Thin Film Ferroelectric Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)

    2000-01-01

    Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.

  15. Monolithic GaAs Dual-Gate FET Phase Shifter.

    DTIC Science & Technology

    1981-01-01

    r ADAO 6 8 CA LABS PRINCETON NJ F/6 9/5 MNOLC4ITHIC SAAS DUAL-GATE FET PHASE SHIFTER.(U) UNC AN 81 M KUMAR, R HENNA, S N SUBBARAO NOOOI’-79-C-0568...PHASNT NUMBERls) M./Kumar S. N./ Subbarao G. T./Taylor -N 4 C 8 R./Menna H./Huang . 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT...PROGRESS ........................................................... 1 A. Development of Discrete 3600 Phase Shifter ....................... 2 B . Development

  16. A Model for Ferroelectric Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Qureshi, A. Haq

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstrip lines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  17. A compact frequency tunable radio frequency phase shifter with patterned Py enabled transmission line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel

    2015-01-01

    A well designed frequency tunable phase shifter using patterned Py with different thickness has been demonstrated. Phase shifter is implemented with a slow wave coplanar wave guide (CPW)transmission line, where the signal line has alternate short narrow and wide sections. Py is patterned on the top of narrow section for high inductance density, and inter-digital capacitor is implemented in wide section for high capacitance density. Compared with phase shifter using regular CPW, the dimension of the developed phase shifter has been reduced from 14.86 mm to4.70 mm at 2 GHz. Phase shifter based on 100 nm and 200 nm thickmore » patterned Py with the same dimensions (14lm10lm) are implemented and investigated comprehensively. FMR frequency of 3.2 GHz and 3.6 GHz without any external magnetic field has been achieved for100 nm and 200 nm thick Py film, respectively. Thicker Py has increased inductance density from 1067.2 nH/m to 1193.2 nH/m while the center frequency of the phase shifter has been shifted to 1.80 GHz. Frequency tunability of the phase shifter has been also demonstrated withDC current. The phase shifter can provide 90phase shift continuously from 2 GHz to 1.80 GHz with DC current from 0 mA to 150 mA. The design concept has great potential in design arbitrary tunable RF components such as filters and couplers.« less

  18. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    NASA Astrophysics Data System (ADS)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving

  19. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    PubMed

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  20. Bias-free spin-wave phase shifter for magnonic logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  1. Ultra-wideband microwave photonic phase shifter with configurable amplitude response.

    PubMed

    Pagani, M; Marpaung, D; Eggleton, B J

    2014-10-15

    We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.

  2. Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.

    PubMed

    Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E

    2016-09-01

    A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.

  3. A Liquid Optical Phase Shifter with an Embedded Electrowetting Actuator

    PubMed Central

    Ashtiani, Alireza Ousati; Jiang, Hongrui

    2017-01-01

    We demonstrate an electrowetting-based liquid optical phase shifter. The phase shifter consists of two immiscible liquid layers with different refractive indices. Sandwiched between the two liquids is a rigid membrane that moves freely along the optical axis and supported by a compliant surround. When applied with a pressure, the thicknesses of both liquid layers change, which induces a difference in optical path, resulting in a phase shift. A miniaturized electrowetting-based actuator is used to produce hydraulic pressure. A multi-layered SU8 bonded structure was fabricated. A phase shift of 171° was observed when the device was incorporated in a Mach-Zehnder interferometer and driven with 100 V. PMID:29038640

  4. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  5. Advances in Scanning Reflectarray Antennas Based on Ferroelectric Thin Film Phase Shifters for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.

  6. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator.

    PubMed

    Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro

    2010-03-29

    Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.

  7. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  8. A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James

    With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.

  9. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    PubMed

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  10. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  11. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  12. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    PubMed

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  13. Innovative phase shifter for pulse tube operating below 10 K

    NASA Astrophysics Data System (ADS)

    Duval, Jean-Marc; Charles, Ivan; Daniel, Christophe; André, Jérôme

    2016-09-01

    Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50-80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.

  14. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  15. A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Quereshi, A. H.

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  16. A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology

    NASA Astrophysics Data System (ADS)

    Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan

    2017-11-01

    In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.

  17. Microwave monolithic filter and phase shifter using magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Aslam, Shehreen; Khanna, Manoj; Veenugopal, Veerakumar; Kuanr, Bijoy K.

    2018-05-01

    Monolithic Microwave Integrated Circuit (MMIC) have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs) substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ˜ 40 GHz) operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR) over a wide applied magnetic field (H) range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe). For phase shifter, the influence of magnetic material was studied for two frequency regions: (i) below FMR and (ii) above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz), the optimal differential phase shift increased significantly to ˜ 250 deg/cm and around low frequency region (at 24 GHz), the optimal differential phase shift is ˜175 deg/cm at the highest field (H) value.

  18. Broadband achromatic optical metasurface devices.

    PubMed

    Wang, Shuming; Wu, Pin Chieh; Su, Vin-Cent; Lai, Yi-Chieh; Hung Chu, Cheng; Chen, Jia-Wern; Lu, Shen-Hung; Chen, Ji; Xu, Beibei; Kuan, Chieh-Hsiung; Li, Tao; Zhu, Shining; Tsai, Din Ping

    2017-08-04

    Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.

  19. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  20. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  1. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  2. Interplay Between Thin Film Ferroelectric Composition, Microstructure and Microwave Phase Shifter Performance

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Miranda, Felix A.

    2003-01-01

    One of the keys to successfully incorporating ferroelectric films into Ku-band (12 to 18 GHz) phase shifters is to establish the composition, microstructure, and thickness required to meet the tuning needs, and tailor the film properties to meet these needs. Optimal performance is obtained when the film composition and device design are such that the device performance is limited by odd mode dielectric losses, and these losses are minimized as much as possible while still maintaining adequate tunability. The parameters required to maintain device performance will vary slightly depending on composition, but we can conclude that the best tuning-to-loss figures of merit (K-factor) are obtained when there is minimal variation between the in-plane and out-of-plane lattice parameters, and the full-width half maximum values of the BSTO (002) peaks are less than approximately 0.04 deg. We have observed that for phase shifters in which the ferroelectric crystalline quality and thickness are almost identical, higher losses are observed in films with higher BaISr ratios. The best performance was observed in phase shifters with Ba:Sr = 30:70. The superiority of this composition was attributed to several interacting factors: the B a: Sr ratio was such that the Curie temperature (180 K) was far removed from room temperature, the crystalline quality of the film was excellent, and there was virtually no difference between the inplane and out-of-plane lattice parameters of the film.

  3. A wideband photonic microwave phase shifter with 360-degree phase tunable range based on a DP-QPSK modulator

    NASA Astrophysics Data System (ADS)

    Chen, Yang

    2018-03-01

    A novel wideband photonic microwave phase shifter with 360-degree phase tunable range is proposed based on a single dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The two dual-parallel Mach-Zehnder modulators (DP-MZMs) in the DP-QPSK modulator are properly biased to serve as a carrier-suppressed single-sideband (CS-SSB) modulator and an optical phase shifter (OPS), respectively. The microwave signal is applied to the CS-SSB modulator, while a control direct-current (DC) voltage is applied to the OPS. The first-order optical sideband generated from the CS-SSB modulator and the phase tunable optical carrier from the OPS are combined and then detected in a photodetector, where a microwave signal is generated with its phase controlled by the DC voltage applied to the OPS. The proposed technique is theoretically analyzed and experimentally demonstrated. Microwave signals with a carrier frequency from 10 to 23 GHz are continuously phase shifted over 360-degree phase range. The proposed technique features very compact configuration, easy phase tuning and wide operation bandwidth.

  4. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  5. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  6. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

  7. Multi-band phase shifter design using modified slotline configuration

    NASA Astrophysics Data System (ADS)

    Kulandhaisamy, Indhumathi; Rajendran, Dinesh Babu; Kanagasabai, Malathi; Gurusamy, Gunasekaran; Moorthy, Balaji; George, Jithila V.; Lawrance, Livya

    2017-01-01

    In this paper, an analog multiband phase shifter using slotline configuration is proposed. To implement the design, a pair of modified Split Ring Resonator (SRR) is employed. The periodic property of SRR provides multiband characteristics, whether the coupling slot gives the phase variations over the bands. The operation is well explained with an equivalent circuit model and its characteristics have been studied both in simulation and measurement. The prototype operates in 1.77-2.16, 3.5-3.97, 5.08-5.33, 6.43-6.93, and 8.01-8.59 GHz frequency bands which can be utilized for GSM, GPS, WLAN, C-band, and X-band applications, respectively.

  8. Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Bhasin, Kul B.; Romanofsky, Robert R.

    1991-01-01

    The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors.

  9. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice.

    PubMed

    Ji, Yun-Yun; Fan, Fei; Chen, Meng; Yang, Lei; Chang, Sheng-Jiang

    2017-05-15

    A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.

  10. Stability Formulation for Integrated Opto-mechanic Phase Shifters.

    PubMed

    Ozer, Yigit; Kocaman, Serdar

    2018-01-31

    Stability of opto-mechanical phase shifters consisting of waveguides and non-signal carrying control beams is investigated thoroughly and a formula determining the physical limitations has been proposed. Suggested formulation is not only beneficial to determine physical strength of the system but also advantageous to guess the response of the output to the fabrication errors. In the iterative analysis of cantilever and double-clamped beam geometrical configurations, the stability condition is revealed under the strong inter-dependence of the system parameters such as input power, device length and waveguide separation. Numerical calculations involving effective index modifications and opto-mechanic movements show that well-known cantilever beams are unstable and inadequate to generate φ = 180° phase difference, while double-clamped beam structures can be utilized to build functional devices. Ideal operation conditions are also presented in terms of both the device durability and the controllability of phase evolution.

  11. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  12. Slow-Wave Phase Shifters, Based on Thin Ferroelectric Films, for Reflectarray Antennas. Frequency-Agile Radio: Systems and Technlogies, WMG 139

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2006-01-01

    We have developed relatively broadband K- and Ka-band phase shifters using synthetic (slow-wave) transmission lines employing coupled microstripline "varactors". The tunable coupled microstripline circuits are based on laser ablated BaSrTiO films on lanthanum aluminate substrates. A model and design criteria for these novel circuits will be presented, along with measured performance including anomalous phase delay characteristics. The critical role of phase shifter loss and transient response in reflectarray antennas will be emphasized.

  13. Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2012-01-01

    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.

  14. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    PubMed

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  15. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  16. Novel Electrically Tunable Microwave Solenoid Inductor and Compact Phase Shifter Utilizing Permaloy and PZT Thin Films

    DOE PAGES

    Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...

    2017-08-03

    A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less

  17. Analysis of grating doublets for achromatic beam-splitting

    PubMed Central

    Pacheco, Shaun; Milster, Tom; Liang, Rongguang

    2015-01-01

    Achromatic beam-splitting grating doublets are designed for both continuous phase and binary phase gratings. By analyzing the sensitivity to lateral shifts between the two grating layers, it is shown that continuous-profile grating doublets are extremely difficult to fabricate. Achromatic grating doublets that have profiles with a constant first spatial derivative are significantly more resistant to lateral shifts between grating layers, where one design case showed a 17 times improvement in performance. Therefore, binary phase, multi-level phase, and blazed grating doublets perform significantly better than continuous phase grating doublets in the presence of a lateral shift between two grating layers. By studying the sensitivity to fabrication errors in the height of both grating layers, one grating layer height can be adjusted to maintain excellent performance over a large wavelength range if the other grating layer is fabricated incorrectly. It is shown in one design case that the performance of an achromatic Dammann grating doublet can be improved by a factor of 215 if the heights of the grating layers are chosen to minimize the performance change in the presence of fabrication errors. PMID:26368261

  18. Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters.

    PubMed

    Liñares, Jesús; Prieto-Blanco, Xesús; Moreno, Vicente; Montero-Orille, Carlos; Mouriz, Dolores; Nistal, María C; Barral, David

    2017-05-15

    A Mach-Zehnder interferometer (MZI) that includes in an arm either a reflective image inverter or a Gouy phase shifter (RGPS) can (de)multiplex many types of modes of a few mode fiber without fundamental loss. The use of RGPSs in combination with binary phase plates for multiplexing purposes is studied for the first time, showing that the particular RGPS that shifts π the odd modes only multiplexes accurately low order modes. To overcome such a restriction, we present a new exact refractive image inverter, more compact and flexible than its reflective counterpart. Moreover, we show that these interferometers remove or reduce the crosstalk that the binary phase plates could introduce between the multiplexed modes. Finally, an experimental analysis of a MZI with both an approximated and an exact refractive image inverter is presented for the case of a bimodal multiplexing. Likewise, it is proven experimentally that a RGPS that shifts π/2 demultiplexes two odd modes which can not be achieved by any image inverter.

  19. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  20. Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects.

    PubMed

    Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing

    2012-06-15

    We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1  dB and a power consumption of 97.5 mW.

  1. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  2. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  <1.97 dB and maximum isolation of  >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  <6 dB, return loss of  >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  3. Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.

  4. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  5. Broadband, Low-Loss Phase Shifters Based on Thin Ferroelectric Films

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert

    2004-01-01

    Several different types of microwave transmission line phase shifters based on thin ferroelectic films have been developed at the NASA Glenn Research Center. These include a series of coupled microstrip lines, slotline incorporating Marchand balms, odd-mode coplanar strips, and hybrid devices incorporating a switch to toggle the output termination between an open and virtual short circuit. A review of the theory of operation of each of these devices will be presented along with measured performance. Also, devices of the first variety have been subjected to total dose (proton) radiation exposure using a 200 MeV beam energy with a total dose up to nearly 1 kRad (Si). Results of these radiation tests will be discussed.

  6. Apparatus and methods for using achromatic phase matching at high orders of dispersion

    DOEpatents

    Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin

    2001-01-01

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.

  7. MWP phase shifters integrated in PbS-SU8 waveguides.

    PubMed

    Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José

    2015-06-01

    We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

  8. Shifter: Containers for HPC

    NASA Astrophysics Data System (ADS)

    Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho

    2017-10-01

    Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.

  9. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  10. A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, JiaHui; Raheem, Odai H.

    2017-07-01

    A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.

  11. Building achromatic refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Shealy, David

    2014-10-01

    Achromatic beam shapers can provide beam shaping in a certain spectral band and are very important for various laser techniques, such as, applications based on ultra-short pulse lasers with pulse width <100 fs, confocal microscopy, multicolour holography, life sciences fluorescence techniques, where several lasers in spectrum 405-650 nm are used simultaneously, for example 405-650 nm. Conditions of energy re-distribution and zero wave aberration are strictly fulfilled in ordinary plano-aspheric lens pair beam shapers for a definite wavelength only. Hence, these beam shapers work efficiently in relatively narrow, few nm spectrum. To provide acceptable beam quality for refractive beam shaping over a wide spectrum, an achromatizing design condition should be added. Consequently, the typical beam shaper design contains more than two-lenses, to avoid any damaging and other undesirable effects the lenses of beam shaper should be air-spaced. We suggest a two-step method of designing the beam shaper: 1) achromatizing of each plano-aspheric lens using a buried achromatizing surface ("chromatic radius"), then each beam shaper component presents a cemented doublet lens, 2) "splitting" the cemented lenses and realizing air-spaced lens design using optical systems design software. This method allows for using an achromatic design principle during the first step of the design, and then, refining the design by using optimization software. We shall present examples of this design procedure for an achromatic Keplerian beam shaper and for the design of an achromatic Galilean type of beam shaper. Experimental results of operation of refractive beam shapers will be presented as well.

  12. Room Temperature Thin Film Ba(x)Sr(1-x)TiO3 Ku-Band Coupled MicrostripPhase Shifters: Effects of Film Thickness, Doping, Annealing and Substrate Choice

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Mueller, C. H.; Miranda, F. A.; Romanofsky, R. R.; Canedy, C. L.; Aggarwal, S.; Venkatesan, T.; Ramesh, R.; Horwitz, S.; Chang, W.

    1999-01-01

    We report on measurements taken on over twenty Ku-band coupled microstrip phase shifters (CMPS) using thin ferroelectric films of Ba(x)Sr(1-x)TiO3. This CMPS design is a recent innovation designed to take advantage of the high tunability and tolerate the high dielectric constant of ferroelectric films at Ku- and K-band frequencies. These devices are envisioned as a component in low-cost steerable beam phased area antennas, Comparisons are made between devices with differing film thickness, annealed vs unannealed, Mn-doped vs. undoped, and also substrates of LaAlO3 and MgO. A comparison between the CMPS structure and a CPW phase shifter was also made oil the same ferroelectric film.

  13. Electromagnetic characterization of photo-definable ferrite loaded polymers and their applications in micro-rectangular coaxial phase shifters

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun Samuel

    As the demand for smaller size, lighter weight, lower loss and cost of communications transmit and receive (T/R) modules increases, there is an urgent need to focus investigation to the major subsystem or components that can improve these parameters. Phase shifters contribute greatly to the cost of T/R modules, and thus this research investigation examines a new way to reduce the weight and cost by miniaturizing the phaser design. Characterization of hexaferrite powders compatible with the sequential multilayer micro-fabrication technology and numerical simulations of a novel rectangular micro-coaxial phase shifter are investigated. This effort aims to integrate ferrite material into a rectangular micro-coaxial waveguide at Ka-band using electromagnetic finite element numerical tools. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite-SU8 composite is used as an anisotropic material of choice in the modelled design. Numerical modeling is employed using High Frequency Structure Simulator, HFSS, a 3-D full wave electromagnetic solver for analyzing the performance of the device. Two model structures were designed for reciprocal and non-reciprocal applications. The first model (Model A) produced a tunable phase shift of almost 60 degrees /cm across 0 to 400 kA/m applied field and at 1800 Gauss. In model B, a non-reciprocal phase shift performance of 20 degrees /cm from a reference phase of 24 degrees at 0 A/m was realized at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were obtained for both models.

  14. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    PubMed

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-08-10

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  15. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception. 2012 Elsevier Ltd. All rights reserved

  16. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms.

    PubMed

    Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-08-10

    Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.

  17. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  18. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  20. Achromatical Optical Correlator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    Signal-to-noise ratio exceeds that of monochromatic correlator. Achromatical optical correlator uses multiple-pinhole diffraction of dispersed white light to form superposed multiple correlations of input and reference images in output plane. Set of matched spatial filters made by multiple-exposure holographic process, each exposure using suitably-scaled input image and suitable angle of reference beam. Recording-aperture mask translated to appropriate horizontal position for each exposure. Noncoherent illumination suitable for applications involving recognition of color and determination of scale. When fully developed achromatical correlators will be useful for recognition of patterns; for example, in industrial inspection and search for selected features in aerial photographs.

