Sample records for acid amide hydrolase-1

  1. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    PubMed

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  2. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

    PubMed Central

    2015-01-01

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  3. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, George; Nagarajan, Subbiah; Chapman, Kent

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  4. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOEpatents

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  5. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    PubMed

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  6. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  7. High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes

    PubMed Central

    Peat, Thomas S.; Balotra, Sahil; Wilding, Matthew; Hartley, Carol J.; Newman, Janet

    2017-01-01

    ABSTRACT The Toblerone fold was discovered recently when the first structure of the cyclic amide hydrolase, AtzD (a cyanuric acid hydrolase), was elucidated. We surveyed the cyclic amide hydrolase family, finding a strong correlation between phylogenetic distribution and specificity for either cyanuric acid or barbituric acid. One of six classes (IV) could not be tested due to a lack of expression of the proteins from it, and another class (V) had neither cyanuric acid nor barbituric acid hydrolase activity. High-resolution X-ray structures were obtained for a class VI barbituric acid hydrolase (1.7 Å) from a Rhodococcus species and a class V cyclic amide hydrolase (2.4 Å) from a Frankia species for which we were unable to identify a substrate. Both structures were homologous with the tetrameric Toblerone fold enzyme AtzD, demonstrating a high degree of structural conservation within the cyclic amide hydrolase family. The barbituric acid hydrolase structure did not contain zinc, in contrast with early reports of zinc-dependent activity for this enzyme. Instead, each barbituric acid hydrolase monomer contained either Na+ or Mg2+, analogous to the structural metal found in cyanuric acid hydrolase. The Frankia cyclic amide hydrolase contained no metal but instead formed unusual, reversible, intermolecular vicinal disulfide bonds that contributed to the thermal stability of the protein. The active sites were largely conserved between the three enzymes, differing at six positions, which likely determine substrate specificity. IMPORTANCE The Toblerone fold enzymes catalyze an unusual ring-opening hydrolysis with cyclic amide substrates. A survey of these enzymes shows that there is a good correlation between physiological function and phylogenetic distribution within this family of enzymes and provide insights into the evolutionary relationships between the cyanuric acid and barbituric acid hydrolases. This family of enzymes is structurally and mechanistically

  8. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial

  9. Novel propanamides as fatty acid amide hydrolase inhibitors.

    PubMed

    Deplano, Alessandro; Morgillo, Carmine Marco; Demurtas, Monica; Björklund, Emmelie; Cipriano, Mariateresa; Svensson, Mona; Hashemian, Sanaz; Smaldone, Giovanni; Pedone, Emilia; Luque, F Javier; Cabiddu, Maria G; Novellino, Ettore; Fowler, Christopher J; Catalanotti, Bruno; Onnis, Valentina

    2017-08-18

    Fatty acid amide hydrolase (FAAH) has a key role in the control of the cannabinoid signaling, through the hydrolysis of the endocannabinoids anandamide and in some tissues 2-arachidonoylglycerol. FAAH inhibition represents a promising strategy to activate the cannabinoid system, since it does not result in the psychotropic and peripheral side effects characterizing the agonists of the cannabinoid receptors. Here we present the discovery of a novel class of profen derivatives, the N-(heteroaryl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamides, as FAAH inhibitors. Enzymatic assays showed potencies toward FAAH ranging from nanomolar to micromolar range, and the most compounds lack activity toward the two isoforms of cyclooxygenase. Extensive structure-activity studies and the definition of the binding mode for the lead compound of the series are also presented. Kinetic assays in rat and mouse FAAH on selected compounds of the series demonstrated that slight modifications of the chemical structure could influence the binding mode and give rise to competitive (TPA1) or non-competitive (TPA14) inhibition modes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Characterization of fatty acid amide hydrolase activity by a fluorescence-based assay.

    PubMed

    Dato, Florian M; Maaßen, Andreas; Goldfuß, Bernd; Pietsch, Markus

    2018-04-01

    Fatty acid amide hydrolase (FAAH) is involved in many human diseases, particularly cancer, pain and inflammation as well as neurological, metabolic and cardiovascular disorders. Therefore, FAAH is an attractive target for the development of low-molecular-weight inhibitors as therapeutics, which requires robust assays that can be used for high-throughput screening (HTS) of compound libraries. Here, we report the development of a fluorometric assay based on FAAH's ability to effectively hydrolyze medium-chain fatty acid amides, introducing N-decanoyl-substituted 5-amino-2-methoxypyridine (D-MAP) as new amide substrate. D-MAP is cleaved by FAAH with an 8-fold larger specificity constant than the previously reported octanoyl-analog Oc-MAP (V max /K m of 1.09 and 0.134 mL min -1 mg -1 , respectively), with both MAP derivatives possessing superior substrate properties and much increased aqueous solubility compared to the respective p-nitroaniline compounds D-pNA and Oc-pNA. The new assay with D-MAP as substrate is highly sensitive using a lower enzyme concentration (1 μg mL -1 ) than literature-reported fluorimetric FAAH assays. In addition, D-MAP was validated in comparison to the substrate Oc-MAP for the characterization of FAAH inhibitors by means of the reference compounds URB597 and TC-F2 and was shown to be highly suitable for HTS in both kinetic and endpoint assays (Z' factors of 0.81 and 0.78, respectively). Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity.

    PubMed

    Maccarrone, M; Bari, M; Agrò, A F

    1999-02-15

    A radiochromatographic method has been set up in order to determine fatty acid amide hydrolase (FAAH) activity, based on reversed-phase high-performance liquid chromatography and on-line scintillation counting. The reaction products were separated using a C18 column eluted with methanol-water-acetic acid and quantitated with an external standard. Baseline separation of the acid product from the substrate was completed in less than 4 min, with a detection limit of 2.5 fmol arachidonic acid at a signal to noise ratio of 4:1. The method enabled to determine the kinetic constants (i.e., apparent Km of 2.0 +/- 0.2 microM and Vmax of 800 +/- 75 pmol. min-1. mg protein-1 toward anandamide) and the substrate specificity of human brain FAAH, as well as the extent of enzyme inhibition by some anandamide congeners. The femtomole sensitivity and the accuracy of the method allow detection and characterization of the activity of FAAH in very minute tissue samples or in samples where the enzymatic activity is very low. Copyright 1999 Academic Press.

  12. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    PubMed

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  13. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.

    PubMed

    Huitron-Resendiz, Salvador; Sanchez-Alavez, Manuel; Wills, Derek N; Cravatt, Benjamin F; Henriksen, Steven J

    2004-08-01

    Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, we characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. N/A. FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. Sleep deprivation. FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.

  14. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less

  15. Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-α nuclear receptors

    PubMed Central

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB1-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for α-type peroxisome proliferator-activated nuclear receptors, PPAR-α) when and where they are naturally released in the brain. Using a passive-avoidance task in rats, we found that memory acquisition was enhanced by the FAAH inhibitor URB597 or by the PPAR-α agonist WY14643, and these enhancements were blocked by the PPAR-α antagonist MK886. These findings demonstrate novel mechanisms for memory enhancement by activation of PPAR-α, either directly by administering a PPAR-α agonist or indirectly by administering a FAAH inhibitor. PMID:19403796

  16. The endogenous cannabinoid anandamide shares discriminative stimulus effects with ∆(9)-tetrahydrocannabinol in fatty acid amide hydrolase knockout mice.

    PubMed

    Walentiny, D Matthew; Gamage, Thomas F; Warner, Jonathan A; Nguyen, Thanh K; Grainger, Darren B; Wiley, Jenny L; Vann, Robert E

    2011-04-10

    The endogenous cannabinoid system has been noted for its therapeutic potential, as well as the psychoactivity of cannabinoids such as Δ9-tetrahydrocannabinol (THC). However, less is known about the psychoactivity of anandamide (AEA), an endocannabinoid ligand. Thus, the goals of this study were to establish AEA as a discriminative stimulus in transgenic mice lacking fatty acid amide hydrolase (i.e., FAAH -/- mice unable to rapidly metabolize AEA), evaluate whether THC or oleamide, a fatty acid amide, produced AEA-like responding, and assess for CB(1) mediation of AEA's discriminative stimulus. Mice readily discriminated between 6mg/kg AEA and vehicle in a two-lever drug discrimination task. AEA dose-dependently generalized to itself. THC elicited full AEA-like responding, whereas oleamide failed to substitute. The CB(1) antagonist rimonabant attenuated AEA- and THC-induced AEA-appropriate responding, demonstrating CB(1) mediation of AEA's discriminative stimulus. These findings suggest that, in the absence of FAAH, AEA produces intoxication comparable to THC, and consequently to marijuana. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor.

    PubMed

    Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2012-10-25

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.

  18. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats.

    PubMed

    Panlilio, Leigh V; Thorndike, Eric B; Nikas, Spyros P; Alapafuja, Shakiru O; Bandiera, Tiziano; Cravatt, Benjamin F; Makriyannis, Alexandros; Piomelli, Daniele; Goldberg, Steven R; Justinova, Zuzana

    2016-05-01

    Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects.

  19. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats

    PubMed Central

    Panlilio, Leigh V.; Thorndike, Eric B.; Nikas, Spyros P.; Alapafuja, Shakiru O.; Bandiera, Tiziano; Cravatt, Benjamin F.; Makriyannis, Alexandros; Piomelli, Daniele; Goldberg, Steven R.; Justinova, Zuzana

    2015-01-01

    Rationale Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. Objectives We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). Methods A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0-28 seconds. Various test drugs were given acutely up to two times per week before daily sessions. Results One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty-acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). Conclusions FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects. PMID:26558620

  20. Insights into the mechanism and inhibition of fatty acid amide hydrolase from quantum mechanics/molecular mechanics (QM/MM) modelling.

    PubMed

    Lodola, Alessio; Mor, Marco; Sirirak, Jitnapa; Mulholland, Adrian J

    2009-04-01

    FAAH (fatty acid amide hydrolase) is a promising target for the treatment of several central nervous system and peripheral disorders. Combined QM/MM (quantum mechanics/molecular mechanics) calculations have elucidated the role of its unusual catalytic triad in the hydrolysis of oleamide and oleoylmethyl ester substrates, and have identified the productive inhibitor-binding orientation for the carbamoylating compound URB524. These are potentially crucial insights for designing new covalent inhibitors of this drug target.

  1. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  2. A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening.

    PubMed

    De Bank, Paul A; Kendall, David A; Alexander, Stephen P H

    2005-04-15

    Signalling via the endocannabinoids anandamide and 2-arachidonylglycerol appears to be terminated largely through the action of the enzyme fatty acid amide hydrolase (FAAH). In this report, we describe a simple spectrophotometric assay to detect FAAH activity in vitro using the ability of the enzyme to hydrolyze oleamide and measuring the resultant production of ammonia with a NADH/NAD+-coupled enzyme reaction. This dual-enzyme assay was used to determine Km and Vmax values of 104 microM and 5.7 nmol/min/mgprotein, respectively, for rat liver FAAH-catalyzed oleamide hydrolysis. Inhibitor potency was determined with the resultant rank order of methyl arachidonyl fluorophosphonate>phenylmethylsulphonyl fluoride>anandamide. This assay system was also adapted for use in microtiter plates and its ability to detect a known inhibitor of FAAH demonstrated, highlighting its potential for use in high-throughput screening.

  3. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase[S

    PubMed Central

    Hayes, Alexander C.; Stupak, Jacek; Li, Jianjun; Cox, Andrew D.

    2013-01-01

    N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling. PMID:23187822

  5. Synthesis and Structure-activity Relationship Studies of O-Biphenyl-3-yl Carbamates as Peripherally Restricted Fatty Acid Amide Hydrolase Inhibitors

    PubMed Central

    Moreno-Sanz, Guillermo; Duranti, Andrea; Melzig, Laurin; Fiorelli, Claudio; Ruda, Gian Filippo; Colombano, Giampiero; Mestichelli, Paola; Sanchini, Silvano; Tontini, Andrea; Mor, Marco; Bandiera, Tiziano; Scarpelli, Rita; Tarzia, Giorgio; Piomelli, Daniele

    2014-01-01

    The peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor URB937 (3, cyclohexylcarbamic acid 3’-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from the brain and spinal cord by the Abcg2 efflux transporter. Despite its inability to enter the central nervous system (CNS), 3 exerts profound antinociceptive effects in mice and rats, which result from the inhibition of FAAH in peripheral tissues and the consequent enhancement of anandamide signaling at CB1 cannabinoid receptors localized on sensory nerve endings. In the present study, we examined the structure-activity relationships (SAR) for the biphenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal phenyl rings. Our SAR studies generated a new series of peripherally restricted FAAH inhibitors and identified compound 35 (cyclohexylcarbamic acid 3’-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most potent brain-impermeant FAAH inhibitor disclosed to date. PMID:23822179

  6. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    DOE PAGES

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; ...

    2017-01-23

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. We used fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, inmore » part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Furthermore, structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.« less

  7. Fatty acid amide hydrolase-morphine interaction influences ventilatory response to hypercapnia and postoperative opioid outcomes in children.

    PubMed

    Chidambaran, Vidya; Pilipenko, Valentina; Spruance, Kristie; Venkatasubramanian, Raja; Niu, Jing; Fukuda, Tsuyoshi; Mizuno, Tomoyuki; Zhang, Kejian; Kaufman, Kenneth; Vinks, Alexander A; Martin, Lisa J; Sadhasivam, Senthilkumar

    2017-01-01

    Fatty acid amide hydrolase (FAAH) degrades anandamide, an endogenous cannabinoid. We hypothesized that FAAH variants will predict risk of morphine-related adverse outcomes due to opioid-endocannabinoid interactions. In 101 postsurgical adolescents receiving morphine analgesia, we prospectively studied ventilatory response to 5% CO 2 (HCVR), respiratory depression (RD) and vomiting. Blood was collected for genotyping and morphine pharmacokinetics. We found significant FAAH-morphine interaction for missense (rs324420) and several regulatory variants, with HCVR (p < 0.0001) and vomiting (p = 0.0339). HCVR was more depressed in patients who developed RD compared with those who did not (p = 0.0034), thus FAAH-HCVR association predicts risk of impending RD from morphine use. FAAH genotypes predict risk for morphine-related adverse outcomes.

  8. The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation.

    PubMed

    Aguilera-Portillo, Gabriela; Rangel-López, Edgar; Villeda-Hernández, Juana; Chavarría, Anahí; Castellanos, Pilar; Elmazoglu, Zubeyir; Karasu, Çimen; Túnez, Isaac; Pedraza, Gibrán; Königsberg, Mina; Santamaría, Abel

    2018-05-25

    The endocannabinoid system (ECS) actively participates in several physiological processes within the central nervous system. Among such, its involvement in the downregulation of the N-methyl-D-aspartate receptor (NMDAr) through a modulatory input at the cannabinoid receptors (CBr) has been established. After its production via the kynurenine pathway (KP), quinolinic acid (QUIN) can act as an excitotoxin through the selective overactivation of NMDAr, thus participating in the onset and development of neurological disorders. In this work, we evaluated whether the pharmacological inhibition of fatty acid amide hydrolase (FAAH) by URB597, and the consequent increase in the endogenous levels of anandamide, can prevent the excitotoxic damage induced by QUIN. URB597 (0.3 mg/kg/day × 7 days, administered before, during and after the striatal lesion) exerted protective effects on the QUIN-induced motor (asymmetric behavior) and biochemical (lipid peroxidation and protein carbonylation) alterations in rats. URB597 also preserved the structural integrity of the striatum and prevented the neuronal loss (assessed as microtubule-associated protein-2 and glutamate decarboxylase localization) induced by QUIN (1 μL intrastriatal, 240 nmol/μL), while modified the early localization patterns of CBr1 (CB1) and NMDAr subunit 1 (NR1). Altogether, these findings support the concept that the pharmacological manipulation of the endocannabinoid system plays a neuroprotective role against excitotoxic insults in the central nervous system.

  9. Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations.

    PubMed

    Tubert-Brohman, Ivan; Acevedo, Orlando; Jorgensen, William L

    2006-12-27

    Fatty acid amide hydrolase (FAAH) is a serine hydrolase that degrades anandamide, an endocannabinoid, and oleamide, a sleep-inducing lipid, and has potential applications as a therapeutic target for neurological disorders. Remarkably, FAAH hydrolyzes amides and esters with similar rates; however, the normal preference for esters reemerges when Lys142 is mutated to alanine. To elucidate the hydrolysis mechanisms and the causes behind this variation of selectivity, mixed quantum and molecular mechanics (QM/MM) calculations were carried out to obtain free-energy profiles for alternative mechanisms for the enzymatic hydrolyses. The methodology features free-energy perturbation calculations in Monte Carlo simulations with PDDG/PM3 as the QM method. For wild-type FAAH, the results support a mechanism, which features proton transfer from Ser217 to Lys142, simultaneous proton transfer from Ser241 to Ser217, and attack of Ser241 on the substrate's carbonyl carbon to yield a tetrahedral intermediate, which subsequently undergoes elimination with simultaneous protonation of the leaving group by a Lys142-Ser217 proton shuttle. For the Lys142Ala mutant, a striking multistep sequence is proposed with simultaneous proton transfer from Ser241 to Ser217, attack of Ser241 on the carbonyl carbon of the substrate, and elimination of the leaving group and its protonation by Ser217. Support comes from the free-energy results, which well reproduce the observation that the Lys142Ala mutation in FAAH decreases the rate of hydrolysis for oleamide significantly more than for methyl oleate.

  10. Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain

    PubMed Central

    Blomgren, Anders; Simonsen, Charlotte; Daulhac, Laurence; Libert, Frédéric; Chapuy, Eric; Etienne, Monique; Högestätt, Edward D.; Zygmunt, Peter M.; Eschalier, Alain

    2013-01-01

    The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol’s antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol’s analgesic activity via activation

  11. Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide

    PubMed Central

    Boger, Dale L.; Sato, Haruhiko; Lerner, Aaron E.; Hedrick, Michael P.; Fecik, Robert A.; Miyauchi, Hiroshi; Wilkie, Gordon D.; Austin, Bryce J.; Patricelli, Matthew P.; Cravatt, Benjamin F.

    2000-01-01

    The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features—an optimal C12–C8 chain length, π-unsaturation introduction at the corresponding arachidonoyl Δ8,9/Δ11,12 and oleoyl Δ9,10 location, and an α-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with Kis that drop below 200 pM and are 102–103 times more potent than the corresponding trifluoromethyl ketones. PMID:10805767

  12. Cardioprotective effects of fatty acid amide hydrolase inhibitor URB694, in a rodent model of trait anxiety

    PubMed Central

    Carnevali, Luca; Vacondio, Federica; Rossi, Stefano; Macchi, Emilio; Spadoni, Gilberto; Bedini, Annalida; Neumann, Inga D.; Rivara, Silvia; Mor, Marco; Sgoifo, Andrea

    2015-01-01

    In humans, chronic anxiety represents an independent risk factor for cardiac arrhythmias and sudden death. Here we evaluate in male Wistar rats bred for high (HAB) and low (LAB) anxiety-related behavior, as well as non-selected (NAB) animals, the relationship between trait anxiety and cardiac electrical instability and investigate whether pharmacological augmentation of endocannabinoid anandamide-mediated signaling exerts anxiolytic-like and cardioprotective effects. HAB rats displayed (i) a higher incidence of ventricular tachyarrhythmias induced by isoproterenol, and (ii) a larger spatial dispersion of ventricular refractoriness assessed by means of an epicardial mapping protocol. In HAB rats, acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), with URB694 (0.3 mg/kg), (i) decreased anxiety-like behavior in the elevated plus maze, (ii) increased anandamide levels in the heart, (iii) reduced isoproterenol-induced occurrence of ventricular tachyarrhythmias, and (iv) corrected alterations of ventricular refractoriness. The anti-arrhythmic effect of URB694 was prevented by pharmacological blockade of the cannabinoid type 1 (CB1), but not of the CB2, receptor. These findings suggest that URB694 exerts anxiolytic-like and cardioprotective effects in HAB rats, the latter via anandamide-mediated activation of CB1 receptors. Thus, pharmacological inhibition of FAAH might be a viable pharmacological strategy for the treatment of anxiety-related cardiac dysfunction. PMID:26656183

  13. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

    PubMed

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.

  14. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms

    PubMed Central

    Chang, Leon; Luo, Lin; Palmer, James A; Sutton, Steven; Wilson, Sandy J; Barbier, Ann J; Breitenbucher, James Guy; Chaplan, Sandra R; Webb, Michael

    2006-01-01

    The reversible fatty acid amide hydrolase (FAAH) inhibitor OL135 reverses mechanical allodynia in the spinal nerve ligation (SNL) and mild thermal injury (MTI) models in the rat. The purpose of this study was to investigate the role of the cannabinoid and opioid systems in mediating this analgesic effect. Elevated brain concentrations of anandamide (350 pmol g−1 of tissue vs 60 pmol g−1 in vehicle-treated controls) were found in brains of rats given OL135 (20 mg kg−1) i.p. 15 min prior to 20 mg kg−1 i.p. anandamide. Predosing rats with OL135 (2–60 mg kg−1 i.p.) 30 min before administration of an irreversible FAAH inhibitor (URB597: 0.3 mg kg−1 intracardiac) was found to protect brain FAAH from irreversible inactivation. The level of enzyme protection was correlated with the OL135 concentrations in the same brains. OL135 (100 mg kg−1 i.p.) reduced by 50% of the maximum possible efficacy (MPE) mechanical allodynia induced by MTI in FAAH+/+mice (von Frey filament measurement) 30 min after dosing, but was without effect in FAAH−/− mice. OL135 given i.p. resulted in a dose-responsive reversal of mechanical allodynia in both MTI and SNL models in the rat with an ED50 between 6 and 9 mg kg−1. The plasma concentration at the ED50 in both models was 0.7 μM (240 ng ml−1). In the rat SNL model, coadministration of the selective CB2 receptor antagonist SR144528 (5 mg kg−1 i.p.), with 20 mg kg−1 OL135 blocked the OL135-induced reversal of mechanical allodynia, but the selective CB1 antagonist SR141716A (5 mg kg−1 i.p.) was without effect. In the rat MTI model neither SR141716A or SR144528 (both at 5 mg kg−1 i.p.), or a combination of both antagonists coadministered with OL135 (20 mg kg−1) blocked reversal of mechanical allodynia assessed 30 min after dosing. In both the MTI model and SNL models in rats, naloxone (1 mg kg−1, i.p. 30 min after OL135) reversed the analgesia

  15. Suppression of acute and anticipatory nausea by peripherally restricted fatty acid amide hydrolase inhibitor in animal models: role of PPARα and CB1 receptors.

    PubMed

    Rock, Erin M; Moreno-Sanz, Guillermo; Limebeer, Cheryl L; Petrie, Gavin N; Angelini, Roberto; Piomelli, Daniele; Parker, Linda A

    2017-11-01

    Effective treatments of nausea are limited. In this study we evaluated the ability of the peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor, URB937, to suppress acute and anticipatory nausea in rats and examined the pharmacological mechanism of this effect. We investigated the potential of URB937 (administered i.p.) to reduce the establishment of lithium chloride-induced conditioned gaping (model of acute nausea) and to reduce the expression of contextually-elicited conditioned gaping (model of anticipatory nausea) in rats. The role of CB 1 receptors, CB 2 receptors and PPARα in the anti-nausea effect of URB937 was examined. The potential of URB937 to suppress FAAH activity in tissue collected from the area postrema (AP), prefrontal cortex (PFC), liver and duodenum and to elevate levels of FAAH substrates - anandamide (AEA), N-oleoylethanolamide (OEO) and N-palmitoylethanolamide (PEA) - in the AP was also evaluated. URB937 reduced acute nausea by a PPARα-dependent mechanism and reduced anticipatory nausea by a CB 1 receptor-dependent mechanism. The PPARα agonist, GW7647, similarly attenuated acute nausea. URB937 reduced FAAH activity in the liver and the duodenum but not in the PFC. In addition, URB937 reduced FAAH activity and elevated levels of fatty-acid ethanolamides in the AP, a brain region that is not protected by the blood-brain barrier. The anti-nausea action of URB937 may occur in the AP and may involve PPARα to suppress acute nausea and CB 1 receptors to suppress anticipatory nausea. © 2017 The British Pharmacological Society.

  16. Potent and selective alpha-ketoheterocycle-based inhibitors of the anandamide and oleamide catabolizing enzyme, fatty acid amide hydrolase.

    PubMed

    Romero, F Anthony; Du, Wu; Hwang, Inkyu; Rayl, Thomas J; Kimball, F Scott; Leung, Donmienne; Hoover, Heather S; Apodaca, Richard L; Breitenbucher, J Guy; Cravatt, Benjamin F; Boger, Dale L

    2007-03-08

    A study of the structure-activity relationships (SAR) of 2f (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed, targeting the 5-position of the oxazole. Examination of a series of substituted benzene derivatives (12-14) revealed that the optimal position for substitution was the meta-position with selected members approaching or exceeding the potency of 2f. Concurrent with these studies, the effect of substitution on the pyridine ring of 2f was also examined. A series of small, nonaromatic C5-substituents was also explored and revealed that the K(i) follows a well-defined correlation with the Hammett sigma(p) constant (rho = 3.01, R2 = 0.91) in which electron-withdrawing substituents enhance potency, leading to inhibitors with K(i)s as low as 400 pM (20n). Proteomic-wide screening of the inhibitors revealed that most are exquisitely selective for FAAH over all other mammalian proteases, reversing the 100-fold preference of 20a (C5 substituent = H) for the enzyme TGH.

  17. Dysfunction in Fatty Acid Amide Hydrolase Is Associated with Depressive-Like Behavior in Wistar Kyoto Rats

    PubMed Central

    Vinod, K. Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L.; Cooper, Thomas B.; Tejani-Butt, Shanaz M.

    2012-01-01

    Background While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. Methodology/Principal Findings The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. Conclusions/Significance These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder. PMID:22606285

  18. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    PubMed

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  19. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    PubMed

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  20. Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task.

    PubMed

    Varvel, Stephen A; Cravatt, Benjamin F; Engram, April E; Lichtman, Aron H

    2006-04-01

    Although recent evidence suggests that fatty acid amide hydrolase (FAAH) may represent a potential therapeutic target, few published studies have investigated FAAH or its fatty acid amide substrates (FAAs) in animal models of learning and memory. Therefore, our primary goal was to determine whether FAAH (-/-) mice, which possess elevated levels of anandamide and other FAAs, would display altered performance in four Morris water maze tasks: acquisition of a hidden fixed platform, reversal learning, working memory, and probe trials. FAAH (-/-) mice failed to exhibit deficits in any task; in fact, they initially acquired the working memory task more rapidly than FAAH (+/+) mice. The second goal of this study was to investigate whether the FAAH inhibitor OL-135 (1-oxo-1[5-(2-pyridyl)-2-yl]-7-phenylheptane), anandamide, other FAAs, and methanandamide would affect working memory in both genotypes. FAAH (-/-), but not (+/+), mice displayed working memory impairments following exogenous administration of anandamide (ED(50) = 6 mg/kg) or oleamide (50 mg/kg). However, the central cannabinoid receptor (CB(1)) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl] only blocked the disruptive effects of anandamide. Methanandamide, which is not metabolized by FAAH, disrupted working memory performance in both genotypes (ED(50) = 10 mg/kg), suggesting that CB(1) receptor signaling is unaltered by FAAH deletion. In contrast, OL-135 and other FAAs failed to affect working memory in either genotype. These results suggest that FAAH deletion does not impair spatial learning but may enhance acquisition under certain conditions. More generally, FAAH may represent a novel therapeutic target that circumvents the undesirable cognitive side effects commonly associated with direct-acting cannabinoid agonists.

  1. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    PubMed

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  2. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

    PubMed Central

    Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.

    2008-01-01

    Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866

  3. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    PubMed

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  4. Association study between alcoholism and endocannabinoid metabolic enzyme genes encoding fatty acid amide hydrolase and monoglyceride lipase in a Japanese population.