  1. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  2. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  3. An analytical study of double bend achromat lattice.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  4. Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter

    NASA Astrophysics Data System (ADS)

    Pang, Xiaomin; Wang, Xiaotao; Dai, Wei; Li, Haibing; Wu, Yinong; Luo, Ercang

    2018-06-01

    A compact and high efficiency cooler working at liquid hydrogen temperature has many important applications such as cooling superconductors and mid-infrared sensors. This paper presents a two-stage gas-coupled pulse tube cooler system with a completely co-axial configuration. A stepped warm displacer, working as the phase shifter for both stages, has been studied theoretically and experimentally in this paper. Comparisons with the traditional phase shifter (double inlet) are also made. Compared with the double inlet type, the stepped warm displacer has the advantages of recovering the expansion work from the pulse tube hot end (especially from the first stage) and easily realizing an appropriate phase relationship between the pressure wave and volume flow rate at the pulse tube hot end. Experiments are then carried out to investigate the performance. The pressure ratio at the compression space is maintained at 1.37, for the double inlet type, the system obtains 1.1 W cooling power at 20 K with 390 W acoustic power input and the relative Carnot efficiency is only 3.85%; while for the stepped warm displacer type, the system obtains 1.06 W cooling power at 20 K with only 224 W acoustic power input and the relative Carnot efficiency can reach 6.5%.

  5. Experimental characterization of a F/1.5 geometric-phase lens with high-achromatic efficiency and low aberration

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.

    2017-02-01

    We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.

  6. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes.

    PubMed

    Heo, Jun Hyuk; Cho, Hui Hun; Lee, Jin Woong; Lee, Jung Heon

    2014-12-21

    We report the development of achromatic colorimetric sensors; sensors changing their colors from achromatic black to other chromatic colors. An achromatic colorimetric sensor was prepared by mixing a general colorimetric indicator, whose color changes between chromatic colors, and a complementary colored dye with no reaction to the targeted analyte. As the color of an achromatic colorimetric sensor changes from black to a chromatic color, the color change could be much easily recognized than general colorimetric sensors with naked eyes. More importantly, the achromatic colorimetric sensors enable on-off type recognition of the presence of analytes, which have not been achieved from most colorimetric sensors. In addition, the color changes from some achromatic colorimetric sensors (achromatic Eriochrome Black T and achromatic Benedict's solution) could be recognized with naked eyes at much lower concentration ranges than normal chromatic colorimetric sensors. These results provide new opportunities in the use of colorimetric sensors for diverse applications, such as harsh industrial, environmental, and biological detection.

  7. Impact of range shifter material on proton pencil beam spot characteristics.

    PubMed

    Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin

    2015-03-01

    To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.

  8. Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring.

    PubMed

    Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi

    2016-08-01

    An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.

  9. Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Frederick

    2010-01-01

    This work deals with the performance of coupled microstripline phase shifters (CMPS) fabricated using BaxSr 1 -xTiO 3 (BST) ferroelectric thin films. The CMPS were fabricated using commercially available pulsed laser deposition BST films with Ba:Sr ratios of 30:70 and 20:80. Microwave characterization of these CMPS was performed at upper Kuband frequencies, particularly at frequencies near 16 and 18 GHz. X-ray diffraction studies indicate that the 30:70 films exhibit almost a 1:1 ratio between the in-plane and out-of-plane lattice parameters, suggesting that their cubics create strain -free films suitable for producing CMPS devices with reduced hysteresis in the paraelectric state. The quality of performance of the CMPS was studied based on their relative phase shift and insertion loss within the DC bias range of 0 to 400 V (i.e., E-field ranges within 0 to 53 V/micron). The performance of the CMPS was tested as a function of temperature to investigate their operation in the paraelectric, as well as in the ferroelectric, state (i.e., above and below the Curie temperature, respectively). The novel behavior discussed here is based on the experimental observation of the CMPS. This behavior, observed for the aforementioned cation ratio, highlights the relevance of good crystalline structure for high-quality CMPS.

  10. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  11. Preliminary Experimental Investigation of Quasi Achromat scheme at Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Shang, Hairong

    Next generation storage rings require weaker dipolemagnets and stronger quadrupole focusing to achieve very low emittance. To suppress the geometric and chromatic optics aberrations introduced by the strong sextupoles, achromat and quasi achromat schemes are applied in the lattice design to improve the beam dynamics performance. In this paper, some preliminary experimental investigation of the quasi achromat scheme at the Advanced Photon Source (APS) are presented. Three different operation lattices are compared on their beam dynamics performance. Although none of these operation lattices achieve ideal quasi achromat condition, they have certain relevant features. It is observed that fewer resonances aremore » present in the nominal operation lattice which is most close to quasi achromat required conditions.« less

  12. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  13. The achromatic locus: Effect of navigation direction in color space

    PubMed Central

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-01

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes. PMID:24464164

  14. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  15. Chromatic and achromatic monocular deprivation produce separable changes of eye dominance in adults.

    PubMed

    Zhou, Jiawei; Reynaud, Alexandre; Kim, Yeon Jin; Mullen, Kathy T; Hess, Robert F

    2017-11-29

    Temporarily depriving one eye of its input, in whole or in part, results in a transient shift in eye dominance in human adults, with the patched eye becoming stronger and the unpatched eye weaker. However, little is known about the role of colour contrast in these behavioural changes. Here, we first show that the changes in eye dominance and contrast sensitivity induced by monocular eye patching affect colour and achromatic contrast sensitivity equally. We next use dichoptic movies, customized and filtered to stimulate the two eyes differentially. We show that a strong imbalance in achromatic contrast between the eyes, with no colour content, also produces similar, unselective shifts in eye dominance for both colour and achromatic contrast sensitivity. Interestingly, if this achromatic imbalance is paired with similar colour contrast in both eyes, the shift in eye dominance is selective, affecting achromatic but not chromatic contrast sensitivity and revealing a dissociation in eye dominance for colour and achromatic image content. On the other hand, a strong imbalance in chromatic contrast between the eyes, with no achromatic content, produces small, unselective changes in eye dominance, but if paired with similar achromatic contrast in both eyes, no changes occur. We conclude that perceptual changes in eye dominance are strongly driven by interocular imbalances in achromatic contrast, with colour contrast having a significant counter balancing effect. In the short term, eyes can have different dominances for achromatic and chromatic contrast, suggesting separate pathways at the site of these neuroplastic changes. © 2017 The Author(s).

  16. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  17. Slow updating of the achromatic point after a change in illumination

    PubMed Central

    Lee, R. J.; Dawson, K. A.; Smithson, H. E.

    2015-01-01

    For a colour constant observer, the colour appearance of a surface is independent of the spectral composition of the light illuminating it. We ask how rapidly colour appearance judgements are updated following a change in illumination. We obtained repeated binary colour classifications for a set of stimuli defined by their reflectance functions and rendered under either sunlight or skylight. We used these classifications to derive boundaries in colour space that identify the observer’s achromatic point. In steady-state conditions of illumination, the achromatic point lay close to the illuminant chromaticity. In our experiment the illuminant changed abruptly every 21 seconds (at the onset of every 10th trial), allowing us to track changes in the achromatic point that were caused by the cycle of illuminant changes. In one condition, the test reflectance was embedded in a spatial pattern of reflectance samples under consistent illumination. The achromatic point migrated across colour space between the chromaticities of the steady-state achromatic points. This update took several trials rather than being immediate. To identify the factors that governed perceptual updating of appearance judgements we used two further conditions, one in which the test reflectance was presented in isolation and one in which the surrounding reflectances were rendered under an inconsistent and unchanging illumination. Achromatic settings were not well predicted by the information available from scenes at a single time-point. Instead the achromatic points showed a strong dependence on the history of chromatic samples. The strength of this dependence differed between observers and was modulated by the spatial context. PMID:22275468

  18. Edge effects in phase-shifting masks for 0.25-µm lithography

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  19. Phenomenal transparency in achromatic checkerboards.

    PubMed

    Masin, S C

    1999-04-01

    The study explored the luminance relations that determine the occurrence of achromatic transparency in phenomenal surfaces on complex backgrounds. Let the luminances of the left and right parts of a transparent surface on a bipartite background and those of the left and right parts of the bipartite background be p and q and m and n, respectively. Metelli proposed that this surface looks transparent when the rule p < q if m < n (or p > q if m > n) is satisfied, and Masin and Fukuda that it looks transparent when the inclusion rule is satisfied, that is, when p epsilon (m, q) or q epsilon (p, n). These rules also apply to achromatic checkerboards formed by one checkerboard enclosed in another checkerboard. This study shows that only the inclusion rule correctly predicted the occurrence of transparency in these checkerboards.

  20. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  1. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  2. Single-Layer Metasurface with Controllable Multiwavelength Functions.

    PubMed

    Shi, Zhujun; Khorasaninejad, Mohammadreza; Huang, Yao-Wei; Roques-Carmes, Charles; Zhu, Alexander Y; Chen, Wei Ting; Sanjeev, Vyshakh; Ding, Zhao-Wei; Tamagnone, Michele; Chaudhary, Kundan; Devlin, Robert C; Qiu, Cheng-Wei; Capasso, Federico

    2018-04-11

    In this paper, we report dispersion-engineered metasurfaces with distinct functionalities controlled by wavelength. Unlike previous approaches based on spatial multiplexing or vertical stacking of metasurfaces, we utilize a single phase profile with wavelength dependence encoded in the phase shifters' dispersion. We designed and fabricated a multiwavelength achromatic metalens (MAM) with achromatic focusing for blue (B), green (G), yellow (Y), and red (R) light and two wavelength-controlled beam generators (WCBG): one focuses light with orbital angular momentum (OAM) states ( l = 0,1,2) corresponding to three primary colors; the other produces ordinary focal spots ( l = 0) for red and green light, while generating a vortex beam ( l = 1) in the blue. A full color (RGB) hologram is also demonstrated in simulation. Our approach opens a path to applications ranging from near-eye displays and holography to compact multiwavelength beam generation.

  3. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  4. Simultaneous recording of multifocal VEP responses to short-wavelength and achromatic stimuli

    PubMed Central

    Wang, Min; Hood, Donald C.

    2010-01-01

    A paradigm is introduced that allows for simultaneous recording of the pattern-onset multifocal visual evoked potentials (mfVEP) to both short-wavelength (SW) and achromatic (A) stimuli. There were 5 sets of stimulus conditions, each of which is defined by two semi-concurrently presented stimuli, A64/SW (a 64% contrast achromatic stimulus and a short-wavelength stimulus), A64/A8 (64% achromatic/8% achromatic), A0/A8 (0% (gray) achromatic/8% achromatic), A64/A0 and A0/SW. When paired with A64 as part of A64/SW, the SW stimulus yielded mfVEP responses (SWmfVEP) with diminished amplitude in the fovea, consistent with the known sensitivity of the S-cone system. In addition, when A8, which is approximately equal to the L and M cone contribution of the SW stimulus, was recorded alone, the response to A8 was small, but significantly larger than noise. However, when A8 was paired with A64, the response to A8 was reduced to close to noise level, suggesting that the LM cone contribution of the SWmfVEP can be suppressed by A64. When A64 was recorded alone, the response to A64 was about 32% larger than the mfVEP for A64 when paired with the SW. Likewise, the presence of A64 stimulus also reduces the response of SWmfVEP by 35%. Finally, an intense narrow-band yellow background prolonged the latency of SW response for the A0/SW stimulus but not the latency of SW response for the A64/SW stimulus. These results indicate that it is possible to simultaneously record an SWmfVEP with little LM cone contribution along with an achromatic mfVEP. PMID:20499134

  5. Optical properties of new wide heterogeneous waveguides with thermo optical shifters.

    PubMed

    De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M

    2008-12-22

    We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).

  6. Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2015-09-01

    Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extrasolar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided.

  7. Newborns' Discrimination of Chromatic from Achromatic Stimuli.

    ERIC Educational Resources Information Center

    Adams, Russell J.; And Others

    1986-01-01

    Two experiments assessed the extent of newborns' ability to discriminate color. Results imply that newborns have some, albeit limited, capacity to discriminate chromatic from achromatic stimuli, and hence, are at least dichromats. (Author/DR)

  8. Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes.

    PubMed

    Cabezos, Inmaculada; Luque, Maria Jos; de Fez, Dolores; Moncho, Vicenta; Camps, Vicente

    2015-02-01

    Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye's posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. In addition to the standard white-on-white (standard automated perimetry [SAP]), a test battery has been used to study patient's contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry). The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin); chromatic red-green (parvocellular origin); and chromatic blue-yellow (koniocellular origin). The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry.

  9. Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott

    2016-09-01

    An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.

  10. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  11. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  12. Implementation of the Phase Difference Trace Function for a Circular Array.

    DTIC Science & Technology

    1980-06-01

    15 B. HICROPHONES............... ... .. ..... ....... 16 C. PREAMPLIFIER /FILTER ................. o....... 16 D. PHASE SHIFrER...Photgraphs ......................... 31 5. Microphone Specifications ........................... 32 6. Preamplifier /Filter Schematic...33 7. Preamplifier /Filter Printel Cir-cait Board ........... 34 8. Phase Shifter Schemitic ............................. 35 9. Phase Shifter Print.l

  13. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  14. Non-interferometric phase retrieval using refractive index manipulation.

    PubMed

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-04-07

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively.

  15. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia

    2018-02-01

    In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.

  16. Coherent Frequency Shifter, Optical Isolator, Lasers on an Integrated Platform for Cold Atom Microsystems

    DTIC Science & Technology

    2017-10-11

    power operation of optical frequency shifter; (7) a new design and theoretical analysis of frequency shifter with larger electro-optical coefficients...integrated laser. 15. SUBJECT TERMS coherent frequency shifter, optical isolation, integrated photonics, 780nm laser design and fabrication 16...coefficient (r33 and r42) ………………………………………………………………… 20 II.3. 780 nm Laser design , fabrication, and testing based on AlGaAs/GaAs Multiple Quantum Wells

  17. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  18. Non-interferometric phase retrieval using refractive index manipulation

    PubMed Central

    Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

    2017-01-01

    We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively. PMID:28387382

  19. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos [Center Moriches, NY; Kayran, Dmitry [Rocky Point, NY; Litvinenko, Vladimir [Mt. Sinai, NY; MacKay, William W [Wading River, NY

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  20. Double-double bend achromat cell upgrade at the Diamond Light Source: From design to commissioning

    NASA Astrophysics Data System (ADS)

    Bartolini, R.; Abraham, C.; Apollonio, M.; Bailey, C. P.; Cox, M. P.; Day, A.; Fielder, R. T.; Hammond, N. P.; Heron, M. T.; Holdsworth, R.; Kay, J.; Martin, I. P. S.; Mhaskar, S.; Miller, A.; Pulampong, T.; Rehm, G.; Rial, E. C. M.; Rose, A.; Shahveh, A.; Singh, B.; Thomson, A.; Walker, R. P.

    2018-05-01

    Diamond has recently successfully commissioned a major change in the lattice consisting of the substitution of a standard double-bend achromat (DBA) cell with a modified four-bend achromat (4BA) cell called "double-double bend achromat" (DDBA). This work stems from the original studies initiated in 2012 towards a Diamond upgrade and provides the benefit of an additional straight section in the ring available for insertion devices. This paper reviews the DDBA design and layout, the implications for technical subsystems, the associated engineering challenges and the main results of the commissioning completed in April 2017.

  1. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  2. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  3. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  4. Feed-forward digital phase and amplitude correction system

    DOEpatents

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  5. A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a qCSF Approach.

    PubMed

    Kim, Yeon Jin; Reynaud, Alexandre; Hess, Robert F; Mullen, Kathy T

    2017-07-01

    The measurement of achromatic sensitivity has been an important tool for monitoring subtle changes in vision as the result of disease or response to therapy. In this study, we aimed to provide a normative data set for achromatic and chromatic contrast sensitivity functions within a common cone contrast space using an abbreviated measurement approach suitable for clinical practice. In addition, we aimed to provide comparisons of achromatic and chromatic binocular summation across spatial frequency. We estimated monocular cone contrast sensitivity functions (CCSFs) using a quick Contrast Sensitivity Function (qCSF) approach for achromatic as well as isoluminant, L/M cone opponent, and S cone opponent stimuli in a healthy population of 51 subjects. We determined the binocular CCSFs for achromatic and chromatic vision to evaluate the degree of binocular summation across spatial frequency for these three different mechanisms in a subset of 20 subjects. Each data set shows consistent contrast sensitivity across the population. They highlight the extremely high cone contrast sensitivity of L/M cone opponency compared with the S-cone and achromatic responses. We also find that the two chromatic sensitivities are correlated across the healthy population. In addition, binocular summation for all mechanisms depends strongly on stimulus spatial frequency. This study, using an approach well suited to the clinic, is the first to provide a comparative normative data set for the chromatic and achromatic contrast sensitivity functions, yielding quantitative comparisons of achromatic, L/M cone opponent, and S cone opponent chromatic sensitivities as a function of spatial frequency.

  6. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    NASA Astrophysics Data System (ADS)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased

  7. An Investigation of the Eighteenth-Century Achromatic Telescope

    ERIC Educational Resources Information Center

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  8. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  9. MANUFACTURING METHODS FOR PHASE SHIFTERS.

    DTIC Science & Technology

    MANUFACTURING), (*PHASE SHIFT CIRCUITS, FERRITES, GARNET , DIGITAL SYSTEMS, X BAND, C BAND, S BAND, RADAR EQUIPMENT, MAGNETIC MATERIALS, YTTRIUM COMPOUNDS, GADOLINIUM COMPOUNDS, ALUMINUM COMPOUNDS, IRON COMPOUNDS, OXIDES.

  10. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  11. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  12. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  13. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex

    PubMed Central

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722

  14. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    PubMed

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  15. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  16. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  17. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  18. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  19. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  20. Low Cost High Performance Phased Array Antennas with Beam Steering Capabilities

    DTIC Science & Technology

    2009-12-01

    characteristics of BSTO, the RF vacuum sputtering technique has been used and we investigated effects of sputtering parameters such as substrate...sputtering parameters , various sets of BSTO films have been deposited on different substrates and various size of CPW phase shifters have been fabricated...measurement of phase shifter 18 4. Optimization of the sputtering parameters for BSTO deposition 19 4.1 The first BSTO film sample 20 4.2 The second BSTO

  1. Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications

    NASA Technical Reports Server (NTRS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis

    1991-01-01

    Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.

  2. Broadband Achromatic Telecentric Lens

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2007-01-01

    A new type of lens design features broadband achromatic performance as well as telecentricity, using a minimum number of spherical elements. With appropriate modifications, the lens design form can be tailored to cover the range of response of the focal-plane array, from Si (400-1,000 nm) to InGaAs (400-1,700 or 2,100 nm) or InSb/HgCdTe reaching to 2,500 nm. For reference, lenses typically are achromatized over the visible wavelength range of 480-650 nm. In remote sensing applications, there is a need for broadband achromatic telescopes, normally satisfied with mirror-based systems. However, mirror systems are not always feasible due to size or geometry restrictions. They also require expensive aspheric surfaces. Non-obscured mirror systems can be difficult to align and have a limited (essentially one-dimensional) field of view. Centrally obscured types have a two-dimensional but very limited field in addition to the obscuration. Telecentricity is a highly desirable property for matching typical spectrometer types, as well as for reducing the variation of the angle of incidence and cross-talk on the detector for simple camera types. This rotationally symmetric telescope with no obscuration and using spherical surfaces and selected glass types fills a need in the range of short focal lengths. It can be used as a compact front unit for a matched spectrometer, as an ultra-broadband camera objective lens, or as the optics of an integrated camera/spectrometer in which the wavelength information is obtained by the use of strip or linear variable filters on the focal plane array. This kind of camera and spectrometer system can find applications in remote sensing, as well as in-situ applications for geological mapping and characterization of minerals, ecological studies, and target detection and identification through spectral signatures. Commercially, the lens can be used in quality-control applications via spectral analysis. The lens design is based on the rear landscape

  3. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    PubMed

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  4. Alternate Lattice Design for Advanced Photon Source Multi-Bend Achromat Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yipeng; Borland, Michael

    2015-01-01

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is proposed for a futureAdvanced Photon Source (APS)multibend- achromat (MBA) upgrade. This lattice requires use of a swap-out (on-axis) injection scheme. Alternate lattice design work has also been performed to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow beam accumulation. One of such alternate H7BA lattice designs, which still targets a very low emittance of 76 pm, is discussed in this paper. With these lattices, existing APS injector complex can be employed without the requirement of a very high charge operation. Studies show that an emittance belowmore » 76 pm can be achieved with the employment of reverse bends in an alternate lattice. We discuss the predicted performance and requirements for these lattices and compare them to the nominal lattice.« less

  5. Concept of an interlaced phased array for beam switching

    NASA Astrophysics Data System (ADS)

    Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.

    1990-04-01

    A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.

  6. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters

    PubMed Central

    Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon

    2017-01-01

    Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials. PMID:28106156

  7. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters

    NASA Astrophysics Data System (ADS)

    Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon

    2017-01-01

    Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials.

  8. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  9. GaAs MMIC elements in phased-array antennas

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1988-01-01

    Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.

  10. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization

    PubMed Central

    Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-01-01

    Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296

  11. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  12. Achromatic wave plates for the mid-infrared

    NASA Astrophysics Data System (ADS)

    Beasley, J. Donald; Marlowe, Philip D.

    2012-06-01

    Achromatic wave plates are useful in various mid-IR applications, such as analyzing or controlling the spectrum available from CO2 and other lasers, and for the study of IR spectra from distant stars. Their production relies upon the technical skills of those who grow the required high quality crystals and upon those who fabricate the optical parts to the needed precision. Two materials are described - one useful for light in the spectral range of the visible through the near IR and another that functions well in mid-IR applications from 2.5 μm to 11.5 μm. Some limitations imposed by inherent material properties will also be discussed.

  13. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    PubMed

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  14. InP-based millimeter-wave PIN diodes for switching and phase-shifting application

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitris; Alekseev, Egor; Hong, Kyushik; Cui, Delong

    1997-10-01

    InP-based PIN design, technology and circuit implementation were addressed and successfully applied to millimeter-wave MMIC switches and phase shifters. A wet etchant based via technology was developed and applied to InP MMIC fabrication. MOCVD and MBE material growth was used for PIN realization and PIN specific growth optimization is discussed. Experimentally determined electrical characteristics and good performance is presented for a variety of InP-based PIN MMICs including coplanar and microstrip Ka-band SPST switches, W-band microstrip SPST switches and a 90-degree phase shifter.

  15. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Aoki, S.; Cao, S.; Chikuma, N.; Fukuda, T.; Fukuzawa, Y.; Gonin, M.; Hayashino, T.; Hayato, Y.; Hiramoto, A.; Hosomi, F.; Inoh, T.; Iori, S.; Ishiguro, K.; Kawahara, H.; Kim, H.; Kitagawa, N.; Koga, T.; Komatani, R.; Komatsu, M.; Matsushita, A.; Mikado, S.; Minamino, A.; Mizusawa, H.; Matsumoto, T.; Matsuo, T.; Morimoto, Y.; Morishima, K.; Morishita, M.; Naganawa, N.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakano, T.; Nakatsuka, Y.; Nakaya, T.; Nishio, A.; Ogawa, S.; Oshima, H.; Quilain, B.; Rokujo, H.; Sato, O.; Seiya, Y.; Shibuya, H.; Shiraishi, T.; Suzuki, Y.; Tada, S.; Takahashi, S.; Yokoyama, M.; Yoshimoto, M.

    2017-06-01

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days (yielding division numbers of 1.4-3.8×105). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability (98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

  16. SU-F-T-194: Analyzing the Effect of Range Shifter Air Gap On TPS Dose Modeling Accuracy in Superficial PBS Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirey, R; Wu, H

    2016-06-15

    Purpose: Treatment planning systems (TPS) may not accurately model superficial dose distributions of range shifted proton pencil beam scanning (PBS) treatments. Numerous patient-specific QA tests performed on superficially treated PBS plans have shown a consistent overestimate of dose by the TPS. This study quantifies variations between TPS planned dose and measured dose as a function of range shifter air gap and treatment depths up to 5 cm. Methods: PBS treatment plans were created in the TPS to uniformly irradiate a volume of solid water. One plan was created for each range shifter position analyzed, and all plans utilized identical dosemore » optimization parameters. Each optimized plan was analyzed in the TPS to determine the planned dose at varying depths. A PBS proton therapy system with a 3.5 cm lucite range shifter delivered the treatment plans, and a parallel plate chamber embedded in RW3 solid water measured dose at shallow depths for each air gap. Differences between measured and planned doses were plotted and analyzed. Results: The data show that the TPS more accurately models superficial dose as the air gap between the range shifter and patient surface decreases. Air gaps less than 10 cm have an average dose difference of only 1.6%, whereas air gaps between 10 and 20 cm differ by 3.0% and gaps greater than 20 cm differ by 4.4%. Conclusion: This study has shown that the TPS is unable to accurately model superficial dose with a large range shifter air gap. Dose differences greater than 3% will likely cause QA failure, as many institutions analyze patient QA with a 3%/3mm gamma analysis. For superficial PBS therapy, range shifter positions should be chosen to keep the air gap less then 10 cm when patient setup and gantry geometry allow.« less

  17. Enhanced UV light detection using a p-terphenyl wavelength shifter

    NASA Astrophysics Data System (ADS)

    Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.

    2017-10-01

    UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.

  18. Psychophysical Evaluation of Achromatic and Chromatic Vision of Workers Chronically Exposed to Organic Solvents

    PubMed Central

    Lacerda, Eliza Maria da Costa Brito; Lima, Monica Gomes; Rodrigues, Anderson Raiol; Teixeira, Cláudio Eduardo Correa; de Lima, Lauro José Barata; Ventura, Dora Fix; Silveira, Luiz Carlos de Lima

    2012-01-01

    The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test—FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10–30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction. PMID:22220188

  19. Enhanced UV light detection using a p-terphenyl wavelength shifter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio

    Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less

  20. Enhanced UV light detection using a p-terphenyl wavelength shifter

    DOE PAGES

    Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio; ...

    2017-07-25

    Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less

  1. Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.

    2011-01-01

    A circuit topography is used to create usable, digital logic gates using N (negatively doped) channel junction field effect transistors (JFETs), load resistors, level shifting resistors, and supply rails whose values are based on the DC parametric distributions of these JFETs. This method has direct application to the current state-of-the-art in high-temperature (300 to 500 C and higher) silicon carbide (SiC) device production, and defines an adaptation to the logic gate described in U.S. Patent 7,688,117 in that, by removing the level shifter from the output of the gate structure described in the patent (and applying it to the input of the same gate), a source-coupled gate topography is created. This structure allows for the construction AND/OR (sum of products) arrays that use far fewer transistors and resistors than the same array as constructed from the gates described in the aforementioned patent. This plays a central role when large multiplexer constructs are necessary; for example, as in the construction of memory. This innovation moves the resistive level shifter from the output of the basic gate structure to the front as if the input is now configured as what would be the output of the preceding gate, wherein the output is the two level shifting resistors. The output of this innovation can now be realized as the lone follower transistor with its source node as the gate output. Additionally, one may leave intact the resistive level shifter on the new gate topography. A source-coupled to direct-coupled logic translator will be the result.

  2. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    PubMed Central

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  3. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  4. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  5. Silicon photonics thermal phase shifter with reduced temperature range

    DOEpatents

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  6. Experiments with linear compressors for phase shifting in pulse tube crycoolers

    NASA Astrophysics Data System (ADS)

    Lewis, Michael; Bradley, Peter; Radebaugh, Ray

    2012-06-01

    For the past year NIST has been investigating the use of mechanical phase shifters as warm expanders for pulse tube cryocoolers. Unlike inertance tubes, which have a limited phase shifting ability at low acoustic powers, mechanical phase shifters have the ability to provide nearly any phase angle between the mass flow and the pressure. We discuss our results with experiments and modeling on a commercially available miniature linear compressor operating as an expander on the warm-end of a 4 K pulse tube, whose temperature is nominally about 35 K. We also present results on experiments with a linear compressor operating at room temperature but coupled to the 4 K stage through secondary regenerators and secondary pulse tubes. Experiments on a small pulse tube test apparatus with both 4He and 3He showed improved efficiency when using the mechanical expander over that of inertance tubes. Phase locking techniques using function generators and power amplifiers for control of phase angle are detailed. The use of expanders demonstrates flexible control in optimizing phase angles for improved cryocooler performance.

  7. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.

    2004-01-01

    The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.

  8. Development of high precision digital driver of acoustic-optical frequency shifter for ROG

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Kong, Mei; Xu, Yameng

    2016-10-01

    We develop a high precision digital driver of the acoustic-optical frequency shifter (AOFS) based on the parallel direct digital synthesizer (DDS) technology. We use an atomic clock as the phase-locked loop (PLL) reference clock, and the PLL is realized by a dual digital phase-locked loop. A DDS sampling clock up to 320 MHz with a frequency stability as low as 10-12 Hz is obtained. By constructing the RF signal measurement system, it is measured that the frequency output range of the AOFS-driver is 52-58 MHz, the center frequency of the band-pass filter is 55 MHz, the ripple in the band is less than 1 dB@3MHz, the single channel output power is up to 0.3 W, the frequency stability is 1 ppb (1 hour duration), and the frequency-shift precision is 0.1 Hz. The obtained frequency stability has two orders of improvement compared to that of the analog AOFS-drivers. For the designed binary frequency shift keying (2-FSK) and binary phase shift keying (2-PSK) modulation system, the demodulating frequency of the input TTL synchronous level signal is up to 10 kHz. The designed digital-bus coding/decoding system is compatible with many conventional digital bus protocols. It can interface with the ROG signal detecting software through the integrated drive electronics (IDE) and exchange data with the two DDS frequency-shift channels through the signal detecting software.

  9. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauermann, M.; Weimann, C.; Palmer, R.

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  10. Extrafoveally applied flashing light affects contrast thresholds of achromatic and S-cone isolating, but not L-M cone modulated stimuli.

    PubMed

    Őze, A; Puszta, A; Buzás, P; Kóbor, P; Braunitzer, G; Nagy, A

    2018-06-21

    Flashing light stimulation is often used to investigate the visual system. However, the magnitude of the effect of this stimulus on the various subcortical pathways is not well investigated. The signals of conscious vision are conveyed by the magnocellular, parvocellular and koniocellular pathways. Parvocellular and koniocellular pathways (or more precisely, the L-M opponent and S-cone isolating channels) can be accessed by isoluminant red-green (L-M) and S-cone isolating stimuli, respectively. The main goal of the present study was to explore how costimulation with strong white extrafoveal light flashes alters the perception of stimuli specific to these pathways. Eleven healthy volunteers with negative neurological and ophthalmological history were enrolled for the study. Isoluminance of L-M and S-cone isolating sine-wave gratings was set individually, using the minimum motion procedure. The contrast thresholds for these stimuli as well as for achromatic gratings were determined by an adaptive staircase procedure where subjects had to indicate the orientation (horizontal, oblique or vertical) of the gratings. Thresholds were then determined again while a strong white peripheral light flash was presented 50 ms before each trial. Peripheral light flashes significantly (p < 0.05) increased the contrast thresholds of the achromatic and S-cone isolating stimuli. The threshold elevation was especially marked in case of the achromatic stimuli. However, the contrast threshold for the L-M stimuli was not significantly influenced by the light flashes. We conclude that extrafoveally applied light flashes influence predominantly the perception of achromatic stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Light detection and the wavelength shifter deposition in DEAP-3600

    NASA Astrophysics Data System (ADS)

    Broerman, B.; Retière, F.

    2016-02-01

    The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.

  12. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation.

    PubMed

    Aieta, Francesco; Kats, Mikhail A; Genevet, Patrice; Capasso, Federico

    2015-03-20

    The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems. Copyright © 2015, American Association for the Advancement of Science.

  13. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.

    PubMed

    Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J

    2013-05-03

    Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.

  14. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  15. Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  16. Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Y.; Westferro, F.; Lee, S. H.

    2016-07-27

    The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less

  17. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  18. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  19. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  20. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilyagin, P A; Gelikonov, G V; Gelikonov, V M

    2014-07-31

    We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phasemore » shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)« less

  1. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  2. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  3. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach: A fMRI Study.

    PubMed

    Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N

    2016-01-01

    In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.

  4. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.

    PubMed

    Shirey, Robert J; Wu, Hsinshun Terry

    2018-01-01

    This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  6. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  7. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  8. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.

    PubMed

    Bonfiglio, Luca; Bocci, Tommaso; Minichilli, Fabrizio; Crecchi, Alessandra; Barloscio, Davide; Spina, Donata Maria; Rossi, Bruno; Sartucci, Ferdinando

    2017-01-01

    As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.

  9. Test of SensL SiPM coated with NOL-1 wavelength shifter in liquid xenon

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Belov, V. A.; Borshchev, O. V.; Burenkov, A. A.; Grishkin, Yu. L.; Karelin, A. K.; Kuchenkov, A. V.; Martemiyanov, A. N.; Ponomarenko, S. A.; Simakov, G. E.; Stekhanov, V. N.; Surin, N. M.; Timoshin, V. S.; Zeldovich, O. Ya.

    2017-05-01

    A SensL MicroFC-SMT-60035 6×6 mm2 silicon photo-multiplier coated with a NOL-1 wavelength shifter have been tested in the liquid xenon to detect the 175-nm scintillation light. For comparison, a Hamamatsu vacuum ultraviolet sensitive MPPC VUV3 3×3 mm2 was tested under the same conditions. The photodetection efficiency of 13.1 ± 2.5% and 6.0 ± 1.0%, correspondingly, is obtained.

  10. Digital Interface Board to Control Phase and Amplitude of Four Channels

    NASA Technical Reports Server (NTRS)

    Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.

    2011-01-01

    An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for

  11. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  12. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  13. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics

    PubMed Central

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-01-01

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods. PMID:29155715

  14. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-10-27

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods.

  15. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  16. Report for simultaneous, multiple independently steered beam study for Airborne Electronically Steerable Phased Array (AESPA) program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.

  17. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  18. Integrated phased array for wide-angle beam steering.

    PubMed

    Yaacobi, Ami; Sun, Jie; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2014-08-01

    We demonstrate an on-chip optical phased array fabricated in a CMOS compatible process with continuous, fast (100 kHz), wide-angle (51°) beam-steering suitable for applications such as low-cost LIDAR systems. The device demonstrates the largest (51°) beam-steering and beam-spacing to date while providing the ability to steer continuously over the entire range. Continuous steering is enabled by a cascaded phase shifting architecture utilizing, low power and small footprint, thermo-optic phase shifters. We demonstrate these results in the telecom C-band, but the same design can easily be adjusted for any wavelength between 1.2 and 3.5 μm.

  19. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  20. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  1. Shielding Effects of a Building Structure on the Energy Deposit of Cosmic Rays in a Simple Wavelength Shifter-Based Scintillator

    ERIC Educational Resources Information Center

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    An experimental setup, based on a plastic scintillator with an embedded wavelength shifter fibre and photosensors at the two ends, has been used to detect cosmic muons in undergraduate laboratory activities. Time and amplitude information from the two photosensors were measured using the time-over-threshold technique. The distribution of the…

  2. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  3. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  4. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick

    1998-01-01

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.

  5. Achromatic phase-matching second harmonic generation for a tunable laser

    DOEpatents

    Jacobson, A.G.; Bisson, S.; Trebino, R.

    1998-01-20

    An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.

  6. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  7. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    NASA Astrophysics Data System (ADS)

    Takiue, Makoto; Fujii, Haruo; Ishikawa, Hiroaki

    1984-12-01

    2, 5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32P Cherenkov counting efficiency (68.4%) obtained from this technique is large as that measured with a conventional Cherenkov technique.

  8. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  9. Performance analysis of fusion nuclear-data benchmark experiments for light to heavy materials in MeV energy region with a neutron spectrum shifter

    NASA Astrophysics Data System (ADS)

    Murata, Isao; Ohta, Masayuki; Miyamaru, Hiroyuki; Kondo, Keitaro; Yoshida, Shigeo; Iida, Toshiyuki; Ochiai, Kentaro; Konno, Chikara

    2011-10-01

    Nuclear data are indispensable for development of fusion reactor candidate materials. However, benchmarking of the nuclear data in MeV energy region is not yet adequate. In the present study, benchmark performance in the MeV energy region was investigated theoretically for experiments by using a 14 MeV neutron source. We carried out a systematical analysis for light to heavy materials. As a result, the benchmark performance for the neutron spectrum was confirmed to be acceptable, while for gamma-rays it was not sufficiently accurate. Consequently, a spectrum shifter has to be applied. Beryllium had the best performance as a shifter. Moreover, a preliminary examination of whether it is really acceptable that only the spectrum before the last collision is considered in the benchmark performance analysis. It was pointed out that not only the last collision but also earlier collisions should be considered equally in the benchmark performance analysis.

  10. Designing scattering-free isotropic index profiles using phase-amplitude equations

    NASA Astrophysics Data System (ADS)

    King, C. G.; Horsley, S. A. R.; Philbin, T. G.