    PubMed

    Iwasaki, Shinya; Ishiguro, Hiroki; Higuchi, Susumu; Onaivi, Emmanuel S; Arinami, Tadao

    2007-08-01

    Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) are the major endocannabinoid metabolic enzymes. Owing to the importance of endocannabinoid system in addiction, the Pro129Thr polymorphism in the FAAH gene has reportedly been associated with substance abuse and dependence in a Caucasian population. To determine whether the single nucleodtide polymorphisms of the FAAH and MGLL genes are associated with alcoholism in a Japanese population. We conducted case-control studies for total 14 tag single nucleotide polymorphisms in those two genes using Japanese 729 patients with alcoholism and 799 healthy controls. Genotype and allele frequencies were compared between these groups. None of these genetic markers, however, showed significant association with alcoholism in Japanese. Whereas we examined associations in a larger sample size between alcoholism and tag single nucleotide polymorphisms that covered most regions of these endocannabinoid metabolic enzyme genes, we found that these are not associated with susceptibility to alcoholism in a Japanese population.

  5. A Catalytic Mechanism for Cysteine N-Terminal Nucleophile Hydrolases, as Revealed by Free Energy Simulations

    PubMed Central

    Lodola, Alessio; Branduardi, Davide; De Vivo, Marco; Capoferri, Luigi; Mor, Marco; Piomelli, Daniele; Cavalli, Andrea

    2012-01-01

    The N-terminal nucleophile (Ntn) hydrolases are a superfamily of enzymes specialized in the hydrolytic cleavage of amide bonds. Even though several members of this family are emerging as innovative drug targets for cancer, inflammation, and pain, the processes through which they catalyze amide hydrolysis remains poorly understood. In particular, the catalytic reactions of cysteine Ntn-hydrolases have never been investigated from a mechanistic point of view. In the present study, we used free energy simulations in the quantum mechanics/molecular mechanics framework to determine the reaction mechanism of amide hydrolysis catalyzed by the prototypical cysteine Ntn-hydrolase, conjugated bile acid hydrolase (CBAH). The computational analyses, which were confirmed in water and using different CBAH mutants, revealed the existence of a chair-like transition state, which might be one of the specific features of the catalytic cycle of Ntn-hydrolases. Our results offer new insights on Ntn-mediated hydrolysis and suggest possible strategies for the creation of therapeutically useful inhibitors. PMID:22389698

  6. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

    PubMed

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F; Huestis, Marilyn A; Payer, Doris E; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J; Tong, Junchao

    2016-11-01

    One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Brain FAAH binding was measured with positron emission tomography and [ 11 C]CURB in 22 healthy control subjects and ten chronic cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine, and hair levels of cannabinoids and metabolites were determined. In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects (overall Cohen's d = 0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  7. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    PubMed Central

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  8. PET Imaging of Fatty Acid Amide Hydrolase with [ 18F]DOPP in Nonhuman Primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotstein, Benjamin H.; Wey, Hsiao -Ying; Shoup, Timothy M.

    Here, the fatty acid amide hydrolase (FAAH) regulates endocannabinoid signaling. [ 11C]CURB, an irreversibly binding FAAH inhibitor, has been developed for clinical research imaging with PET. However, no fluorine-18 labeled radiotracer for FAAH has yet advanced to human studies. [ 18F]DOPP ([ 18F]3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate) has been identified as a promising 18F-labeled analogue based on rodent studies. The goal of this work is to evaluate [ 18F]DOPP in nonhuman primates to support its clinical translation. High specific activity [ 18F]DOPP (5–6 Ci·μmol –1) was administered intravenously (iv) to three baboons (2M/1F, 3–4 years old). The distribution and pharmacokinetics were quantified followingmore » a 2 h dynamic imaging session using a simultaneous PET/MR scanner. Pretreatment with the FAAH-selective inhibitor, URB597, was carried out at 200 or 300 μg/kg iv, 10 min prior to [ 18F]DOPP administration. Rapid arterial blood sampling for the first 3 min was followed by interval sampling with metabolite analysis to provide a parent radiotracer plasma input function that indicated ~95% baseline metabolism at 60 min and a reduced rate of metabolism after pretreatment with URB597. Regional distribution data were analyzed with 1-, 2-, and 3-tissue compartment models (TCMs), with and without irreversible trapping since [ 18F]DOPP covalently links to the active site of FAAH. Consistent with previous findings for [ 11C]CURB, the 2TCM with irreversible binding was found to provide the best fit for modeling the data in all regions. The composite parameter λk 3 was therefore used to evaluate whole brain (WB) and regional binding of [ 18F]DOPP. Pretreatment studies showed inhibition of λk 3 across all brain regions (WB baseline: 0.112 mL/cm3/min; 300 μg/kg URB597: 0.058 mL/cm 3/min), suggesting that [ 18F]DOPP binding is specific for FAAH, consistent with previous rodent data.« less

  9. PET Imaging of Fatty Acid Amide Hydrolase with [ 18F]DOPP in Nonhuman Primates

    DOE PAGES

    Rotstein, Benjamin H.; Wey, Hsiao -Ying; Shoup, Timothy M.; ...

    2014-07-08

    Here, the fatty acid amide hydrolase (FAAH) regulates endocannabinoid signaling. [ 11C]CURB, an irreversibly binding FAAH inhibitor, has been developed for clinical research imaging with PET. However, no fluorine-18 labeled radiotracer for FAAH has yet advanced to human studies. [ 18F]DOPP ([ 18F]3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate) has been identified as a promising 18F-labeled analogue based on rodent studies. The goal of this work is to evaluate [ 18F]DOPP in nonhuman primates to support its clinical translation. High specific activity [ 18F]DOPP (5–6 Ci·μmol –1) was administered intravenously (iv) to three baboons (2M/1F, 3–4 years old). The distribution and pharmacokinetics were quantified followingmore » a 2 h dynamic imaging session using a simultaneous PET/MR scanner. Pretreatment with the FAAH-selective inhibitor, URB597, was carried out at 200 or 300 μg/kg iv, 10 min prior to [ 18F]DOPP administration. Rapid arterial blood sampling for the first 3 min was followed by interval sampling with metabolite analysis to provide a parent radiotracer plasma input function that indicated ~95% baseline metabolism at 60 min and a reduced rate of metabolism after pretreatment with URB597. Regional distribution data were analyzed with 1-, 2-, and 3-tissue compartment models (TCMs), with and without irreversible trapping since [ 18F]DOPP covalently links to the active site of FAAH. Consistent with previous findings for [ 11C]CURB, the 2TCM with irreversible binding was found to provide the best fit for modeling the data in all regions. The composite parameter λk 3 was therefore used to evaluate whole brain (WB) and regional binding of [ 18F]DOPP. Pretreatment studies showed inhibition of λk 3 across all brain regions (WB baseline: 0.112 mL/cm3/min; 300 μg/kg URB597: 0.058 mL/cm 3/min), suggesting that [ 18F]DOPP binding is specific for FAAH, consistent with previous rodent data.« less

  10. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Crystal Structures of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    PubMed Central

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C.

    2010-01-01

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 Å resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network, and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH’s catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 Å) than previously reported. The higher resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggest a functional convergence between the amidase signature enzymes and serine proteases. PMID:20493882

  12. Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation.

    PubMed

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C; Benson, Timothy E; Cravatt, Benjamin F; Stevens, Raymond C

    2010-07-23

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 A resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 A) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    PubMed

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?

    PubMed

    Hiley, C Robin; Hoi, Pui Man

    2007-01-01

    Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but

  15. Binding and Inactivation Mechanism of a Humanized Fatty Acid Amide Hydrolase by [alpha]-Ketoheterocycle Inhibitors Revealed from Cocrystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.

    The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolicmore » port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.« less

  16. Influence of sulfur oxidation state and steric bulk upon trifluoromethyl ketone (TFK) binding kinetics to carboxylesterases and fatty acid amide hydrolase (FAAH)

    PubMed Central

    Wheelock, Craig E.; Nishi, Kosuke; Ying, Andy; Jones, Paul D.; Colvin, Michael E.; Olmstead, Marilyn M.; Hammock, Bruce D.

    2009-01-01

    Carboxylesterases metabolize numerous exogenous and endogenous ester-containing compounds including the chemotherapeutic agent CPT-11, anti-influenza viral agent oseltamivir and many agrochemicals. Trifluoromethyl ketone (TFK)-containing compounds with a sulfur atom beta to the ketone moiety are some of the most potent carboxylesterase and amidase inhibitors identified to date. This study examined the effects of alkyl chain length (i.e., steric effects) and sulfur oxidation state upon TFK inhibitor potency (IC50) and binding kinetics (ki). The selective carboxylesterase inhibitor benzil was used as a non-TFK containing control. These effects were examined using two commercial esterases (porcine and rabbit liver esterase) and two human recombinant esterases (hCE-1 and hCE-2) as well as human recombinant fatty acid amide hydrolase (FAAH). In addition, the inhibition mechanism was examined using a combination of 1H NMR, X-ray crystallography and ab initio calculations. Overall, the data show that while sulfur oxidation state profoundly affects both inhibitor potency and binding kinetics, the steric effects dominate and override the contributions of sulfur oxidation. In addition, the data suggest that inclusion of a sulfur atom beta to the ketone contributes an increase (~5-fold) in inhibitor potency due to effects upon ketone hydration and/or intramolecular hydrogen bond formation. These results provide further information on the nature of the TFK binding interaction and will be useful in increasing our understanding of this basic biochemical process. PMID:18023188

  17. Facile access to amides and hydroxamic acids directly from nitroarenes.

    PubMed

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  18. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  19. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.

    PubMed

    Gertsch, Jürg

    2008-05-01

    Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

  20. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  1. Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice

    PubMed Central

    Hruba, Lenka; Seillier, Alexandre; Zaki, Armia; Cravatt, Benjamin F.; Lichtman, Aron H.; Giuffrida, Andrea

    2015-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ9-tetrahydrocannabinol (Δ9-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Δ9-THC dose-dependently increased Δ9-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide] and URB597 [(3′-​(aminocarbonyl)[1,​1′-​biphenyl]-​3-​yl)-​cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-​nitrophenyl-​4-​(dibenzo[d][1,​3]dioxol-​5-​yl(hydroxy)methyl)piperidine-​1-​carboxylate] alone did not substitute for the Δ9-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate] fully substituted for Δ9-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Δ9-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Δ9-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Δ9-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were

  2. Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats.

    PubMed

    Hasanein, Parisa; Teimuri Far, Massoud

    2015-04-01

    Cannabinoid and endocannabinoid systems have been implicated in several physiological functions including modulation of cognition. In this study we evaluated the effects and interaction between fatty-acid amide hydrolase (FAAH) inhibitor URB597 and CB1 receptor agonist WIN55, 212-2 on memory using object recognition and passive avoidance learning (PAL) tests. Learning and memory impairment was induced by WIN 55, 212-2 administration (1mg/kg, i.p.) 30min before the acquisition trial. URB597 (0.1, 0.3 and 1mg/kg, i.p.) or SR141716A (1mg/kg, i.p.) was injected to rats 10min before WIN 55, 212-2 or URB597 respectively. URB597 (0.3 and 1mg/kg) but not 0.1mg/kg induced higher discrimination index (DI) in object recognition test and enhanced memory acquisition in PAL test. The cognitive enhancing effect of URB597 was blocked by a CB1 receptor antagonist, SR141716A which at this dose alone had no effect on cognition. WIN55, 212-2 caused cognition deficits in both tests. URB597 (0.3 and 1mg/kg) treatment could alleviate the negative influence of WIN 55, 212-2 on cognition and memory. These results indicate URB597 potential to protect against memory deficits induced by cannabinoid. Therefore, in combination with URB597 beneficial effects, this study suggests that URB597 has recognition and acquisition memory enhancing effects. It may also constitute a novel approach for the treatment of cannabinoid induced memory deficits and lead to a better understanding of the brain mechanisms underlying cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Synthesis and antituberculosis activity of new fatty acid amides.

    PubMed

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. The fatty acid amide hydrolase (FAAH) gene variant rs324420 AA/AC is not associated with weight loss in a 1-year lifestyle intervention for obese children and adolescents.

    PubMed

    Knoll, N; Volckmar, A-L; Pütter, C; Scherag, A; Kleber, M; Hebebrand, J; Hinney, A; Reinehr, T

    2012-01-01

    Adult obese carriers of the A allele of SNP rs324420 in the fatty acid amide hydrolase (FAAH) gene lose more weight and improve associated phenotypes better than non-carriers during an intervention. We aimed to replicate this finding in obese children and adolescents undergoing a one year lifestyle intervention (Obeldicks program). A total of 453 overweight and obese children and adolescents (10.8±2.6 years, BMI-SDS 2.4±0.5; 55% girls) were genotyped for rs324420 (C/A) by restriction fragment length polymorphism (RFLP) analysis. Participants were prescribed a balanced diet, containing 55 En% carbohydrates, 30 En% fat, and 15 En% proteins. Moreover, they took part in an exercise therapy once a week. Blood was taken at baseline and after 1 year of intervention. Anthropometric (height, weight, BMI, and BMI-SDS) and plasma parameters (total cholesterol, LDL-cholesterol, HDL-cholesterol, triacylglycerides, glucose, insulin, and HOMA) as well as blood pressure were measured. Both mean BMI and BMI-SDS improved significantly. The mean systolic blood pressure was also lowered and concentrations of HDL-cholesterol increased significantly. However, none of the measured changes were associated with FAAH rs324420 AA/AC genotype. We did not detect evidence for an association of FAAH genotypes with weight reduction in overweight and obese children and adolescents. Hence, the previous finding in adults could not be confirmed. As the length (1 year as compared to 3 months) and mode of treatment (hypocaloric diet in adults vs. physical activity plus balanced meals) of the interventions varied, these parameters might have influenced the inconsistent results. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Disruption of Fatty Acid Amide Hydrolase Activity Prevents the Effects of Chronic Stress on Anxiety and Amygdalar Microstructure

    PubMed Central

    Hill, Matthew N.; Kumar, Shobha Anil; Filipski, Sarah B.; Iverson, Moriah; Stuhr, Kara L.; Keith, John M.; Cravatt, Benjamin F.; Hillard, Cecilia J.; Chattarji, Sumantra; McEwen, Bruce S.

    2014-01-01

    Hyperactivation of the amygdala following chronic stress is believed to be one of the primary mechanisms underlying the increased propensity for anxiety-like behaviors and pathological states; however, the mechanisms by which chronic stress modulates amygdalar function are not well characterized. The aim of the current study was to determine the extent to which the endocannabinoid system, which is known to regulate emotional behavior and neuroplasticity, contributes to changes in amygdalar structure and function following chronic stress. To examine the hypothesis, we have exposed C57/Bl6 mice to chronic restraint stress which results in an increase in fatty acid amide hydrolase (FAAH) activity and a reduction in the concentration of the endocannabinoid N-arachidonylethanolamine (AEA) within the amygdala. Chronic restraint stress also increased dendritic arborization, complexity and spine density of pyramidal neurons in the basolateral nucleus of the amygdala (BLA) and increased anxiety-like behavior in wild-type mice. All of the stress-induced changes in amygdalar structure and function were absent in mice deficient in FAAH. Further, the anti-anxiety effect of FAAH deletion was recapitulated in rats treated orally with a novel pharmacological inhibitor of FAAH, JNJ5003 (50 mg/kg/day), during exposure to chronic stress. These studies suggest that FAAH is required for chronic stress to induce hyperactivity and structural remodeling of the amygdala. Collectively, these studies indicate that FAAH-mediated decreases in AEA occur following chronic stress and that this loss of AEA signaling is functionally relevant to the effects of chronic stress. These data support the hypothesis that inhibition of FAAH has therapeutic potential in the treatment of anxiety disorders, possibly by maintaining normal amygdalar function in the face of chronic stress. PMID:22776900

  6. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  7. Protecting‐Group‐Free Amidation of Amino Acids using Lewis Acid Catalysts

    PubMed Central

    Sabatini, Marco T.; Karaluka, Valerija; Lanigan, Rachel M.; Boulton, Lee T.; Badland, Matthew

    2018-01-01

    Abstract Amidation of unprotected amino acids has been investigated using a variety of ‘classical“ coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions. PMID:29505683

  8. Effect of alpha lipoic acid on leukotriene A4 hydrolase.

    PubMed

    Torres, María José; Fierro, Angélica; Pessoa-Mahana, C David; Romero-Parra, Javier; Cabrera, Gonzalo; Faúndez, Mario

    2017-03-15

    Leukotriene A 4 hydrolase is a soluble enzyme with epoxide hydrolase and aminopeptidase activities catalysing the conversion of leukotriene A 4 to leukotriene B 4 and the hydrolysis of the peptide proline-glycine-proline. Imbalances in leukotriene B 4 synthesis are related to several pathologic conditions. Currently there are no available drugs capable to modulate the synthesis of leukotriene B 4 or to block its receptors. Here we show the inhibitory profile of alpha lipoic acid on the activity of leukotriene A 4 Hydrolase. Alpha lipoic acid inhibited both activities of the enzyme at concentrations lower than 10μM. The 5-lipoxygenase inhibitor zileuton, or the 5-lipoxygenase activating protein inhibitor MK-886, were unable to inhibit the activity of the enzyme. Acute promyelocytic leukaemia HL-60 cells were differentiated to leukotriene A 4 hydrolase expressing neutrophil-like cells. Alpha lipoic acid inhibited the aminopeptidase activity of the cytosolic fraction from neutrophil-like cells but had no effect on the cytosolic fraction from undifferentiated cells. Docking and molecular dynamic approximations revealed that alpha lipoic acid participates in electrostatic interactions with K-565 and R-563, which are key residues for the carboxylate group recognition of endogenous substrates by the enzyme. Alpha lipoic acid is a compound widely used in clinical practice, most of its therapeutic effects are associated with its antioxidants properties, however, antioxidant effect alone is unable to explain all clinical effects observed with alpha lipoic acid. Our results invite to evaluate the significance of the inhibitory effect of alpha lipoic acid on the catalytic activity of leukotriene A 4 hydrolase using in vivo models. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fatty Acid Amide Hydrolase Inhibitor Treatment in Men With Chronic Prostatitis/Chronic Pelvic Pain Syndrome: An Adaptive Double-blind, Randomized Controlled Trial.

    PubMed

    Wagenlehner, Florian M E; van Till, J W Olivier; Houbiers, Jos G A; Martina, Reynaldo V; Cerneus, Dirk P; Melis, Joost H J M; Majek, Antoni; Vjaters, Egils; Urban, Michael; Ramonas, Henrikas; Shoskes, Daniel A; Nickel, J Curtis

    2017-05-01

    To examine the effect of a peripherally active fatty acid amide hydrolase (FAAH) inhibitor ASP3652 on safety and efficacy outcomes in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Inhibition of FAAH is hypothesized to reduce the excitability of urinary tract afferents including nociceptors. In this adaptive, randomized, double-blind, placebo-controlled study, adult male patients with moderate to severe CP/CPPS were treated for 12 weeks with an oral dose of ASP3652 (25, 75, 150, or 300 mg twice daily, or 300 mg once daily), or placebo. A Bayesian model was used for adaptive prospective modeling of randomization, study continuation decisions, and analysis of the efficacy variables. The study was stopped for futility at preplanned interim analysis when 239 patients were randomized (226 were included in the intention-to-treat set): the 25 mg group showed the largest reduction of the primary end point National Institutes of Health Chronic Prostatitis Symptom Index total score (7.0 points), but the placebo group showed a mean reduction of 7.3 points (difference: 0.3 [95% confidence interval: -1.9, 2.6]). Micturition outcomes improved compared with placebo in all ASP3652 groups; for example, in the 300 mg twice daily group, voiding frequency decreased by -1.10 (95% CI: -2.0, -0.2) voids/24 hours vs placebo. Safety outcomes were comparable across the treatment groups. ASP3652 was generally safe and well-tolerated. It did not show efficacy on pain symptoms in patients with CP/CPPS. However, the results indicate that FAAH inhibition may attenuate lower urinary tract symptoms. Dedicated studies in patients with lower urinary tract dysfunction are needed to confirm this. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    PubMed

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  11. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  12. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  13. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  14. Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall.

    PubMed

    Hao, Panlong; Liang, Dongmei; Cao, Lijie; Qiao, Bin; Wu, Hao; Caiyin, Qinggele; Zhu, Hongji; Qiao, Jianjun

    2017-08-01

    Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H + due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).

  15. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways.

    PubMed

    Su, Shao-Hua; Wu, Yi-Fang; Lin, Qi; Hai, Jian

    2017-12-01

    The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.

  16. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  17. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    NASA Astrophysics Data System (ADS)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation

  18. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.

    PubMed

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko

    2010-10-27

    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  19. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  20. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    PubMed

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  1. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  2. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  3. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    PubMed

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  4. Biosynthesis, degradation and pharmacological importance of the fatty acid amides.

    PubMed

    Farrell, Emma K; Merkler, David J

    2008-07-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.

  5. Biosynthesis, degradation, and pharmacological importance of the fatty acid amides

    PubMed Central

    Farrell, Emma K.; Merkler, David J.

    2008-01-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910

  6. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    PubMed Central

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  7. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  8. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  9. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  10. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide.

    PubMed

    Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L

    2017-10-01

    The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.

  11. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    PubMed

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase.

    PubMed

    Zeldin, D C; Kobayashi, J; Falck, J R; Winder, B S; Hammock, B D; Snapper, J R; Capdevila, J H

    1993-03-25

    The hydration of cis-epoxyeicosatrienoic acids to the corresponding vic-dihydroxyeicosatrienoic acids by cytosolic epoxide hydrolase demonstrates moderate regioselectivity with rates of hydration highest for the 14,15-epoxide and lower for the 11,12- and 8,9-epoxide (4.5, 1.6, and 1.5 mumol of product/mg of protein/min, respectively). Incubations of the 8,9- and 14,15-epoxides with cytosolic epoxide hydrolase show stereoselective formation of diols (7:3 and 4:1 ratio of antipodes, respectively) and concomitant chiral enrichment of the remaining unmetabolized substrate. In contrast, hydration of the 11,12-epoxide is nonenantioselective. The Km value of the enzyme for the 14(R),15(S)-epoxide is 3 microM. Incubations of the enantiomerically pure 8,9- and 14,15-epoxides with lung or liver cytosol, followed by chiral analysis of the resulting diols demonstrate selective cleavage of the oxirane ring at C9 and C15, respectively. On the other hand, cleavage of the 11,12- oxirane ring was less selective. The stereochemical preference of the cytosolic epoxide hydrolase, together with the known chiral composition of the endogenous arachidonate epoxide pools, suggests a functional role for this enzyme in the metabolism of these important compounds.

  13. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  14. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models.

    PubMed

    Parker, Linda A; Limebeer, Cheryl L; Rock, Erin M; Sticht, Martin A; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T; Alapafuja, Shakiru O; Makriyannis, Alexandros

    2016-06-01

    Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.

  15. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models

    PubMed Central

    Limebeer, Cheryl L.; Rock, Erin M.; Sticht, Martin A.; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T.; Alapafuja, Shakiru O.; Makriyannis, Alexandros

    2017-01-01

    Rationale Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. Objective This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. Materials and methods AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Results Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Conclusions Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea. PMID:27048155

  16. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  17. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin.

    PubMed

    Cui, Na; Feng, Xiaoye; Zhao, Zhiming; Zhang, Jie; Xu, Yueming; Wang, Luning; Hao, Guimin

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrinal disorder affecting a number of women of reproductive age. We aimed to reveal the correlation between the endocannabinoid system and PCOS, which may provide a new therapeutic target for PCOS treatment. Serum levels of anandamide and 2-arachidonoylglycerol andexpression of cannabinoid receptors and fatty acid amide hydrolase (FAAH) in the endometrium were compared between women with PCOS and infertile women without PCOS, as well as women with PCOS before and after treatment with Diane-35 and metformin. Cannabinoid receptors and FAAH in the endometrium were stained using the immunohistochemical method. Results were analyzed by calculating integrated optical density. Plasma anandamide was increased significantly in women with PCOS compared with infertile women without PCOS. Treatment with Diane-35 and metformin reversed this increase in women with PCOS. No significant difference in 2-arachidonoylglycerol was observed between the infertile women with or without PCOS. The women with PCOS had lower endometrial expression of FAAH compared with infertile women without PCOS, whereas no significant difference in endometrial expression of cannabinoid receptors was observed between the women with PCOS and infertile women without PCOS. We found that after treatment with Diane-35 and metformin, FAAH expression tended toward a significant increase compared with women before the treatment. Endocannabinoid system may be involved in the progression of PCOS, and serum anandamide could serve as a potential biomarker of clinical diagnosis of PCOS. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  18. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    PubMed

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  19. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    PubMed

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  20. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  1. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  2. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.

    PubMed

    Patricelli, M P; Cravatt, B F

    2001-01-01

    Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.

  3. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    PubMed

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Fatty acid amide hydrolase–morphine interaction influences ventilatory response to hypercapnia and postoperative opioid outcomes in children

    PubMed Central

    Chidambaran, Vidya; Pilipenko, Valentina; Spruance, Kristie; Venkatasubramanian, Raja; Niu, Jing; Fukuda, Tsuyoshi; Mizuno, Tomoyuki; Zhang, Kejian; Kaufman, Kenneth; Vinks, Alexander A; Martin, Lisa J; Sadhasivam, Senthilkumar

    2017-01-01

    Aim: Fatty acid amide hydrolase (FAAH) degrades anandamide, an endogenous cannabinoid. We hypothesized that FAAH variants will predict risk of morphine-related adverse outcomes due to opioid–endocannabinoid interactions. Patients & methods: In 101 postsurgical adolescents receiving morphine analgesia, we prospectively studied ventilatory response to 5% CO2 (HCVR), respiratory depression (RD) and vomiting. Blood was collected for genotyping and morphine pharmacokinetics. Results: We found significant FAAH–morphine interaction for missense (rs324420) and several regulatory variants, with HCVR (p < 0.0001) and vomiting (p = 0.0339). HCVR was more depressed in patients who developed RD compared with those who did not (p = 0.0034), thus FAAH–HCVR association predicts risk of impending RD from morphine use. Conclusion: FAAH genotypes predict risk for morphine-related adverse outcomes. PMID:27977335

  5. Evaluation of fatty acid amides in the carrageenan-induced paw edema model

    PubMed Central

    Wise, Laura E.; Cannavacciulo, Roberta; Cravatt, Benjamin F.; Martin, Billy F.; Lichtman, Aron H.

    2008-01-01

    While it has long been recognized that Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, and other cannabinoid receptor agonists possess anti-inflammatory properties, their well known CNS effects have dampened enthusiasm for therapeutic development. On the other hand, genetic deletion of fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of fatty acid amides, including endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA), N-palmitoyl ethanolamine (PEA), N-oleoyl ethanolamine (OEA), and oleamide, also elicits anti-edema, but does not produce any apparent cannabinoid effects. The purpose of the present study was to investigate whether exogenous administration of FAAs would augment the anti-inflammatory phenotype of FAAH (-/-) mice in the carrageenan model. Thus, we evaluated the effects of the FAAs AEA, PEA, OEA, and oleamide in wild-type and FAAH (-/-) mice. For comparison, we evaluated the anti-edema effects of THC, dexamethasone (DEX), a synthetic glucocorticoid, diclofenac (DIC), a nonselective cyclooxygenase (COX) inhibitor, in both genotypes. A final study determined if tolerance to the anti-edema effects of PEA occurs after repeated dosing. PEA, THC, DEX, DIC elicited significant decreases in carrageenan-induced paw edema in wild type mice. In contrast OEA produced a less reliable anti-edema effect than these other drugs, and AEA and oleamide failed to produce any significant decreases in paw edema. Moreover, none of the agents evaluated augmented the anti-edema phenotype of FAAH (-/-) mice, suggesting that maximal anti-edema effects had already been established. PEA was the most effective FAA in preventing paw edema and its effects did not undergo tolerance. While the present findings do not support a role for AEA in preventing carrageenan-induced edema, PEA administration and FAAH blockade elicited anti-edema effects of an equivalent magnitude as produced by THC, DEX, and DIC in this

  6. Evaluation of fatty acid amides in the carrageenan-induced paw edema model.

    PubMed

    Wise, Laura E; Cannavacciulo, Roberta; Cravatt, Benjamin F; Martin, Billy F; Lichtman, Aron H

    2008-01-01

    While it has long been recognized that Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, and other cannabinoid receptor agonists possess anti-inflammatory properties, their well known CNS effects have dampened enthusiasm for therapeutic development. On the other hand, genetic deletion of fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of fatty acid amides, including endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA), N-palmitoyl ethanolamine (PEA), N-oleoyl ethanolamine (OEA), and oleamide, also elicits anti-edema, but does not produce any apparent cannabinoid effects. The purpose of the present study was to investigate whether exogenous administration of FAAs would augment the anti-inflammatory phenotype of FAAH (-/-) mice in the carrageenan model. Thus, we evaluated the effects of the FAAs AEA, PEA, OEA, and oleamide in wild-type and FAAH (-/-) mice. For comparison, we evaluated the anti-edema effects of THC, dexamethasone (DEX), a synthetic glucocorticoid, diclofenac (DIC), a nonselective cyclooxygenase (COX) inhibitor, in both genotypes. A final study determined if tolerance to the anti-edema effects of PEA occurs after repeated dosing. PEA, THC, DEX, DIC elicited significant decreases in carrageenan-induced paw edema in wild-type mice. In contrast OEA produced a less reliable anti-edema effect than these other drugs, and AEA and oleamide failed to produce any significant decreases in paw edema. Moreover, none of the agents evaluated augmented the anti-edema phenotype of FAAH (-/-) mice, suggesting that maximal anti-edema effects had already been established. PEA was the most effective FAA in preventing paw edema and its effects did not undergo tolerance. While the present findings do not support a role for AEA in preventing carrageenan-induced edema, PEA administration and FAAH blockade elicited anti-edema effects of an equivalent magnitude as produced by THC, DEX, and DIC in this

  7. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    PubMed

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  8. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    NASA Astrophysics Data System (ADS)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  9. Fluoride-Mediated Capture of a Noncovalent Bound State of a Reversible Covalent Enzyme Inhibitor: X-ray Crystallographic Analysis of an Exceptionally Potent [alpha]-Ketoheterocycle Inhibitor of Fatty Acid Amide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2011-11-02

    Two cocrystal X-ray structures of the exceptionally potent {alpha}-ketoheterocycle inhibitor 1 (K{sub i} = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitormore » within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same 'in action' state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of {alpha}-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.« less

  10. Cell- and ligand-specific dephosphorylation of acid hydrolases: evidence that the mannose 6-phosphatase is controlled by compartmentalization

    PubMed Central

    1991-01-01

    Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum (Einstein, R., and C. A. Gabel. 1989. J. Cell Biol. 109:1037-1046). To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and - deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6- P/IGF II receptor-deficient mouse J774 cells was more limited. beta- Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated. This difference in processing indicates that lysosomes themselves exist in a dephosphorylation

  11. Predicting protein amidation sites by orchestrating amino acid sequence features

    NASA Astrophysics Data System (ADS)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  12. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay.