    2018-05-01

    The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.

  11. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  12. Ka-Band Phased Array System Characterization

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  13. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  14. Noise characteristics of passive components for phased array applications

    NASA Technical Reports Server (NTRS)

    Sonmez, M. Kemal; Trew, Robert J.

    1991-01-01

    The results of a comparative study on noise characteristics of basic power combining/dividing and phase shifting schemes are presented. The theoretical basics of thermal noise in a passive linear multiport are discussed. A new formalism is presented to describe the noise behavior of the passive circuits, and it is shown that the fundamental results are conveniently achieved using this description. The results of analyses concerning the noise behavior of basic power combining/dividing structures (the Wilkinson combiner, 90 deg hybrid coupler, hybrid ring coupler, and the Lange coupler) are presented. Three types of PIN-diode switch phase shifters are analyzed in terms of noise performance.

  15. WFL: Microwave Applications of Thin Ferroelectric Films

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert

    2013-01-01

    We have developed a family of tunable microwave circuits, operating from X- through Ka-band, based on laser ablated BaxSr1-xTiO films on lanthanum aluminate and magnesium oxide substrates. Circuits include voltage controlled oscillators, filters, phase shifters and antennas. A review of the basic theory of operation of these devices will be presented along with measured performance. Emphasis has been on low-loss phase shifters to enable a new phased array architecture. The critical role of phase shifter loss and transient response in reflectarray antennas will be discussed. The Ferroelectric Reflectarray Critical Components Space Experiment was launched on the penultimate Space Shuttle, STS-134, in May of 2011. It included a bank of ferroelectric phase shifters with two different stoichiometries as well as ancillary electronics. The experiment package and status will be reported. In addition, unusual results of a Van der Pauw measurement involving a ferroelectric film grown on buffered high resisitivity silicon will be discussed.

  16. Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1990-01-01

    A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.

  17. Miniature X-band GaAs MMIC analog and bi-phase modulators for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1992-01-01

    The design concepts, analyses, and the development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of spaceborne communications systems are summarized. The design approach uses a very compact lumped-element, quadrature hybrid, and MESFET-varactors to provide low-loss and well-controlled phase performance for deep-space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters have been modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/-2.5 radians of peak phase deviation.

  18. Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier.

    PubMed

    Li, Jianping; Yu, Changyuan; Li, Zhaohui

    2014-03-15

    A novel polarization-modulator-based complementary frequency shifter (PCFS) has been proposed and then used to implement the generation of a frequency-locked multicarrier with single- and dual-recirculating frequency shifting loops, respectively. The transfer functions and output properties of PCFS and PCFS-based multicarrier generator have been studied theoretically. Based on our simulation results through VPItransmissionMaker software, 100 stable carriers have been obtained with acceptable flatness while no DC bias control is required. The results show that the proposed PCFS has the potential to become a commercial product and then used in various scenarios.

  19. Microstrip Antennas with Broadband Integrated Phase Shifting

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)

    2001-01-01

    The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.

  20. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  1. The Four-Quadrant Phase-Mask Coronagraph. II. Simulations

    NASA Astrophysics Data System (ADS)

    Riaud, P.; Boccaletti, A.; Rouan, D.; Lemarquis, F.; Labeyrie, A.

    2001-09-01

    In the first paper in this series, we described the principle of a coronagraph utilizing a four-quadrant phase mask and the results of numerical simulations obtained in the perfect case. In this second paper, we performed additional numerical simulations to assess in more detail the performances and limitations of this coronagraph under real conditions. The effect of geometrical parameters such as shape and size of both the phase mask and the Lyot stop is studied. We also analyze the effect of low- and high-order aberrations generated, for instance, by the atmospheric turbulence. An important issue is the wavelength dependence of the phase mask. We show that the performance decreases rapidly as the spectral bandwidth is increased, and as a consequence, we discuss the manufacturing of achromatized masks using multiple thin films. An optical concept is proposed.

  2. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].

    PubMed

    Göbel, K; Erb, C

    2013-02-01

    The early detection of functional glaucoma damage plays an increasingly more central role in the diagnosis and treatment of glaucoma disease. Using selective perimetry detection of early glaucomatous defects is more likely and one of these methods is flicker perimetry with Pulsar. Flicker perimetry is used to analyze the temporal visual function in combination with spatial resolution and contrast sensitivity as opposed to standard automated perimetry which measures the differential light sensitivity with a non-specific stimulus. This study showed a higher sensitivity and specificity of Pulsar perimetry in comparison to achromatic perimetry in glaucoma patients.

  3. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  4. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  5. Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.

    2017-07-01

    The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.

  6. Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control.

    PubMed

    Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung

    2018-05-14

    Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.

  7. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  8. The IMPACT Common Module - A Low Cost, Reconfigurable Building Block for Next Generation Phased Arrays

    DTIC Science & Technology

    2016-03-31

    The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many

  9. Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  10. Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  11. Space Fed Subarray Synthesis Using Displaced Feed Location

    NASA Astrophysics Data System (ADS)

    Mailloux, Robert J.

    2002-01-01

    Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.

  12. Ultra-High Speed Analog-to-Digital Converters in 14nm FinFET Process and Usage in Digital and Hybrid Phased Array Systems

    DTIC Science & Technology

    2017-03-01

    enable extremely high dynamic range receivers to be realized in very compact dimensions. This paper provides information on the performance...this is the “Butler Matrix” topology in which N beam angular positions into N matrix ports. With this topology , by selecting a particular...waveguide port to connect a receiver or transmitter chain to a particular beam direction would be enabled. RF phase shifters and amplitude weighting

  13. Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Pan, Changzhao; Zhou, Yuan; Wang, Junjie

    2016-12-01

    Vuilleumier coupling pulse tube (VM-PT) cryocooler is a novel kind of cryocooler capable of attaining liquid helium temperature which had been experimentally verified. Depending on different coupling modes and phase shifters, VM-PT cryocooler can be designed in several configurations. This paper presents a numerical investigation on three typical types of VM-PT cryocoolers, which are gas-coupling mode with room temperature phase shifter (GCRP), gas-coupling mode with cold phase shifter (GCCP) and thermal-coupling mode with cold phase shifter (TCCP). Firstly, three configurations are optimized on operating parameters to attain lower no-load temperature. Then, based on the simulation results, distributions of acoustic power, enthalpy flow, pressure wave, and volume flow rate are presented and discussed to better understand the energy flow characteristics and coupling mechanism. Meanwhile, analyses of phase relationship and exergy loss are also performed. Furthermore, a GCCP experimental system with optimal comprehensive performance among three configurations was built and tested. Experimental results showed good consistency with the simulations. Finally, a no-load temperature of 3.39 K and cooling power of 9.75 mW at 4.2 K were obtained with a pressure ratio of 1.7, operating frequency of 1.22 Hz and mean pressure of 1.5 MPa.

  14. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing

    PubMed Central

    Liu, Wenjun; Ice, Gene E.; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul; Tischler, Jonathan Z.; Choi, J.-Y.

    2011-01-01

    The first test of nanoscale-focusing Kirkpatrick–Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 µm by 120 µm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. PMID:21685674

  15. Graphene-silicon phase modulators with gigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M.

    2018-01-01

    The modulator is a key component in optical communications. Several graphene-based amplitude modulators have been reported based on electro-absorption. However, graphene phase modulators (GPMs) are necessary for functions such as applying complex modulation formats or making switches or phased arrays. Here, we present a 10 Gb s-1 GPM integrated in a Mach-Zehnder interferometer configuration. This is a compact device based on a graphene-insulator-silicon capacitor, with a phase-shifter length of 300 μm and extinction ratio of 35 dB. The GPM has a modulation efficiency of 0.28 V cm at 1,550 nm. It has 5 GHz electro-optical bandwidth and operates at 10 Gb s-1 with 2 V peak-to-peak driving voltage in a push-pull configuration for binary transmission of a non-return-to-zero data stream over 50 km of single-mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy-efficient hybrid graphene-silicon modulators for telecom, datacom and other applications.

  16. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  17. Development of Superconducting Insertion Device Magnets at NSRRC

    NASA Astrophysics Data System (ADS)

    Hwang, C. S.; Chang, C. H.; Chen, H. H.; Jan, J. C.; Lin, F. Y.; Fan, T. C.; Chen, J.; Hsu, S. N.; Hsu, K. T.; Huang, M. H.; Chang, H. P.; Hsiung, G. Y.; Chien, Y. C.; Chen, J. R.; Kuo, C. C.; Chen, C. T.

    2007-01-01

    A superconducting wavelength shifter (SWLS) with a magnetic field of 6.5 T in cryogen-free operation provides X-rays for high-resolution X-ray microscopy, EXAFS, and medical imaging beamlines. A 32-pole superconducting wiggler (SW) with a period of 6.1 cm and a magnetic field of 3.2 T in a liquid helium bath provides for three dedicated protein crystallography beamlines. Additionally, three 16-pole in-achromatic superconducting wigglers (IASW) with a period of 6.1 cm and a field strength of 3.1 T were constructed in-house and installed between the first and second bending magnets of a TBA arc section. Development of a prototype superconducting undulator (SU15) with a period of 15 mm and a field strength of 1.4 T is currently underway at National Synchrotron Radiation Research Center (MSRRC).

  18. A 30-GHz monolithic receiver

    NASA Technical Reports Server (NTRS)

    Liu, Louis C. T.; Liu, Carol S.; Kessler, Joel R.; Wang, Shing-Kuo; Chang, Ching-Der

    1986-01-01

    Several monolithic integrated circuits have been developed to make a 30-GHz receiver. The receiver components include a low-noise amplifier (LNA), an IF amplifier, a mixer, and a phase shifter. The LNA has a 7-dB noise figure with over 17 dB of associated gain. The IF amplifier has a 13-dB gain with a 30-dB control range. The mixer has a conversion loss of 10.5 dB. The phase shifter has a 180-deg phase shift control and a minimum insertion loss of 1.6 dB.

  19. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less

  20. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2013-04-08

    An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n(+)-contact and by using a high-κ dielectric as the insulator, respectively.

  1. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  2. Optimized achromatic phase-matching system and method

    DOEpatents

    Trebino, R.; DeLong, K.; Hayden, C.

    1997-07-15

    An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle {theta}{sub in} which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion. 15 figs.

  3. Optimized achromatic phase-matching system and method

    DOEpatents

    Trebino, Rick; DeLong, Ken; Hayden, Carl

    1997-01-01

    An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle .theta..sub.in which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion.

  4. MQW Optical Feedback Modulators And Phase Shifters

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.

  5. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  6. K-Band Reflectarray Antenna Based on Ferroelectric Thin Films: What Have We Learned so Far

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Fred

    2002-01-01

    The Applied RF Technology Branch of the NASA Glenn Research Center, Cleveland, Ohio, has an on-going effort in the area of thin film ferroelectric technology for microwave applications. Particular attention has been given to developing ferroelectric phase shifters for the implementation and experimental demonstration of an electronically steerable reflectarray antenna. In the process of optimizing these material to fit the implementation requirements of the aforementioned antenna, we have accumulated a great deal of information and knowledge in areas such as the effect of the composition of the ferroelectric thin films on phase shifter performance, self assembled monolayers (SAMs) in the metallic/ferroelectric interface and their impact on phase shifter performance, correlation between microstructure and microwave properties, and the effect of selective etching on the overall performance of a thin film-ferroelectric based microwave component, amongst others. We will discuss these issues and will provide an up-dade of the current development status of the reflect-array antenna.

  7. Optoelectronic frequency discriminated phase tuning technology and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2000-07-01

    By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.

  8. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  9. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  10. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  11. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  12. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  13. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chan-Shan; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tang, Tsung-Ta

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding π/2 at 1.0 THz was achieved in a ∼517 μm-thick cell. The phase shifter exhibits high transmittance (∼78%). The driving voltage required for quarter-wave operation is as low as 5.66 V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  15. Studies on Phase Shifting Mechanism in Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Padmanabhan; Gurudath, C. S.; Srikanth, Thota; Ambirajan, A.; Basavaraj, SA; Dinesh, Kumar; Venkatarathnam, G.

    2017-02-01

    Pulse Tube cryocoolers (PTC) are being used extensively in spacecraft for applications such as sensor cooling due to their simple construction and long life owing to a fully passive cold head. Efforts at ISRO to develop a PTC for space use have resulted in a unit with a cooling capacity of 1W at 80K with an input of 45watts. This paper presents the results of a study with this PTC on the phase shifting characteristics of an Inertance tube in conjunction with a reservoir. The aim was to obtain an optimum phase angle between the mass flow (ṁ) and dynamic pressure (\\tilde p) at the PT cold end that results in the largest possible heat lift from this unit. Theoretical model was developed using Phasor Analysis and Transmission Line Model (TLM) for different mass flow and values of optimum frequency and phase angles were predicted. They were compared with experimental data from the PTC for different configurations of the Inertance tube/reservoir at various frequencies and charge pressures. These studies were carried out to characterise an existing cryocooler and design an optimised phase shifter with the aim of improving the performance with respect to specific power input.

  16. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter

    NASA Astrophysics Data System (ADS)

    Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.

    2016-06-01

    Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.

  17. Fabrication and demonstration of 1 × 8 silicon-silica multi-chip switch based on optical phased array

    NASA Astrophysics Data System (ADS)

    Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka

    2016-08-01

    We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.

  18. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  19. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  20. Needle endomicroscope with a plastic, achromatic objective to perform optical biopsies of breast tissue

    NASA Astrophysics Data System (ADS)

    Kyrish, Matthew; Dobbs, Jessica; Richards-Kortum, Rebecca; Tkaczyk, Tomasz

    2013-03-01

    In order to diagnose cancer in breast tissue, a sample must be removed, prepared, and examined under a microscope. To provide an alternative to conventional biopsies, an endomicroscope intended to perform optical biopsies is demonstrated. The system provides high resolution, high contrast images in real-time which could allow a diagnosis to be made during surgery without the need for tissue removal. Optical sectioning is achieved via structured illumination to reject out of focus light. An image is relayed between the sample plane and the imaging system by a coherent fiber bundle with an achromatized objective lens at the distal tip of the fiber bundle which is the diameter of a biopsy needle. The custom, plastic objective provides correction for both the excitation and emission wavelengths of proflavine (452 nm and 515 nm, respectively). It also magnifies the object onto the distal tip of the fiber bundle to increase lateral resolution. The lenses are composed of the optical plastics Zeonex E48R, PMMA, and polystyrene. The lenses are fabricated via single point diamond turning and assembled using a zero alignment technique. The lateral resolution and chromatic focal shift were measured and in vitro images of breast carcinoma cells stained with proflavine were captured. The optical biopsy system is able to achieve optical sectioning and to resolve smaller features than the current high resolution microendoscope.

  1. Motion detector and analyzer

    DOEpatents

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  2. Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal

    NASA Astrophysics Data System (ADS)

    Murakami, N.; Baba, N.; Ise, A.; Sakamoto, M.; Oka, K.

    2010-10-01

    Photonic crystal, artificial periodic nanostructure, is an attractive device for constructing focal-plane phase-mask coronagraphs such as segmented phase masks (four-quadrant, eight-octant, and 4N-segmented ones) and an optical vortex mask (OVM), because of its extremely small manufacturing defect. Recently, speckle-noise limited contrast has been demonstrated for two monochromatic lasers by using the eight-octant phase-mask made of the photonic crystal (Murakami et al. 2010, ApJ, 714, 772). We applied the photonic-crystal device to the OVM coronagraph. The OVM is more advantageous over the segmented phase masks because it does not have discontinuities other than a central singular point and provides a full on-sky field of view. For generating an achromatic optical vortex, we manufactured an axially-symmetric half-wave plate (ASHWP). It is expected that a size of the manufacturing defect due to the central singularity is an order of several hundreds nanometers. The ASHWP is placed between two circular polarizers for modulating a Pancharatnam phase. A continuous spiral phase modulation is then implemented achromatically. We carried out preliminary laboratory demonstration of the OVM coronagraph using two monochromatic lasers as a model star (wavelengths of 532 nm and 633 nm). We report a principle of the achromatic optical-vortex generation, and results of the laboratory demonstration of the OVM coronagraph.

  3. Controllable Liquid Artificial Dielectric S-Band Phase Shifters

    DTIC Science & Technology

    1975-02-01

    RVOS’TAT 114 Ih 1,0. IE F LONT TUBIOG SYSTEM uo Figure 4-1. Flow Sytem Schematic for Ku-Bland Cell 35 investigations of the effects of fMow on permitviity...of the effort spent *a the pb&*-i abithir bIa been deted to this facet of Pbhe fovestignton uslig the sep abm in nFigure 7-10. bumina!tios were made

  4. Automatic quadrature control and measuring system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.

    1973-01-01

    Quadrature is separated from amplified signal by use of phase detector, with phase shifter providing appropriate reference. Output of phase detector is further amplified and filtered by dc amplifier. Output of dc amplifier provides signal to neutralize quadrature component of transducer signal.

  5. RF power recovery feedback circulator

    DOEpatents

    Sharamentov, Sergey I [Bolingbrook, IL

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  6. Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis

    1999-07-01

    While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.

  7. Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; hide

    2010-01-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  8. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  9. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  10. Carrier-envelope phase stabilization with sub-10 as residual timing jitter.

    PubMed

    Borchers, B; Koke, S; Husakou, A; Herrmann, J; Steinmeyer, G

    2011-11-01

    We demonstrate carrier-envelope phase (CEP) stabilization of a mode-locked Ti:sapphire oscillator with unprecedented timing jitter of eight attoseconds. The stabilization performance is obtained by a combination of two different stabilization approaches. In a first step the drift of the CEP is stabilized with a conventional feedback loop by means of controlling the oscillator pump power with an acousto-optic modulator (AOM). In a second step we utilize a recently developed feed-forward type stabilization scheme which has a much higher control bandwith. Here an acousto-optic frequency shifter (AOFS) produces the stabilized output in the first diffraction order. Moreover, we present numerical results on the optimization of the length of the photonic crystal fiber, which is used to generate an octave-spanning spectrum, in order to optimize the sensitivity in the f-to-2f interferometers.

  11. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters

  12. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  13. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    PubMed Central

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-01-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595

  14. MAGNETIC DENSITOMETER

    DOEpatents

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  15. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  16. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  17. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  18. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  19. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  20. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  1. Integrated optical transceiver with electronically controlled optical beamsteering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chipmore » also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.« less

  2. Monte Carlo code G3sim for simulation of plastic scintillator detectors with wavelength shifter fiber readout.

    PubMed

    Mohanty, P K; Dugad, S R; Gupta, S K

    2012-04-01

    A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics

  3. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  4. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    PubMed

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  5. Vacuum Nuller Testbed Performance, Characterization and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  6. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  7. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  8. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  9. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Qi, Mei Qing; Chen, Tian Yi; Cui, Tie Jun

    2016-02-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a direct digital mechanism to control the scattered electromagnetic waves using coding metasurface, in which each unit cell loads a pin diode to produce binary coding states of “1” and “0”. Through data lines, the instant communications are established between the coding metasurface and the internal memory of field-programmable gate arrays (FPGA). Thus, we realize the digital modulation of electromagnetic waves, from which we present the field-programmable reflective antenna with good measurement performance. The proposed mechanism and functional device have great application potential in new-concept radar and communication systems.

  10. NASA Tech Briefs, May 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: 1) Method to Estimate the Dissolved Air Content in Hydraulic Fluid; 2) Method for Measuring Collimator-Pointing Sensitivity to Temperature Changes; 3) High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence; 4)Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope; 5) On-Wafer S-Parameter Measurements in the 325-508-GHz Band; 6) Reconfigurable Microwave Phase Delay Element for Frequency Reference and Phase-Shifter Applications; 7) High-Speed Isolation Board for Flight Hardware Testing; 8) High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors; 9) 3D Orbit Visualization for Earth-Observing Missions; 10) MaROS: Web Visualization of Mars Orbiting and Landed Assets; 11) RAPID: Collaborative Commanding and Monitoring of Lunar Assets; 12) Image Segmentation, Registration, Compression, and Matching; 13) Image Calibration; 14) Rapid ISS Power Availability Simulator; 15) A Method of Strengthening Composite/Metal Joints; 16) Pre-Finishing of SiC for Optical Applications; 17) Optimization of Indium Bump Morphology for Improved Flip Chip Devices; 18) Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures; 19) Marshall Convergent Spray Formulation Improvement for High Temperatures; 20) Real-Time Deposition Monitor for Ultrathin Conductive Films; 21) Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive; 22) Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings; 23) Improved, Low-Stress Economical Submerged Pipeline; 24) Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter; 25) Local Leak Detection and Health Monitoring of Pressurized Tanks; 26) Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging; 27) Automated Cryocooler Monitor and Control System; 28) Broadband Achromatic Phase Shifter for a

  11. Engineering the Ideal Array (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-05

    48 V, f = 10 GHz GaN HEMT Transistor i t Dramatically higher: • Output power • Efficiency • Bandwidth GaN HEMT Power Amplifier lifi ...functions – RF amplifiers – 4-bit phase shifters – Amplitude controllers – Summing network – Power control – Latches for phase state – Address

  12. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  13. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  14. Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate

    NASA Technical Reports Server (NTRS)

    Chen, Yihong; Lu, Xuejun

    2010-01-01

    To address the issues of flexible electronics needed for surface-to-surface, surface-to-orbit, and back-to-Earth communications necessary for manned exploration of the Moon, Mars, and beyond, a room-temperature printing process has been developed to create active, phased-array antennas (PAAs) on a flexible Kapton substrate. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proven feasible for phased-array antenna systems. The carrier mobility of an individual CNT is estimated to be at least 100,000 sq cm/V(dot)s. The CNT network in solution has carrier mobility as high as 46,770 sq cm/V(dot)s, and has a large current-density carrying capacity of approx. 1,000 mA/sq cm , which corresponds to a high carrying power of over 2,000 mW/ sq cm. Such high carrier mobility, and large current carrying capacity, allows the achievement of high-speed (>100 GHz), high-power, flexible electronic circuits that can be monolithically integrated on NASA s active phasedarray antennas for various applications, such as pressurized rovers, pressurized habitats, and spacesuits, as well as for locating beacon towers for lunar surface navigation, which will likely be performed at S-band and attached to a mobile astronaut. A fully printed 2-bit 2-element phasedarray antenna (PAA) working at 5.6 GHz, incorporating the CNT FETs as phase shifters, is demonstrated. The PAA is printed out at room temperature on 100-mm thick Kapton substrate. Four CNT FETs are printed together with microstrip time delay lines to function as a 2-bit phase shifter. The FET switch exhibits a switching speed of 0.2 ns, and works well for a 5.6-GHz RF signal. The operating frequency is measured to be 5.6 GHz, versus the state-of-the-art flexible FET operating frequency of 52 MHz. The source-drain current density is measured to be over 1,000 mA/sq cm, while the conventional organic FETs, and single carbon nanotube-based FETs, are typically in the m

  15. Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide.

    PubMed

    Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken

    2012-04-09

    We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

  16. Effect of flow-pressure phase on performance of regenerators in the range of 4 K to 20 K

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Taylor, R. P.; Bradley, P. E.; Radebaugh, R.

    2014-01-01

    Modeling with REGEN3.3 has shown that the phase between flow and pressure at the cold end of 4 K regenerators has a large effect on their second-law efficiency. The use of inertance tubes in small 4 K pulse tube cryocoolers has limited phase-shifting ability, and their phase shift cannot be varied unless their dimensions are varied. We report here on the use of a miniature linear compressor, operating at the pulse tube warm end of about 30 K, as a controllable expander that can be used to vary the phase over 360°. We also use the back EMF of the linear motor to measure the acoustic power, flow rate amplitude, and phase between flow and pressure at the piston face. We discuss the measurements of the linear motor parameters that are required to determine the piston velocity from the back EMF as well as the measurement procedures to determine the back EMF when the expander is operating at a temperature around 30 K. Our experimental results on the performance of a regenerator/pulse tube stage operating below 30 K show an optimum performance when the flow at the phase shifter lags the pressure by about 65° to 80°, which is close to the model results of about 60°. Temperatures below 10 K were achieved at the cold end in these measurements. The efficiency of the compressor operating as an expander is also discussed.

  17. Summary Report on NRL Participation in the Microwave Landing System Program.

    DTIC Science & Technology

    1980-08-19

    shifters were measured and statistically analyzed. Several research contracts for promising phased array techniques were awarded to industrial contractors...program was written for compiling statistical data on the measurements, which reads out inser- sertion phase characteristics and standard deviation...GLOSSARY OF TERMS ALPA Airline Pilots’ Association ATA Air Transport Association AWA Australiasian Wireless Amalgamated AWOP All-weather Operations

  18. Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    NASA Astrophysics Data System (ADS)

    Diemoz, P. C.; Endrizzi, M.; Vittoria, F. A.; Hagen, C. K.; Kallon, G.; Basta, D.; Marenzana, M.; Delogu, P.; Vincenzi, A.; De Ruvo, L.; Spandre, G.; Brez, A.; Bellazzini, R.; Olivo, A.

    2015-03-01

    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI's achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI.

  19. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): A High Performance Coronagraph for Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Guyon, O.; Pluzhnik, E.; Martinache, F.; Ridgway, S.; Galicher, R.

    2004-12-01

    Using 2 aspheric mirrors, it is possible to achromatically apodize a telescope beam without losing light (Phase-Induced Amplitude Apodization, PIAA). We propose a coronagraph concept using this technique: the telescope pupil is first apodized to yield a high contrast focal plane image, on which an occulting mask is placed. The exit pupil is then de-apodized to regain a large field of view. We show that the PIAAC combines all the qualities needed for efficient exoplanet imaging: full throughput, small inner working angle (1.2 l/d), high angular resolution (l/d), low sensitivity to tip-tilt, and large field of view (more than 200 l/d in diameter). We conclude that PIAAC is well adapted for exoplanet imaging with a 4m to 6m space telescope (TPF mission). This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  20. Proceedings of the 1989 Antenna Applications Symposium. Volume 2

    DTIC Science & Technology

    1990-03-01

    together with the power and phase of the four active sources. This information was determined and subsequently compared with recorded ERP. As component...temperature profile T2. Applying the negated RA values as phase shifter commands generates constant phase across the aperture at temperature T1 in...over the band for both cases. The phase prediction was compared to a Touchstone circuit model and the error with respect to this model is plotted in

  1. High-frequency modulation of the four states of polarization of light with a single phase modulator

    NASA Astrophysics Data System (ADS)

    Compain, Eric; Drevillon, Bernard

    1998-04-01

    A method for light polarization modulation is described. It allows us to independently modulate, at a high frequency, the four components of the Stokes vector of light using a single phase modulator. It works in a double-pass configuration: the polarization of light is modulated a first time by the phase modulator, and is then modified by a coupling object before being modulated a second time by the same modulator. The coupling object consists of multiple glass plates, oriented at the Brewster angle, acting as a partial polarizer and in a right angle prism acting as a phase shifter and back reflector. Its polarimetric properties are obtained from refractive index contrast effects, which provides optimized and constant properties over a wide spectral range. The phase modulator can be either an electro-optic modulator providing a very high-frequency capability (up to 100 MHz) or a photoelastic modulator providing a wide spectral range capability. It is robust because there is no moving part and simple to implement because of the presence of one modulation. It displays a high level of sensitivity because all the components are high-frequency modulated. Two applications using this modulator in a polarimeter or in a polarization states generator are described. The four modulations, having the same fundamental frequency, are easily demodulated by numerical data processing. Optimized demodulation processing, adapted to the different kind of phase modulator is described. Its adaptation taking into account the bandwidth limitation and the variation of the sampling phase, are finally presented in the case of a photoelastic modulator.

  2. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    NASA Technical Reports Server (NTRS)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  3. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  4. High-Temperature-Superconductor Films In Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1993-01-01

    Report discusses recent developments in continuing research on fabrication and characterization of thin films of high-temperature superconducting material and incorporation of such films into microwave circuits. Research motivated by prospect of exploiting superconductivity to reduce electrical losses and thereby enhancing performance of such critical microwave components as ring resonators, filters, transmission lines, phase shifters, and feed lines in phased-array antennas.

  5. Thermal Analysis of the European XFEL Intersection Control Rack

    NASA Astrophysics Data System (ADS)

    Concha, P.; Vazquez, C.

    2014-04-01

    The three undulator segments of the European X-ray Free Electron Laser contain a total of 88 intersections cells. Each intersection accommodates a quadrupole magnet on top of a high precision X-Y positioning table, a beam position monitor, four air coil correctors and a phase shifter. The Intersection Control Rack is an electrical cabinet containing the necessary electronics to control both the quadrupole and the phase shifter movements (which are stepper motor based) with a repeatability of less than 1 um and 10 um, respectively. Four different cabinets have been extensively tested to ensure that they meet specifications. These tests include a thermal analysis to study position measurements dependence on the temperature. This paper introduces a description of the thermal issue, analyses the causes and consequences of heating, presents the results of the different tests performed, and concludes the best design and operating conditions to achieve a good performance.

  6. A Statistical Analysis of Laser Ablated Ba(Sub 0.50)Sr(Sub 0.50)TiO(Sub 3)/LaAlO(Sub 3) Films for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Varaljay, N. C.; Alterovitz, S. A.; Miranda, F. A.; Mueller, C. M.; VanKeuls, F. W.; Kim, J.; Harshavardhan, K. S.

    2002-01-01

    The NASA Glenn Research Center is constructing a 616 element scanning phased array antenna using thin film Ba(sub x)Sr(sub 1-x)TiO(sub 3) based phase shifters. A critical milestone is the production of 616 identical phase shifters at 19 GHz with [asymptotically equal to]4 dB insertion loss and at least 337.5 deg phase shift with 3 percent bandwidth. It is well known that there is a direct relationship between dielectric tuning and loss due to the Kramers-Kronig relationship and that film crystallinity and strain, affected by the substrate template, play an important role. Ba(sub 0.50)Sr(sub 0.50)TiO (sub 3) films, nominally 400 nm thick, were deposited on 48 0.25 mm thick, 5 cm diameter LaAlO(sub 3) wafers. Although previous results suggested that Mn-doped films on MgO were intrinsically superior in terms of phase shift per unit loss, for this application phase shift per unit length was more important. The composition was selected as a compromise between tuning and loss for room temperature operation (e.g. crystallinity progressively degrades for Ba concentrations in excess of 30 percent). As a prelude to fabricating the array, it was necessary to process, screen, and inventory a large number of samples. Variable angle ellipsometry was used to characterize refractive index and film thickness across each wafer. Microstructural properties of the thin films were characterized using high resolution X-ray diffractometry. Finally, prototype phase shifters and resonators were patterned on each wafer and RE probed to measure tuning as a function of dc bias voltage as well as peak (0 field) permittivity and unloaded Q. The relationship among film quality and uniformity and performance is analyzed. This work presents the first statistically relevant study of film quality and microwave performance and represents a milestone towards commercialization of thin ferroelectric films for microwave applications.

  7. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has

  8. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    1987-01-01

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  9. The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin.

    PubMed

    Bruno, Nicola; Martani, Margherita; Corsini, Claudia; Oleari, Claudio

    2013-12-01

    Recent literature suggests that individuals may consume less food when this is served on red plates. We explored this intriguing effect in three experiments. Independent groups of participants were presented with constant amounts of popcorns, chocolate chips, or moisturizing cream, on red, blue, or white plates. They were asked to sample the foods (by tasting them) or the cream (by rubbing it on the hand and forearm) as they wished and to complete mock "sensory analysis" questionnaires. Results confirmed that red plates reduce taste-related consumption and extended this effect to the touch-related consumption of moisturizing cream. Suggesting that the effect was not due to a decrease in the consciously experienced appeal of products on red plates, overall appreciation of the foods or cream did not differ according to plate color. After careful photometric measures of the materials used for each food-plate pairing, we determined that food and cream consumption was not predicted by Michelson (achromatic) contrast. Although the origin of the intriguing effect of the color red on consumption remains unclear, our results may prove useful to future potential explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  11. The Four-Quadrant Phase-Mask Coronagraph. I. Principle

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.

    2000-11-01

    We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of

  12. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  13. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  14. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  15. A broadband 8-18GHz 4-input 4-output Butler matrix

    NASA Astrophysics Data System (ADS)

    Milner, Leigh; Parker, Michael

    2007-01-01

    Butler matrices can be used in antenna beam-forming networks to provide a linear phase distribution across the elements of an array. The development of an 8 to 18GHz micro-strip implementation of a 4-input 4-ouput Butler matrix is described. The designed Butler matrix uses March hybrids, Schiffman phase shifters and wire-bond crossovers integrated on a single 60mm x 70mm alumina substrate.

  16. Josephson junction microwave modulators for qubit control

    NASA Astrophysics Data System (ADS)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  17. High Temperature Superconductivity Applications for Electronic Warfare and Microwave Systems

    DTIC Science & Technology

    1990-05-01

    instantaneous frequency measurement (IFM), as well as, switched delay lines for EW radar range deception and low loss, high resolution MMIC phase...Junction (JJ). This device has been demonstrated in LTSC and is used in very stable ( low noise ), frequency selective, oscillators and very low noise ...following HTSC components: 1) MMIC Filters 2) MMIC Delay Lines/Phase Shifters 3) Microwave Resonators 4) Antenna Feed Networks 5) Low Frequency Antennas 1

  18. A Comparison of MOCLD With PLD Ba(x)Sr(1-x)TiO3 Thin Films on LaAlO3 for Tunable Microwave Applications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Mueller, C. H.; Romanofsky, R. R.; Warner, J. D.; Miranda, F. A.; Jiang, H.

    2002-01-01

    Historically, tunable dielectric devices using thin crystalline Ba(x)Sr(1-x)TiO3 (BST) films deposited on lattice-matched substrates, such as LaAlO3, have generally been grown using pulsed laser deposition (PLD). Highly oriented BST films can be grown by PLD but large projects are hampered by constraints of deposition area, deposition time and expense. The Metal-Organic Chemical Liquid Deposition (MOCLD) process allows for larger areas, faster turnover and lower cost. Several BST films deposited on LaAlO3 by MOCLD have been tested in 16 GHz coupled microstrip phase shifters. They can be compared with many PLD BST films tested in the same circuit design. The MOCLD phase shifter performance of 293 deg. phase shift with 53 V/micron dc bias and a figure of merit of 47 deg./dB is comparable to the most highly oriented PLD BST films. The PLD BST films used here have measured XRD full-width-at-half-maxima (FWHM) as low as 0.047 deg.. The best FWHM of these MOCLD BST films has been measured to be 0.058 deg.

  19. Dielectric prisms would improve performance of quasi-optical microwave components

    NASA Technical Reports Server (NTRS)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  20. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  1. Spectral coherent-state quantum cryptography.

    PubMed

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  2. Optical Spatial integration methods for ambiguity function generation

    NASA Technical Reports Server (NTRS)

    Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.

    1981-01-01

    A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.

  3. Laser-Ablated Ba(0.50)Sr(0.50)TiO3/LaAlO3 Films Analyzed Statistically for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2003-01-01

    Scanning phased-array antennas represent a highly desirable solution for futuristic near-Earth and deep space communication scenarios requiring vibration-free, rapid beam steering and enhanced reliability. The current state-of-practice in scanning phased arrays is represented by gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) technology or ferrite phase shifters. Cost and weight are significant impediments to space applications. Moreover, conventional manifold-fed arrays suffer from beam-forming loss that places considerable burden on MMIC amplifiers. The inefficiency can result in severe thermal management problems.

  4. Multi-functional optical signal processing using optical spectrum control circuit

    NASA Astrophysics Data System (ADS)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  5. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    NASA Astrophysics Data System (ADS)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions

  7. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  8. Proposal of one-shot-type spectroscopic-tomography for non-invasive medical-measurement

    NASA Astrophysics Data System (ADS)

    Sato, Shun; Fujiwara, Masaru; Abeygunawardhana, Pradeep K. W.; Suzuki, Satoru; Nishiyama, Akira; Ishimaru, Ichiro

    2013-06-01

    The one-shot-type spectroscopic-tomography is proposed to develop the medical-patient-condition monitoring systems. The optical-setup is configured with the relative-inclined phase-shifter for improving the time resolution and the phase-shift array for improving visibility. We obtained the line-spectroscopic imaging and could recognize the Hg bright-line-spectrum that is a component of the light-source. The realization of the optical stethoscope for early diagnosis of cancer can be expected by obtaining the 2-dimensional spectroscopic distribution with rotating interferometer.