    PubMed

    Christiaens, H; Leer, R J; Pouwels, P H; Verstraete, W

    1992-12-01

    The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.

  13. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less

  14. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    PubMed

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  15. Arabidopsis thaliana EPOXIDE HYDROLASE1 (AtEH1) is a cytosolic epoxide hydrolase involved in the synthesis of poly-hydroxylated cutin monomers.

    PubMed

    Pineau, Emmanuelle; Xu, Lin; Renault, Hugues; Trolet, Adrien; Navrot, Nicolas; Ullmann, Pascaline; Légeret, Bertrand; Verdier, Gaëtan; Beisson, Fred; Pinot, Franck

    2017-07-01

    Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase possibly involved in cutin monomer synthesis. We expressed AtEH1 in yeast and studied its localization in vivo. We also analyzed the composition of cutin from A. thaliana lines in which this gene was knocked out. Incubation of recombinant AtEH1 with epoxy fatty acids confirmed its capacity to hydrolyze epoxides of C18 fatty acids into vicinal diols. Transfection of Nicotiana benthamiana leaves with constructs expressing AtEH1 fused to enhanced green fluorescent protein (EGFP) indicated that AtEH1 is localized in the cytosol. Analysis of cutin monomers in loss-of-function Ateh1-1 and Ateh1-2 mutants showed an accumulation of 18-hydroxy-9,10-epoxyoctadecenoic acid and a concomitant decrease in corresponding vicinal diols in leaf and seed cutin. Compared with wild-type seeds, Ateh1 seeds showed delayed germination under osmotic stress conditions and increased seed coat permeability to tetrazolium red. This work reports a physiological role for a plant EH and identifies AtEH1 as a new member of the complex machinery involved in cutin synthesis. © 2017 CNRS New Phytologist © 2017 New Phytologist Trust.

  16. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  17. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells1[S

    PubMed Central

    Farrell, Emma K.; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A.; Cameroamortegui, Felipe; Merkler, David J.

    2012-01-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N18TG2 and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N18TG2 and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N18TG2 and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation. PMID:22095832

  18. "Newton's cradle" proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography.

    PubMed

    Nakamura, Akihiko; Ishida, Takuya; Kusaka, Katsuhiro; Yamada, Taro; Fushinobu, Shinya; Tanaka, Ichiro; Kaneko, Satoshi; Ohta, Kazunori; Tanaka, Hiroaki; Inaka, Koji; Higuchi, Yoshiki; Niimura, Nobuo; Samejima, Masahiro; Igarashi, Kiyohiko

    2015-08-01

    Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the "Newton's cradle"-like proton relay pathway of the catalytic cycle. Amide-imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.

  19. Down-regulation of anandamide hydrolase in mouse uterus by sex hormones.

    PubMed

    MacCarrone, M; De Felici, M; Bari, M; Klinger, F; Siracusa, G; Finazzi-Agrò, A

    2000-05-01

    Endocannabinoids are an emerging class of lipid mediators, which mimic several effects of cannabinoids. Anandamide (arachidonoylethanolamide) is a major endocannabinoid, which has been shown to impair pregnancy and embryo development. The activity of anandamide is controlled by cellular uptake through a specific transporter and intracellular degradation by the enzyme anandamide hydrolase (fatty acid amide hydrolase, FAAH). We characterized FAAH in mouse uterus by radiochromatographic and immunochemical techniques, showing that the enzyme is confined to the epithelium and its activity decreases appreciably during pregnancy or pseudopregnancy because of lower gene expression at the translational level. Ovariectomy prevented the decrease in FAAH, and both progesterone and estrogen further reduced its basal levels, suggesting hormonal control of the enzyme. Anandamide was shown to induce programmed cell death in mouse blastocysts, through a pathway independent of type-1 cannabinoid receptor. Blastocysts, however, have a specific anandamide transporter and FAAH, which scavenge this lipid. Taken together, these results provide evidence of an interplay between endocannabinoids and sex hormones in pregnancy. These findings may also be relevant for human fertility, as epithelial cells from healthy human uterus showed FAAH activity and expression, which in adenocarcinoma cells was increased fivefold.

  20. New Enzymatic Method of Chiral Amino Acid Synthesis by Dynamic Kinetic Resolution of Amino Acid Amides: Use of Stereoselective Amino Acid Amidases in the Presence of α-Amino-ɛ-Caprolactam Racemase▿

    PubMed Central

    Yamaguchi, Shigenori; Komeda, Hidenobu; Asano, Yasuhisa

    2007-01-01

    d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ɛ-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides. PMID:17586677

  1. Amino acid amides of piperic acid (PA) and 4-ethylpiperic acid (EPA) as NorA efflux pump inhibitors of Staphylococcus aureus.

    PubMed

    Wani, Naiem Ahmad; Singh, Samsher; Farooq, Saleem; Shankar, Sudha; Koul, Surrinder; Khan, Inshad Ali; Rai, Rajkishor

    2016-09-01

    A total of eighteen piperic acid (PA) and 4-ethylpiperic acid (EPA) amides (C1-C18) with α-, β- and γ-amino acids were synthesized, characterized and evaluated for their efflux pump inhibitory activity against ciprofloxacin resistant Staphylococcus aureus. The amides were screened against NorA overexpressing S. aureus SA-1199B and wild type S. aureus SA-1199 using ethidium bromide as NorA efflux pump substrate. EPI C6 was found to be most potent and reduced the MIC of ciprofloxacin by 16 fold followed by C18 which showed 4 fold reduction of MIC. Ethidium bromide efflux inhibition and accumulation assay proved these compounds as NorA inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  3. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  4. Simple amides of oleanolic acid as effective penetration enhancers.

    PubMed

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.

  5. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  6. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    PubMed

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R. M.; Hermans, John; Jetten, Mike S. M.

    2013-01-01

    Carbon disulfide (CS2) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS2 is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO2) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS2-polluted airstreams. We report on the mechanism of bacterial CS2 conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS2 hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS2 hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS2 hydrolases within the β-CA family. Unlike CAs, the CS2 hydrolases did not hydrate CO2 but converted CS2 and COS with H2O to H2S and CO2. The CS2 hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS2 hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS2 hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS2 hydrolases based on the structure of Acidianus strain A1-3 CS2 hydrolase suggest that the A. thiooxidans strain G8 CS2 hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation. PMID:23836868

  8. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  9. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    PubMed

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics.

    PubMed

    Burnett, Christina L; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the product use, formulation, and safety data of 115 amino acid alkyl amides, which function as skin and hair conditioning agents and as surfactants-cleansing agents in personal care products. Safety test data on dermal irritation and sensitization for the ingredients with the highest use concentrations, lauroyl lysine and sodium lauroyl glutamate, were reviewed and determined to adequately support the safe use of the ingredients in this report. The Panel concluded that amino acid alkyl amides are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating.

  11. Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli.

    PubMed

    Radian, Adi; Aukema, Kelly G; Aksan, Alptekin; Wackett, Lawrence P

    2015-11-03

    Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other

  12. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.

    PubMed

    Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-02-09

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for

  13. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†

    PubMed Central

    Nakagawa, Tetsuto; Shimada, Yoshimi; Pavlova, Nadejda V; Li, Su-Chen; Li, Yu-Teh

    2015-01-01

    We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S277PDDGKTW and S328TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo2-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5–6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans. PMID:26362869

  14. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar tomore » tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.« less

  15. Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.

    PubMed

    Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W

    2013-09-02

    A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of a Series of Caffeic Acid Phenethyl Amide (CAPA) Fluorinated Derivatives: Comparison of Cytoprotective Effects to Caffeic Acid Phenethyl Ester (CAPE)

    DTIC Science & Technology

    2010-06-11

    the cinnamic acid phenyl ring. Although compound 4c proved to be very cytotoxic in HUVEC over a 24 h period, the toxicity is less apparent over a 5 h...drug development process, as it determines how much of the initial dose actually reaches the target site. Cinnamic acid -derived amides are known to...Synthesis of a series of caffeic acid phenethyl amide (CAPA) fluorinated derivatives: Comparison of cytoprotective effects to caffeic acid phenethyl

  17. Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid.

    PubMed

    Kumar, Rohitesh; Duffy, Sandra; Avery, Vicky M; Davis, Rohan A

    2017-09-01

    A plant-derived natural product scaffold, 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was isolated in high yield from the aerial parts of the endemic Australian desert plant Eremophila microtheca. This scaffold (1) was subsequently used in the generation of a series of new amide analogues via a one-pot mixed anhydride amidation using pivaloyl chloride. The structures of all analogues were characterized using MS, NMR, and UV data. The major serrulatane natural products (1-3), isolated from the plant extract, and all amide analogues (6-15) together with several pivaloylated derivatives of 3,7,8-trihydroxyserrulat-14-en-19-oic acid (16-18) were evaluated for their antimalarial activity against 3D7 (chloroquine sensitive) and Dd2 (chloroquine resistant) Plasmodium falciparum strains, and preliminary cytotoxicity data were also acquired using the human embryonic kidney cell line HEK293. The natural product scaffold (1) did not display any antimalarial activity at 10µM. Replacing the carboxylic acid of 1 with various amides resulted in moderate activity against the P. falciparum 3D7 strain with IC 50 values ranging from 1.25 to 5.65µM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enantioselective Synthesis of α-Oxy Amides via Umpolung Amide Synthesis

    PubMed Central

    Leighty, Matthew W.; Shen, Bo

    2012-01-01

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes, and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids. PMID:22967461

  19. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    PubMed

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  20. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  1. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34.

    PubMed

    Yu, Haibo; Griffiths, Thomas M

    2014-03-28

    Glycoside hydrolase families 33 and 34 catalyse the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates with a net retention of the stereochemistry at the anomeric centre. It is generally believed that the conserved aspartic acid in the active site functions as a general acid to protonate the hydroxyl group of the departing aglycone during glycosylation, and then as a general base to facilitate the nucleophilic attack of the water molecule on the intermediate state during the deglycosylation reaction. The dual role of the general acid/base places specific demands upon its protonation state, and thus pKa values. However, it is not fully understood how this catalytic residue can achieve such pKa cycling during catalysis. We present both MM and combined QM/MM simulations to characterise the pKa values of the proposed catalytic general acid/base in the glycoside hydrolase families 33 and 34. Collectively, our study suggests that the binding of anionic substrates and the local solvation properties along with the neutralisation of the nearby glutamic acid upon glycosylation modulate the electrostatic environment around the general acid/base to achieve its proper protonation states.

  2. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides.

    PubMed

    Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai

    2015-05-08

    A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  3. In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid.

    PubMed

    Silveira, Graziela Rangel; Campelo, Karoline Azerêdo; Lima, Gleice Rangel Silveira; Carvalho, Lais Pessanha; Samarão, Solange Silva; Vieira-da-Motta, Olney; Mathias, Leda; Matos, Carlos Roberto Ribeiro; Vieira, Ivo José Curcino; Melo, Edesio José Tenório de; Maria, Edmilson José

    2018-03-28

    Most cinnamic acids, their esters, amides, aldehydes, and alcohols present several therapeutic actions through anti-inflammatory, antitumor, and inhibitory activity against a great variety of microorganisms. In this work, eight amines derived from cinnamic acid were synthesized and tested against host cells infected with Toxoplasma gondii and the bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and three strains of Staphylococcus aureus . Compounds 3 and 4 showed the best result against intracellular T. gondii , presenting antiparasitic activity at low concentrations (0.38 and 0.77 mM). The antibacterial activity of these compounds was also evaluated by the agar microdilution method, and amides 2 and 5 had a minimum inhibitory concentration of 250 µg mL -1 against two strains of S. aureus (ATCC 25923 and bovine strain LSA 88). These also showed synergistic action along with a variety of antibiotics, demonstrating that amines derived from cinnamic acid have potential as pharmacological agents.

  4. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    PubMed Central

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  5. Endo-β-1,3-Glucanase GLU1, from the Fruiting Body of Lentinula edodes, Belongs to a New Glycoside Hydrolase Family ▿ †

    PubMed Central

    Sakamoto, Yuichi; Nakade, Keiko; Konno, Naotake

    2011-01-01

    The cell wall of the fruiting body of the mushroom Lentinula edodes is degraded after harvesting by enzymes such as β-1,3-glucanase. In this study, a novel endo-type β-1,3-glucanase, GLU1, was purified from L. edodes fruiting bodies after harvesting. The gene encoding it, glu1, was isolated by rapid amplification of cDNA ends (RACE)-PCR using primers designed from the N-terminal amino acid sequence of GLU1. The putative amino acid sequence of the mature protein contained 247 amino acid residues with a molecular mass of 26 kDa and a pI of 3.87, and recombinant GLU1 expressed in Pichia pastoris exhibited β-1,3-glucanase activity. GLU1 catalyzed depolymerization of glucans composed of β-1,3-linked main chains, and reaction product analysis by thin-layer chromatography (TLC) clearly indicated that the enzyme had an endolytic mode. However, the amino acid sequence of GLU1 showed no significant similarity to known glycoside hydrolases. GLU1 has similarity to several hypothetical proteins in fungi, and GLU1 and highly similar proteins should be classified as a novel glycoside hydrolase family (GH128). PMID:21965406

  6. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  7. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  8. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-05

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.

  9. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    DTIC Science & Technology

    1985-07-01

    transient increase in the salicylic acid hydrolysis product was observed. Pretreatment with 4-nitrophenyl methyl(phenyl)phosphinate had no significant...h. Hydroly- sis of aspirin was not reduced in pretreated mice, although a transient increase in the salicylic acid hydrolysis product was observed...26 Figure 1. Pathways of aspirin metabolism in mammals: CE is carboxylester hydrolase, SA is salicylic acid, SU is salicyluric

  10. A 2:1 co-crystal of 2-methyl-benzoic acid and N,N'-bis-(pyridin-4-ylmeth-yl)ethanedi-amide: crystal structure and Hirshfeld surface analysis.

    PubMed

    Syed, Sabrina; Jotani, Mukesh M; Halim, Siti Nadiah Abdul; Tiekink, Edward R T

    2016-03-01

    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol-ecule in a general position and half a di-amide mol-ecule, the latter being located about a centre of inversion. In the acid, the carb-oxy-lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol-ecule [hy-droxy-O-C-C-C(H) torsion angle = -27.92 (17)°]. In the di-amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol-ecular packing, three-mol-ecule aggregates are formed via hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds. These are connected into a supra-molecular layer parallel to (12[Formula: see text]) via amide-N-H⋯O(carbon-yl) hydrogen bonds, as well as methyl-ene-C-H⋯O(amide) inter-actions. Significant π-π inter-actions occur between benzene/benzene, pyrid-yl/benzene and pyrid-yl/pyridyl rings within and between layers to consolidate the three-dimensional packing.

  11. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    PubMed

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  12. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells.

    PubMed

    Farrell, Emma K; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A; Cameroamortegui, Felipe; Merkler, David J

    2012-02-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N(18)TG(2) and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N(18)TG(2) and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N(18)TG(2) and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation.

  13. Characterization of dicarboxylic naphthenic acid fraction compounds utilizing amide derivatization: Proof of concept.

    PubMed

    Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y

    2017-12-30

    The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization

  14. N-Acetylanthranilate Amidase from Arthrobacter nitroguajacolicus Rü61a, an α/β-Hydrolase-Fold Protein Active towards Aryl-Acylamides and -Esters, and Properties of Its Cysteine-Deficient Variant▿ †

    PubMed Central

    Kolkenbrock, Stephan; Parschat, Katja; Beermann, Bernd; Hinz, Hans-Jürgen; Fetzner, Susanne

    2006-01-01

    N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the α/β-hydrolase-fold superfamily of enzymes; inactivation of (His6-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (kcat/Km = 208 mM−1 s−1), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His6Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His6AmqC22A/C63A markedly differed from those of His6Amq. The replacements effected some changes in Kms of the enzyme and increased kcats for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing kcat for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in α-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties. PMID:17041061

  15. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples

    USGS Publications Warehouse

    Ferrer, Imma; Thurman, E.M.; Barceló, Damià

    2000-01-01

    Cyanazine and two of its major metabolites, cyanazine amide and cyanazine acid, were measured at trace levels in groundwater using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). Solid-phase extraction was carried out by passing 20 mL of groundwater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 99 to 108% (n = 5). Using LC/MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in groundwater samples with low sample volumes. The fragmentation of the amide, carboxylic acid, and cyano group was observed for both metabolites and cyanazine, respectively, leading to a diagnostic ion at m/z 214. Method detection limits were in the range of 0.002−0.005 μg/L for the three compounds. Finally, the newly developed method was evaluated for the analysis of groundwater samples from New York containing the compounds under study and presents evidence that the metabolites, cyanazine acid, and cyanazine amide may leach to groundwater and serve as sources for deisopropylatrazine. The combination of on-line SPE and LC/APCI/MS represents an important advance in environmental analysis of herbicide metabolites in groundwater since it demonstrates that trace amounts of polar metabolites may be determined rapidly. Furthermore, the presence of both cyanazine amide and cyanazine acid indicate that another degradation product, deisopropylatrazine, may be occurring at depth because of the subsequent degradation of cyanazine.

  17. Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers

    PubMed Central

    van Kooten, Maria J.; Veldhuizen, Maria G.; de Araujo, Ivan E.; O’Malley, Stephanie; Small, Dana M.

    2016-01-01

    Compromised dopamine signaling in the striatum has been associated with the expression of impulsive behaviors in addiction, obesity and alcoholism. In rodents, Intragastric infusion of the fatty acid amide oleoylethanolamide increases striatal extracellular dopamine levels via vagal afferent signaling. Here we tested whether supplementation with PhosphoLean™, a dietary supplement that contains the precursor of the fatty acid amide oleoylethanolamide (N-oleyl-phosphatidylethanolamine), would reduce impulsive responding and alcohol use in heavy drinking young adults. Twenty-two individuals were assigned to a three-week supplementation regimen with PhosphoLean™ or placebo. Impulsivity was assessed with self-report questionnaires and behavioral tasks pre- and post-supplementation. Although self-report measures of impulsivity did not change, supplementation with PhosphoLean™, but not placebo, significantly reduced false alarm rate on a Go/No-Go task. In addition, an association was found between improved sensitivity on the Go/No-Go task and reduced alcohol intake. These findings provide preliminary evidence that promoting fatty acid derived gut-brain dopamine communication may have therapeutic potential for reducing impulsivity in heavy drinkers. PMID:26656766

  18. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis.

    PubMed

    Bildziukevich, Uladzimir; Rárová, Lucie; Šaman, David; Wimmer, Zdeněk

    2018-02-10

    A series of picolyl amides of betulinic acid (3a-3c and 6a-6c) was prepared and subjected to the cytotoxicity screening tests. Structure-activity relationships studies resulted in finding differences in biological activity in dependence on o-, m- and p-substitution of the pyridine ring in the target amides, when cytotoxicity data of 3a-3c and 6a-6c were obtained and compared. The amides 3b and 3a displayed cytotoxicity (given in the IC 50 values) in G-361 (0.5 ± 0.1 μM and 2.4 ± 0.0 μM, respectively), MCF7 (1.4 ± 0.1 μM and 2.2 ± 0.2 μM, respectively), HeLa (2.4 ± 0.4 μM and 2.3 ± 0.5 μM, respectively) and CEM (6.5 ± 1.5 μM and 6.9 ± 0.4 μM, respectively) tumor cell lines, and showed weak effect in the normal human fibroblasts (BJ). Selectivity against all tested cancer cells was determined and compared to normal cells with therapeutic index (TI) between 7 and 100 for compounds 3a and 3b. The therapeutic index (TI = 100) was calculated for human malignant melanoma cell line (G-361) versus normal human fibroblasts (BJ). The cytotoxicity of other target amides (3c and 6a-6c) revealed lower effects than 3a and 3b in the tested cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    PubMed

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. A 2:1 co-crystal of p-nitro-benzoic acid and N,N'-bis-(pyridin-3-ylmeth-yl)ethanedi-amide: crystal structure and Hirshfeld surface analysis.

    PubMed

    Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T

    2016-01-01

    The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.

  2. Hydrolases of Hysterothylacium aduncum (Nematoda).

    PubMed

    Zółtowska, Krystyna; Dmitryjuk, Małgorzata; Rokicki, Jerzy; Lopieńska-Biernat, Elzbieta

    2007-01-01

    Enzymatic activity is an indicator of an organism's metabolic rate which depends on, i.e., environmental conditions, developmental stage, physiological stage, and sex. The API ZYM test was applied to compare activities of 19 hydrolases of female and male Hysterothylacium aduncum. Sexually mature nematodes were isolated from eelpout individuals caught in the Gulf of Gdańsk. Enzymatic activity of the hydrolases and the protein content was determined in nematode extracts using API ZYM and Bradford's method, respectively. The females and males tested showed a total of 13 enzymes to be active. The males showed additionally the presence of alpha-fucosidase. Acidic and alkaline phosphatases had very high activities in both sexes; short-chain fatty acid esterases, leucine and valine aminopeptidases, alpha-glucosidase, and N-acetylglucosaminidase were highly active. H. aduncum showed no trypsin- and chymotrypsin-specific activities; similarly, no activity of alpha-galactosidase, alpha-mannosidase, and beta-glucuronidase was revealed. Except for lipase (C14), hydrolases were more active in females than in males, which is related to metabolic rate being higher in females due to their reproductive function. Comparison of the results obtained with earlier data produced with API ZYM allowed suggesting that the hydrolase pattern may be more affected by habitat in the host than by the taxonomic affiliation of nematode.

  3. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    PubMed

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  4. Inhibition of polygylcine hydrolases by substrate analog peptides

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are proteases secreted by fungal pathogens that target corn defense chitinases. They cleave interdomain glycine-glycine bonds within a polyglycine linker, separating substrate chitinases into two single domain proteins. Polyglycine hydrolases consist of 640 amino acids with a ...

  5. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    PubMed

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cloning and Expression of a Phloretin Hydrolase Gene from Eubacterium ramulus and Characterization of the Recombinant Enzyme

    PubMed Central

    Schoefer, Lilian; Braune, Annett; Blaut, Michael

    2004-01-01

    Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the kcat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively. PMID:15466559

  8. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  9. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog.

    PubMed

    Singh, Neha; Dalal, Vikram; Mahto, Jai Krishna; Kumar, Pravindra

    2017-09-15

    Three bacterial strains capable of degrading phthalates namely Pseudomonas sp. PKDM2, Pseudomonas sp. PKDE1 and Pseudomonas sp. PKDE2 were isolated and characterized for their degradative potential. These strains efficiently degraded 77.4%-84.4% of DMP, 75.0%-75.7% of DEP and 71.7%-74.7% of DEHP, initial amount of each phthalate is 500mgL -1 of each phthalate, after 44h of incubation. GC-MS results reveal the tentative DEHP degradation pathway, where hydrolases mediate the breakdown of DEHP to phthalic acid (PA) via an intermediate MEHP. MEHP hydrolase is a serine hydrolase which is involved in the reduction of the MEHP to PA. The predicted 3D model of MEHP hydrolase from Pseudomonas mosselii was docked with phthalate monoesters (PMEs) such as MEHP, mono-n-hexyl phthalate (MHP), mono-n-butyl phthalate (MBP) and mono-n-ethyl phthalate (MEP), respectively. Docking results show the distance between the carbonyl carbon of respective phthalate monoester and the hydroxyl group of catalytic serine lies in the range of 2.9 to 3.3Å, which is similar to the ES complex of other serine hydrolases. This structural study highlights the interaction and the role of catalytic residues of MEHP hydrolase involved in the biodegradation of PMEs to phthalate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Complex investigation of the effects of lambertianic acid amide in female mice under conditions of social discomfort.

    PubMed

    Avgustinovich, D F; Fomina, M K; Sorokina, I V; Tolstikova, T G

    2014-09-01

    The effects of chronic administration of a new substance lambertianic acid amide and previously synthesized methyl ester of this acid were compared in female mice living under conditions of social discomfort. For modeling social discomfort, female mouse was housed for 30 days in a cage with aggressive male mouse kept behind a transparent perforated partition and observed its confrontations with another male mouse daily placed to the cage. The new agent more effectively than lambertianic acid methyl ester improved communicativeness and motor activity of animals, reduced hypertrophy of the adrenal glands, and enhanced catalase activity in the blood. These changes suggest that lambertianic acid amide produces a pronounced stress-protective effect under conditions of social discomfort.

  11. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    PubMed

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  12. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  13. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis and evaluation of bile acid amides of [Formula: see text]-cyanostilbenes as anticancer agents.

    PubMed

    Agarwal, Devesh S; Singh, Rajnish Prakash; Lohitesh, K; Jha, Prabhat N; Chowdhury, Rajdeep; Sakhuja, Rajeev

    2017-12-13

    A series of amino-substituted [Formula: see text]-cyanostilbene derivatives and their bile acid (cholic and deoxycholic acid) amides were designed and synthesized. A comparative study on the anticancer and antibacterial activity evaluation on the synthesized analogs was carried against the human osteosarcoma (HOS) cancer cell line, and two gram -ve (E. coli and S. typhi) and two gram [Formula: see text]ve (B. subtilis and S. aureus) bacterial strains. All the cholic acid [Formula: see text]-cyanostilbene amides showed an [Formula: see text] in the range 2-13 [Formula: see text] against human osteosarcoma cells (HOS) with the most active analog (6g) possessing an [Formula: see text] of [Formula: see text]. One of the amino-substituted [Formula: see text]-cyanostilbene, 4e, was found to possess an [Formula: see text] of [Formula: see text]. An increase in the number of cells at the sub-[Formula: see text] phase of the cell was observed in the in vitro cell cycle analysis of two most active compounds in the series (4e, 6g) suggesting a clear indication toward induction of apoptotic cascade. With respect to antibacterial screening, amino-substituted [Formula: see text]-cyanostilbenes were found to be more active than their corresponding bile acid amides. The synthesized compounds were also subjected to in silico study to predict their physiochemical properties and drug-likeness score.