  9. A Thick Film Microstrip Butler Matrix for the Frequency Range 1.5-1.7 GHz.

    DTIC Science & Technology

    1979-09-01

    The 1800 hybrid coupler II 4.1.5 The broadside coupler 11 4.1.6 The Podell coupler 12 4.2 Phase shifters 12 4.2.1 The dielectrically loaded line phase...The Podell coupler The Podell coupler8 of Fig 9b overcomes even and odd mode velocity disper- sion by using a sawtooth design on the inner edge. This...8 A. Podell A high directivity microstrip coupler technique. IEEE G-MTT International Microwave Symposium, 33-36 (1970) 9 B. Easter The equivalent

  10. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Visual acuity, refractive error, and binocular status were determined in 43 autosomal recessive (AR) and 15 X-linked (XL) congenital achromats. The achromats were classified by color matching and spectral sensitivity data. Large interindividual variation in refractive error and visual acuity was present within each achromat group (complete AR, incomplete AR, and XL). However, the number of individuals with significant interocular acuity differences is very small. Most XLs are myopic; ARs show a wide range of refractive error from high myopia to high hyperopia. Acuity of the AR and XL groups was very similar. With-the-rule astigmatism of large amount is very common in achromats, particularly ARs. There is a close association between strabismus and interocular acuity differences in the ARs, with the fixating eye having better than average acuity. The large overlap of acuity and refractive error of XL and AR achromats suggests that these measures are less useful for differential diagnosis than generally indicated by the clinical literature.

  11. Achromatic diffractive lens written onto a liquid crystal display.

    PubMed

    Márquez, A; Iemmi, C; Campos, J; Yzuel, M J

    2006-02-01

    We propose a programmable diffractive lens written onto a liquid crystal display (LCD) that is able to provide equal focal lengths for several wavelengths simultaneously. To achieve this goal it is necessary that the LCD operate in the phase-only regime simultaneously for the different wavelengths. We design the appropriate lens for each wavelength, and then the lenses are spatially multiplexed onto the LCD. Various multiplexing schemes have been analyzed, and the random scheme shows the best performance. We further show the possibility of finely tuning the chromaticity of the focal spot by changing the relative weights of the multiplexing among the various wavelengths.

  12. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  13. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  14. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Front End Analog Circuit Design and Component Characterization

    DTIC Science & Technology

    2016-09-01

    design to control the phase shifters was complex, and the calibration process was time consuming. During the redesign process, we carried out...signals in time domain with a maximum sampling frequency of 20 Giga samples per second. In the previous tests of the design , the performance of...PHOTONIC ARCHITECTURE FOR DIRECTION FINDING OF LPI EMITTERS: FRONT-END ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION by Chew K. Tan

  15. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  16. Manufacturing of ArF chromeless hard shifter for 65-nm technology

    NASA Astrophysics Data System (ADS)

    Park, Keun-Taek; Dieu, Laurent; Hughes, Greg P.; Green, Kent G.; Croffie, Ebo H.; Taravade, Kunal N.

    2003-12-01

    For logic design, Chrome-less Phase Shift Mask is one of the possible solutions for defining small geometry with low MEF (mask enhancement factor) for the 65nm node. There have been lots of dedicated studies on the PCO (Phase Chrome Off-axis) mask technology and several design approaches have been proposed including grating background, chrome patches (or chrome shield) for applying PCO on line/space and contact pattern. In this paper, we studied the feasibility of grating design for line and contact pattern. The design of the grating pattern was provided from the EM simulation software (TEMPEST) and the aerial image simulation software. AIMS measurements with high NA annular illumination were done. Resist images were taken on designed pattern in different focus. Simulations, AIMS are compared to verify the consistency of the process with wafer printed performance.

  17. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  18. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; ...

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  19. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  20. The mobile Sousy-Doppler radar: Technical design and first results

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Schmidt, G.; Ruster, R.

    1983-01-01

    A mobile VHF Doppler system was developed. The electronic part is installed in a 20 ft container and tested using a special log periodic aerial to illuminate the 300 m dish. The system was extended by designing a mobile phased antenna array with finally 576 Yagi elements. The grouping of the single Yagis, the system of transmission lines, the phase shifters, the power splitters and the T/R switch are described. Results from the first two campaigns and a survey of future programs demonstrating the flexibility of this mobile system are summarized.

  1. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  2. GaAs circuits for monolithic optical controller

    NASA Technical Reports Server (NTRS)

    Gustafson, G.; Bendett, M.; Carney, J.; Mactaggart, R.; Palmquist, S.

    1988-01-01

    GaAs circuits for use in a fully monolithic 1 Gb/s optical controller have been developed and tested. The circuits include photodetectors, transimpedance amplifiers and 1:16 demultiplexers that can directly control the phase of MMIC phase shifters. The entire chip contains approximately 300 self-aligned gate E/D-mode MESFETs. The MESFETs have one micron-wide gate and the E-mode FETs typically have transconductance of 200 ms/mm. Results of simulations and tests are reported. Also, the design and layout of the fully monolithic chip is discussed.

  3. Distributed optical signal processing for microwave photonics subsystems.

    PubMed

    Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert

    2016-03-07

    We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.

  4. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  5. Contrast normalization in colour vision: the effect of luminance contrast on colour contrast detection

    PubMed Central

    Mullen, Kathy T.; Kim, Yeon Jin; Gheiratmand, Mina

    2014-01-01

    While contrast normalization is well known to occur in luminance vision between overlaid achromatic contrasts, and in colour vision between overlaid colour contrasts, it is unknown whether it transfers between colour and luminance contrast. Here we investigate whether contrast detection in colour vision can be normalized by achromatic contrast, or whether this is a selective process driven only by colour contrast. We use a method of cross-orientation masking, in which colour detection is masked by cross-oriented achromatic contrast, over a range of spatio-temporal frequencies (0.375–1.5 cpd, 2–8 Hz). We find that there is virtually no cross-masking of colour by achromatic contrast under monocular or binocular conditions for any of the spatio-temporal frequencies tested, although we find significant facilitation at low spatio-temporal conditions (0.375 cpd, 2 Hz). These results indicate that the process of contrast nornalization is colour selective and independent of achromatic contrast, and imply segregated chromatic signals in early visual processing. Under dichoptic conditions, however, we find a strikingly different result with significant masking of colour by achromatic contrast. This indicates that the dichoptic site of suppression is unselective, responding similarly to colour and luminance contrast, and suggests that dichoptic suppression has a different origin from monocular or binocular suppression. PMID:25491564

  6. Delays in using chromatic and luminance information to correct rapid reaches.

    PubMed

    Kane, Adam; Wade, Alex; Ma-Wyatt, Anna

    2011-09-07

    People can use feedback to make online corrections to movements but only if there is sufficient time to integrate the new information and make the correction. A key variable in this process is therefore the speed at which the new information about the target location is coded. Conduction velocities for chromatic signals are lower than for achromatic signals so it may take longer to correct reaches to chromatic stimuli. In addition to this delay, the sensorimotor system may prefer achromatic information over the chromatic information as delayed information may be less valuable when movements are made under time pressure. A down-weighting of chromatic information may result in additional latencies for chromatically directed reaches. In our study, participants made online corrections to reaches to achromatic, (L-M)-cone, and S-cone stimuli. Our chromatic stimuli were carefully adjusted to minimize stimulation of achromatic pathways, and we equated stimuli both in terms of detection thresholds and also by their estimated neural responses. Similar stimuli were used throughout the subjective adjustments and final reaching experiment. Using this paradigm, we found that responses to achromatic stimuli were only slightly faster than responses to (L-M)-cone and S-cone stimuli. We conclude that the sensorimotor system treats chromatic and achromatic information similarly and that the delayed chromatic responses primarily reflect early conduction delays.

  7. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  8. Impact of colour in the assessment of potential visual acuity in patients with age-related macular degeneration.

    PubMed

    Dorrepaal, Stephen J; Markowitz, Samuel N

    2013-06-01

    To compare chromatic and achromatic potential visual acuity (PVA) in patients with bilateral low vision caused by age-related macular degeneration (AMD). Prospective, nonrandomized, observational case series. Fifty-five patients, representing a consecutive series of patients all presenting with bilateral AMD. Best-corrected visual acuity of each eye was measured using an Early Treatment in Diabetic Retinopathy Study (ETDRS) chart with appropriate near correction. Included were cases with visual acuity of 0.4 logMAR (20/50) or worse in both eyes. Achromatic and chromatic PVA were measured in each eye using white on black and red on yellow flooding E charts at 50 cm in controlled lighting conditions. One hundred and seven eyes from 55 patients were included in the analysis. Mean achromatic and chromatic PVA were 0.69 ± 0.26 and 0.65 ± 0.22 logMAR, respectively. Overall, patients had a significantly higher chromatic than achromatic PVA, with a median difference of 0.1 logMAR (p<0.05). Patients with ETDRS visual acuity worse than 0.9 logMAR also had a significantly higher chromatic than achromatic PVA, with a median difference of 0.1 logMAR (p<0.05). Patients with ETDRS visual acuity between 0.4 and 0.9 logMAR had a trend toward a higher chromatic than achromatic visual acuity that was not significant, with a median difference of 0.1 logMAR (p = 0.8539). Patients with low vision caused by AMD can discern smaller targets when a red on yellow colour scheme is used than when using achromatic white on black charts. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  9. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.

    PubMed

    Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue

    2016-11-15

    We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.

  10. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  11. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  12. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.

    PubMed

    Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H

    2013-03-25

    n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

  13. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    PubMed

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  14. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to

  15. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the

  16. 4D measurements of biological and synthetic structures using a dynamic interferometer

    NASA Astrophysics Data System (ADS)

    Toto-Arellano, Noel-Ivan

    2017-12-01

    Considering the deficiency of time elapsed for phase-stepping interferometric techniques and the need of developing non-contact and on-line measurement with high accuracy, a single-shot phase-shifting triple-interferometer (PSTI) is developed for analysis of characteristics of transparent structures and optical path difference (OPD) measurements. In the proposed PSTI, coupled three interferometers which generate four interference patterns, and a polarizer array is used as phase shifters to produce four spatially separated interferograms with π/2-phase shifts, which are recorded in a single capture by a camera. The configuration of the PSTI allows dynamic measurements (4D measurements) and does not require vibration isolation. We have applied the developed system to examine the size and OPD of cells, and the slope of thin films

  17. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  18. Coherent Optical Adaptive Techniques (COAT)

    DTIC Science & Technology

    1973-02-01

    quarter wave plate and frequency shifter twice. The polarization-rotated wave is then partially reflected by the beam - splitters B,, B2 , B to provide a...between the beam splitters B, and Bp. This causes a change in the relative phase of the local oscillator to the detectors and, consequently, a change in...trackinr. The basic method is illustrated in Figure T-l. There, an array of laser beams , derived from a single laser source, is shown with provision

  19. GENERAL: Teleportation of a Bipartite Entangled Coherent State via a Four-Partite Cluster-Type Entangled State

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Na; Liu, Jin-Ming

    2009-10-01

    We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.

  20. Speech Envelope Normalization, a Method to Improve SNR and Suppress Noise in Present and Future Radio Systems.

    DTIC Science & Technology

    1982-12-01

    GRA&IT--4 I DTIC TAB U:.r.nnoincee Distr±iatic !/ KAvnilr,1.llty Codes AvRUJ and/or Dist S pecial 1 AN 𔄃 . .. ACKNOWLEDGEMENTS The success of the...evaluated. Two different approaches emerged, one employing cascaded active all-pass networks, and the other using a charged coupled device sampled data delay...Wideband 900 Phase-Shifters 38 * 5.2 Samples Data Direct Hilbert Transforms 43 5.3 Charge Coupled Device (CCD) Implementation 45 5.4 Digital

  1. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  2. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  3. Chromatic signals control proboscis movements during hovering flight in the hummingbird hawkmoth Macroglossum stellatarum.

    PubMed

    Goyret, Joaquín; Kelber, Almut

    2012-01-01

    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.

  4. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  5. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  6. Moving receive beam method and apparatus for synthetic aperture radar

    DOEpatents

    Kare, Jordin T.

    2001-01-01

    A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.

  7. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Li, D.; Irwin, K. D.; Bockstiegel, C.; Hubmayr, J.; Ullom, J. N.; Vissers, M. R.; Gao, J.

    2017-04-01

    We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.

  8. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    PubMed

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  9. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  10. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  11. Computing shifts to monitor ATLAS distributed computing infrastructure and operations

    NASA Astrophysics Data System (ADS)

    Adam, C.; Barberis, D.; Crépé-Renaudin, S.; De, K.; Fassi, F.; Stradling, A.; Svatos, M.; Vartapetian, A.; Wolters, H.

    2017-10-01

    The ATLAS Distributed Computing (ADC) group established a new Computing Run Coordinator (CRC) shift at the start of LHC Run 2 in 2015. The main goal was to rely on a person with a good overview of the ADC activities to ease the ADC experts’ workload. The CRC shifter keeps track of ADC tasks related to their fields of expertise and responsibility. At the same time, the shifter maintains a global view of the day-to-day operations of the ADC system. During Run 1, this task was accomplished by a person of the expert team called the ADC Manager on Duty (AMOD), a position that was removed during the shutdown period due to the reduced number and availability of ADC experts foreseen for Run 2. The CRC position was proposed to cover some of the AMODs former functions, while allowing more people involved in computing to participate. In this way, CRC shifters help with the training of future ADC experts. The CRC shifters coordinate daily ADC shift operations, including tracking open issues, reporting, and representing ADC in relevant meetings. The CRC also facilitates communication between the ADC experts team and the other ADC shifters. These include the Distributed Analysis Support Team (DAST), which is the first point of contact for addressing all distributed analysis questions, and the ATLAS Distributed Computing Shifters (ADCoS), which check and report problems in central services, sites, Tier-0 export, data transfers and production tasks. Finally, the CRC looks at the level of ADC activities on a weekly or monthly timescale to ensure that ADC resources are used efficiently.

  12. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  13. Catenary optics for achromatic generation of perfect optical angular momentum

    PubMed Central

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  14. Catenary optics for achromatic generation of perfect optical angular momentum.

    PubMed

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

  15. Clinical vision characteristics of the congenital achromatopsias. II. Color vision.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Twelve X-linked (XL) achromats and 43 autosomal recessive (AR) achromats were tested using the Farnsworth D-15, Nagel anomaloscope, Sloan achromatopsia test, and Berson test using standard procedures. All of the tests identify achromatopsia, but very few differentially diagnose the various types. AR achromats were subclassified as complete (rods only) or incomplete (residual cone function present) by additional psychophysical testing. Complete and incomplete ARs do not perform differently on any clinical color vision measure, indicating that (1) rods predominantly mediate vision in both groups and (2) these tests are not useful for distinguishing between the groups. Both groups show considerable interindividual variation on all measures. Only one of the measures, the Berson test, designed to distinguish XLs from ARs, does so reliably. XLs and ARs do not differ significantly on the Nagel anomaloscope or most of the Sloan plates. The confusion angles of the D-15 do differ for the two groups, but the variability in each group makes the measure unreliable for classifying individuals. The Berson test is recommended to distinguish the XL from AR achromats.

  16. Terrestrial Planet Finder Interferometer Technology Status and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.

    2006-01-01

    A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.

  17. European Specialist Workshop on ’Active Microwave Semiconductor Devices’ (8th) Held at Maidenhead, Berks., UK on 4-6 May 1983.

    DTIC Science & Technology

    1983-05-06

    wafers were annealed at either 7500C or 850 0C. Carrier concentration and mobility pro - files of the annealed samples were obtained by differential Hall...spite of a high value of the source resistance (2.30/mm). By applying the Fukui equation F = I + 2Cgs fK.R sR/ gmo , the K factor has been found to be...allowances during the design stage for the effects of parasitic elements. As such, phase shifters of this type represent a con - siderable challenge to the

  18. Organic membrane photonic integrated circuits (OMPICs).

    PubMed

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  19. Mismatch or cumulative stress: the pathway to depression is conditional on attention style.

    PubMed

    Nederhof, Esther; Ormel, Johan; Oldehinkel, Albertine J

    2014-03-01

    In the study reported here, the main question we investigated was whether attention style could be a conditional adaptation. We organized participants of the TRacking Adolescents' Individual Lives Survey (TRAILS; N = 2,230) into shifters, sustainers, and two comparison groups, depending on their performance on a shifting- and a sustained-attention task at age 11 years. Compared with sustainers, shifters reported more pre- and perinatal risk factors and more childhood stress, and they adopted a faster life-history strategy. These differences were not found between the comparison groups, who performed well or poorly on both tasks, which suggests that specialization for either sustained or shifting attention is the key to conditional adaptation. In a subsample (n = 860), we found that stress did not increase depression risk in shifters, whereas a mismatch between early and recent stress predicted depression in sustainers. Cumulative stress predicted depression in the comparison group. These results suggest that shifters retain high levels of plasticity throughout life, whereas sustainers' adapted their phenotype early in life to the expected mature environment.

  20. COLLECTIVE EFFECTS AT INJECTION FOR THE APS-U MBA LATTICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, R.; Borland, M.; Blednykh, A.

    The Advanced Photon Source has proposed an upgrade to a multi-bend achromat (MBA) with a proposed timing mode calls for 48 bunches of 15 nC each. In this mode of operation we find that phase space mismatch from the booster can drive large wakefields that in turn may limit the current below that of the nominal collective instability threshold. We show that collective effects at injection lead to emittance growth that makes usual off-axis accumulation very challenging. On-axis injection ameliorates many of these issues, but we find that transverse feedback is still required. We explore the role of impedance, feedback,more » and phase-space mismatch on transverse instabilities at injection.« less

  1. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  2. Achromatized transmission-type holographic screen for a multiview stereoscopic image system

    NASA Astrophysics Data System (ADS)

    Hwang, Seon-Ho; Bobrinev, V. I.; Son, Jung-Young; Shestak, S. A.; Jeon, Hyung-Wook

    1997-09-01

    The main drawback of the use of transmission-type holographic screens is poor color reproduction caused by their high spectral dispersion. For overcoming this drawback, a long, narrow diffusing slit is used as an object when recording the screen. The necessary size and position of the slit relative to the photoplate and to the recording and reconstruction beams are determined by the phase relations of the beams. By use of the slit, holographic screens of 30 cm 40 cm are recorded with a diverging reference beam and are used to display a multiview full-color stereoscopic image. The images displayed on the screen show no sign of color separation except near the edges of the screen. The image brightness on the screen is high enough that it can be watched in a normally illuminated room.

  3. Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori

    2015-06-01

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.

  4. Coherent imaging with incoherent light in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  5. Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance

    NASA Technical Reports Server (NTRS)

    Snook, Allen David

    1993-01-01

    Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.

  6. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    DOE PAGES

    Chaudhuri, S.; Li, D.; Irwin, K. D.; ...

    2017-04-10

    Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less

  7. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, S.; Li, D.; Irwin, K. D.

    Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less

  8. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  9. Dual hologram design study

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1978-01-01

    A phase modulated triple exposure technique was incorporated into a holographic nondestructive test (HNDT) system. The technique was able to achieve a goal of simultaneously identifying the zero-order fringe and determining the direction of motion (or displacement). Basically, the technique involves the addition of one more exposure, during the loading of the tested object, to the conventional double-exposure hologram. A phase shifter is added to either the object beam or the reference beam during the second and third exposure. Theoretical analysis with the assistance of computer simulation illustrated the feasibility of implementing the phase modulation and triple-exposure in the HNDT systems. Main advantages of the technique are the enhancement of accuracy in data interpretation and a better determination of the nature of the flaws in the tested object.