  15. Conversion of Weinreb amides into benzene rings incorporating the amide carbonyl carbon.

    PubMed

    Clive, Derrick L J; Pham, Mai P

    2009-02-20

    Esters, acids and acid chlorides can be converted via the intermediacy of their corresponding Weinreb amides into benzene derivatives that incorporate the original carbonyl carbon as part of the benzene ring. The process involves treatment of the derived Weinreb amides with 3-butenylmagnesium bromide and an allylic Grignard reagent, followed by ring-closing metathesis, dehydration and dehydrogenation. The dehydration-dehydrogenation can be done under acidic conditions with a mixture of TsOH x H(2)O and DDQ or in two steps with SOCl(2)/pyridine, followed by treatment with DDQ. Application of the method to carbohydrates provides a convenient route to C-5 aryl pyranosides.

  16. Synthesis of valproic acid amides of a melatonin derivative, a piracetam and amantadine for biological tests.

    PubMed

    Chatterjie, N; Alexander, G; Wang, H

    2001-10-01

    Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.

  17. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs).

    PubMed

    Deutsch, Dale G

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to

  18. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs)

    PubMed Central

    Deutsch, Dale G.

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that “solubilize” anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992

  19. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed

    Stahl, U.; Banas, A.; Stymne, S.

    1995-03-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization.

  20. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    PubMed

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  1. Occurrence of N-phenylpropenoyl-L-amino acid amides in different herbal drugs and their influence on human keratinocytes, on human liver cells and on adhesion of Helicobacter pylori to the human stomach.

    PubMed

    Hensel, A; Deters, A M; Müller, G; Stark, T; Wittschier, N; Hofmann, T

    2007-02-01

    Thirty commonly used medicinal plants were screened by a selective and specific LC-MS/MS method for the occurrence of N-phenylpropenoyl- L-amino acid amides, a new homologous class of secondary products. In 15 plants, one or more of the respective derivatives (1 to 12) were found and quantitated. Especially roots from Angelica archangelica, fruits of Cassia angustifolia, C. senna, Coriandrum sativum, leaves from Hedera helix, flowers from Lavandula spec. and from Sambucus nigra contained high amounts (1 to 11 microg/g) of mixtures of the different amides 1 to 12. For functional investigations on potential activity in cellular physiology, two amides with an aliphatic (8) and an aromatic amino acid residue (5) were used. N-(E)-Caffeic acid L-aspartic acid amide (8) and N-(E)-caffeic acid L-tryptophan amide (5) stimulated mitochondrial activity as well as the proliferation rate of human liver cells (HepG2) at 10 microg/mL significantly. When monitoring the influence of selected phase I and II metabolizing enzymes, both compounds did not influence CYP3A4 gene expression, but stimulated CYP1A2 gene expression and inhibited GST expression. Also, the proliferation of human keratinocytes (NHK) was increased up to 150% by both amides 5 and 8; this stimulation was also detectable on the level of gene expression by an up-regulation of the transcription factor STAT6. The aliphatic aspartic compound 8 showed strong antiadhesive properties on the adhesion of Helicobacter pylori to human stomach tissue.

  2. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

    PubMed Central

    Sarian, Fean D.; Janeček, Štefan; Pijning, Tjaard; Ihsanawati; Nurachman, Zeily; Radjasa, Ocky K.; Dijkhuizen, Lubbert; Natalia, Dessy; van der Maarel, Marc J. E. C.

    2017-01-01

    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13. PMID:28287181

  3. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. The Nodulation Factor Hydrolase of Medicago truncatula: Characterization of an Enzyme Specifically Cleaving Rhizobial Nodulation Signals1[W][OPEN

    PubMed Central

    Tian, Ye; Liu, Wei; Cai, Jie; Zhang, Lan-Yue; Wong, Kam-Bo; Feddermann, Nadja; Boller, Thomas; Xie, Zhi-Ping; Staehelin, Christian

    2013-01-01

    Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs. PMID:24082029

  5. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents.

    PubMed

    Agarwal, Devesh S; Anantaraju, Hasitha Shilpa; Sriram, Dharmarajan; Yogeeswari, Perumal; Nanjegowda, Shankara H; Mallu, P; Sakhuja, Rajeev

    2016-03-01

    A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists.

  7. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  8. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.

    PubMed

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja

    2013-07-14

    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  9. Dehydroacetic Acid Derivatives Bearing Amide or Urea Moieties as Effective Anion Receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Bertoša, Branimir; Barišić, Dajana; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2017-08-01

    Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.

    PubMed

    Kumar, Sonali; Sharma, Rashi; Garcia, Megan; Kamel, Joseph; McCarthy, Caroline; Muth, Aaron; Phanstiel, Otto

    2012-12-07

    A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.

  11. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines.

    PubMed

    Bjedov, Srđan; Jakimov, Dimitar; Pilipović, Ana; Poša, Mihalj; Sakač, Marija

    2017-04-01

    Bile acid derivatives with modifications in side chain and modifications on steroid skeleton were synthetized and their antitumor activity against five human cancer cell lines was investigated. Modifications in side chain include amid group, formed in reaction with 2-amino-2-methylpropanol, and 4,4-dimethyloxazoline group, obtained after cyclization of amides. In the steroid skeleton oxo groups were introduced in position 7 (2, 2a, 2b) and 7,12 (3, 3a, 3b). Ethylidene groups were introduced regio- and stereoselectively on C-7, and/or without stereoselectivity on C-3 by Wittig reaction. By combination of these modifications, a series of 19 bile acid derivatives were synthesized. Compounds containing both C-7 ethylidene and C-12 carbonyl groups (6, 6a, 6b) shown very good antitumor activity with IC 50 <5µM. Altering carboxylic group to amide or oxazoline group has positive effect on cytotoxicity. Different molecular descriptors were determined in silico and after principal component analysis was found that molecular descriptor BLTF96 can be used for fast assessment of experimental cytotoxicity of bile acid derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.

    PubMed

    Stathopoulos, Panagiotis; Papas, Serafim; Tsikaris, Vassilios

    2006-03-01

    Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

  13. How Does (E)-2-(Acetamidomethylene)succinate Bind to Its Hydrolase? From the Binding Process to the Final Result

    PubMed Central

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2013-01-01

    The binding of (E)-2-(acetamidomethylene)succinate (E-2AMS) to E-2AMS hydrolase is crucial for biological function of the enzyme and the last step reaction of vitamin B6 biological degradation. In the present study, several molecular simulation methods, including molecular docking, conventional molecular dynamics (MD), steered MD (SMD), and free energy calculation methods, were properly integrated to investigate the detailed binding process of E-2AMS to its hydrolase and to assign the optimal enzyme-substrate complex conformation. It was demonstrated that the substrate binding conformation with trans-form amide bond is energetically preferred conformation, in which E-2AMS's pose not only ensures hydrogen bond formation of its amide oxygen atom with the vicinal oxyanion hole but also provides probability of the hydrophobic interaction between its methyl moiety and the related enzyme's hydrophobic cavity. Several key residues, Arg146, Arg167, Tyr168, Arg179, and Tyr259, orientate the E-2AMS's pose and stabilize its conformation in the active site via the hydrogen bond interaction with E-2AMS. Sequentially, the binding process of E-2AMS to E-2AMS hydrolase was studied by SMD simulation, which shows the surprising conformational reversal of E-2AMS. Several important intermediate structures and some significant residues were identified in the simulation. It is stressed that Arg146 and Arg167 are two pivotal residues responsible for the conformational reversal of E-2AMS in the binding or unbinding. Our research has shed light onto the full binding process of the substrate to E-2AMS hydrolase, which could provide more penetrating insight into the interaction of E-2AMS with the enzyme and would help in the further exploration on the catalysis mechanism. PMID:23308285

  14. Isolation and identification of fatty acid amides from Shengli coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming-Jie Ding; Zhi-Min Zong; Ying Zong

    Shengli coal, a Chinese brown coal, was extracted with carbon disulfide and the extract was gradiently eluted with n-hexane and ethyl acetate (EA)/n-hexane mixed solvents with different concentrations of EA in a silica gel-filled column. A series of fatty acid amides, including fourteen alkanamides (C{sub 15}-C{sub 28}) and three alkenamides (C{sub 18} and C{sub 22}), were isolated from the coal by this method and analyzed with a gas chromatography/mass spectrometry. 26 refs., 2 figs., 2 tabs.

  15. Amidation reaction of eugenyl oxyacetate ethyl ester with 1,3 diaminopropane

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Wibowo, F. R.; Kusumaningsih, T.; Wibowo, A. H.; Khumaidah, S. A.; Wijayanti, L. A.

    2016-04-01

    Eugenol having various substituents on the aromatic ring (hydroxy, methoxy and allyl) are useful for starting material in synthesizing of its derivatives. Eugenol derivatives have shown wide future potential applications in many areas, especially as future drugs against many diseases. The aim of this work was to synthesize an amide of eugenol derivative. The starting material used was eugenol from clove oil and the reaction was conducted in 3 step reactions to give the final product. Firstly, eugenol was converted into eugenyl oxyacetate [2-(4-allyl-2-methoxyphenoxy) acetic acid] as a white crystal with 70.5% yield, which was then esterified with ethanol to have eugenyl oxyacetate ethyl ester [ethyl 2-(4-allyl-2-methoxyphenoxy) acetate] as brown liquid in 75.7%. The last step was the reaction between eugenyl oxyacetate ethyl ester and 1,3 diaminopropane to give 2-(4-allyl-2-methoxyphenoxy)-N-(3-aminopropyl) acetamide as a brown powder with 71.6% yield, where the amidation reaction was occurred.

  16. A validated UHPLC method for the determination of caffeoylquinic and di-caffeoylquinic acids in green coffee extracts using an RP-Amide fused-core column.

    PubMed

    Fibigr, Jakub; Majorová, Michaela; Kočová Vlčková, Hana; Solich, Petr; Šatínský, Dalibor

    2018-03-20

    The presented work describes the development and validation of a rapid UHPLC-UV method using a fused core particle column with an RP-Amide stationary phase for the separation and quantitative analysis of caffeoylquinic and di-caffeoylquinic acids in green coffee extracts. Three caffeoylquinic acids (3-caffeoylquinic acid, 4-caffeoylquinic acid, and 5-caffeoylquinic acid) and two di-caffeoylquinic acids (1,3-di-caffeoylquinic acid, and 3,5-di-caffeoylquinic acid) were separated and analyzed in 8 min. That was possible due to the unique selectivity of the RP-Amide stationary phase for the analyzed acids. The retention behavior of all analytes under different compositions of the mobile phase on different columns was evaluated in this study. The optimal chromatographic separation was performed using an Ascentis Express RP-Amide (100 × 2.1 mm) fused-core column with a particle size of 2.7 μm at a temperature of 30 °C. For validation of the newly developed method, acetonitrile was used as mobile phase B and 5% formic acid, filtrated through a 0.22 μm filter, was used as mobile phase A. They were delivered at a flow rate of 0.9 mL min -1 according to the elution gradient program. The detection wavelength was set at 325 nm. A solid-liquid extraction with a solution of methanol and a 5% water solution of formic acid (25 + 75 v/v) using an ultrasonic bath was chosen for the preparation of the available commercial samples of food supplements containing a green coffee extract. Recoveries for all analyzed acids were 98.2-101.0% and the relative standard deviation ranged from 0.3% to 1.4% for intra-day and from 0.3% to 3.0% for inter-day repeatability. The limits of detection were in the range of 0.30-0.53 μg mL -1 . Copyright © 2018. Published by Elsevier B.V.

  17. Isolation and characterization of racemase from Ensifer sp. 23-3 that acts on α-aminolactams and α-amino acid amides.

    PubMed

    Matsui, Daisuke; Fuhshuku, Ken-Ichi; Nagamori, Shingo; Takata, Momoko; Asano, Yasuhisa

    2017-11-01

    Limited information is available on α-amino-ε-caprolactam (ACL) racemase (ACLR), a pyridoxal 5'-phosphate-dependent enzyme that acts on ACL and α-amino acid amides. In the present study, eight bacterial strains with the ability to racemize α-amino-ε-caprolactam were isolated and one of them was identified as Ensifer sp. strain 23-3. The gene for ACLR from Ensifer sp. 23-3 was cloned and expressed in Escherichia coli. The recombinant ACLR was then purified to homogeneity from the E. coli transformant harboring the ACLR gene from Ensifer sp. 23-3, and its properties were characterized. This enzyme acted not only on ACL but also on α-amino-δ-valerolactam, α-amino-ω-octalactam, α-aminobutyric acid amide, and alanine amide.

  18. Hydrolysis of an orally active platelet inhibitory prostanoid amide in the plasma of several species.

    PubMed

    Honohan, T; Fitzpatrick, F A; Booth, D G; McGrath, J P; Morton, D R; Nishizawa, E

    1980-01-01

    The prostanoid 3-oxa-4,5,6-trinor-3,7-inter-m-phenylene-PGE1-amide (OI-PGE1-amide) has a prolonged duration of oral platelet aggregation inhibitory activity when compared to the parent free acid (OI-PGE1) in the rat. When incubated in rat plasma at 1 microgram/ml for 30 seconds prior to addition of ADP, OI-PGE1-amide inhibits in vitro rat platelet aggregation approximately 50%. OI-PGE1 inhibits at 1 ng/ml. Inhibition of platelet aggregation by plasma incubated with OI-PGE1-amide (1 microgram/ml) increases with time and the rate of this increase differs with species. Incubation of OI-PGE1 in plasma does not result in an increase of platelet inhibitory activity with time. The increase of platelet inhibitory activity was assumed to indicate hydrolysis of OI-PGE1-amide to the more active OI-PGE1. A compound, different from OI-PGE1-amide, was isolated by an ion exchange/silica gel separation sequence from an incubation of OI-PGE1-amide in rat plasma. It had potent platelet aggregation inhibitory activity. This material was shown to be OI-PGE1 by thin-layer chromatography, gas chromatography and mass spectral analysis. Studies with [3H]-OI-PGE1-amide confirmed the formation of OI-PGE1 in plasma incubations. Amide hydrolytic activity was significantly different between species, the rank order being: rat greater than guine pig greater than monkey = human greater than dog. This relationship corresponded with that determined by measuring the increase in platelet inhibitory activity with time in plasma incubations of OI-PGE1-amide reported above. Present data indicate that (a) OI-PGE1-amide is hydrolyzed to the parent acid by plasma enzymes of several species and (b) hydrolytic activity of plasma varies widely between species.

  19. Sex-related difference in the inductions by perfluoro-octanoic acid of peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase in rat liver.

    PubMed Central

    Kawashima, Y; Uy-Yu, N; Kozuka, H

    1989-01-01

    Inductions by perfluoro-octanoic acid (PFOA) of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase were compared in liver between male and female rats. Marked inductions of these four parameters were seen concurrently in liver of male rats, whereas the inductions in liver of female rats were far less pronounced. The sex-related difference in the response of rat liver to PFOA was much more marked than that seen with p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). Hormonal manipulations revealed that this sex-related difference in the inductions is strongly dependent on sex hormones, namely that testosterone is necessary for the inductions, whereas oestradiol prevented the inductions by PFOA. PMID:2570571

  20. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  1. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    PubMed

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Autolytic hydrolases affect sexual and asexual development of Aspergillus nidulans.

    PubMed

    Emri, Tamás; Vékony, Viktória; Gila, Barnabás; Nagy, Flóra; Forgács, Katalin; Pócsi, István

    2018-03-30

    Radial growth, asexual sporulation, and cleistothecia formation as well as extracellular chitinase and proteinase formation of Aspergillus nidulans were monitored in surface cultures in order to study the physiological role of extracellular hydrolase production in carbon-stressed cultures. We set up carbon-stressed and carbon-overfed experimental conditions by varying the starting glucose concentration within the range of 2.5 and 40 g/L. Glucose starvation induced radial growth and hydrolase production and enhanced the maturation of cleistothecia; meanwhile, glucose-rich conditions enhanced mycelial biomass, conidia, and cleistothecia production. Double deletion of chiB and engA (encoding an extracellular endochitinase and a β-1,3-endoglucanase, respectively) decreased conidia production under carbon-stressed conditions, suggesting that these autolytic hydrolases can support conidia formation by releasing nutrients from the cell wall polysaccharides of dead hyphae. Double deletion of prtA and pepJ (both genes encode extracellular proteases) reduced the number of cleistothecia even under carbon-rich conditions except in the presence of casamino acids, which supports the view that sexual development and amino acid metabolism are tightly connected to each other in this fungus.

  4. Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-β-cyclodextrin.

    PubMed

    Garrido, E Manuela P J; Cerqueira, Ana S; Chavarria, Daniel; Silva, Tiago; Borges, Fernanda; Garrido, Jorge M P J

    2018-07-15

    Caffeic acid phenethyl ester (CAPE) is a bioactive polyphenolic compound obtained from propolis extract. Although it has a broad therapeutic potential, the bioavailability of CAPE is limited, due to reduced solubility and poor plasmatic stability. Efforts to reduce these pharmacokinetic drawbacks resulted in the synthesis of caffeic acid phenethyl amide (CAPA). Cyclodextrins have been proved as promising excipients for the formulation of active ingredients. Herein, we report the inclusion complexation behavior and binding ability of CAPE and CAPA with hydroxypropyl-β-cyclodextrin (HP-β-CD). The supramolecular interactions were examined through UV and FTIR spectroscopy, DSC, 1 H NMR and 2D ROESY. The CAPE/HP-β-CD and CAPA/HP-β-CD inclusion complexes stability constants were determined to be, respectively, 2911.6 and 584.6 M -1 in water and 2866.2 and 700.1 M -1 at physiological pH. The aqueous solubility increased notably, proving that HP-β-CD can be potentially useful to improve the biological, chemical and physical properties of CAPE and CAPA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Part 1: Notch-sparing γ-secretase inhibitors: The identification of novel naphthyl and benzofuranyl amide analogs.

    PubMed

    Lu, Dai; Wei, Han-Xun; Zhang, Jing; Gu, Yongli; Osenkowski, Pamela; Ye, Wenjuan; Selkoe, Dennis J; Wolfe, Michael S; Augelli-Szafran, Corinne E

    2016-05-01

    γ-Secretase is one of two proteases directly involved in the production of the amyloid β-peptide (Aβ), which is pathogenic in Alzheimer's disease. Inhibition of γ-secretase to suppress the production of Aβ should not block processing of one of its alternative substrates, Notch1 receptors, as interference with Notch1 signaling leads to severe toxic effects. In the course of our studies to identify γ-secretase inhibitors with selectivity for APP over Notch, 1 [3-(benzyl(isopropyl)amino)-1-(naphthalen-2-yl)propan-1-one] was found to inhibit γ-secretase-mediated Aβ production without interfering with γ-secretase-mediated Notch processing in purified enzyme assays. As 1 is chemically unstable, efforts to increase the stability of this compound led to the identification of 2 [naphthalene-2-carboxylic acid benzyl-isopropyl-amide] which showed similar biological activity to compound 1. Synthesis and evaluation of a series of amide analogs resulted in benzofuranyl amide analogs that showed promising Notch-sparing γ-secretase inhibitory effects. This class of compounds may serve as a novel lead series for further study in the development of γ-secretase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Friedel-Crafts Acylation with Amides

    PubMed Central

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  7. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    PubMed

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  8. Glycoside hydrolases having multiple hydrolase activities

    DOEpatents

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  9. Structure and function of polyglycine hydrolases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...

  10. Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer.

    PubMed

    Nathanael, Joses G; Gamon, Luke F; Cordes, Meike; Rablen, Paul R; Bally, Thomas; Fromm, Katharina M; Giese, Bernd; Wille, Uta

    2018-05-04

    In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil; Servinsky, Matthew D.; Gerlach, Elliot S.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes themore » unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  12. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    NASA Astrophysics Data System (ADS)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  13. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.

    PubMed

    Vasilenko, Natalia; Moshynskyy, Igor; Zakhartchouk, Alexander

    2010-02-09

    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.

  14. The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases.

    PubMed

    Alexander, Jessica P; Cravatt, Benjamin F

    2006-08-02

    How lipid transmitters move within and between cells to communicate signals remains an important and largely unanswered question. Integral membrane transporters, soluble lipid-binding proteins, and metabolic enzymes have all been proposed to collaboratively regulate lipid signaling dynamics in vivo. Assignment of the relative contributions made by each of these classes of proteins requires selective pharmacological agents to perturb their individual functions. Recently, LY2183240, a heterocyclic urea inhibitor of the putative endocannabinoid (EC) transporter, was shown to disrupt the cellular uptake of the lipid EC anandamide and promote analgesia in vivo. Here, we show that LY2183240 is a potent, covalent inhibitor of the EC-degrading enzyme fatty acid amide hydrolase (FAAH). LY2183240 inactivates FAAH by carbamylation of the enzyme's serine nucleophile. More global screens using activity-based proteomic probes identified several additional serine hydrolases that are also inhibited by LY2183240. These results indicate that the blockade of anandamide uptake observed with LY2183240 may be due primarily to the inactivation of FAAH, providing further evidence that this enzyme serves as a metabolic driving force that promotes the diffusion of anandamide into cells. More generally, the proteome-wide target promiscuity of LY2183240 designates the heterocyclic urea as a chemotype with potentially excessive protein reactivity for drug design.

  15. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  16. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    PubMed Central

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  17. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Direct methylation procedure for converting fatty amides to fatty acid methyl esters in feed and digesta samples.

    PubMed

    Jenkins, T C; Thies, E J; Mosley, E E

    2001-05-01

    Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.

  19. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. [Psychoactive effects of 'legal high': About lysergic acid amide (LSA)].

    PubMed

    Ponté, Camille; Lapeyre-Mestre, Maryse

    2017-10-01

    Lysergic acid amide (LSA) is a natural psychoactive substance consumed as a psychedelic drug. In 2016, 4 cases were reported to the Toulouse Addictovigilance Centre, resulting in unintended psychic effects and led to a hospitalisation in 2 cases. Other cases of serious LSA intoxication are published, including a death. It is important to inform about the risks related to LSA consumption, a substance which is freely available and sometimes hidden behind various plant names. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  1. Molecular Characterization of Organelle-Type Nudix Hydrolases in Arabidopsis1[W

    PubMed Central

    Ogawa, Takahisa; Yoshimura, Kazuya; Miyake, Hiroe; Ishikawa, Kazuya; Ito, Daisuke; Tanabe, Noriaki; Shigeoka, Shigeru

    2008-01-01

    Nudix (for nucleoside diphosphates linked to some moiety X) hydrolases act to hydrolyze ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or dinucleoside polyphosphates. Arabidopsis (Arabidopsis thaliana) contains 27 genes encoding Nudix hydrolase homologues (AtNUDX1 to -27) with a predicted distribution in the cytosol, mitochondria, and chloroplasts. Previously, cytosolic Nudix hydrolases (AtNUDX1 to -11 and -25) were characterized. Here, we conducted a characterization of organelle-type AtNUDX proteins (AtNUDX12 to -24, -26, and -27). AtNUDX14 showed pyrophosphohydrolase activity toward both ADP-ribose and ADP-glucose, although its Km value was approximately 100-fold lower for ADP-ribose (13.0 ± 0.7 μm) than for ADP-glucose (1,235 ± 65 μm). AtNUDX15 hydrolyzed not only reduced coenzyme A (118.7 ± 3.4 μm) but also a wide range of its derivatives. AtNUDX19 showed pyrophosphohydrolase activity toward both NADH (335.3 ± 5.4 μm) and NADPH (36.9 ± 3.5 μm). AtNUDX23 had flavin adenine dinucleotide pyrophosphohydrolase activity (9.1 ± 0.9 μm). Both AtNUDX26 and AtNUDX27 hydrolyzed diadenosine polyphosphates (n = 4–5). A confocal microscopic analysis using a green fluorescent protein fusion protein showed that AtNUDX15 is distributed in mitochondria and AtNUDX14 -19, -23, -26, and -27 are distributed in chloroplasts. These AtNUDX mRNAs were detected ubiquitously in various Arabidopsis tissues. The T-DNA insertion mutants of AtNUDX13, -14, -15, -19, -20, -21, -25, -26, and -27 did not exhibit any phenotypical differences under normal growth conditions. These results suggest that Nudix hydrolases in Arabidopsis control a variety of metabolites and are pertinent to a wide range of physiological processes. PMID:18815383

  2. Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment.

    PubMed

    Guindon, Josée; Lai, Yvonne; Takacs, Sara M; Bradshaw, Heather B; Hohmann, Andrea G

    2013-01-01

    Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and coldallodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid signaling system consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB(1) and CB(2)) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB(1) (AM251 3 mg/kg), CB(2) (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB(1), CB(2), TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the observed allodynia while amitriptyline, administered acutely, was ineffective

  3. [A comparative study on hydrolase activities in Acanthamoeba culbertsoni and A. royreba

    PubMed

    Kim, Yong Kyu; Kim, Tae Ue; Joung, In Sil; Im, Kyung Il

    1988-06-01

    Specific or non-specific cytolytic processes of free-living amoebae causing meningoencephalitis have been emphasized and the cytolytic ability related to hydrolases in Entamoeba sp. and Naegleria sp. has also been reported since the latter half of 1970's. However, no information on hydrolase activities in Acanthamoeba sp. is available. Hydrolases in Acanthamoeba culbertsoni, a pathogenic species of free-living amoebae, were assayed and compared with those in a non-pathogenic species, A. royreba. Pathogenicity of these two species was confirmed through experimental infection to BALB/c mice. Hydrolase activities and cytotoxic effects between pathogenic and non-pathogenic species were compared in the trophozoites cultured in CGV media and in CHO cell line, respectively. The results are summarized as follows: The mice infected with A. culbertsoni were all dead 15 days after nasal inoculation, and the mean survival time was 8.5 days. Also the mice infected with this pathogenic species mani fested typical meningoencephalitis, whereas the mice infected with A. royreba did not. Hydrolases detected both in the cell extracts and culture media were acid phosphatase, beta-N-acetyl galactosaminidase, beta-N-acetyl glucosaminidase, alpha-mannosidase, neutral proteinase and acid proteinase, all of which were detected with remarkably higher rate in A.culbertsoni than in A. royreba. A. culbertsoni revealed strong cytotoxicity for the target CHO cells, whereas A. royreba did not show any specific cytotoxicity. About 80% of the target cells mixed with A. culbertsoni were dead 48 hours after cultivation, and more than 95% of the target cells were dead 72 hours after cultivation. Hydrolase activities in A. culbertsoni cultured with the target cell line were assayed according to the culture time. The activities of acid phosphatase, beta-N-acetyl glucosaminidase, beta-N-acetyl glucosaminidase, alpha-mannosidase and acid proteinase in this pathogenic amoeba were detected higher in amoeba

  4. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  5. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  6. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; ...

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  7. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

  8. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype

    PubMed Central

    Dalli, Jesmond; Zhu, Min; Vlasenko, Nikita A.; Deng, Bin; Haeggström, Jesper Z.; Petasis, Nicos A.; Serhan, Charles N.

    2013-01-01

    Maresins are produced by macrophages from docosahexaenoic acid (DHA) and exert potent proresolving and tissue homeostatic actions. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is the first identified maresin. Here, we investigate formation, stereochemistry, and precursor role of 13,14-epoxy-docosahexaenoic acid, an intermediate in MaR1 biosynthesis. The 14-lipoxygenation of DHA by human macrophage 12-lipoxygenase (hm12-LOX) gave 14-hydro(peroxy)-docosahexaenoic acid (14-HpDHA), as well as several dihydroxy-docosahexaenoic acids, implicating an epoxide intermediate formation by this enzyme. Using a stereo-controlled synthesis, enantiomerically pure 13S,14S-epoxy-docosa-4Z,7Z,9E,11E,16Z,19Z-hexaenoic acid (13S,14S-epoxy-DHA) was prepared, and its stereochemistry was confirmed by NMR spectroscopy. When this 13S,14S-epoxide was incubated with human macrophages, it was converted to MaR1. The synthetic 13S,14S-epoxide inhibited leukotriene B4 (LTB4) formation by human leukotriene A4 hydrolase (LTA4H) ∼40% (P<0.05) to a similar extent as LTA4 (∼50%, P<0.05) but was not converted to MaR1 by this enzyme. 13S,14S-epoxy-DHA also reduced (∼60%; P<0.05) arachidonic acid conversion by hm12-LOX and promoted conversion of M1 macrophages to M2 phenotype, which produced more MaR1 from the epoxide than M1. Together, these findings establish the biosynthesis of the 13S,14S-epoxide, its absolute stereochemistry, its precursor role in MaR1 biosynthesis, and its own intrinsic bioactivity. Given its actions and role in MaR1 biosynthesis, this epoxide is now termed 13,14-epoxy-maresin (13,14-eMaR) and exhibits new mechanisms in resolution of inflammation in its ability to inhibit proinflammatory mediator production by LTA4 hydrolase and to block arachidonate conversion by human 12-LOX rather than merely terminating phagocyte involvement.—Dalli, J., Zhu, M., Vlasenko, N. A., Deng, B., Haeggström, J. Z., Petasis, N. A., Serhan, C. N. The novel 13S

  9. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  10. Synthesis, biological activity, and bioavailability of moschamine, a safflomide-type phenylpropenoic acid amide found in Centaurea cyanus

    USDA-ARS?s Scientific Manuscript database

    Moschamine is a safflomide-type phenylpropenoic acid amide originally isolated from Centaurea cyanus. This paper describes the synthesis, detection of serotoninergic and COX inhibitory activities, and bioavailability of moschamine. Moschamine was chemically synthesized and identified using NMR spect...

  11. Repurposing Suzuki Coupling Reagents as a Directed Fragment Library Targeting Serine Hydrolases and Related Enzymes.

    PubMed

    Lanier, Marion; Cole, Derek C; Istratiy, Yelena; Klein, Michael G; Schwartz, Phillip A; Tjhen, Richard; Jennings, Andy; Hixon, Mark S

    2017-06-22

    Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.

  12. Novel natural and synthetic ligands of the endocannabinoid system.

    PubMed

    Hanus, Lumír O; Mechoulam, Raphael

    2010-01-01

    In this review we describe recent advances in the chemistry of novel CB(1)/CB(2) agonists, CB(1) antagonists, selective CB(2) agonists, fatty acid amide hydrolase inibitors, monoglyceride (MGL) and diglyceride (DAGL) inhibitors and cannabinoid-type agonists and antagonists of non CB(1)/CB(2) receptors. In view of recent interest in the activities of fatty acid amides of amino acids (N-acyl amino acids) a list of this type of compounds was compiled and is presented as a Table. We conclude that further synthetic work based on both the plant cannabinoids and on the endocannabinoids may lead to novel therapeutics and that the identification and the elucidation of the biological profile of the myriad of endogenous N-acyl amino acids and related compounds may enhance the already wide spectrum of lipidomics.

  13. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1,3,4-thiadiazol-2-yl)amides.

    PubMed

    Eckelbarger, Joseph D; Parker, Marshall H; Yap, Maurice Ch; Buysse, Ann M; Babcock, Jonathan M; Hunter, Ricky; Adelfinskaya, Yelena; Samaritoni, Jack G; Garizi, Negar; Trullinger, Tony K

    2017-04-01

    Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less

  15. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.

    PubMed

    Aoki, K; Koga, K

    2000-04-01

    Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.

  16. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates

    PubMed Central

    Iali, Wissam; Rayner, Peter J.; Duckett, Simon B.

    2018-01-01

    Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use parahydrogen to rapidly hyperpolarize appropriate 1H, 13C, 15N, and 31P responses of analytes (such as NH3) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5′-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the 1H signal gains reach as high as 650-fold per proton, whereas for 13C, the corresponding signal gains achieved in a 1H-13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected 13C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique. PMID:29326984

  17. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  18. Ferric Hydrogensulfate [Fe(HSO4)3] As a Reusable Heterogeneous Catalyst for the Synthesis of 5-Substituted-1H-Tetrazoles and Amides

    PubMed Central

    Eshghi, Hossein; Seyedi, Seyed Mohammad; Zarei, Elaheh Rahimi

    2011-01-01

    Ferric hydrogensulfate catalyzed the synthesis of 5-substituted 1H-tetrazoles via [2 + 3] cycloaddition of nitriles and sodium azide. This method has the advantages of high yields, simple methodology, and easy workup. The catalyst can be recovered by simple filtration and reused delivering good yields. Also, ferric hydrogensulfate catalyzed the hydrolysis of nitriles to primary amides under aqueous conditions. Various aliphatic and aromatic nitriles converted to the corresponding amides in good yields without any contamination with carboxylic acids. PMID:24052817

  19. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

    DTIC Science & Technology

    2009-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Dramatic Differences in Organophosphorus Hydrolase Activity between Human and 5a... activity , V-agents, VX, bioscavenger, medical countermeasures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes† Tamara C. Otto,‡ Christina K. Harsch,§ David T

  20. Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement

    PubMed Central

    Goodman, C. Guy; Johnson, Jeffrey S.

    2015-01-01

    Dynamic kinetic resolutions of α-stereogenic-β-formyl amides in asymmetric 2-aza-Cope rearrangements are described. Chiral phosphoric acids catalyze this rare example of a non-hydrogenative DKR of a β-oxo acid derivative. The [3,3]-rearrangement occurs with high diastereo- and enantiocontrol, forming β-imino amides that can be deprotected to the primary β-amino amide or reduced to the corresponding diamine. PMID:26561873

  1. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties.

    PubMed

    O'Harte, Finbarr P M; Parthsarathy, Vadivel; Hogg, Christopher; Flatt, Peter R

    2017-12-15

    The adipokine, apelin has many biological functions but its activity is curtailed by rapid plasma degradation. Fatty acid derived apelin analogues represent a new and exciting avenue for the treatment of obesity-diabetes. This study explores four novel fatty acid modified apelin-13 analogues, namely, (Lys 8 GluPAL)apelin-13 amide, pGlu(Lys 8 GluPAL)apelin-13 amide, Lys 8 GluPAL(Tyr 13 )apelin-13 and Lys 8 GluPAL(Val 13 )apelin-13. Fatty acid modification extended the half-life of native apelin-13 to >24 h in vitro. pGlu(Lys 8 GluPAL)apelin-13 amide was the most potent insulinotropic analogue in BRIN-BD11 cells and isolated islets with maximal stimulatory effects of up to 2.7-fold (p < .001). (Lys 8 GluPAL)apelin-13 amide (1.9-fold) and Lys 8 GluPAL(Tyr 13 )apelin-13 (1.7-fold) were less effective, whereas Lys 8 GluPAL(Val 13 )apelin-13 had an inhibitory effect on insulin secretion. Similarly, pGlu(Lys 8 GluPAL)apelin-13 amide was most potent in increasing beta-cell intracellular Ca 2+ concentrations (1.8-fold, p < .001) and increasing glucose uptake in 3T3-L1 adipocytes (2.3-fold, p < .01). Persistent biological action was observed with both pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide significantly reducing blood glucose (39-43%, p < .01) and enhancing insulin secretion (43-56%, p < .001) during glucose tolerance tests in diet-induced obese mice. pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide also inhibited feeding (28-40%, p < .001), whereas Lys 8 GluPAL(Val 13 )apelin-13 increased food intake (8%, p < .05) in mice. These data indicate that novel enzymatically stable analogues of apelin-13 may be suitable for future development as therapeutic agents for obesity-diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Metal-free one-pot oxidative amination of aldehydes to amides.

    PubMed

    Ekoue-Kovi, Kekeli; Wolf, Christian

    2007-08-16

    Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.

  3. Polyunsaturated fatty acid amides from the Zanthoxylum genus - from culinary curiosities to probes for chemical biology.

    PubMed

    Chruma, Jason J; Cullen, Douglas J; Bowman, Lydia; Toy, Patrick H

    2018-01-25

    Covering up to February 2017The pericarps of several species from the Zanthoxylum genus, a.k.a. the "prickly ash", have long been used for culinary purposes throughout Asia, most notably in the Sichuan (previously Szechuan) cuisine of Southwestern China, due to the unique tingling and numbing orosensations arising from a collection of polyunsaturated fatty acid amide (alkamide) constituents. The past decade has experienced dramatically increased academic and industrial interest in these pungent Zanthoxylum-derived alkamides, with a concomitant explosion in studies aimed at elucidating the specific biochemical mechanisms behind several medically-relevant biological activities exhibited by the natural products. This rapid increase in interest is partially fueled by advances in organic synthesis reported within the past few years that finally have allowed for the production of diastereomerically-pure Zanthoxylum alkamides and related analogs in multigram quantities. Herein is a comprehensive review of the discovery, total synthesis, and biological evaluation of Zanthoxylum-derived polyunsaturated fatty acid amides and synthetic analogues. Critical insights into how chemical synthesis can further benefit future chemical biology efforts in the field are also provided.

  4. Practical and Metal-Free Synthesis of Novel Enantiopure Amides Containing the Potentially Bioactive 5-Nitroimidazole Moiety.

    PubMed

    Spitz, Cédric; Mathias, Fanny; Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-11-04

    We report here a practical and metal-free synthesis of novel enantiopure amides containing the drug-like 5-nitroimidazole scaffold. The first step was a metal-free diastereoselective addition of 4-(4-(chloromethyl)phenyl)-1,2-dimethyl-5-nitro-1 H -imidazole to enantiomerically pure N - tert -butanesulfinimine. Then, the N - tert -butanesulfinyl-protected amine was easily deprotected under acidic conditions. Finally, the primary amine was coupled with different acid chlorides or acids to give the corresponding amides. The mild reaction conditions and high tolerance for various substitutions make this approach attractive for constructing pharmacologically interesting 5-nitroimidazoles.

  5. Catalytic synthesis of amides via aldoximes rearrangement.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  6. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors.

    PubMed

    Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen

    2014-01-15

    Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  8. Anti-inflammatory Effects of Omega-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II Dependent Hypertension

    PubMed Central

    Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D

    2013-01-01

    The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336

  9. Oligonuclear ferrocene amides: mixed-valent peptides and potential redox-switchable foldamers.

    PubMed

    Siebler, Daniel; Linseis, Michael; Gasi, Teuta; Carrella, Luca M; Winter, Rainer F; Förster, Christoph; Heinze, Katja

    2011-04-11

    Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, paramagnetic ¹H NMR and Mössbauer spectroscopy and investigated theoretically by DFT calculations. According to the appearance of intervalence charge transfer (IVCT) bands in solution, the ferrocene/ferrocenium amides are described as Robin-Day class II mixed-valent systems. Mössbauer spectroscopy indicates trapped valences in the solid state. The secondary structure of trinuclear ferrocene tris-amides remains intact (coiled form) upon oxidation to mono- and dications according to DFT calculations, while oxidation to the trication should break the intramolecular hydrogen bonding and unfold the ferrocene peptide (uncoiled form).

  10. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  11. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  12. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.

    PubMed

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The impact of nonpolar lipids on the regulation of the steryl ester hydrolases Tgl1p and Yeh1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Klein, Isabella; Korber, Martina; Athenstaedt, Karin; Daum, Günther

    2017-12-01

    In the yeast Saccharomyces cerevisiae degradation of steryl esters is catalyzed by the steryl ester hydrolases Tgl1p, Yeh1p and Yeh2p. The two steryl ester hydrolases Tgl1p and Yeh1p localize to lipid droplets, a cell compartment storing steryl esters and triacylglycerols. In the present study we investigated regulatory aspects of these two hydrolytic enzymes, namely the gene expression level, protein amount, stability and enzyme activity of Tgl1p and Yeh1p in strains lacking both or only one of the two major nonpolar lipids, steryl esters and triacylglycerols. In a strain lacking both nonpolar lipids and consequently lipid droplets, Tgl1p as well as Yeh1p were present at low amount, became highly unstable compared to wild-type cells, and lost their enzymatic activity. Under these conditions both steryl ester hydrolases were retained in the endoplasmic reticulum. The lack of steryl esters alone was not sufficient to cause an altered intracellular localization of Tgl1p and Yeh1p. Surprisingly, the stability of Tgl1p and Yeh1p was markedly reduced in a strain lacking triacylglycerols, but their capacity to mobilize steryl esters remained unaffected. We also tested a possible cross-regulation of Tgl1p and Yeh1p by analyzing the behavior of each hydrolase in the absence of its counterpart steryl ester hydrolases. In summary, this study demonstrates a strong regulation of the two lipid droplet associated steryl ester hydrolases Tgl1p and Yeh1p due to the presence/absence of their host organelle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  15. A proton wire and water channel revealed in the crystal structure of isatin hydrolase.

    PubMed

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan K; Jochimsen, Bjarne; Etzerodt, Michael; Morth, J Preben

    2014-08-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. [Effects of nitrogen additions on soil hydrolase and oxidase activities in Pinus elliottii plantations.

    PubMed

    Zhang, Chuang; Zou, Hong Tao; Zhang, Xin Yu; Kou, Liang; Yang, Yang; Sun, Xiao Min; Li, Sheng Gong; Wang, Hui Min

    2016-11-18

    We evaluated responses of hydrolase and oxidase activities in a subtropical Pinus elliottii plantation through a nitrogen (N) addition field experiment (dosage level: 0, 40, 120 kg N·hm -2 ·a -1 ). The results showed that N additions significantly decreased the carbon, nitrogen and phosphorus related hydrolase and oxidase activities. The activities of β-1,4-glucosidase (BG), cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG) and peroxidase (PER) activities were decreased by 16.5%-51.1% due to N additions, and the decrease was more remarkable in the higher N addition treatment. The activities of α-1,4-glucosidase (aG), β-1,4-xylosidase (BX), acid phosphatase (AP) and phenol oxidase (PPO) were decreased by 14.5%-38.6% by N additions, however, there was no significant difference among the different N addition treatments. Soil enzyme activities varied obviously in different seasons. The activities of BG, NAG, BX, CBH, AP and PPO were in the order of March > June > October, and aG and PER activities were in the order of October > March > June. Most of the soil hydrolase and oxidase activities were positively correlated with soil pH, but negatively with NO 3 - -N content. It indicated that N additions inhibited soil hydrolase and oxidase activities by reducing soil pH and increasing soil nitrification. N additions inhibited the soil organic matter mineralization and turnover in the subtropical area, and the effects were obvious with the increasing dosage of N additions.

  17. Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.

    PubMed

    Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de

    2016-12-13

    A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.

  18. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides - Structural characterization and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Stoykova, Boyka; Chochkova, Maya; Ivanova, Galya; Markova, Nadezhda; Enchev, Venelin; Tsvetkova, Iva; Najdenski, Hristo; Štícha, Martin; Milkova, Tsenka

    2017-05-01

    N-phenylpropenoyl amino acid amides have been brominated using two alternative sonochemically activated green chemistry procedures. The first synthetic procedure has involved an ultrasound assisted bromination in an aqueous medium using ionic liquid as a catalyst of the reaction, whereas in the second one an in situ formation of Br2 via oxidation of HBr by H2O2 has been used. For comparison, the conventional bromination procedure was also used. The newly brominated compounds were characterized by appropriate analytical techniques. A detailed NMR spectroscopic analysis and quantum chemical calculations using Density Functional Theory (DFT) methods have been used to define the stereochemistry of the products. The results confirmed the physicochemical identity and similar yields of the products obtained by the three synthetic procedures employed, and reveal the co-existence of two diastereoisomeric forms of the newly synthesized products. The antibacterial and antifungal activities of the dibrominated amides were evaluated.

  19. Evaluation of unsaturated alkanoic acid amides as maskers of epigallocatechin gallate astringency.

    PubMed

    Obst, Katja; Paetz, Susanne; Backes, Michael; Reichelt, Katharina V; Ley, Jakob P; Engel, Karl-Heinz

    2013-05-08

    Some foods, beverages, and food ingredients show characteristic long-lasting aftertastes. The sweet, lingering taste of high intensity sweeteners or the astringency of tea catechins are typical examples. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, causes a long-lasting astringency and bitterness. These sensations are mostly perceived as aversive and are only accepted in a few foods (e.g., tea and red wine). For the evaluation of the aftertaste of such constituents over a certain period of time, Intensity Variation Descriptive Methodology (IVDM) was used. The approach allows the measurement of different descriptors in parallel in one panel session. IVDM was evaluated concerning the inter- and intraindividual differences of panelists for bitterness and astringency of EGCG. Subsequently, the test method was used as a screening tool for the identification of potential modality-selective masking compounds. In particular, the intensity of the astringency of EGCG (750 mg kg(-1)) could be significantly lowered by 18-33% during the time course by adding the trigeminal-active compound trans-pellitorine (2E,4E-decadienoic acid N-isobutyl amide 1, 5 mg kg(-1)) without significantly affecting bitterness perception. Further, structurally related compounds were evaluated on EGCG to gain evidence for possible structure-activity relationships. A more polar derivative of 1, (2S)-2-[[(2E,4E)-deca-2,4-dienoyl]amino]propanoic acid 9, was also able to reduce the astringency of EGCG similar to trans-pellitorine but without showing the strong tingling effect.

  20. Crystal Structure of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete chrysosporium*S⃞

    PubMed Central

    Ishida, Takuya; Fushinobu, Shinya; Kawai, Rie; Kitaoka, Motomitsu; Igarashi, Kiyohiko; Samejima, Masahiro

    2009-01-01

    Glycoside hydrolase family 55 consists of β-1,3-glucanases mainly from filamentous fungi. A β-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes β-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from β-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two β-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two β-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various β-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two β-helical domains, demonstrating an unexpected variety of carbohydrate binding modes. PMID:19193645

  1. Consolidation of glycosyl hydrolase family 30 : a dual domain 4/7 hydrolase family consisting of two structurally distinct groups

    Treesearch

    Franz J. St John; Javier M. Gonzalez; Edwin Pozharski

    2010-01-01

    In this work glycosyl hydrolase (GH) family 30 (GH30) is analyzed and shown to consist of its currently classified member sequences as well as several homologous sequence groups currently assigned within family GH5. A large scale amino acid sequence alignment and a phylogenetic tree were generated and GH30 groups and subgroups were designated. A partial rearrangement...

  2. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  3. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    PubMed

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  4. [Synthetic transformations of higher terpenoids. XXX. Synthesis and cytotoxic activity of betulonic acid amides with a piperidine or pyrrolidine nitroxide moiety].

    PubMed

    Antimonova, A N; Petrenko, N I; Shults, E E; Polienko, Iu F; Shakirov, M M; Irtegova, I G; Pokrovskiĭ, M A; Sherman, K M; Grigor'ev, I A; Pokrovskiĭ, A G; Tolstikov, G A

    2013-01-01

    The reaction of betulonic acid chloride with 4-amino-2,2,6,6-tetramethylpeperidine-1-oxyl, 3-amino-2,2,5,5-tetramethylpyrrolidine-1-oxyl and 3-aminomethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl gave corresponding triterpenoid amides. It was found that new derivatives exhibit cytotoxic activity against tumor cells CEM-13, U-937, MT-4. CCID50 value for most activity compound--N-[3-oxolup-20(29)-en-30-yl]-(2,2,6,6-tetramethylpiperidine-4-yl)-1-oxyl--was 5.7-33.1 microM.

  5. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury.

    PubMed

    Takala, Riikka S K; Posti, Jussi P; Runtti, Hilkka; Newcombe, Virginia F; Outtrim, Joanne; Katila, Ari J; Frantzén, Janek; Ala-Seppälä, Henna; Kyllönen, Anna; Maanpää, Henna-Riikka; Tallus, Jussi; Hossain, Md Iftakher; Coles, Jonathan P; Hutchinson, Peter; van Gils, Mark; Menon, David K; Tenovuo, Olli

    2016-03-01

    Biomarkers ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) may help detect brain injury, assess its severity, and improve outcome prediction. This study aimed to evaluate the prognostic value of these biomarkers during the first days after brain injury. Serum UCH-L1 and GFAP were measured in 324 patients with traumatic brain injury (TBI) enrolled in a prospective study. The outcome was assessed using the Glasgow Outcome Scale (GOS) or the extended version, Glasgow Outcome Scale-Extended (GOSE). Patients with full recovery had lower UCH-L1 concentrations on the second day and patients with favorable outcome had lower UCH-L1 concentrations during the first 2 days compared with patients with incomplete recovery and unfavorable outcome. Patients with full recovery and favorable outcome had significantly lower GFAP concentrations in the first 2 days than patients with incomplete recovery or unfavorable outcome. There was a strong negative correlation between outcome and UCH-L1 in the first 3 days and GFAP levels in the first 2 days. On arrival, both UCH-L1 and GFAP distinguished patients with GOS score 1-3 from patients with GOS score 4-5, but not patients with GOSE score 8 from patients with GOSE score 1-7. For UCH-L1 and GFAP to predict unfavorable outcome (GOS score ≤ 3), the area under the receiver operating characteristic curve was 0.727, and 0.723, respectively. Neither UCHL-1 nor GFAP was independently able to predict the outcome when age, worst Glasgow Coma Scale score, pupil reactivity, Injury Severity Score, and Marshall score were added into the multivariate logistic regression model. GFAP and UCH-L1 are significantly associated with outcome, but they do not add predictive power to commonly used prognostic variables in a population of patients with TBI of varying severities. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Electrochemical reduction of nitrate in the presence of an amide

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  7. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  8. Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6.

    PubMed

    Janssen, Freek J; Deng, Hui; Baggelaar, Marc P; Allarà, Marco; van der Wel, Tom; den Dulk, Hans; Ligresti, Alessia; van Esbroeck, Annelot C M; McGuire, Ross; Di Marzo, Vincenzo; Overkleeft, Herman S; van der Stelt, Mario

    2014-08-14

    sn-1-Diacylglycerol lipase α (DAGL-α) is the main enzyme responsible for the production of the endocannabinoid 2-arachidonoylglycerol in the central nervous system. Glycine sulfonamides have recently been identified by a high throughput screening campaign as a novel class of inhibitors for this enzyme. Here, we report on the first structure-activity relationship study of glycine sulfonamide inhibitors and their brain membrane proteome-wide selectivity on serine hydrolases with activity-based protein profiling (ABPP). We found that (i) DAGL-α tolerates a variety of biaryl substituents, (ii) the sulfonamide is required for inducing a specific orientation of the 2,2-dimethylchroman substituent, and (iii) a carboxylic acid is essential for its activity. ABPP revealed that the sulfonamide glycine inhibitors have at least three off-targets, including α/β-hydrolase domain 6 (ABHD6). Finally, we identified LEI-106 as a potent, dual DAGL-α/ABHD6 inhibitor, which makes this compound a potential lead for the discovery of new molecular therapies for diet-induced obesity and metabolic syndrome.

  9. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).

    PubMed

    McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William

    2007-05-01

    The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

  10. Borate esters: Simple catalysts for the sustainable synthesis of complex amides

    PubMed Central

    Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.

    2017-01-01

    Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222

  11. Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue.

    PubMed

    Antón Palma, Benito; Leff Gelman, Philippe; Medecigo Ríos, Mayra; Calva Nieves, Juan Carlos; Acevedo Ortuño, Rodolfo; Matus Ortega, Maura Epifanía; Hernández Calderón, Jorge Alberto; Hernández Miramontes, Ricardo; Flores Zamora, Anabel; Salazar Juárez, Alberto

    2015-10-13

    Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (-CONH2) and free α-carboxylic acid (-COO(-)) isovariant of the valine residue. P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or

  12. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  13. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  14. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    PubMed

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-11-01

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Anhydrous 1:1 proton-transfer compounds of isonipecotamide with picric acid and 3,5-dinitrosalicylic acid: 4-carbamoylpiperidinium 2,4,6-trinitrophenolate and two polymorphs of 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate.

    PubMed

    Smith, Graham; Wermuth, Urs D

    2010-12-01

    The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C(6)H(13)N(2)O(+)·C(6)H(2)N(3)O(7)(-), (I), and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate [two forms of which were found, the monoclinic α-polymorph, (II), and the triclinic β-polymorph, (III)], C(6)H(13)N(2)O(+)·C(7)H(3)N(2)O(7)(-), have been determined at 200 K. All three compounds form hydrogen-bonded structures, viz. one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R(2)(2)(14)] through lateral duplex piperidinium-amide N-H...O interactions. These dimers are extended into a two-dimensional network structure through further interactions with phenolate and nitro O-atom acceptors, including a direct symmetric piperidinium-phenol/nitro N-H...O,O cation-anion association [graph set R(1)(2)(6)]. The monoclinic polymorph, (II), has a similar R(1)(2)(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R(1)(2)(4) interaction as well as head-to-tail piperidinium-amide N-H...O,O hydrogen bonds and amide-carboxyl N-H...O hydrogen bonds, giving a network structure which includes large R(4)(3)(20) rings. The hydrogen bonding in the triclinic polymorph, (III), is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium-carboxyl N-H...O,O' interactions [graph set R(1)(2)(4)]. The cations also show the zigzag head-to-tail piperidinium-amide N-H...O hydrogen-bonded chain substructures found in (II), but in addition feature amide-nitro and amide-phenolate N-H...O associations. As well, there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system

  17. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ES red, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ES red decay and product formation showed amore » solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pK a2 (β nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ES red represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.« less

  18. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue.

    PubMed

    Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid

    2017-09-01

    A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  19. Fatty acid sulphoalkyl amides and esters as cosmetic surfactants.

    PubMed

    Petter, P J

    1984-10-01

    Synopsis A review is given of the manufacture, properties and applications of the anionic surfactants commonly known as taurates and isethionates (fatty acid sulphoalkyl amides and esters, respectively). Originally developed in the 1930s for textile processing, these surfactants are used increasingly in the cosmetic field, particularly those derived from coconut fatty acid. Both types are produced from sodium isethionate, HO degrees C(2)H(4)SO(3)Na. The acyl isethionate, R degrees COO degrees C(2)H(4)SO(3)Na, is obtained by reaction with a fatty acid ('direct process'). or fatty acid chloride ('indirect process'). The direct process is cheaper but requires extreme conditions which can lead to discoloration of the product and a loss of shorter chain fatty acid components. The N-methyl-N-acyltaurate, R degrees CON(R(1))C(2)H(4)SO(3)Na, is obtained by Schotten-Baumann reaction of a fatty acid chloride with N-methyltaurine, which is derived from sodium isethionate via methylamine. Taurates and isethionates retain the benefits of the soaps to which they are structurally similar, but chemical modifications have eliminated many undesirable features. Thus they combine good detergency and wetting with high foaming, and maintain their performance in hard or salt water. Taurates are stable to hydrolysis over the whole pH range. Isethionates are prone to hydrolysis at high (>8) or low (<5) pH, but this does not normally present a problem in cosmetic formulations. Above all, these surfactants are characterized by their extreme mildness to skin. Syndet and syndet/soap bars based on isethionate can be formulated at neutral pH ('Dove type'bars) instead of the alkaline pH of soap, and have been shown in various studies to be milder than soap and better tolerated by the young, the old and those with sensitive skins. Similarly, isethionates have been shown to be less irritating than other anionic or amphoteric surfactants used in cosmetics. The difference has been related to the

  20. Human alpha beta hydrolase domain containing protein 11 and its yeast homolog are lipid hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Madhuri; Srinivasan, Malathi; Rajasekharan, Ram

    Mammalian alpha/beta hydrolase domain (ABHD) family of proteins have emerged as key regulators of lipid metabolism and are found to be associated with human diseases. Human α/β-hydrolase domain containing protein 11 (ABHD11) has recently been predicted as a potential biomarker for human lung adenocarcinoma. In silico analyses of the ABHD11 protein sequence revealed the presence of a conserved lipase motif GXSXG. However, the role of ABHD11 in lipid metabolism is not known. To understand the biological function of ABHD11, we heterologously expressed the human ABHD11 in budding yeast, Saccharomyces cerevisiae. In vivo [{sup 14}C]acetate labeling of cellular lipids in yeast cellsmore » overexpressing ABHD11 showed a decrease in triacylglycerol content. Overexpression of ABHD11 also alters the molecular species of triacylglycerol in yeast. Similar activity was observed in its yeast homolog, Ygr031w. The role of the conserved lipase motif in the hydrolase activity was proven by the mutation of all conserved amino acid residues of GXSXG motif. Collectively, our results demonstrate that human ABHD11 and its yeast homolog YGR031W have a pivotal role in the lipid metabolism. - Highlights: • Overexpression of ABHD11 protein and its yeast homolog Ygr031w cause a reduction in triacylglycerol levels in yeast. • The reduction in triacylglycerol is due to the presence of lipase motif GXSXG. • Overexpression of ABHD11 and Ygr031w alters the molecular species of triacylglycerol.« less

  1. Hydroxynitrile Lyases with α/β-Hydrolase Fold: Two Enzymes with Almost Identical 3D Structures but Opposite Enantioselectivities and Different Reaction Mechanisms

    PubMed Central

    Andexer, Jennifer N; Staunig, Nicole; Eggert, Thorsten; Kratky, Christoph; Pohl, Martina; Gruber, Karl

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins to yield hydrocyanic acid (HCN) and the respective carbonyl compound and are key enzymes in the process of cyanogenesis in plants. In organic syntheses, HNLs are used as biocatalysts for the formation of enantiopure cyanohydrins. We determined the structure of the recently identified, R-selective HNL from Arabidopsis thaliana (AtHNL) at a crystallographic resolution of 2.5 Å. The structure exhibits an α/β-hydrolase fold, very similar to the homologous, but S-selective, HNL from Hevea brasiliensis (HbHNL). The similarities also extend to the active sites of these enzymes, with a Ser-His-Asp catalytic triad present in all three cases. In order to elucidate the mode of substrate binding and to understand the unexpected opposite enantioselectivity of AtHNL, complexes of the enzyme with both (R)- and (S)-mandelonitrile were modeled using molecular docking simulations. Compared to the complex of HbHNL with (S)-mandelonitrile, the calculations produced an approximate mirror image binding mode of the substrate with the phenyl rings located at very similar positions, but with the cyano groups pointing in opposite directions. A catalytic mechanism for AtHNL is proposed, in which His236 from the catalytic triad acts as a general base and the emerging negative charge on the cyano group is stabilized by main-chain amide groups and an α-helix dipole very similar to α/β-hydrolases. This mechanistic proposal is additionally supported by mutagenesis studies. PMID:22851196

  2. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the

  3. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  4. GC AND LC CHROMATOGRAPHIC AND EI, CE, +/- CI, AND ES MASS SPECTRAL CHARACTERISTICS OF SALTS AND AMIDES OF PERFLUOROOCTANESULFONIC ACID

    EPA Science Inventory

    In 1976, fluorine in human blood serum was thought to be present as perfluorooctanic acid; however, in the 1990s it was correctly identified by LC/MS as perfluorooctanesulfonate (PFOS). PFOS was both a commercial product and an end-stage metabolite of numerous substituted amides ...