  10. Performance Evaluation of Analog Beamforming with Hardware Impairments for mmW Massive MIMO Communication in an Urban Scenario.

    PubMed

    Gimenez, Sonia; Roger, Sandra; Baracca, Paolo; Martín-Sacristán, David; Monserrat, Jose F; Braun, Volker; Halbauer, Hardy

    2016-09-22

    The use of massive multiple-input multiple-output (MIMO) techniques for communication at millimeter-Wave (mmW) frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G) cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF) chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice.

  11. Optimal Discrete Spatial Compression for Beamspace Massive MIMO Signals

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zhou, Sheng; Niu, Zhisheng

    2018-05-01

    Deploying massive number of antennas at the base station side can boost the cellular system performance dramatically. Meanwhile, it however involves significant additional radio-frequency (RF) front-end complexity, hardware cost and power consumption. To address this issue, the beamspace-multiple-input-multiple-output (beamspace-MIMO) based approach is considered as a promising solution. In this paper, we first show that the traditional beamspace-MIMO suffers from spatial power leakage and imperfect channel statistics estimation. A beam combination module is hence proposed, which consists of a small number (compared with the number of antenna elements) of low-resolution (possibly one-bit) digital (discrete) phase shifters after the beamspace transformation to further compress the beamspace signal dimensionality, such that the number of RF chains can be reduced beyond beamspace transformation and beam selection. The optimum discrete beam combination weights for the uplink are obtained based on the branch-and-bound (BB) approach. The key to the BB-based solution is to solve the embodied sub-problem, whose solution is derived in a closed-form. Based on the solution, a sequential greedy beam combination scheme with linear-complexity (w.r.t. the number of beams in the beamspace) is proposed. Link-level simulation results based on realistic channel models and long-term-evolution (LTE) parameters are presented which show that the proposed schemes can reduce the number of RF chains by up to $25\\%$ with a one-bit digital phase-shifter-network.

  12. Beam director design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept designmore » report, and the final report on the design and fabrication project. (LEW)« less

  13. Beam director design report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and a prototype vernier steering magnet were designed and built. In volume I, the design requirements are stated, the design is summarized and illustrated, and detailed analysis and computations are provided. Also, a summary of materialsmore » used, a description of the manufacturing process, and a summary of project funding are provided. (LEW)« less

  14. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  15. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  16. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    NASA Astrophysics Data System (ADS)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  17. Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis

    PubMed Central

    SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.

    2006-01-01

    Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to

  18. Implications of facultative catadromy in Anguilla anguilla. Does individual migratory behaviour influence eel spawner quality?

    NASA Astrophysics Data System (ADS)

    Marohn, Lasse; Jakob, Eva; Hanel, Reinhold

    2013-03-01

    European eel (Anguilla anguilla) recruitment is declining dramatically since the 1980s. Causes for this decline are explained by a combination of environmental changes basically affecting oceanic larval stages and a variety of anthropogenic impacts during the continental phase. Today, evidence is growing that poor silver eel quality has a major impact on reproductive success, implying that habitat quality plays a key role in stock decline. Since eels are frequently moving through a variety of different habitats during their life cycle, a better understanding of the implications of individual diadromous behaviour and habitat choice on spawner quality are crucial for management considerations for a stock recovery. The present study tested whether individual migratory behaviour and habitat choice of European eels affect spawner quality. Therefore, the migratory behaviour of 287 European eels from marine, brackish and freshwater stations in the North Sea, the Baltic Sea and from Northern German inland waters was examined by otolith strontium/calcium analysis. All individuals were classified either as freshwater residents, coastal residents, downstream shifters, upstream shifters or interhabitat shifters. As indicators for eel quality, muscle fat content, infection with the introduced swimbladder nematode Anguillicoloides crassus and body length at onset of spawning migration were assessed. Results indicate that individuals that exclusively inhabited freshwaters had significantly lower muscle fat contents and were more seriously infected with A. crassus than eels that never entered freshwaters. Since high fat contents are considered as prerequisites for a successful transoceanic spawning migration and high A. crassus loads have a negative impact on condition, this study outlines the importance of brackish waters as eel habitats in temperate latitudes. Furthermore, it questions the net benefit of stocking programs for the European eel population, since they include the

  19. X ray sensitivity of diploid skin fibroblasts from patients with Fanconi's anemia

    NASA Technical Reports Server (NTRS)

    Kale, Ranjini

    1989-01-01

    Experiments were performed on Fanconi's anemia and normal human fibroblast cell lines growing in culture in an attempt to correlate cell cycle kinetics with genomic damage and determine their bearing on the mechanism of chromosome aberration induction. FA fibroblasts showed a significantly increased susceptibility to chromosomal breakage by x rays in the G2 phase of the cell cycle. No such response was observed in fibroblasts irradiated in the G0 phase. The observed increases in achromatic lesions and in chromatid deletions in FA cells as compared with normal cells appear to indicate that FA cells are deficient in strand break repair and also possibly in base damage excision repair. Experiments are now in progress to further elucidate the mechanisms involved.

  20. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  1. Femto-second synchronisation with a waveguide interferometer

    NASA Astrophysics Data System (ADS)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  2. RF MEMS and Their Applications in NASA's Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung

    2001-01-01

    Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.

  3. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus)

    PubMed Central

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets’ (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming “U” and inverted “U” patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period. PMID:26047350

  4. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus).

    PubMed

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets' (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming "U" and inverted "U" patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period.

  5. Radio Frequency (RF) Micro-Electromechanical Systems (MEMS) Switches for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Ponchak, George E.; Scardelletti, Maximillian C.; Varaljay, Nicholas C.

    2000-01-01

    Micro-electromechanical systems (MEMS) is an emerging technology for radio frequency (RF) systems because it has the potential to dramatically decrease loss and improve efficiency. In this paper, we address the design and fabrication of novel MEMS switches being developed at NASA Glenn Research Center. Two types of switches are being developed: a microstrip series single pole single throw (SPST) switch and a coplanar waveguide (CPW) series SPST and single pole double throw (SPDT) switches. These are being fabricated as an integral part of 50 Ohm microstrip and CPW RF integrated circuits using microfabrication techniques. The construction of the switch relies on a cantilever beam that is partially supported by a dielectric post. The cantilever beam is electro-magnetically actuated. To decrease stiction, a Si3N4 thin film is deposited over the contact area. Thus, when the switch is closed, the ON-state insertion loss is governed by the parallel plate capacitance formed by the two contacts. The isolation in the OFF-state is governed by the parasitic capacitance when the cantilever is in the up position. RF MEMS switches have been demonstrated with 80% lower insertion loss than conventional solid state devices (GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and Silicon PIN diodes) based switches. For example, a conventional GaAs five-bit phase shifter which is required for beam steering in a phased array antenna has approximately 7 dB of insertion loss at 26.5 GHz where as a comparable MEMS based phase shifter is expected to have only 2 dB of insertion loss. This translates into 56% lower power dissipation and therefore decreases the thermal load on the spacecraft and also reduces the power amplifier requirements. These benefits will enable NASA to build the next generation of deep space science crafts and micro/nano satellites.

  6. Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro

    2016-05-01

    We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.

  7. Polarization holograms allow highly efficient generation of complex light beams.

    PubMed

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  8. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1993-01-01

    This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.

  9. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  10. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  11. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  12. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  13. Design and analysis of coherent OCDM en/decoder based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun

    2008-08-01

    The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.

  14. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  15. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  16. Instrumentation for investigation of corona discharges from insulated wires

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1975-01-01

    A coaxial cylinder configuration is used to investigate the effect of corona impulses on the deterioration of electrical insulation. The corona currents flowing through the resistance develop a voltage which is fed to the measuring set-up. The value of this resistance is made equal to the surge impedance of the coaxial cylinder set up to prevent reflections. This instrumentation includes a phase shifter and Schmidt trigger and is designed to sample, measure, and display corona impulses occurring during any predetermined sampling period of a randomly selectable half cycle of the 60 Hz high voltage wave.

  17. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  18. High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  19. Design of microstrip components by computer

    NASA Technical Reports Server (NTRS)

    Cisco, T. C.

    1972-01-01

    A number of computer programs are presented for use in the synthesis of microwave components in microstrip geometries. The programs compute the electrical and dimensional parameters required to synthesize couplers, filters, circulators, transformers, power splitters, diode switches, multipliers, diode attenuators and phase shifters. Additional programs are included to analyze and optimize cascaded transmission lines and lumped element networks, to analyze and synthesize Chebyshev and Butterworth filter prototypes, and to compute mixer intermodulation products. The programs are written in FORTRAN and the emphasis of the study is placed on the use of these programs and not on the theoretical aspects of the structures.

  20. High temperature superconducting thin film microwave circuits - Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here, the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  1. IODC 1998 Lens Design Problem Revisited: A Strategy for Simplifying Glass Choices in an Apochromatic Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seppala, L G

    2000-09-15

    A glass-choice strategy, based on separately designing an achromatic lens before progressing to an apochromatic lens, simplified my approach to solving the International Optical Design Conference (IODC) 1998 lens design problem. The glasses that are needed to make the lens apochromatic are combined into triplet correctors with two ''buried'' surfaces. By applying this strategy, I reached successful solutions that used only six glasses--three glasses for the achromatic design and three additional glasses for the apochromatic design.

  2. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface

  3. Rocket experiment METS Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  4. Rocket experiment METS - Microwave Energy Transmission in Space

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  5. A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy.

    PubMed

    Elezzabi, A Y; Maraghechi, P

    2012-05-01

    A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.

  6. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    NASA Technical Reports Server (NTRS)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  7. Active control of thermoacoustic amplification in a thermo-acousto-electric engine

    NASA Astrophysics Data System (ADS)

    Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick

    2014-05-01

    In this paper, a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device, connected through a feedback loop to a reference microphone, a phase-shifter, and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine, and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction, compared to the one reached without active control. Applicability and further directions of investigation are also discussed.

  8. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining.

    PubMed

    Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary

    2012-07-15

    Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

  9. Broadband, Achromatic Twyman-Green Interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J.

    1991-01-01

    Improved Twyman-Green interferometer used in wave-front testing optical components at wavelengths from 200 to 1,100 nm, without having to readjust focus when changing wavelength. Built to measure aberrations of light passing through optical filters. Collimating and imaging lenses of classical Twyman-Green configuration replaced by single spherical mirror. Field lens replaced by field mirror. Mirrors exhibit no axial chromatic aberration and made to reflect light efficiently over desired broad range of wavelengths.

  10. Hyperspectral Shack–Hartmann test

    PubMed Central

    Birch, Gabriel C.; Descour, Michael R.; Tkaczyk, Tomasz S.

    2011-01-01

    A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700 nm in 5 and 10 nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12 μm for the singlet lens and 5 μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization. PMID:20885478

  11. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the

  12. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2012-04-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  13. Silicon modulators with optimized vertical PN junctions for high-modulation-efficiency and low-loss in the O-band

    NASA Astrophysics Data System (ADS)

    Ang, Thomas Y. L.; Png, Ching Eng; Lim, Soon Thor; Ong, Jun Rong

    2018-02-01

    Silicon modulators based on the carrier depletion mechanism are extensively used in recent years for high-speed data transmission. Lateral PN junctions are the most common electro-optical phase shifters for silicon Mach-Zehnder modulators (MZMs) due to its ease of fabrication. They have a relatively high DC VπLπ of around 2.5 V.cm in the Oband. An alternative approach is to design and optimize vertical PN junctions for lower DC VπLπ, which is currently lacking in the literature for silicon MZMs that operates using carrier depletion mechanism in the O-band. In this work, we look into the design and optimization of silicon phase shifters based on vertical PN junctions for high-modulationefficiency with VπLπ <= 1 V.cm, while meeting the stringent low loss budget of <= 1 dB/mm for data communication in the O-band. This is achieved by varying the offsets of the vertical PN junction with respect to different doping concentrations (2e17/cm3 - 3e18/cm3 ) near the depletion region. Different types of doping schemes are explored and optimized. Our optimized vertical PN junction designs are predicted to give low DC VπLπ of 0.26-0.5 V.cm for low DC reverse bias of >= -2V and low propagation loss of <= 1dB/mm, resulting in α.VπLπ = 1.7 for the best designs, which to the best of our knowledge, is the lowest α.VπLπ at the O-band to date. Electrical and optical modeling are based on our in-house proprietary software that is able to perform both optical and electrical simulations without loss of data fidelity.

  14. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.

    PubMed

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Kim, Sanggi; Lee, Jong Moo; Park, Gun Sik; Joo, Jiho; Jang, Ki-Seok; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Jong Hoon; Lee, Jun Young; Park, Jong Moon; Kim, Do-Won; Jeong, Deog-Kyoon; Hwang, Moon-Sang; Kim, Jeong-Kyoum; Park, Kyu-Sang; Chi, Han-Kyu; Kim, Hyun-Chang; Kim, Dong-Wook; Cho, Mu Hee

    2011-12-19

    We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PIC(off-chip) for off-chip optical interconnects showed operation up to 30 Gb/s. Under differential drive of low-voltage 1.2 V(pp), the integrated 1 mm-phase-shifter modulator in the PIC(off-chip) demonstrated an extinction ratio (ER) of 10.5dB for 12.5 Gb/s, an ER of 9.1dB for 20 Gb/s, and an ER of 7.2 dB for 30 Gb/s operation, without adoption of travelling-wave electrodes. The device showed the modulation efficiency of V(π)L(π) ~1.59 Vcm, and the phase-shifter loss of 3.2 dB/mm for maximum optical transmission. The Ge photodetector, which allows simpler integration process based on reduced pressure chemical vapor deposition exhibited operation over 30 Gb/s with a low dark current of 700 nA at -1V. The fabricated silicon PIC(intra-chip) for on-chip (intra-chip) photonic interconnects, where the monolithically integrated modulator and Ge photodetector were connected by a silicon waveguide on the same chip, showed on-chip data transmissions up to 20 Gb/s, indicating potential application in future silicon on-chip optical network. We also report the performance of the hybrid silicon electronic-photonic IC (EPIC), where a PIC(intra-chip) chip and 0.13μm CMOS interface IC chips were hybrid-integrated.

  15. CEBAF Superconducting Cavity RF Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Moore, Thomas

    1987-03-01

    The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less

  16. Technology achievements and projections for communication satellites of the future

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1986-01-01

    Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.

  17. Radial microstrip slotline feed network for circular mobile communications array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.

    1994-01-01

    In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.

  18. The elementary representation of spatial and color vision in the human retina.

    PubMed

    Sabesan, Ramkumar; Schmidt, Brian P; Tuten, William S; Roorda, Austin

    2016-09-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units-the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength-sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system.

  19. The elementary representation of spatial and color vision in the human retina

    PubMed Central

    Sabesan, Ramkumar; Schmidt, Brian P.; Tuten, William S.; Roorda, Austin

    2016-01-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units—the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength–sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system. PMID:27652339

  20. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Willems, F.; Smeenk, C. T. L.; Zhavoronkov, N.; Kornilov, O.; Radu, I.; Schmidbauer, M.; Hanke, M.; von Korff Schmising, C.; Vrakking, M. J. J.; Eisebitt, S.

    2015-12-01

    Magnetic circular dichroism in the extreme ultraviolet (XUV) spectral range is a powerful technique for element-specific probing of magnetization in multicomponent magnetic alloys and multilayers. We combine a high-harmonic generation source with a λ /4 phase shifter to obtain circularly polarized XUV femtosecond pulses for ultrafast magnetization studies. We report on simultaneously measured resonant magnetic circular dichroism (MCD) of Co and Ni at their respective M2 ,3 edges and of Pt at its O edge, originating from interface magnetism. We present a time-resolved MCD absorption measurement of a thin magnetic Pt/Co/Pt film, showing simultaneous demagnetization of Co and Pt on a femtosecond time scale.

  1. High-temperature superconductivity for avionic electronic warfare and radar systems

    NASA Astrophysics Data System (ADS)

    Ryan, Paul A.

    1994-01-01

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.

  2. Interferometric modulation of quantum cascade interactions

    NASA Astrophysics Data System (ADS)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  3. FPGA implementation of digital down converter using CORDIC algorithm

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashok; Lakshmi, Boppana

    2013-01-01

    In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.

  4. Using the intrinsic properties of silicon micro-ring modulators for characterization of RF termination

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Knights, Andrew P.

    2017-02-01

    We describe a direct experimental method to determine the effective driving voltage (Vpp) applied to a silicon photonic modulator possessing an impedance mismatch between the unterminated capacitive load and input source. This method thus permits subsequent estimation of the power consumption of an imperfectly terminated device as well as a deduction of load impedance for optimization of termination design. The capacitive load in this paper is a silicon micro-ring modulator with an integrated p-n junction acting as a phase shifter. The RF reflection under high-speed drive is directly determined from observation of the eye-diagram following measurement of the power transfer function for various junction bias.

  5. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  6. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition.

    PubMed

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-03-07

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  7. An X-Band SOS Resistive Gate-Insulator-Semiconductor /RIS/ switch

    NASA Astrophysics Data System (ADS)

    Kwok, S. P.

    1980-02-01

    The new X-Band Resistive Gate-Insulator-Semiconductor (RIS) switch has been fabricated on silicon-on-sapphire, and its equivalent circuit model characterized. An RIS SPST switch with 20-dB on/off isolation, 1.2-dB insertion loss, and power handling capacity in excess of 20-W peak has been achieved at X band. The device switching time is on the order of 600 ns, and it requires negligible control holding current in both on and off states. The device is compatible with monolithic integrated-circuit technology and thus is suitable for integration into low-cost monolithic phase shifters or other microwave integrated circuits.

  8. Robust transmission of non-Gaussian entanglement over optical fibers

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Lidar, Daniel A.

    2006-12-01

    We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter.

  9. Comparison of qubit and qutrit like entangled squeezed and coherent states of light

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-10-01

    Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).