  5. Antimycobacterial activity generated by the amide coupling of (-)-fenchone derived aminoalcohol with cinnamic acids and analogues.

    PubMed

    Slavchev, Ivaylo; Dobrikov, Georgi M; Valcheva, Violeta; Ugrinova, Iva; Pasheva, Evdokia; Dimitrov, Vladimir

    2014-11-01

    Aminoethyl substituted 2-endo-fenchol prepared from (-)-fenchone was used as scaffold for the synthesis of series of 31 amide structures by N-acylation applying cinnamic acids and analogues. The evaluation of their in vitro activity against Mycobacterium tuberculosis H37Rv showed for some of them promising activity-up to 0.2 μg/ml, combined with relatively low cytotoxicity of the selected active compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cluster Bean—A Ureide- or Amide-Producing Legume? 1

    PubMed Central

    Sheoran, Inder S.; Luthra, Yash P.; Kuhad, Mohinder S.; Singh, Randhir

    1982-01-01

    Xylem sap of cluster bean (Cyamopsis tetragonoloba L. cv FS-277) and pigeonpea (Cajanus cajan cv UPAS-120) were analyzed for total nitrogen, amide nitrogen, and ureide nitrogen at flowering stage. Nitrogenase, uricase, and allantoinase were compared in nodules of cluster bean and pigeonpea. Xylem sap of cluster bean exhibited higher amounts of amides as compared to ureides, and the activities of uricase and allantoinase (ureide-producing enzymes) in nodules were also low, whereas the reverse was the case for pigeonpea. Based on these investigations, it has been concluded that cluster bean is an amide-producing legume rather than ureide-producing as had been reported earlier. PMID:16662600

  7. Skeletal lipidomics: regulation of bone metabolism by fatty acid amide family.

    PubMed

    Bab, Itai; Smoum, Reem; Bradshaw, Heather; Mechoulam, Raphael

    2011-08-01

    There is increasing evidence demonstrating that fatty acid derivatives play a key regulatory role in a variety of tissues. However, the study of skeletal lipidomics is just emerging and global strategies, such as targeted lipidomics, have not been applied to bone tissue. Such strategies hold great promises as in the case of genomics and proteomics. A partial profile of endocannabinoids and endocannabinoid-like compounds has demonstrated the presence of several long-chain fatty acid amides (FAAs), some of which displaying potent effects on osteoblasts, the bone forming cells and osteoclasts, the bone resorbing cells. In the skeleton, the FAAs activate the CB(1) cannabinoid receptor present in sympathetic nerve terminals as well as CB(2) cannabinoid receptor, the Gi-protein coupled receptor GPR55, and the transient receptor potential vanilloid type ion channel expressed by osteoblasts and/or osteoclasts. This review on the skeletal FAA system focuses on the production of FAAs in the skeleton and their net bone anabolic and anti-catabolic activity resulting from the stimulation of bone formation and inhibition of bone resorption. As the FAA family holds great promise as a basis for the treatment of osteoporosis and other diseases involving bone, further studies should aim towards the complete profiling of these lipids and their receptors in bone tissue, followed by elucidation of their function and mechanism of action. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  9. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    PubMed

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  10. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    PubMed

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nine of 16 stereoisomeric polyhydroxylated proline amides are potent β-N-acetylhexosaminidase inhibitors.

    PubMed

    Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F

    2014-04-18

    All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.

  12. SPPS of protected peptidyl aminoalkyl amides.

    PubMed

    Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis

    2002-11-01

    Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.

  13. Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides

    PubMed Central

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; Li, Shun-Peng

    2012-01-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40°C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50°C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with Km and kcat values of 29.5 μM and 49.2 s−1, respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249

  14. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity.

    PubMed

    Kanehira, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2016-10-01

    Extensive isolation work on the 1-BuOH-soluble fraction of a MeOH extract of the aerial parts of Dianthus japonicus afforded three further triterpene glycosyl estsers, termed dianthosaponins G-I, an anthranilic acid amide glucoside and a C-glycosyl flavonoid along with one known triterpene saponin. Their structures were elucidated from spectroscopic evidence. The cytotoxicity of the isolated compounds toward A549 cells was evaluated.

  15. The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signals.

    PubMed

    Tian, Ye; Liu, Wei; Cai, Jie; Zhang, Lan-Yue; Wong, Kam-Bo; Feddermann, Nadja; Boller, Thomas; Xie, Zhi-Ping; Staehelin, Christian

    2013-11-01

    Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs.

  16. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    PubMed

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  17. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  18. Benzamide-picric acid (1/1).

    PubMed

    Sivaramkumar, M S; Velmurugan, R; Sekar, M; Ramesh, P; Ponnuswamy, M N

    2010-06-26

    In the title compound, C(7)H(7)NO·C(6)H(3)N(3)O(7), one of the nitro groups of the picric acid mol-ecule lies in the plane of the attached benzene ring [dihedral angle = 1.4 (1)°] while the other two are twisted away by 9.9 (1) and 30.3 (1)°. In the benzamide mol-ecule, the amide group is almost coplanar with the benzene ring [dihedral angle = 4.4 (1)°]. An intra-molecular O-H⋯O hydrogen bond generates an S6 ring motif. In the crystal, mol-ecules are linked into a ribbon-like structure along the b axis by O-H⋯O and N-H⋯O inter-molecular hydrogen bonds. In addition, C-H⋯O hydrogen bonds and short O⋯O contacts [2.828 (2) Å] are observed.

  19. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. New losartan-hydrocaffeic acid hybrids as antihypertensive-antioxidant dual drugs: Ester, amide and amine linkers.

    PubMed

    García, Gonzalo; Serrano, Isabel; Sánchez-Alonso, Patricia; Rodríguez-Puyol, Manuel; Alajarín, Ramón; Griera, Mercedes; Vaquero, Juan J; Rodríguez-Puyol, Diego; Alvarez-Builla, Julio; Díez-Marqués, María L

    2012-04-01

    We report new examples of a series of losartan-hydrocaffeic hybrids that bear novel ester, amide and amine linkers. These compounds were made by linking hydrocaffeic acid to the side chain of losartan at the C-5 position of the imidazole ring through different strategies. Experiments performed in cultured cells demonstrate that these new hybrids retain the ability to block the angiotensin II effect and have increased antioxidant ability. Most of them reduced arterial pressure in rats better or as much as losartan. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. 40 CFR 721.3720 - Fatty amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this section...

  2. 40 CFR 721.2120 - Cyclic amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  3. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury

    PubMed Central

    Liu, Hao; Li, Wenjin; Ahmad, Muzamil; Miller, Tricia M.; Rose, Marie E.; Poloyac, Samuel M.; Uechi, Guy; Balasubramani, Manimalha; Hickey, Robert W.; Graham, Steven H.

    2010-01-01

    Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ2] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ2 induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ2 covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate UCH-L1 function is important in hypoxic neuronal death and excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1. PMID:20933087

  4. Skeletal lipidomics: regulation of bone metabolism by fatty acid amide family

    PubMed Central

    Bab, Itai; Smoum, Reem; Bradshaw, Heather; Mechoulam, Raphael

    2011-01-01

    There is increasing evidence demonstrating that fatty acid derivatives play a key regulatory role in a variety of tissues. However, the study of skeletal lipidomics is just emerging and global strategies, such as targeted lipidomics, have not been applied to bone tissue. Such strategies hold great promises as in the case of genomics and proteomics. A partial profile of endocannabinoids and endocannabinoid-like compounds has demonstrated the presence of several long-chain fatty acid amides (FAAs), some of which displaying potent effects on osteoblasts, the bone forming cells and osteoclasts, the bone resorbing cells. In the skeleton, the FAAs activate the CB1 cannabinoid receptor present in sympathetic nerve terminals as well as CB2 cannabinoid receptor, the Gi-protein coupled receptor GPR55, and the transient receptor potential vanilloid type ion channel expressed by osteoblasts and/or osteoclasts. This review on the skeletal FAA system focuses on the production of FAAs in the skeleton and their net bone anabolic and anti-catabolic activity resulting from the stimulation of bone formation and inhibition of bone resorption. As the FAA family holds great promise as a basis for the treatment of osteoporosis and other diseases involving bone, further studies should aim towards the complete profiling of these lipids and their receptors in bone tissue, followed by elucidation of their function and mechanism of action. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21557736

  5. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    PubMed Central

    Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  6. MS/MS Digital Readout: Analysis of Binary Information Encoded in the Monomer Sequences of Poly(triazole amide)s.

    PubMed

    Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence

    2016-04-05

    Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.

  7. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    PubMed Central

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  8. Synthesis and biological evaluation of amino acid methyl ester conjugates of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid against the production of nitric oxide (NO).

    PubMed

    Onyango, Evans O; Fu, Liangfeng; Cao, Martine; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W

    2014-01-15

    2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO, 2) was condensed with various amino acid methyl esters at the C-28 carboxylic acid. The new amide conjugates were evaluated for their inhibition of nitric oxide (NO) production in RAW264.7 cells stimulated with interferon-γ (IFNγ). Of these new compounds, CDDO conjugates with alanine, valine, and serine are nearly equipotent to CDDO-ethyl amide (4), a triterpenoid with promising biological activity in numerous disease models. Some of these conjugates also induce the in vitro expression of heme oxygenase-1, and inhibit the proliferation of Panc-1343 pancreatic cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  10. Benzamide–picric acid (1/1)

    PubMed Central

    Sivaramkumar, M. S.; Velmurugan, R.; Sekar, M.; Ramesh, P.; Ponnuswamy, M. N.

    2010-01-01

    In the title compound, C7H7NO·C6H3N3O7, one of the nitro groups of the picric acid mol­ecule lies in the plane of the attached benzene ring [dihedral angle = 1.4 (1)°] while the other two are twisted away by 9.9 (1) and 30.3 (1)°. In the benzamide mol­ecule, the amide group is almost coplanar with the benzene ring [dihedral angle = 4.4 (1)°]. An intra­molecular O—H⋯O hydrogen bond generates an S6 ring motif. In the crystal, mol­ecules are linked into a ribbon-like structure along the b axis by O—H⋯O and N—H⋯O inter­molecular hydrogen bonds. In addition, C—H⋯O hydrogen bonds and short O⋯O contacts [2.828 (2) Å] are observed. PMID:21588027

  11. Salt forms of the pharmaceutical amide dihydrocarbamazepine.

    PubMed

    Buist, Amanda R; Kennedy, Alan R

    2016-02-01

    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  12. C-terminal Amidation of an Osteocalcin-derived Peptide Promotes Hydroxyapatite Crystallization*

    PubMed Central

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Mountassif, Driss; Cerruti, Marta; Vali, Hojatollah; Faghihi, Shahab

    2013-01-01

    Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration. PMID:23362258

  13. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzezinski, Krzysztof; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan; Bujacz, Grzegorz

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified.more » Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.« less

  14. Direct amide formation using radiofrequency heating.

    PubMed

    Houlding, Thomas K; Tchabanenko, Kirill; Rahman, Md Taifur; Rebrov, Evgeny V

    2013-07-07

    We present a simple method for direct and solvent-free formation of amides from carboxylic acids and amines using radiofrequency heating. The direct energy coupling of the AC magnetic field via nickel ferrite magnetic nanoparticles enables fast and controllable heating, as well as enabling facile work-up via magnetic separation.

  15. Epoxide hydrolases: structure, function, mechanism, and assay.

    PubMed

    Arand, Michael; Cronin, Annette; Adamska, Magdalena; Oesch, Franz

    2005-01-01

    Epoxide hydrolases are a class of enzymes important in the detoxification of genotoxic compounds, as well as in the control of physiological signaling molecules. This chapter gives an overview on the function, structure, and enzymatic mechanism of structurally characterized epoxide hydrolases and describes selected assays for the quantification of epoxide hydrolase activity.

  16. Yakushinamides, Polyoxygenated Fatty Acid Amides That Inhibit HDACs and SIRTs, from the Marine Sponge Theonella swinhoei.

    PubMed

    Takada, Kentaro; Imae, Yasufumi; Ise, Yuji; Ohtsuka, Susumu; Ito, Akihiro; Okada, Shigeru; Yoshida, Minoru; Matsunaga, Shigeki

    2016-09-23

    Yakushinamides A (1) and B (2), prolyl amides of polyoxygenated fatty acids, have been isolated from the marine sponge Theonella swinhoei as inhibitors of HDACs and SIRTs. Their planar structures were determined by interpretation of the NMR data of the intact molecules and tandem FABMS data of the methanolysis products. For the assignment of the relative configurations of the three contiguous oxymethine carbons in 1 and 2, Kishi's universal NMR database was applied to the methanolysis products. During the assignments of relative configurations of the isolated 1-hydroxy-3-methyl moiety in 1 and the isolated 1-hydroxy-2-methyl moiety in 2, we found diagnostic NMR features to distinguish each pair of diastereomers. The absolute configurations of 1 and 2 were determined by a combination of the modified Mosher's method and Marfey's method. Although the modified Mosher's method was successfully applied to the methanolysis product of 1, this method gave an ambiguous result at C-20 when applied to the methanolysis product of 2, even after oxidative cleavage of the C-14 and C-15 bond.

  17. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  18. 40 CFR 721.10410 - Polyether ester acid compound with a polyamine amide (generic) (P-05-714).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyamine amide (generic) (P-05-714). 721.10410 Section 721.10410 Protection of Environment ENVIRONMENTAL... polyamine amide (generic) (P-05-714). (a) Chemical substance and significant new uses subject to reporting... amide (PMN P-05-714) is subject to reporting under this section for the significant new uses described...

  19. α-Amidoalkylating agents from N-acyl-α-amino acids: 1-(N-acylamino)alkyltriphenylphosphonium salts.

    PubMed

    Mazurkiewicz, Roman; Adamek, Jakub; Październiok-Holewa, Agnieszka; Zielińska, Katarzyna; Simka, Wojciech; Gajos, Anna; Szymura, Karol

    2012-02-17

    N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O.

  20. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    PubMed

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  2. HPLC/ELSD analysis of amidated bile acids: an effective and rapid way to assist continuous flow chemistry processes.

    PubMed

    Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Venturoni, Francesco; Natalini, Benedetto

    2012-10-15

    The employment of the flow N-acyl amidation of natural bile acids (BAs) required the in-line connection with suitable analytical tools enabling the determination of reaction yields as well as of the purity grade of the synthesized glyco- and tauro-conjugated derivatives. In this framework, a unique HPLC method was successfully established and validated for ursodeoxycholic (UDCA), chenodeoxycholic (CDCA), deoxycholic (DCA) and cholic (CA) acids, as well as the corresponding glyco- and tauro-conjugated forms. Because of the shared absence of relevant chromophoric moieties in the sample structure, an evaporative light scattering detector (ELSD) was profitably utilized for the analysis of such steroidal species. For each of the investigated compounds, all the runs were contemporarily carried out on the acidic free and the two relative conjugated variants. The different ELSD response of the free and the corresponding conjugated BAs, imposed to build-up separate calibration curves. In all the cases, very good precision (RSD% values ranging from 1.04 to 6.40% in the long-period) and accuracy (Recovery% values ranging from 96.03 to 111.14% in the long-period) values along with appreciably low LOD and LOQ values (the former being within the range 1-27 ng mL(-1) and the latter within the range 2-44 ng mL(-1)) turned out. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process

    PubMed Central

    Gawryla, Matthew D.; Arndt, Eric M.

    2018-01-01

    Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm3 range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work. PMID:29401663

  4. Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process.

    PubMed

    Gawryla, Matthew D; Arndt, Eric M; Sánchez-Soto, Miguel; Schiraldi, David A

    2018-02-03

    Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm³ range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work.

  5. Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator.

    PubMed

    Kartha, Kalathil K; Praveen, Vakayil K; Babu, Sukumaran Santhosh; Cherumukkil, Sandeep; Ajayaghosh, Ayyappanpillai

    2015-10-01

    An oligo(p-phenylenevinylene) (OPV) derivative connected to pyridyl end groups through an amide linkage (OPV-Py) resulted in a multistimuli-responsive π-gelator. When compared to the corresponding OPV π-gelator terminated by a phenyl-amide (OPV-Ph), the aggregation properties of OPV-Py were found to be significantly different, leading to multistimuli gelation and other morphological properties. The pyridyl moiety in OPV-Py initially interferes with the amide H-bonded assembly and gelation, however, protonation of the pyridyl moiety with trifluoroacetic acid (TFA) facilitated the formation of amide H-bonded assembly leading to gelation, which is reversible by the addition of N,N-diisopropyethylamine (DiPEA). Interestingly, addition of Ag(+) ions to a solution of OPV-Py facilitated the formation of a metallo-supramolecular assembly leading to gelation. Surprisingly, ultrasound-induced gelation was observed when OPV-Py was mixed with a dicarboxylic acid (A1). A detailed study using different spectroscopic and microscopic experimental techniques revealed the difference in the mode of assembly in the two molecules and the multistimuli-responsive nature of the OPV-Py gelation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polyglycine hydrolases secreted by pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  7. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Raman spectra of crystalline secondary amides

    NASA Astrophysics Data System (ADS)

    Kolesov, Boris A.

    2017-05-01

    We present a Raman-spectroscopic study of secondary amides (acetanilide, methacetin, phenacetine, orthorhombic and monoclinic polymorphs of paracetamol) as well as simple amides formanilide and benzanilide. The study was carried out on single crystals and in the temperature range of 5-300 K. The series of compounds with the same molecular fragment - acetamide group - can serve as a model system to study the interrelation between this group and the properties of the intermolecular "peptide-type" NH ⋯ Odbnd C hydrogen bonds. For all of the "acetamide family" of the compounds, similar changes in the Raman spectra were observed upon cooling of the samples: emergence of new Amide I(-) and Amide I(+) bands, which are red and blue shifted, respectively, from the conventional Amide-I band by around of 5-10 cm- 1. Corresponding changes in the same temperature range were observed for the Nsbnd H out-of-plane bending (Amide V) and Nsbnd H stretching vibrations of the Nsbnd H ⋯ Odbnd C hydrogen bond. All of the spectral changes observed upon cooling of the samples can be presumed to result from a delocalization of the Amide-I and Nsbnd H modes and appearance of dynamical (Davydov's) splitting at low temperature.

  9. Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo.

    PubMed

    Kundu, Suman; Roome, Talat; Bhattacharjee, Ashish; Carnevale, Kevin A; Yakubenko, Valentin P; Zhang, Renliang; Hwang, Sung Hee; Hammock, Bruce D; Cathcart, Martha K

    2013-02-01

    Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A(2) (cPLA(2)). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA(2)-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA(2) activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis.

  10. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    PubMed

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    PubMed

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  12. Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanidermatum.

    PubMed

    Blum, Mathias; Gisi, Ulrich

    2012-08-01

    Tolerance to the oomycete-specific carboxylic acid amide (CAA) fungicides is a poorly understood mechanism in Pythium species. The root-rot and damping-off causative agent Pythium aphanidermatum and the CAA fungicide mandipropamid (MPD) were used to investigate the molecular basis of CAA tolerance. Five genes putatively involved in carbohydrate synthesis were identified and characterised: one chitin synthase gene, PaChs, and four cellulose synthase genes PaCesA1 to PaCesA4, of which PaCesA3 encodes the MPD target enzyme. These genes were differentially expressed throughout the life cycle of P. aphanidermatum. Mycelium treated with MPD concentrations slightly affecting mycelial growth did not cause a change in PaCesA3 expression nor a strong upregulation of PaCesA homologues. The high tolerance level of P. aphanidermatum and the lack of PaCesA upregulation imply that MPD tolerance is the result of a specific amino acid configuration in the cellulose synthase 3 (CesA3) target enzyme. Indeed, P. aphanidermatum displays the amino acid L1109 which is also associated with MPD resistance in artificial mutants of Phytophthora species. It is concluded that MPD tolerance in P. aphanidermatum is not caused by compensatory mechanisms but most likely by an inherent target-site configuration in PaCesA3 that hinders MPD binding to the enzyme pocket. Copyright © 2012 Society of Chemical Industry.

  13. A molecular model for the active site of S-adenosyl- l-homocysteine hydrolase

    NASA Astrophysics Data System (ADS)

    Yeh, Jerry C.; Borchardt, Ronald T.; Vedani, Angelo

    1991-06-01

    S-adenosyl- l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+. Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction. We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.

  14. Increases in levels of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EETs and DHETs) in liver and heart in vivo by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in hepatic EET:DHET ratios by cotreatment with TCDD and the soluble epoxide hydrolase inhibitor AUDA.

    PubMed

    Diani-Moore, Silvia; Ma, Yuliang; Gross, Steven S; Rifkind, Arleen B

    2014-02-01

    The environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) binds and activates the transcription factor aryl hydrocarbon receptor (AHR), inducing CYP1 family cytochrome P450 enzymes. CYP1A2 and its avian ortholog CYP1A5 are highly active arachidonic acid epoxygenases. Epoxygenases metabolize arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) and selected monohydroxyeicosatetraenoic acids (HETEs). EETs can be further metabolized by epoxide hydrolases to dihydroxyeicosatrienoic acids (DHETs). As P450-arachidonic acid metabolites affect vasoregulation, responses to ischemia, inflammation, and metabolic disorders, identification of their production in vivo is needed to understand their contribution to biologic effects of TCDD and other AHR activators. Here we report use of an acetonitrile-based extraction procedure that markedly increased the yield of arachidonic acid products by lipidomic analysis over a standard solid-phase extraction protocol. We show that TCDD increased all four EETs (5,6-, 8,9-, 11,12-, and 14,15-), their corresponding DHETs, and 18- and 20-HETE in liver in vivo and increased 5,6-EET, the four DHETs, and 18-HETE in heart, in a chick embryo model. As the chick embryo heart lacks arachidonic acid-metabolizing activity, the latter findings suggest that arachidonic acid metabolites may travel from their site of production to a distal organ, i.e., heart. To determine if the TCDD-arachidonic acid-metabolite profile could be altered pharmacologically, chick embryos were treated with TCDD and the soluble epoxide hydrolase inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). Cotreatment with AUDA increased hepatic EET-to-DHET ratios, indicating that the in vivo profile of P450-arachidonic acid metabolites can be modified for potential therapeutic intervention.

  15. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    PubMed

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  16. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    PubMed

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins

    PubMed Central

    De Jaco, Antonella; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2017-01-01

    The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins. This is the case for the thyroglobulin mutations linked to congenital hypothyroidism. To address whether correct folding of the common domain is required for protein export, we inserted the thyroglobulin mutations at homologous positions in two correlated but simpler α/β-hydrolase fold proteins known to be exported to the cell surface: neuroligin3 and acetylcholinesterase. Here we show that these mutations in the cholinesterase homologous region alter the folding properties of the α/β-hydrolase fold domain, which are reflected in defects in protein trafficking, folding and function, and ultimately result in retention of the partially processed proteins in the endoplasmic reticulum. Accordingly, mutations at conserved residues may be transferred amongst homologous proteins to produce common processing defects despite disparate functions, protein complexity and tissue-specific expression of the homologous proteins. More importantly, a similar assembly of the α/β-hydrolase fold domain tertiary structure among homologous members of the superfamily is required for correct trafficking of the proteins to their final destination. PMID:23035660

  18. Crystal structure of wild-type and mutant human Ap4A hydrolase.

    PubMed

    Ge, Honghua; Chen, Xiaofang; Yang, Weili; Niu, Liwen; Teng, Maikun

    2013-03-01

    Ap4A hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17), an enzyme involved in a number of biological processes, is characterized as cleaving the polyphosphate chain at the fourth phosphate from the bound adenosine moiety. This paper presents the crystal structure of wild-type and E58A mutant human Ap4A hydrolase. Similar to the canonical Nudix fold, human Ap4A hydrolase shows the common αβα-sandwich architecture. Interestingly, two sulfate ions and one diphosphate coordinated with some conserved residues were observed in the active cleft, which affords a better understanding of a possible mode of substrate binding. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Synthesis and structure-activity relationships of fenbufen amide analogs.

    PubMed

    Lin, Kun-I; Yang, Chao-Hsun; Huang, Chia-Wen; Jian, Jhen-Yi; Huang, Yu-Chun; Yu, Chung-Shan

    2010-12-02

    The previous discoveries of butyl fenbufen amide analogs with antitumor effects were further examined. The amide analogs with 1, 3, 4 and 8 carbons chains were prepared in 70-80% yield. Fenbufen had no cytotoxic effects at concentrations ranging from 10 to 100 μM. Methyl fenbufen amide had significant cytotoxic effects at a concentration of 100 μM. As the length of the alkyl amide side chain increased, the cytotoxic effects increased, and the octyl fenbufen amide had the greatest cytotoxic effect. After treatment with 30 μM octyl fenbufen amide, nearly seventy percent of the cells lost their viability. At the concentration of 10 μM, fenbufen amide analogs did not show cytotoxicity according to the MTT assay results. The NO scavenging activities of the fenbufen amide analogs were not significantly different from those of fenbufen.

  20. Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1.

    PubMed Central

    Marques, Ana Rita; Coutinho, Pedro M; Videira, Paula; Fialho, Arsénio M; Sá-Correia, Isabel

    2003-01-01

    The Sphingomonas paucimobilis beta-glucosidase Bgl1 is encoded by the bgl1 gene, associated with an 1308 bp open reading frame. The deduced protein has a potential signal peptide of 24 amino acids in the N-terminal region, and experimental evidence is consistent with the processing and export of the Bgl1 protein through the inner membrane to the periplasmic space. A His(6)-tagged 44.3 kDa protein was over-produced in the cytosol of Escherichia coli from a recombinant plasmid, which contained the S. paucimobilis bgl1 gene lacking the region encoding the putative signal peptide. Mature beta-glucosidase Bgl1 is specific for aryl-beta-glucosides and has no apparent activity with oligosaccharides derived from cellulose hydrolysis and other saccharides. A structure-based alignment established structural relations between S. paucimobilis Bgl1 and other members of the glycoside hydrolase (GH) family 1 enzymes. At subsite -1, the conserved residues required for catalysis by GH1 enzymes are present in Bgl1 with only minor differences. Major differences are found at subsite +1, the aglycone binding site. This alignment seeded a sequence-based phylogenetic analysis of GH1 enzymes, revealing an absence of horizontal transfer between phyla. Bootstrap analysis supported the definition of subfamilies and revealed that Bgl1, the first characterized beta-glucosidase from the genus Sphingomonas, represents a very divergent bacterial subfamily, closer to archaeal subfamilies than to others of bacterial origin. PMID:12444924

  1. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.

  2. Hydrolysis of VX and related compounds by organophosphorus hydrolase. Final report, Februray-December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolakowski, J.E.; DeFrank, J.J.; Lai, K.

    1995-11-01

    Organophosphorus Hydrolase (OPH) is a fully characterized and cloned enzyme, derived from Pseudomonas diminuta, consisting of 365 amino acids with a total molecular weight of 38,0(X). The enzyme has a leader sequence of 29 amino acids which has been removed in the construction used in this study. OPH was evaluated for its effectiveness in catalyzing the S-(2-diisopwpylaminoethyl) methylphosphonothioate (VX) and its analogs.

  3. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegeburr, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2013-02-19

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  4. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2011-05-31

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  5. Variant humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Edmund, Larenas

    2014-09-09

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  6. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2014-03-18

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  7. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Larenas, Edmund

    2017-05-09

    Disclosed are variants of Humicola grisea CeI7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  8. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2011-08-16

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  9. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2012-08-07

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  10. Variant Humicola grisea CBH1.1

    DOEpatents

    Goedegebuur, Frits [Vlaardingen, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Larenas, Edmund [Moss Beach, CA

    2008-12-02

    Disclosed are variants of Humicola grisea Cel7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.

  11. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    PubMed

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  12. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    PubMed

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  13. Quantum chemical study of leaving group activation in T. vivax nucleoside hydrolase

    NASA Astrophysics Data System (ADS)

    Loverix, Stefan; Versees, Wim; Steyaert, Jan; Geerlings, Paul

    General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid. The only groups in the vicinity of the leaving group that contribute to catalysis are (i) the indole side chain of Trp260, and (ii) the 5'-group of the substrate's ribose moiety. The x-ray structure of the slow Asp10Ala mutant of nucleoside hydrolase with the substrate inosine bound in the active site displays a face-to-face aromatic stacking interaction between Trp260 and the purine base of the substrate, as well as a peculiar C4'-endo ribose pucker that allows the 5'-OH group to accept an intramolecular hydrogen bond from the C8 of the purine. The first interaction (aromatic stacking) has been shown to raise the pKa of the leaving purine. Here, we present a DFT study showing that the 5'-OH group of ribose fulfills a similar role, rather than stabilizing the oxocarbenium-like transition state.

  14. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    PubMed

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemoenzymatic synthesis and cannabinoid activity of a new diazabicyclic amide of phenylacetylricinoleic acid.

    PubMed

    López-Ortíz, Manuel; Herrera-Solís, Andrea; Luviano-Jardón, Axel; Reyes-Prieto, Nidia; Castillo, Ivan; Monsalvo, Ivan; Demare, Patricia; Méndez-Díaz, Mónica; Regla, Ignacio; Prospéro-García, Oscar

    2010-06-01

    Endocannabinoids (eCBs) are endogenous neuromodulators of synaptic transmission. Their dysfunction may cause debilitating disorders of diverse clinical manifestation. For example, drug addiction, lack of sex desire, eating disorders, such as anorexia or bulimia and dyssomnias. eCBs also participate in the regulation of core temperature and pain perception. In this context, it is important to recognize the utility of cannabinoid receptor 1 (CB1R) agonists, natural as Delta(9)-tetrahydrocannabinol (THC) or synthetic as Nabilone as useful drugs to alleviate this kind of patients' suffering. Therefore, we have developed a new drug, (R,Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-yl phenylacetate (PhAR-DBH-Me), that appears to bind and activate the CB1R. This diazabicyclic amide was synthesized from phenylacetylricinoleic acid and (1S,4S)-2,5-diazabicyclo[2.2.1]heptane. To test its cannabinergic properties we evaluated its effects on core temperature, pain perception, and the sleep-waking cycle of rats. Results indicate that 20 and 40mg/kg of PhAR-DBH-Me readily reduced core temperature and increased pain perception threshold. In addition, 20mg/kg increased REM sleep in otherwise normal rats. All these effects were prevented or attenuated by AM251, a CB1R antagonist. Place preference conditioning studies indicated that this molecule does not produce rewarding effects. These results strongly support that PhAR-DBH-Me possesses cannabinoid activity without the reinforcement effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Geotrichum candidum link 1809: hydrolases activity and own method of digestive tract strains biotyping.

    PubMed

    Kurnatowska, A; Białasiewicz, D

    2001-01-01

    Hydrolase activity of (enzymograms, biotypes) in Geotrichum candidum, one of the poorly described pathogenic fungi, was studied 81 strains were isolated from oral cavity and faeces of patients with gastrointestinal tract disorders. Axenic strains were differentiated with API 20C Aux and API ZYM tests. Then, enzymograms and biotypes were determined for all strains based on the activity of 19 hydrolases. High variability of enzymograms (17 different types) was found. The highest activity was noted in case of: e2 - alkaline phosphatase, e6 - leucine arylamidase, e11 - acid phosphatase. E5 - lipase, e7 - valine arylamidase, e12 - naphtol-AS-BI-phosphohydrolase and e17 - beta-glucosidase were used for biotyping procedures. Our own system of biotyping of 81 strains of G. candidum was based on the mathematical binominal distribution formula (1 : 4 : 6 : 4 : 1) - all "+"; one "-", three "+"; two "two "+"; three "-", one "+"; all "-". We have found: A (11.1 +/- 3.5%), BI (6.17 +/- 2.67%), B2 (1.23 +/- 1.22%), B4 (4.94 +/- 2.41%), C, (1.23 +/-1.22%), C3 (63.0 +/- 5.4%), D2 (9.88 +/-3.31%), D3 (2.47 +/- 1.72%). Among all strains from 8 various biotypes of G. candidum.

  17. Discovery and structure-activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor.

    PubMed

    Abdi, Muna H; Beswick, Paul J; Billinton, Andy; Chambers, Laura J; Charlton, Andrew; Collins, Sue D; Collis, Katharine L; Dean, David K; Fonfria, Elena; Gleave, Robert J; Lejeune, Clarisse L; Livermore, David G; Medhurst, Stephen J; Michel, Anton D; Moses, Andrew P; Page, Lee; Patel, Sadhana; Roman, Shilina A; Senger, Stefan; Slingsby, Brian; Steadman, Jon G A; Stevens, Alexander J; Walter, Daryl S

    2010-09-01

    A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.

    PubMed

    Teaster, Neal D; Motes, Christy M; Tang, Yuhong; Wiant, William C; Cotter, Matthew Q; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J; Hasenstein, Karl H; Gonzalez, Gabriel; Blancaflor, Elison B; Chapman, Kent D

    2007-08-01

    N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.

  19. Serum concentration of ubiquitin c-terminal hydrolase-L1 in detecting severity of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Siahaan, A. M. P.; Japardi, I.; Hakim, A. A.

    2018-03-01

    One of the main problems with ahead injury is assessing the severity. While physical examination and imaging had limitations, neuronal damage markers, ubiquitin C-terminal hydrolase-L1 (UCH-L1), released in theblood may provide valuable information about diagnosis the traumatic brain injury (TBI).Analyzing the concentrations of serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), there must have a neuronal injury biomarker, in theTBI patients serum and their association with clinical characteristics and outcome. There were 80 TBI subjects, and there are mild, moderate, and severe involved in this study of case- control. By using ELISA, we studied the profile of serum UCH-L1 levels for TBI patients. TheUCH-L1 serum level of moderate and severe head injury is higher than in mild head injury (p<.001), but we didn’t find aspecific difference between moderate and severe head injury patients. There is no particular correlation found between serum UCH-L1 level and outcome. Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI but do not correlate with outcome.

  20. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  1. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    PubMed

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yuki, E-mail: yukey@med.nagoya-cu.ac.jp; Tomizawa, Motohiro; Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9more » weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.« less

  3. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    PubMed

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  4. Amides in Nature and Biocatalysis.

    PubMed

    Pitzer, Julia; Steiner, Kerstin

    2016-10-10

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  6. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli.

    PubMed

    Cao, Wei; Zhou, Yuxun; Ma, Yushu; Luo, Qingping; Wei, Dongzhi

    2005-04-01

    Adenoregulin is a 33 amino acid antimicrobial peptide isolated from the skin of the arboreal frog Phyllomedusa bicolor. Natural adenoregulin is synthesized with an amidated valine residue at C-terminus and shows lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. A synthetic gene for adenoregulin (ADR) with an additional amino acid glutamine at C-terminus was cloned into pET32a vector to allow expression of ADR as a Trx fusion protein in Escherichia coli BL21(DE3). The resulting expression level of the fusion protein could reach up to 20% of the total cell proteins. The fusion protein could be purified effectively by Ni2+-chelating chromatography. Released from the fusion protein by enterokinase cleavage and purified to homogeneity, the recombinant ADR displayed antimicrobial activity similar to that of the synthetic ADR reported earlier. Comparing the antimicrobial activities of the recombinant adenoregulin with C-amidated terminus to that without an amidated C-terminus, we found that the amide of glutamine at C-terminus of ADR improved its potency on certain microorganisms such as Tritirachium album and Saccharomyces cerevisiae.

  7. Screening glycosynthase libraries with a fluoride chemosensor assay independently of enzyme specificity: identification of a transitional hydrolase to synthase mutant.

    PubMed

    Andrés, Eduardo; Aragunde, Hugo; Planas, Antoni

    2014-03-01

    Glycosynthases have become efficient tools for the enzymatic synthesis of oligosaccharides, glycoconjugates and polysaccharides. Enzyme-directed evolution approaches are applied to improve the performance of current glycosynthases and engineer specificity for non-natural substrates. However, simple and general screening methods are required since most of the reported assays are specific for each particular enzyme. In the present paper, we report a general screening assay that is independent of enzyme specificity, and implemented in an HTS (high-throughput screening) format for the screening of cell extracts in directed evolution experiments. Fluoride ion is a general by-product released in all glycosynthase reactions with glycosyl fluoride donors. The new assay is based on the use of a specific chemical sensor (a silyl ether of a fluorogenic methylumbelliferone) to transduce fluoride concentration into a fluorescence signal. As a proof-of-concept, it has been applied to a nucleophile saturation mutant library of Bacillus licheniformis 1,3-1,4-β-glucanase. Beyond the expected mutations at the glutamic acid (catalytic) nucleophile, other variants have been shown to acquire glycosynthase activity. Surprisingly, an aspartic acid for glutamic acid replacement renders a highly active glycosynthase, but still retains low hydrolase activity. It appears as an intermediate state between glycosyl hydrolase and glycosynthase.

  8. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    PubMed

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  9. Frozen Chirality of Tertiary Aromatic Amides: Access to Enantioenriched Tertiary α-Amino Acid or Amino Alcohol without Chiral Reagent.

    PubMed

    Mai, Thi Thoa; Viswambharan, Baby; Gori, Didier; Guillot, Régis; Naubron, Jean-Valère; Kouklovsky, Cyrille; Alezra, Valérie

    2017-04-27

    One of the fundamental and intriguing aspects of life is the homochirality of the essential molecules. In this field, the absolute asymmetric synthesis of α-amino acids is a major challenge. Herein, we report access, by chemical means, to tertiary α-amino acid derivatives in up to 96 % ee without using any chiral reagent. In our strategy, the dynamic axial chirality of tertiary aromatic amides is frozen in a crystal and is responsible for the stereoselectivity of the subsequent steps. Furthermore, we could control the configuration of the final product by manually sorting and selecting the initial crystals. Based on vibrational circular dichroism studies, we could rationalize the observed stereoselectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction.

    PubMed

    Wang, Hualei; Sun, Huihui; Wei, Dongzhi

    2013-02-18

    A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(-)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s(-1), and 1.1×10(5) M(-1)s(-1), respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h. PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(-)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(-)-mandelic acid in the industry.

  11. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed Central

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-01-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347

  12. Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism.

    PubMed

    Lack, Nathan A; Yam, Katherine C; Lowe, Edward D; Horsman, Geoff P; Owen, Robin L; Sim, Edith; Eltis, Lindsay D

    2010-01-01

    In the recently identified cholesterol catabolic pathway of Mycobacterium tuberculosis, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD) is proposed to catalyze the hydrolysis of a carbon-carbon bond in 4,5-9,10-diseco-3-hydroxy-5,9,17-tri-oxoandrosta-1(10),2-diene-4-oic acid (DSHA), the cholesterol meta-cleavage product (MCP) and has been implicated in the intracellular survival of the pathogen. Herein, purified HsaD demonstrated 4-33 times higher specificity for DSHA (k(cat)/K(m) = 3.3 +/- 0.3 x 10(4) m(-1) s(-1)) than for the biphenyl MCP 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and the synthetic analogue 8-(2-chlorophenyl)-2-hydroxy-5-methyl-6-oxoocta-2,4-dienoic acid (HOPODA), respectively. The S114A variant of HsaD, in which the active site serine was substituted with alanine, was catalytically impaired and bound DSHA with a K(d) of 51 +/- 2 mum. The S114A.DSHA species absorbed maximally at 456 nm, 60 nm red-shifted versus the DSHA enolate. Crystal structures of the variant in complex with HOPDA, HOPODA, or DSHA to 1.8-1.9 Aindicate that this shift is due to the enzyme-induced strain of the enolate. These data indicate that the catalytic serine catalyzes tautomerization. A second role for this residue is suggested by a solvent molecule whose position in all structures is consistent with its activation by the serine for the nucleophilic attack of the substrate. Finally, the alpha-helical lid covering the active site displayed a ligand-dependent conformational change involving differences in side chain carbon positions of up to 6.7 A, supporting a two-conformation enzymatic mechanism. Overall, these results provide novel insights into the determinants of specificity in a mycobacterial cholesterol-degrading enzyme as well as into the mechanism of MCP hydrolases.

  13. Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism*

    PubMed Central

    Lack, Nathan A.; Yam, Katherine C.; Lowe, Edward D.; Horsman, Geoff P.; Owen, Robin L.; Sim, Edith; Eltis, Lindsay D.

    2010-01-01

    In the recently identified cholesterol catabolic pathway of Mycobacterium tuberculosis, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD) is proposed to catalyze the hydrolysis of a carbon-carbon bond in 4,5–9,10-diseco-3-hydroxy-5,9,17-tri-oxoandrosta-1(10),2-diene-4-oic acid (DSHA), the cholesterol meta-cleavage product (MCP) and has been implicated in the intracellular survival of the pathogen. Herein, purified HsaD demonstrated 4–33 times higher specificity for DSHA (kcat/Km = 3.3 ± 0.3 × 104 m−1 s−1) than for the biphenyl MCP 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and the synthetic analogue 8-(2-chlorophenyl)-2-hydroxy-5-methyl-6-oxoocta-2,4-dienoic acid (HOPODA), respectively. The S114A variant of HsaD, in which the active site serine was substituted with alanine, was catalytically impaired and bound DSHA with a Kd of 51 ± 2 μm. The S114A·DSHA species absorbed maximally at 456 nm, 60 nm red-shifted versus the DSHA enolate. Crystal structures of the variant in complex with HOPDA, HOPODA, or DSHA to 1.8–1.9 Åindicate that this shift is due to the enzyme-induced strain of the enolate. These data indicate that the catalytic serine catalyzes tautomerization. A second role for this residue is suggested by a solvent molecule whose position in all structures is consistent with its activation by the serine for the nucleophilic attack of the substrate. Finally, the α-helical lid covering the active site displayed a ligand-dependent conformational change involving differences in side chain carbon positions of up to 6.7 Å, supporting a two-conformation enzymatic mechanism. Overall, these results provide novel insights into the determinants of specificity in a mycobacterial cholesterol-degrading enzyme as well as into the mechanism of MCP hydrolases. PMID:19875455

  14. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  15. N-Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in Arabidopsis thaliana Seedlings[W][OA

    PubMed Central

    Teaster, Neal D.; Motes, Christy M.; Tang, Yuhong; Wiant, William C.; Cotter, Matthew Q.; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J.; Hasenstein, Karl H.; Gonzalez, Gabriel; Blancaflor, Elison B.; Chapman, Kent D.

    2007-01-01

    N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites. PMID:17766402

  16. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of

  17. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: in situ STM and EQCM studies.

    PubMed

    Moustafa, E M; El Abedin, S Zein; Shkurankov, A; Zschippang, E; Saad, A Y; Bund, A; Endres, F

    2007-05-10

    In the present paper, the electrodeposition of Al on flame-annealed Au(111) and polycrystalline Au substrates in two air- and water-stable ionic liquids namely, 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py(1,4)]Tf(2)N, and 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide, [EMIm]Tf(2)N, has been investigated by in situ scanning tunneling microscopy (STM), electrochemical quartz crystal microbalance (EQCM), and cyclic voltammetry. The cyclic voltammogram of aluminum deposition and stripping on Au(111) in the upper phase of the biphasic mixture of AlCl(3)/[EMIm]Tf(2)N at room temperature (25 degrees C) shows that the electrodeposition process is completely reversible as also evidenced by in situ STM and EQCM studies. Additionally, a cathodic peak at an electrode potential of about 0.55 V vs Al/Al(III) is correlated to the aluminum UPD process that was evidenced by in situ STM. A surface alloying of Al with Au at the early stage of deposition occurs. It has been found that the Au(111) surface is subject to a restructuring/reconstruction in the upper phase of the biphasic mixture of AlCl(3)/[Py(1,4)]Tf(2)N at room temperature (25 degrees C) and that the deposition is not fully reversible. Furthermore, the underpotential deposition of Al in [Py(1,4)]Tf(2)N is not as clear as in [EMIm]Tf(2)N. The frequency shift in the EQCM experiments in [Py(1,4)]Tf(2)N shows a surprising result as an increase in frequency and a decrease in damping with bulk aluminum deposition at potentials more negative than -1.8 V was observed at room temperature. However, at 100 degrees C there is a frequency decrease with ongoing Al deposition. At -2.0 V vs Al/Al(III), a bulk aluminum deposition sets in.

  18. The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic?

    PubMed

    Lambert, D M; Di Marzo, V

    1999-08-01

    Palmitoylethanolamide (PEA) and oleamide are two fatty acid amides which 1) share some cannabimimetic actions with delta9-tetrahydrocannabinol, anandamide and 2-arachidonoylglycerol, and 2) may interact with proteins involved in the biosynthesis, action and inactivation of endocannabinoids. Due to its pharmacological actions and its accumulation in damaged cells, PEA may have a physio-pathological role as an analgesic, anti-oxidant and anti-inflammatory mediator. However, its mechanism of action is puzzling. In fact, PEA does not bind to CB1 and CB2 receptors transfected into host cells, but might be a ligand for a putative CBn receptor present in the RBL-2H3 cell line. On the other hand, the analgesic effect of PEA is reversed by SR144528, a CB2 antagonist. PEA may act as an entourage compound for endocannabinoids, i.e. it may enhance their action for example by inhibiting their inactivation. Oleamide is a sleep inducing lipid whose mechanism of action is far from being understood. Although it does not bind with high affinity to CB1 or CB2 receptors, it exhibits some cannabimimetic actions which could be explained at least in part by entourage effects. It is likely that oleamide and anandamide have common as well as distinct pathways of action. The 5-HT2A receptor appears to be a target for oleamide but the possibility of the existence of specific receptors for this compound is open. The biosynthesis and tissue distribution of oleamide remain to be assessed in order to both substantiate its role as a sleep-inducing factor and investigate its participation in other physiopathological situations.

  19. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  20. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    PubMed

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  1. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities.

    PubMed

    Lee, Yian Hoon; Choo, Candy; Watawana, Mindani I; Jayawardena, Nilakshi; Waisundara, Viduranga Y

    2015-11-01

    Eighteen edible plants were assessed for their antioxidant potential based on oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, total phenolics, vitamin C content and various lipophilic antioxidants. The inhibitory activities of the plant extracts against the enzymatic activities of α-amylase and α-glucosidase were also evaluated. The antioxidant and starch hydrolase activities of the plants varied widely across a single batch of analysis. The ORAC and DPPH radical scavenging EC50 values varied between 298 and 1984 Trolox equivalents g(-1) fresh weight and between 91 and 533 mg kg(-1) fresh weight, respectively. The total phenolics and vitamin C contents varied between 32 and 125 mg gallic acid equivalents g(-1) fresh weight and between 96 and 285 µg g(-1) fresh weight, respectively. All the plants contained neoxanthin, violaxanthin, and α- and β-carotene in varying amounts. Coccinia grandis, Asparagus racemosus, Costus speciosus, Amaranthus viridis and Annona muricata displayed the highest inhibitory activities against starch hydrolases. They were the most efficient against the breakdown of seven starches exposed to the two enzymes as well. Overall, the edible plants were observed to display a high antioxidant potential with starch hydrolase inhibitory properties, which were beneficial in their being recognized as functional food. © 2014 Society of Chemical Industry.

  2. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10191 Amides, coco, N-[3-(dibutylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco...

  3. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids.

    PubMed

    Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł

    2016-04-15

    This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6 Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08 mg/kg, MES test) and 9 (ED50=40.34 mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. Copyright © 2016. Published by Elsevier Ltd.

  4. Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals

    PubMed Central

    Belenky, Peter; Christensen, Kathryn C.; Gazzaniga, Francesca; Pletnev, Alexandre A.; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification. PMID:19001417

  5. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  6. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    PubMed

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  7. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass.

    PubMed

    Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J; Bradshaw, Heather B; Bab, Itai; Mechoulam, Raphael

    2010-10-12

    Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.

  8. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    PubMed

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    PubMed

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  12. Gene Encoding the Hydrolase for the Product of the meta-Cleavage Reaction in Testosterone Degradation by Comamonas testosteroni

    PubMed Central

    Horinouchi, Masae; Hayashi, Toshiaki; Koshino, Hiroyuki; Yamamoto, Takako; Kudo, Toshiaki

    2003-01-01

    In a previous study we isolated the meta-cleavage enzyme gene, tesB, that encodes an enzyme that carries out a meta-cleavage reaction in the breakdown of testosterone by Comamonas testeroni TA441 (M. Horinouchi et al., Microbiology 147:3367-3375, 2001). Here we report the isolation of a gene, tesD, that encodes a hydrolase which acts on the product of the meta-cleavage reaction. We isolated tesD by using a Tn5 mutant of TA441 that showed limited growth on testosterone. TesD exhibited ca. 40% identity in amino acid sequence with BphDs, known hydrolases of biphenyl degradation in Pseudomonas spp. The TesD-disrupted mutant showed limited growth on testosterone, and the culture shows an intense yellow color. High-pressure liquid chromatography analysis of the culture of TesD-disrupted mutant incubated with testosterone detected five major intermediate compounds, one of which, showing yellow color under neutral conditions, was considered to be the product of the meta-cleavage reaction. The methylation product was analyzed and identified as methyl-4,5-9,10-diseco-3-methoxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oate, indicating that the substrate of TesD in testosterone degradation is 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid. 4,5-9,10-Diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid was transformed by Escherichia coli-expressed TesD. Downstream of tesD, we identified tesE, F, and G, which encode for enzymes that degrade one of the products of 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid converted by TesD. PMID:12676694

  13. Phenethyl ester and amide of Ferulic Acids: Synthesis and bioactivity against P388 Leukemia Murine Cells

    NASA Astrophysics Data System (ADS)

    Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan

    2018-03-01

    Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.

  14. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  15. Identification and Molecular Characterization of a Glycosyl Hydrolase Family 5 B-1,4-endoglucanase (Rr-eng-1) from the Reniform Nematode, Rotylenchulus reniformis

    USDA-ARS?s Scientific Manuscript database

    Glycosyl hydrolase family 5 (GHF5) ß-1,4-endoglucanses, a.k.a. cellulases, are important parasitism genes that facilitate root penetration and migration by plant-parasitic nematodes. The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasite of >300 plant species for which li...

  16. A saposin-like domain influences the intracellular localization, stability, and catalytic activity of human acyloxyacyl hydrolase.

    PubMed

    Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S

    1994-09-23

    Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.

  17. A new high-performance thin-layer chromatographic method for determining bile salt hydrolase activity.

    PubMed

    Rohawi, Nur Syakila; Ramasamy, Kalavathy; Agatonovic-Kustrin, Snezana; Lim, Siong Meng

    2018-06-05

    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R 2 ) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics. Copyright © 2018. Published by Elsevier B.V.

  18. Function of xyloglucan endotransglucosylase/hydrolases in rice

    PubMed Central

    Hara, Yoshinao; Yokoyama, Ryusuke; Osakabe, Keishi; Toki, Seiichi; Nishitani, Kazuhiko

    2014-01-01

    Background and Aims Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized. Methods This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19. Key Results All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana. Conclusions OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities

  19. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...

  20. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase.

    PubMed

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-02-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting.

  1. Enzymatic degradation of monocrotophos by extracellular fungal OP hydrolases.

    PubMed

    Jain, Rachna; Garg, Veena

    2013-11-01

    The present study explores the potential of extracellular fungal organophosphate (OP) hydrolase for the degradation of monocrotophos. Extracellular OP hydrolases were isolated and purified from five different fungal isolates viz. Aspergillus niger (M1), Aspergillus flavus (M2), Penicillium aculeatum (M3), Fusarium pallidoroseum (M4), and Macrophomina sp. (M5) by AmSO4 precipitation, dialysis, and G-100 chromatography. M3 showed highest percentage yield of 68.81 followed by 55.41 % for M1. Each of the purified enzyme fraction constituted of two different subunits of 33- and 67-kDa molecular weight. Optimum enzyme fraction (150 μg ml(-1)) rapidly degraded monocrotophos within 120 h in phosphorus-free liquid culture medium (CZM) with K deg of 0.0368, 0.0138, 0.048, 0.016, 0.0138, and 0.048 day(-1) and half-life of 0.79, 2.11, 0.6, 1.8, and 2.11 days for M1, M2, M3, M4, and M5, respectively. The results were further confirmed by high performance thin layer chromatography and Fourier transform infrared which indicate the disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. The overall order of enzymatic degradation was found to be P. aculeatum > A. niger > F. pallidoroseum > A. flavus = Macrophomina sp. Hence, the study concludes that extracellular OP hydrolases efficiently degraded monocrotophos and could be used as a potential candidate for the detoxification of this neurotoxin pesticide.

  2. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  3. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes

  4. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes

  5. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consistingmore » of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling

  6. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10192 Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  7. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolasemore » genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta

  8. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    PubMed

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Discovery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening.

    PubMed

    Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L

    2011-03-10

    Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.

  10. Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights.

    PubMed

    Lebrun, Jérémie D; Demont-Caulet, Nathalie; Cheviron, Nathalie; Laval, Karine; Trinsoutrot-Gattin, Isabelle; Mougin, Christian

    2016-02-01

    The present study investigates the effect of metals on the secretion of enzymes from 12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, β-glucosidase, β-galactosidase, and N-acetyl-β-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50% of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.

  11. Synthesis of sterically hindered enamides via a Ti-mediated condensation of amides with aldehydes and ketones.

    PubMed

    Genovino, Julien; Lagu, Bharat; Wang, Yaping; Touré, B Barry

    2012-07-07

    The first TiCl(4)-mediated condensation of secondary amides with aldehydes and ketones has been achieved. The reaction proceeds at room temperature and is complete within 5 h in most cases. The optimized procedure used 5 equiv of an amine base hinting that the in situ activation of both the amide and the Lewis acid is required. The reaction affords polysubstituted (E)-enamides.

  12. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.

    PubMed

    Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia

    2014-09-01

    A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity towards recalcitrant PCB metabolites

    PubMed Central

    Yam, Katherine C.; Ghosh, Subhangi; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-01-01

    DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically-shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ESred, an intermediate possessing a bathochromically-shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme’s ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases. PMID:23879719

  14. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  15. Synthesis and antifungal evaluation of PCA amide analogues.

    PubMed

    Qin, Chuan; Yu, Di-Ya; Zhou, Xu-Dong; Zhang, Min; Wu, Qing-Lai; Li, Jun-Kai

    2018-04-18

    To improve the physical and chemical properties of phenazine-1-carboxylic acid (PCA) and find higher antifungal compounds, a series of PCA amide analogues were designed and synthesized and their structures were confirmed by 1 H NMR, HRMS, and X-ray. Most compounds showed some antifungal activities in vitro. Particularly, compound 3d exhibited inhibition effect against Pyriculariaoryzac Cavgra with EC 50 value of 28.7 μM and compound 3q exhibited effect against Rhizoctonia solani with EC 50 value of 24.5 μM, more potently active than that of the positive control PCA with its EC 50 values of 37.3 μM (Pyriculariaoryzac Cavgra) and 33.2 μM (Rhizoctonia solani), respectively.