  10. Ferroelectric Based High Power Components for L-Band Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Jing, Chunguang; Kostin, Roman

    2018-01-16

    We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less

  11. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  12. Triggerfish uses chromaticity and lightness for object segregation

    PubMed Central

    2017-01-01

    Humans group components of visual patterns according to their colour, and perceive colours separately from shape. This property of human visual perception is the basis behind the Ishihara test for colour deficiency, where an observer is asked to detect a pattern made up of dots of similar colour with variable lightness against a background of dots made from different colour(s) and lightness. To find out if fish use colour for object segregation in a similar manner to humans, we used stimuli inspired by the Ishihara test. Triggerfish (Rhinecanthus aculeatus) were trained to detect a cross constructed from similarly coloured dots against various backgrounds. Fish detected this cross even when it was camouflaged using either achromatic or chromatic noise, but fish relied more on chromatic cues for shape segregation. It remains unknown whether fish may switch to rely primarily on achromatic cues in scenarios where target objects have higher achromatic contrast and lower chromatic contrast. Fish were also able to generalize between stimuli of different colours, suggesting that colour and shape are processed by fish independently. PMID:29308267

  13. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.

  14. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  15. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic

  16. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  17. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  18. Modulated Elliptical Slot

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.

    2009-01-01

    A novel modulated slot design has been proposed and tested. The proposed slot is aimed to replace the inefficient small dipoles used in conventional MST-based imaging systems. The developed slot is very attractive as MST array element due to its small size and high efficiency/modulation depth. In fact, the developed slot has been successfully used to implement the first prototype of a microwave camera operating at 24 GHZ. It is also being used in the design of the second generation of the camera. Finally, the designed elliptical slot can be used as an electronically controlled waveguide iris for many other purposes (for instance in constructing waveguide reflective phase shifters and multiplexers/switches).

  19. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode.

    PubMed

    Ziebell, Melissa; Marris-Morini, Delphine; Rasigade, Gilles; Fédéli, Jean-Marc; Crozat, Paul; Cassan, Eric; Bouville, David; Vivien, Laurent

    2012-05-07

    40 Gbit/s low-loss silicon optical modulators are demonstrated. The devices are based on the carrier depletion effect in a pipin diode to generate a good compromise between high efficiency, speed and low optical loss. The diode is embedded in a Mach-Zehnder interferometer, and a self-aligned fabrication process was used to obtain precise localization of the active p-doped region in the middle of the waveguide. Using a 4.7 mm (resp. 0.95 mm) long phase shifter, the modulator exhibits an extinction ratio of 6.6 dB (resp. 3.2 dB), simultaneously with an optical loss of 6 dB (resp. 4.5 dB) at the same operating point.

  20. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  1. Development of Bread Board Model of TRMM precipitation radar

    NASA Astrophysics Data System (ADS)

    Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi

    The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.

  2. Experimental Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team

    An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.

  3. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  4. Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field.

    PubMed

    Yu, Jian-Ping; Chen, Sai; Fan, Fei; Cheng, Jie-Rong; Xu, Shi-Tong; Wang, Xiang-Hui; Chang, Sheng-Jiang

    2018-01-22

    In this work, the optically anisotropic property of dual-frequency liquid crystals (DFLC) in terahertz (THz) regime has been experimentally investigated, which indicates that the refractive index and birefringence of DFLC can be continuously modulated by both the alternating frequency and intensity of the alternating electric field. This tunability originates from the rotation of DFLC molecules induced by alternating electric fields. The results show that by modulating the alternating frequency from 1 kHz to 100 kHz under 30 kV/m electric field, the 600 μm thickness DFLC cell can play as a tunable quarter-wave plate above 0.68 THz, or a half-wave plate above 1.33 THz. Besides, it can be viewed as a tunable THz phase shifter from 0 to π. Therefore, due to its novel tuning mechanism, DFLC will be of great significance in dynamic manipulating on THz phase and polarization.

  5. Phases, phase equilibria, and phase rules in low-dimensional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less

  6. Achromatic illumination system for small targets

    DOEpatents

    Sigler, Robert D.

    1979-01-01

    A pair of light beams is directed to provide illumination that is substantially uniform from all directions on a small target by a system comprising a pair of corrector windows, a pair of planar reflecting surfaces, a pair of paraboloidal mirrors and a reflecting mirror cavity. The components are arranged so that each of the beams passes through a corrector and is reflected from the planar surface to the paraboloidal mirror, from which it is focused through a hole in the planar surface to the interior of the cavity. The surface of the interior portion of the cavity is shaped to reflect the focused beam three times before the focused reflected beam strikes the target.

  7. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the

  8. Does the chromatic Mach bands effect exist?

    PubMed

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  9. Searching through synaesthetic colors.

    PubMed

    Laeng, Bruno

    2009-10-01

    Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.

  10. Determinants of Colour Constancy and the Blue Bias

    PubMed Central

    Gegenfurtner, Karl

    2017-01-01

    We investigated several sensory and cognitive determinants of colour constancy across 40 illumination hues. In the first experiment, we measured colour naming for the illumination and for the colour induced by the illumination on the colorimetric grey. Results confirmed that the induced colours are approximately complementary to the colour of the illumination. In the second experiment, we measured colour constancy using achromatic adjustments. Average colour constancy was perfect under the blue daylight illumination and decreased in colour directions away from the blue daylight illumination due to undershooting and a strong blue bias. Apart from this blue bias, colour constancy was not related to illumination discrimination and to chromatic detection measured previously with the same setup and stimuli. We also observed a strong negative relationship between the degree of colour constancy and the consensus of naming the illumination colour. Constancy coincided with a low naming consensus, in particular because bluish illumination colours were sometimes seen as achromatic. Blue bias and category consensus alone explained >68%, and all determinants together explained >94% of the variance of achromatic adjustments. These findings suggest that colour constancy is optimised for blue daylight. PMID:29348910

  11. Free-running waveform characterization using a delay-time tunable laser based delay-line-free electro-optic sampling oscilloscope

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru

    2002-12-01

    We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.

  12. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    PubMed

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  13. ALICE Expert System

    NASA Astrophysics Data System (ADS)

    Ionita, C.; Carena, F.

    2014-06-01

    The ALICE experiment at CERN employs a number of human operators (shifters), who have to make sure that the experiment is always in a state compatible with taking Physics data. Given the complexity of the system and the myriad of errors that can arise, this is not always a trivial task. The aim of this paper is to describe an expert system that is capable of assisting human shifters in the ALICE control room. The system diagnoses potential issues and attempts to make smart recommendations for troubleshooting. At its core, a Prolog engine infers whether a Physics or a technical run can be started based on the current state of the underlying sub-systems. A separate C++ component queries certain SMI objects and stores their state as facts in a Prolog knowledge base. By mining the data stored in different system logs, the expert system can also diagnose errors arising during a run. Currently the system is used by the on-call experts for faster response times, but we expect it to be adopted as a standard tool by regular shifters during the next data taking period.

  14. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  15. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  16. Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.

    2007-01-01

    The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.

  17. Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit

    NASA Astrophysics Data System (ADS)

    Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.

  18. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  19. Tunable Microwave Components for Ku- and K-Band Satellite Communications

    NASA Technical Reports Server (NTRS)

    Miranada, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Subramanyam, G.

    1998-01-01

    The use of conductor/ferroelectric/dielectric thin film multilayer structures for frequency and phase agile components at frequencies at and above the Ku-band will be discussed. Among these components are edge coupled filters, microstripline ring resonators, and phase shifters. These structures were implemented using SrTiO3 (STO) ferroelectric thin films, with gold or YBa2Cu3O7-d (YBCO) high temperature superconducting (HTS) microstrip fines deposited by laser ablation on LaAlO3 (LAO) substrates. The performance of these structures in terms of tunability, operating temperature, frequency, and dc bias will be presented. Because of their small size, light weight, and low loss, these tunable microwave components are being studied very intensely at NASA as well as the commercial communication industry. An assessment of the progress made so far, and the issues yet to be solved for the successful integration of these components into the aforementioned communication systems will be presented.

  20. Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark

    2014-03-01

    A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.

  1. High temperature superconductor analog electronics for millimeter-wavelength communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.

    1991-01-01

    The performance of high temperature superconductor (HTS) passive microwave circuits up to X-band was encouraging when compared to their metallic counterparts. The extremely low surface resistance of HTS films up to about 10 GHz enables a reduction in loss by as much as 100 times compared to copper when both materials are kept at about 77 K. However, a superconductor's surface resistance varies in proportion to the frequency squared. Consequently, the potential benefit of HTS materials to millimeter-wave communications requires careful analysis. A simple ring resonator was used to evaluate microstrip losses at Ka-band. Additional promising components were investigated such as antennas and phase shifters. Prospects for HTS to favorable impact millimeter-wave communications systems are discussed.

  2. 40 K single-stage coaxial pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng

    2012-04-01

    Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented.

  3. Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration.

    PubMed

    Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui

    2012-01-30

    We demonstrate a carrier-depletion Mach-Zehnder silicon optical modulator, which is compatible with CMOS fabrication process and works well at a low driving voltage. This is achieved by the optimization of the coplanar waveguide electrode to reduce the electrical signal transmission loss. At the same time, the velocity and impedance matching are both considered. The 12.5 Gbit/s data transmission experiment of the fabricated device with a 2-mm-long phase shifter is performed. The driving voltages with the swing amplitudes of 1 V and 2 V and the reverse bias voltages of 0.5 V and 0.8 V are applied to the device, respectively. The corresponding extinction ratios are 7.67 and 12.79 dB.

  4. Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.

    Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less

  5. Linear optics only allows every possible quantum operation for one photon or one port

    NASA Astrophysics Data System (ADS)

    Moyano-Fernández, Julio José; Garcia-Escartin, Juan Carlos

    2017-01-01

    We study the evolution of the quantum state of n photons in m different modes when they go through a lossless linear optical system. We show that there are quantum evolution operators U that cannot be built with linear optics alone unless the number of photons or the number of modes is equal to one. The evolution for single photons can be controlled with the known realization of any unitary proved by Reck, Zeilinger, Bernstein and Bertani. The evolution for a single mode corresponds to the trivial evolution in a phase shifter. We analyze these two cases and prove that any other combination of the number of photons and modes produces a Hilbert state too large for the linear optics system to give any desired evolution.

  6. Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Grigsby, F.; Peng, D.; Downer, M. C.

    2004-12-01

    By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.

  7. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  8. Electrically tunable materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.

    2015-03-01

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  9. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    NASA Astrophysics Data System (ADS)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF

  10. Evaluation of the chronic disease management program for appropriateness of medication adherence and persistence in hypertension and type-2 diabetes patients in Korea.

    PubMed

    Kim, Jung-Ae; Kim, Eun-Sook; Lee, Eui-Kyung

    2017-04-01

    The chronic disease management program (CDMP), a multilevel intervention including copayment reduction and physician incentives, was introduced in 2012 in Korea to improve blood pressure and glycemic control by strengthening the function of clinic as primary care institutions in managing hypertension and diabetes. This study, therefore, aimed to evaluate the effect of CDMP on the appropriateness of medication adherence and persistence in hypertension or type-2 diabetes patients.A pre-post retrospective study was conducted using claims cohort data from 2010 to 2013. Hypertension or type-2 diabetes patients were selected as the CDMP group, while dyslipidemia patients were the control group. Study groups were further categorized as clinic shifters or non-shifters on the basis of whether hospital use changed to clinic use during the study period. Pre-post changes in adherence and persistence were assessed. Adherence was measured by medication possession ratio (MPR) and categorized as under (<0.8), appropriate (0.8-1.1), and over-adherence (>1.1). Persistence was measured by 12-month cumulative persistence rate.The pre-post change was significantly improved for appropriate-adherence (hypertension, +6.0%p; diabetes, +6.1%p), 12-month cumulative persistence (hypertension, +6.5%p; diabetes, +10.8%p), and over-adherence (hypertension, -5.3%p; diabetes, -2.8%p) only among the shifters in the CDMP group. Among these, patients visiting the same, single clinic showed a significant increase in appropriate-adherence, whereas those who changed their clinics showed a nonsignificant increase. No significant improvement was verified among the non-shifters in the CDMP group.CDMP improved medication adherence and persistence by significantly increasing appropriate-adherence and 12-month cumulative persistence rate in hypertension and type-2 diabetes patients. Particularly, CDMP significantly improved over-adherence, which was associated with increasing healthcare costs and

  11. Cross-orientation masking in human color vision: application of a two-stage model to assess dichoptic and monocular sources of suppression.

    PubMed

    Kim, Yeon Jin; Gheiratmand, Mina; Mullen, Kathy T

    2013-05-28

    Cross-orientation masking (XOM) occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is thought to reveal the suppressive effects mediating contrast normalization. Medina and Mullen (2009) reported that XOM was greater for chromatic than achromatic stimuli at equivalent spatial and temporal frequencies. Here we address whether the greater suppression found in binocular color vision originates from a monocular or interocular site, or both. We measure monocular and dichoptic masking functions for red-green color contrast and achromatic contrast at three different spatial frequencies (0.375, 0.75, and 1.5 cpd, 2 Hz). We fit these functions with a modified two-stage masking model (Meese & Baker, 2009) to extract the monocular and interocular weights of suppression. We find that the weight of monocular suppression is significantly higher for color than achromatic contrast, whereas dichoptic suppression is similar for both. These effects are invariant across spatial frequency. We then apply the model to the binocular masking data using the measured values of the monocular and interocular sources of suppression and show that these are sufficient to account for color binocular masking. We conclude that the greater strength of chromatic XOM has a monocular origin that transfers through to the binocular site.

  12. Phase relationship in three-phase composites which include a void phase

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1976-01-01

    The paper shows the relationship among polymer, particles, and voids in a three-phase composite and how some of the properties of a composite may be changed by changing the proportions of the phases. The three-phase composite is an aggregate of microspheres bonded together with a small amount of polymer which may not form a continuous matrix. The void space (third phase) is obtained by limiting the amount of polymer which is mixed with the microspheres. A ternary phase diagram is used to show the proportional relationship among the three phases, with each apex representing a volume fraction of unity for a constituent while the side opposite the apex represents a volume fraction of zero for that constituent. The vertical dimension represents some composite property such as density or strength. The effect of composition on composite properties is shown by plotting them on a binary phase diagram which represents a perpendicular plane coincident with the 0.60 volume fraction microsphere line.

  13. CrowdPhase: crowdsourcing the phase problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  14. SU-E-T-441: Comparison of Dose Distributions for Spot-Scanned Pencil-Beam and Scattered-Beam Proton Treatments of Ocular Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deisher, A; Whitaker, T; Kruse, J

    2014-06-01

    Purpose: To study the cross-field and depth dose profiles of spot-scanned pencil beam configurations for the treatment of ocular tumors and to compare their performance to a simulated scattered beam. Methods: Dose distributions in a cubic water phantom were compared for beams that passed through a final 24mm diameter aperture to deposit maximum dose at 2.4cm depth. The pencil-beam spots formed a hexagonally-packed ring with a center-to-center spacing of 4mm. The protons exited the nozzle with energy 95.5MeV, traversed a 4.5cm water-equivalent range shifter, and travelled either 42.5cm or 100cm to the phantom surface. The aperture-to-phantom distance (APD) was 5.7cmmore » to allow room for eye-tracking hardware. A configuration with APD=0 was also tested. The scattered beam was generated with energy 159MeV, passed through 127mm of Lexan, exited the final aperture, and travelled 5.7cm to the phantom surface. This latter configuration is comparable to the MGH single scattered beamline. All beams were modelled with TOPAS1.0-beta6 compiled with GEANT4.9.6p2. Results: The modeled scattered beam produced a distal fall-off along the central axis of zd90%-zd10%=3.6mm. For the pencil beam, the zd90%-zd10% was 1.6mm in all configurations. The scattered beam's cross-field penumbra at depth of maximum dose was r90%- r10%=1.9mm. For the spot-scanned configuration with the range-shifter-tophantom distance (RsPD) of 100cm, similar cross-field profiles were achieved with r90%-r10%=2.0mm. At shorter RsPD of 42.5cm, the crossfield penumbras were 5.6mm and 7.7mm for APD=0cm and APD=5.7cm, respectively. Conclusion: For proton treatments employing a range shifter, the cross-field and central axis dose profiles depend on the quality of the original beam, the size of the range shifter, the distance from the range shifter exit to the patient, and the distance from the final aperture to the patient. A spot-scanned pencil beam configuration can achieve cross-field penumbras equal to a

  15. General phase regularized reconstruction using phase cycling.

    PubMed

    Ong, Frank; Cheng, Joseph Y; Lustig, Michael

    2018-07-01

    To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. CrowdPhase: crowdsourcing the phase problem

    PubMed Central

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-01-01

    The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing. PMID:24914965

  17. Use of dimensionality to enhance tunable microwave dielectrics

    NASA Astrophysics Data System (ADS)

    Schlom, D. G.; Lee, Che-Hui; Haislmaier, R.; Vlahos, E.; Gopalan, V.; Birol, T.; Zhu, Y.; Kourkoutis, L. F.; Benedek, N.; Kim, Y.; Brock, J. D.; Muller, D. A.; Fennie, C. J.; Orloff, N. D.; Booth, J. C.; Goian, V.; Kamba, S.; Biegalski, M. D.; Bernhagen, M.; Uecker, R.; Xi, X. X.; Takeuchi, I.

    2012-02-01

    The miniaturization and integration of frequency-agile microwave circuits---tunable filters, resonators, phase shifters and more---with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at GHz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems, e.g., BaxSr1-xTiO3, have a paraelectric-to-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss---Srn+1TinO3n+1 phases---where in-plane crystallographic shear (SrO)2 faults provide an alternative to point defects for accommodating non-stoichiometry. In this talk we will establish both experimentally and theoretically the emergence of a ferroelectric and highly tunable ground state in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 40 GHz. With increasing n the (SrO)2 faults are separated further than the ferroelectric coherence length perpendicular to the in-plane polarization, enabling tunability with a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

  18. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S.; Cai, H.; DeRose, C. T.

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  19. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE PAGES

    Liu, S.; Cai, H.; DeRose, C. T.; ...

    2017-05-04

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  20. Modeling and Optimization of Optical Half Adder in Two Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Sonth, Mahesh V.; Soma, Savita; Gowre, Sanjaykumar C.; Biradar, Nagashettappa

    2018-05-01

    The output of photonic integrated devices is enhanced using crystal waveguides and cavities but optimization of these devices is a topic of research. In this paper, optimization of the optical half adder in two-dimensional (2-D) linear photonic crystals using four symmetric T-shaped waveguides with 180° phase shift inputs is proposed. The input section of a T-waveguide acts as a beam splitter, and the output section acts as a power combiner. The constructive and destructive interference phenomenon will provide an output optical power. Output port Cout will receive in-phase power through the 180° phase shifter cavity designed near the junction. The optical half adder is modeled in a 2-D photonic crystal using the finite difference time domain method (FDTD). It consists of a cubic lattice with an array of 39 × 43 silicon rods of radius r 0.12 μm and 0.6 μm lattice constant a. The extinction ratio r e of 11.67 dB and 12.51 dB are achieved at output ports using the RSoft FullWAVE-6.1 software package.