  16. Molecular Dynamics Simulations of Acylpeptide Hydrolase Bound to Chlorpyrifosmethyl Oxon and Dichlorvos

    PubMed Central

    Jin, Hanyong; Zhou, Zhenhuan; Wang, Dongmei; Guan, Shanshan; Han, Weiwei

    2015-01-01

    Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydrolase and β-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the β-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy. PMID:25794283

  17. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation.

    PubMed

    Chen, Yan; Sit, Sing-Yuen; Chen, Jie; Swidorski, Jacob J; Liu, Zheng; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Lin, Zeyu; Li, Zhufang; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira D; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2018-05-15

    The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC 50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.

    PubMed

    Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji

    2015-07-16

    Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  19. Copper sulfate-pentahydrate-1,10-phenanthroline catalyzed amidations of alkynyl bromides. Synthesis of heteroaromatic amine substituted ynamides.

    PubMed

    Zhang, Yanshi; Hsung, Richard P; Tracey, Michael R; Kurtz, Kimberly C M; Vera, Eymi L

    2004-04-01

    A practical cross-coupling of amides with alkynyl bromides using catalytic CuSO(4).5H(2)O and 1,10-phenanthroline is described here. This catalytic protocol is more environmentally friendly than the use of CuCN or copper halides and provides a general entry for syntheses of ynamides including various new sulfonyl and heteroaromatic amine substituted ynamides. Given the interest in ynamides, this N-alkynylation of amides should be significant for the future of ynamides in organic synthesis.

  20. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  1. Nucleotide Sequence and Genetic Structure of a Novel Carbaryl Hydrolase Gene (cehA) from Rhizobium sp. Strain AC100

    PubMed Central

    Hashimoto, Masayuki; Fukui, Mitsuru; Hayano, Kouichi; Hayatsu, Masahito

    2002-01-01

    Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon. PMID:11872471

  2. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  3. Copoly(imide-amides) containing hexafluoroisopropylidene

    NASA Technical Reports Server (NTRS)

    Irvin, David J.; Cassidy, Patrick E.; Cameron, Mitch L.

    1990-01-01

    The incorporation of the hexafluoroisopropylidene (HFIP or 6F) group into polymer backbones brings about important and useful changes in properties. These differences include increased thermal and environmental resistance and solubility and decreased dielectric constant and color. Several types of backbones have been substrates for the inclusion of HFIP and all results have reflected impressive property benefits. This project involved the incorporation of 6F groups into a poly(imide-amide) backbone by the condensation of a 6F-containing dianhydride with 4-aminobenzoic acid to yield a diimide terminated with two carboxylic acid groups. This diacid trimer was then polymerized with various diamines. The polymers were obtained in yields of 86-94 percent and with viscosities of 0.90-2.26 dL/g. They were stable to above 500 C and clear, colorless films could be cast from DMAc.

  4. Active site and laminarin binding in glycoside hydrolase family 55

    DOE PAGES

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; ...

    2015-03-09

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium. Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define themore » active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ~30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Furthermore, application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.« less

  5. Nitrosation of amides involves a pseudopericyclic 1,3-sigmatropic rearrangement.

    PubMed

    Birney, David M

    2004-03-04

    Two possible pathways for the nitrosation of formamide and N-methyl formamide by nitrosonium ion (NO(+)) have been investigated at the B3LYP/6-31G(d,p) level. The key steps are pseudopericyclic 1,3-sigmatropic rearrangements to give the observed N-nitrosamides. The transition structures (8a and 8b) are close to planar on the amide moiety and have remarkably low barriers of only 6.6 and 4.8 kcal/mol from the lowest energy conformations of 6a and 6b, respectively. [reaction: see text

  6. Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents

    PubMed Central

    Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert

    2012-01-01

    A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999

  7. Structure and dynamics of a detergent-solubilized membrane protein: measurement of amide hydrogen exchange rates in M13 coat protein by /sub 1/H NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, J.D.J.; Sykes, B.D.

    The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. The authors have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using /sup 1/H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D/sub 2/O at 24 /sup 0/C were used to follow the exchange of the slowest amides in themore » protein. Multiple exponential fitting of the exchange data showed that these amides exchanged in two kinetic sets with exchange rates that differed by more than 100-fold. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55/sup 0/C and that bout 30 amides have exchange rates retarded by at least 10/sup 5/-fold at 24/sup 0/C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. Relaxation and solid-state NMR experiments have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile. The hydrogen exchange results, which are sensitive to a much longer time scale, suggest a stable core with a progressive increase in amplitude or frequency of motions as the ends of the protein are approached.« less

  8. Direct amidation of esters with nitroarenes

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-03-01

    Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis.

  9. DNA-Catalyzed Amide Hydrolysis.

    PubMed

    Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K

    2016-02-24

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.

  10. Exploration of the chlorpyrifos escape pathway from acylpeptide hydrolases using steered molecular dynamics simulations.

    PubMed

    Wang, Dongmei; Jin, Hanyong; Wang, Junling; Guan, Shanshan; Zhang, Zuoming; Han, Weiwei

    2016-01-01

    Acylpeptide hydrolases (APH) catalyze the removal of an N-acylated amino acid from blocked peptides. APH is significantly more sensitive than acetylcholinesterase, a target of Alzheimer's disease, to inhibition by organophosphorus (OP) compounds. Thus, OP compounds can be used as a tool to probe the physiological functions of APH. Here, we report the results of a computational study of molecular dynamics simulations of APH bound to the OP compounds and an exploration of the chlorpyrifos escape pathway using steered molecular dynamics (SMD) simulations. In addition, we apply SMD simulations to identify potential escape routes of chlorpyrifos from hydrolase hydrophobic cavities in the APH-inhibitor complex. Two previously proposed APH pathways were reliably identified by CAVER 3.0, with the estimated relative importance of P1 > P2 for its size. We identify the major pathway, P2, using SMD simulations, and Arg526, Glu88, Gly86, and Asn65 are identified as important residues for the ligand leaving via P2. These results may help in the design of APH-targeting drugs with improved efficacy, as well as in understanding APH selectivity of the inhibitor binding in the prolyl oligopeptidase family.

  11. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass

    PubMed Central

    Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M.; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J.; Bradshaw, Heather B.; Bab, Itai; Mechoulam, Raphael

    2010-01-01

    Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive. PMID:20876113

  12. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    PubMed

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms.

    PubMed

    Borduas, Nadine; da Silva, Gabriel; Murphy, Jennifer G; Abbatt, Jonathan P D

    2015-05-14

    Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.

  14. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.

    PubMed

    Barta, Michael L; Lovell, Scott; Sinclair, Amy N; Battaile, Kevin P; Hefty, P Scott

    2014-01-14

    Asymmetric diadenosine 5',5‴-P(1),P(4)-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologues to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH).

  15. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  16. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  17. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes

    PubMed Central

    De Petrocellis, Luciano; Ligresti, Alessia; Moriello, Aniello Schiano; Allarà, Marco; Bisogno, Tiziana; Petrosino, Stefania; Stott, Colin G; Di Marzo, Vincenzo

    2011-01-01

    BACKGROUND AND PURPOSE Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. EXPERIMENTAL APPROACH The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. KEY RESULTS CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. CONCLUSIONS AND IMPLICATIONS These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011

  18. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

    PubMed Central

    2016-01-01

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845

  19. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  20. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    PubMed

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  1. Simple Synthesis Hydrogenated Castor Oil Fatty Amide Wax and Its Coating Characterization.

    PubMed

    Yu, Xiuzhu; Wang, Ning; Zhang, Rui; Zhao, Zhong

    2017-07-01

    A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

  2. Chemical Probes of Endocannabinoid Metabolism

    PubMed Central

    2013-01-01

    The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics. PMID:23512546

  3. Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide+-(H2O)n clusters (n ≤ 3).

    PubMed

    Klyne, Johanna; Schmies, Matthias; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2018-01-31

    The structure and activity of peptides and proteins strongly rely on their charge state and the interaction with their hydration environment. Here, infrared photodissociation (IRPD) spectra of size-selected microhydrated clusters of cationic acetanilide (AA + , N-phenylacetamide), AA + -(H 2 O) n with n ≤ 3, are analysed by dispersion-corrected density functional theory calculations at the ωB97X-D/aug-cc-pVTZ level to determine the stepwise microhydration process of this aromatic peptide model. The IRPD spectra are recorded in the informative X-H stretch (ν OH , ν NH , ν CH , amide A, 2800-3800 cm -1 ) and fingerprint (amide I-II, 1000-1900 cm -1 ) ranges to probe the preferred hydration motifs and the cluster growth. In the most stable AA + -(H 2 O) n structures, the H 2 O ligands solvate the acidic NH proton of the amide by forming a hydrogen-bonded solvent network, which strongly benefits from cooperative effects arising from the excess positive charge. Comparison with neutral AA-H 2 O reveals the strong impact of ionization on the acidity of the NH proton and the topology of the interaction potential. Comparison with related hydrated formanilide clusters demonstrates the influence of methylation of the amide group (H → CH 3 ) on the shape of the intermolecular potential and the structure of the hydration shell.

  4. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling

    PubMed Central

    Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.

    2012-01-01

    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227

  5. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  6. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  7. Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2015-11-04

    SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.

  8. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits [Rozenlaan, NL; Gualfetti, Peter [San Francisco, CA; Mitchinson, Colin [Half Moon Bay, CA; Neefe, Paulien [Zoetermeer, NL

    2011-05-31

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  9. CBH1 homologs and varian CBH1 cellulase

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  10. Ferrocenylaniline based amide analogs of methoxybenzoic acids: Synthesis, structural characterization and butyrylcholinesterase (BChE) inhibition studies

    NASA Astrophysics Data System (ADS)

    Altaf, Ataf Ali; Kausar, Samia; Hamayun, Muhammad; Lal, Bhajan; Tahir, Muhammad Nawaz; Badshah, Amin

    2017-10-01

    Three new ferrocene based amides were synthesized with slight structural difference. The general formula of the amides is C5H5FeC5H4C6H4NHCOC6H4(OCH3). The synthesized compounds were characterized by instrumental techniques like elemental analysis, FTIR and NMR spectroscopy. Structure of the two compounds was also studied by single crystal X-rays diffraction analysis. Structural studies provide the evidence that pMeO (one of the synthesized compounds) is an example of amides having no intermolecular hydrogen bonding in solid structure. In the BChE inhibition assay, compound (oMeO) having strong intermolecular force in the solid structure is less active than the compound (pMeO) with weak intermolecular forces in the solid structure. The docking studies proved that hydrogen bonding between inhibitor and BChE enzyme is of more importance for the activity, rather than intermolecular hydrogen bonding in the solid structure of inhibitor.

  11. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    PubMed

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.

    PubMed

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun

    2014-01-01

    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).

  13. Polymer amide as an early topology.

    PubMed

    McGeoch, Julie E M; McGeoch, Malcolm W

    2014-01-01

    Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.

  14. Free metal ion depletion by "Good's" buffers. III. N-(2-acetamido)iminodiacetic acid, 2:1 complexes with zinc(II), cobalt(II), nickel(II), and copper(II); amide deprotonation by Zn(II), Co(II), and Cu(II).

    PubMed

    Lance, E A; Rhodes, C W; Nakon, R

    1983-09-01

    Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.

  15. Purification and Characterization of a Novel Chlorpyrifos Hydrolase from Cladosporium cladosporioides Hu-01

    PubMed Central

    Chen, Shaohua; Hu, Meiying; Luo, Jianjun; Li, Yanan

    2012-01-01

    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg2+, Fe3+, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5–10% inhibition) were observed in the presence of Mn2+, Zn2+, Cu2+, Mg2+, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min−1, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus. PMID:22693630

  16. Pth1/Vam3p is the syntaxin homolog at the vacuolar membrane of Saccharomyces cerevisiae required for the delivery of vacuolar hydrolases.

    PubMed Central

    Srivastava, A; Jones, E W

    1998-01-01

    The PEP12 homolog Pth1p (Pep twelve homolog 1) is predicted to be similar in size to Pep12p, the endosomal syntaxin homolog that mediates docking of Golgi-derived transport vesicles and, like other members of the syntaxin family, is predicted to be a cytoplasmically oriented, integral membrane protein with a C-terminal transmembrane domain. Kinetic analyses indicate that deltapth1/vam3 mutants fail to process the soluble vacuolar hydrolase precursors and that PrA, PrB and most of CpY accumulate within the cell in their Golgi-modified P2 precursor forms. This is in contrast to a pep12 mutant in which P2CpY is secreted from the cell. Furthermore, pep12 is epistatic to pth1/vam3 with respect to the CpY secretion phenotype. Alkaline phosphatase, a vacuolar membrane hydrolase, accumulates in its precursor form in the deltapth1/vam3 mutant. Maturation of pro-aminopeptidase I, a hydrolase precursor delivered directly to the vacuole from the cytoplasm, is also blocked in the deltapth1/vam3 mutant. Subcellular fractionation localizes Pth1/Vam3p to vacuolar membranes. Based on these data, we propose that Pth1/Vam3p is the vacuolar syntaxin/t-SNARE homolog that participates in docking of transport vesicles at the vacuolar membrane and that the function of Pth1/Vam3p impinges on at least three routes of protein delivery to the yeast vacuole. PMID:9475723

  17. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders.

    PubMed

    Kolla, Nathan J; Mishra, Achal

    2018-01-01

    Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  18. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a.

    PubMed

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang

    2005-12-01

    Diadenosine tetraphosphate (Ap4A) hydrolase (EC 3.6.1.41) hydrolyzes Ap4A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap4A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap4A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap4A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap4A hydrolase crystals diffract X-rays to 3.26 A and belong to space group P2(1), with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 A, beta = 95.7 degrees.

  19. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01.

    PubMed

    Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K

    2013-01-01

    To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.

  20. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs.

    PubMed

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K; Pallan, Pradeep S; Kennedy, Scott D; Egli, Martin; Kelley, Melissa L; Smith, Anja van Brabant; Rozners, Eriks

    2017-08-21

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. On the unconventional amide I band in acetanilide

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  3. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii.

    PubMed

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei

    2010-10-01

    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Gradient HPLC of antibiotics in urine, ground water, chicken muscle, hospital wastewater, and pharmaceutical samples using C-18 and RP-amide columns.

    PubMed

    Kumar, Ashwini; Kumar Malik, Ashok; Kumar Tewary, Dhananjay; Singh, Baldev

    2008-02-01

    A simple and highly sensitive high pressure liquid chromatographic (HPLC-UV) method has been developed for the determination of ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid, in mobile phase citrate buffer (0.001 M) of pH 4.5 prepared in water (X), methanol (Y), and ACN (Z) using gradient at a flow rate of 1.0 mL/min by direct UV absorbance detection at lambda = 280 nm. Separation of analytes was studied on the C-18 and RP-amide columns and best results were observed on the RP-amide column with LODs (3.3 x S/m) 0.89, 0.55, 0.67, and 1.41 ng/mL for ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid, respectively, and better RSD than the C-18 column. The recovery of Fluoroquinolones (FQs) in urine, ground water, hospital wastewater, and chicken muscle using this method is more than 90%. The method was successfully applied to the analysis of ofloxacin, lomefloxacin, cinoxacin, and nalidixic acid in urine, ground water, pharmaceutical dosage forms, hospital wastewater, and chicken muscle.

  5. Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.

    PubMed

    Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2012-03-01

    Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.

  6. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway.

    PubMed

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-08-21

    Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.

  7. Heteroaryl ethers by oxidative palladium catalysis of pyridotriazol-1-yloxy pyrimidines with arylboronic acids.

    PubMed

    Bardhan, Sujata; Wacharasindhu, Sumrit; Wan, Zhao-Kui; Mansour, Tarek S

    2009-06-18

    The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers. The bromo substitution in the case of 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3]triazolo[4,5-b]pyridine 1 could serve as a handle for further elaborations such as Suzuki coupling for attaching varied aryl groups.

  8. Synthesis of chlorophyll-a derivatives possessing various amides as potential sensitizers for photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cui, Yuxiao; Ogasawara, Shin; Tamiaki, Hitoshi

    32-Carboxy-pyropheophorbides-a possessing a variety of N-substituted carbamoyl groups at the 172-position were prepared by modifying naturally occurring chlorophyll-a. 32-Methoxycarbonyl-pyropheophorbide-a was obtained via the protection of the 172-carboxy group with an allyl group, and amidated with various primary and secondary amines at the free 17-propionate residue, followed by the acidic hydrolysis of the methyl ester in the 3-substituent to give the desired pyropheophorbide-a secondary and tertiary amides, respectively, bearing the trans-32-COOH. The synthetic pigments potentially usable for dye-sensitized solar cells gave almost the same optical properties in a solution. 32-Carboxy-pyropheophorbide-a N-monosubstituted or N,N-disubstituted amides were prepared from chemical modification of chlorophyll-a, which are potentially promising as available and environmentally friendly pigments for dye-sensitized solar cells.

  9. Copper(II)-catalyzed amidations of alkynyl bromides as a general synthesis of ynamides and Z-enamides. An intramolecular amidation for the synthesis of macrocyclic ynamides.

    PubMed

    Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R

    2006-05-26

    A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

  10. Characterization of a C—C Bond Hydrolase from Sphingomonas wittichii RW1 with Novel Specificities towards Polychlorinated Biphenyl Metabolites▿

    PubMed Central

    Seah, Stephen Y. K.; Ke, Jiyuan; Denis, Geoffroy; Horsman, Geoff P.; Fortin, Pascal D.; Whiting, Cheryl J.; Eltis, Lindsay D.

    2007-01-01

    Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (kcat/Km = 1.2 × 107 M−1 s−1) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (kcat/Km = 1.7 × 106 M−1 s−1), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs. PMID:17416660

  11. Hydroalumination of Ketenimines and Subsequent Reactions with Heterocumulenes: Synthesis of Unsaturated Amide Derivatives and 1,3-Diimines.

    PubMed

    Jin, Xing; Willeke, Matthias; Lucchesi, Ralph; Daniliuc, Constantin-Gabriel; Fröhlich, Roland; Wibbeling, Birgit; Uhl, Werner; Würthwein, Ernst-Ulrich

    2015-06-19

    The series of differently substituted ketenimines 1 was hydroluminated using di-iso-butyl aluminum hydride. For the sterically congested ketenimine 1a, preferred hydroalumination of the C═N-bond was proven by X-ray crystallography (compound 5a). In situ treatment of the hydroaluminated ketenimines 5 with various heterocumulenes like carbodiimides, isocycanates, isothiocyanates and ketenimines as electrophiles and subsequent hydrolytic workup resulted in novel enamine derived amide species in case of N-attack (sterically less hindered ketenimines) under formation of a new C-N-bond or in 1,3-diimines by C-C-bond-formation in case of bulky substituents at the ketenimine-nitrogen atom. Furthermore, domino reactions with more than 1 equiv of the electrophile or by subsequent addition of two different electrophiles are possible and lead to polyfunctional amide derivatives of the biuret type which are otherwise not easily accessible.

  12. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    NASA Astrophysics Data System (ADS)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  13. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates.

    PubMed

    Bassett, Braden; Waibel, Brent; White, Alex; Hansen, Heather; Stephens, Dominique; Koelper, Andrew; Larsen, Erik M; Kim, Charles; Glanzer, Adam; Lavis, Luke D; Hoops, Geoffrey C; Johnson, R Jeremy

    2018-04-16

    Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M. smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.

  14. Facile solvolysis of a surprisingly twisted tertiary amide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.

    2016-01-05

    In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.

  15. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs.

    PubMed

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-06-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    PubMed

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  17. Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination

    PubMed Central

    Pels, Kevin; Kodadek, Thomas

    2015-01-01

    The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359

  18. Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.

    PubMed

    Pels, Kevin; Kodadek, Thomas

    2015-03-09

    The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.

  19. Synthesis and proapoptotic activity of oleanolic acid derived amides.

    PubMed

    Heller, Lucie; Knorrscheidt, Anja; Flemming, Franziska; Wiemann, Jana; Sommerwerk, Sven; Pavel, Ioana Z; Al-Harrasi, Ahmed; Csuk, René

    2016-10-01

    Thirty-one different 3-O-acetyl-OA derived amides have been prepared and screened for their cytotoxic activity. In the SRB assays nearly all the carboxamides displayed good cytotoxicity in the low μM range for several human tumor cell lines. Low EC50 values were obtained especially for the picolinylamides 14-16, for a N-[2-(dimethylamino)-ethyl] derivative 27 and a N-[2-(pyrrolinyl)-ethyl] carboxamide 28. These compounds were submitted to an extensive biological testing and proved compound 15 to act mainly by an arrest of the tumor cells in the S phase of the cell cycle. Cell death occurred by autophagy while compounds 27 and 28 triggered apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    PubMed Central

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  1. Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01T.

    PubMed

    An, Ke; Shi, Xiaochong; Cui, Fangyuan; Cheng, Jingguang; Liu, Na; Zhao, Xia; Zhang, Xiao-Hua

    2018-03-01

    Agar, usually extracted from seaweed, has a wide variety of industrial applications due to its gelling and stabilizing characteristics. Agarases are the enzymes which hydrolyze agar into agar oligosaccharides. The produced agar oligosaccharides have been widely used in cosmetic, food, and medical fields due to their biological functions. A beta-agarase gene, YM01-1, was cloned and expressed from a marine bacterium Catenovulum agarivorans YM01 T . The encoding agarase of YM01-1 consisted of 331 amino acids with an apparent molecular mass of 37.7 kDa and a 23-amino-acids signal peptide. YM01-1 belongs to glycoside hydrolase 16 (GH16) family based on the amino acid sequence homology. The optimum pH and temperature for its activity was 7.0 and 50 °C, respectively. YM01-1 was stable at a pH of pH 6.0-9.0 and temperatures below 45 °C. Thin layer chromatography (TLC) and ion trap mass spectrometer of the YM01-1 hydrolysis products displayed that YM01-1 was an endo-type β-agarase and degrades agarose, neoagarohexaose, neoagarotetraose into neoagarobiose. The K m , V max , K cat and K cat /K m values of the YM01-1 for agarose were 8.69 mg/ml, 4.35 × 10 3 U/mg, 2.4 × 10 3  s -1 and 2.7 × 10 6  s -1  M -1 , respectively. Hence, the enzyme with high agarolytic activity and single end product was different from other GH16 agarases, which has potential applications for the production of oligosaccharides with remarkable activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis, Crystal Structures and Properties of Ferrocenyl Bis-Amide Derivatives Yielded via the Ugi Four-Component Reaction.

    PubMed

    Zhao, Mei; Shao, Guang-Kui; Huang, Dan-Dan; Lv, Xue-Xin; Guo, Dian-Shun

    2017-05-04

    Ten ferrocenyl bis-amide derivatives were successfully synthesized via the Ugi four-component reaction by treating ferrocenecarboxylic acid with diverse aldehydes, amines, and isocyanides in methanol solution. Their chemical structures were fully characterized by IR, NMR, HR-MS, and X-ray diffraction analyses. They feature unique molecular morphologies and create a 14-membered ring motif in the centro-symmetric dimers generated in the solid state. Moreover, the electrochemical behavior of these ferrocenyl bis-amides was assessed by cyclic voltammetry.

  3. Sunlight assisted direct amide formation via a charge-transfer complex.

    PubMed

    Cohen, Irit; Mishra, Abhaya K; Parvari, Galit; Edrei, Rachel; Dantus, Mauricio; Eichen, Yoav; Szpilman, Alex M

    2017-09-12

    We report on the use of charge-transfer complexes between amines and carbon tetrachloride, as a novel way to activate the amine for photochemical reactions. This principle is demonstrated in a mild, transition metal free, visible light assisted, dealkylative amide formation from feedstock carboxylic acids and amines. The low absorption coefficient of the complex allows deep light penetration and thus scale up to a gram scale.

  4. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides.

    PubMed

    Tsikolia, Maia; Bernier, Ulrich R; Coy, Monique R; Chalaire, Katelyn C; Becnel, James J; Agramonte, Natasha M; Tabanca, Nurhayat; Wedge, David E; Clark, Gary G; Linthicum, Kenneth J; Swale, Daniel R; Bloomquist, Jeffrey R

    2013-09-01

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent

  5. T. thermophila group I introns that cleave amide bonds

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  6. Förster resonance energy transfer competitive displacement assay for human soluble epoxide hydrolase

    PubMed Central

    Lee, Kin Sing Stephen; Morisseau, Christophe; Yang, Jun; Wang, Peng; Hwang, Sung Hee; Hammock, Bruce D.

    2013-01-01

    The soluble epoxide hydrolase (sEH), responsible for the hydrolysis of various fatty acid epoxides to their corresponding 1,2-diols, is becoming an attractive pharmaceutical target. These fatty acid epoxides, particularly epoxyeicosatrienoic acids (EETs), play an important role in human homeostatic and inflammation processes. Therefore, inhibition of human sEH, which stabilizes EETs in vivo, brings several beneficial effects to human health. Although there are several catalytic assays available to determine the potency of sEH inhibitors, measuring the in vitro inhibition constant (Ki) for these inhibitors using catalytic assay is laborious. In addition, koff, which has been recently suggested to correlate better with the in vivo potency of inhibitors, has never been measured for sEH inhibitors. To better measure the potency of sEH inhibitors, a reporting ligand, 1-(adamantan-1-yl)-3-(1-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl) piperidin-4-yl)urea (ACPU), was designed and synthesized. With ACPU, we have developed a Förster resonance energy transfer (FRET)-based competitive displacement assay using intrinsic tryptophan fluorescence from sEH. In addition, the resulting assay allows us to measure the Ki values of very potent compounds to the picomolar level and to obtain relative koff values of the inhibitors. This assay provides additional data to evaluate the potency of sEH inhibitors. PMID:23219719

  7. Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

    PubMed

    Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa

    2005-12-01

    The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  8. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.

    PubMed

    Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian

    2005-04-27

    Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.

  9. Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    The changes in conjugated indole-3-acetic acid (IAA) levels compared to the levels of free IAA have been analyzed during the development of bean (Phaseolus vulgaris L.) seed using quantitative mass spectrometry. Free and ester-linked IAA levels are both relatively high in the early stages of seed development but drop during seed maturation. Concomitantly, the amide-linked IAA becomes the major form of IAA present as the seed matures. In fully mature seed, amide IAA accounts for 80% of the total IAA. The total IAA pool in the seed is maintained at approximately the same level (150-170 nanograms/seed) once the level of free IAA has attained its maximum. Thus, the amount of amide IAA conjugates that accumulate in mature seed is closely related to the amounts of free and ester-linked IAA that disappeared from the rapidly growing seed. Analysis of developing bean pods, from which the seeds were taken for analysis, showed very low levels of both ester and amide-linked IAA conjugates. The pattern of changes seen in the levels of free and conjugated IAA in developing bean seed supports our prior hypothesis suggesting a role of IAA conjugates in the storage of the phytohormone in the seed. PMID:16667099

  10. Analysis of lysergic acid amide in human serum and urine after ingestion of Argyreia nervosa seeds.

    PubMed

    Paulke, Alexander; Kremer, Christian; Wunder, Cora; Toennes, Stefan W

    2012-08-01

    The ergot alkaloid lysergic acid amide (LSA) is a secondary plant constituent in a number of plants, but it is mainly present in considerable amounts in Convolvulaceae, like Argyreia nervosa. Due to its close structural similarity to lysergic acid diethylamide, LSA is considered as psychedelic and therefore promoted as so-called "legal high" in various internet forums. During a human behavioral study with orally administered seeds of A. nervosa, blood and urine samples were obtained. The present study describes the validation of a sensitive and robust high performance liquid chromatography method with fluorescence detection, which was applied to the study samples. The limit of detection (LOD) and lower limit of quantification in human serum were 0.05 and 0.17 ng/mL, respectively, and in urine, the LOD was 0.15 ng/mL. Intra- and interday precision and accuracy were below 15 % relative standard deviation with a bias better than ±15 %. No conversion of LSA to its epimer iso-LSA was noted during analyses. The LSA concentrations in the authentic human serum samples were in the range of 0.66 to 3.15 ng/mL approximately 2 h after ingestion. In urine, LSA could be found 1-24 h after ingestion; after 48 h, no LSA could be detected. The LSA epimer iso-LSA was also detected in serum and urine in varying ratios. In conclusion, LSA serum levels in the low nanogram per milliliter range correlated with severe vegetative adverse effects (nausea, weakness, fatigue, tremor, blood pressure elevation) and a psychosis-like state, which led to study termination.

  11. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    PubMed

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  12. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less

  13. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    PubMed

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  14. Endocannabinoid signaling in the etiology and treatment of major depressive illness.

    PubMed

    Hillard, Cecilia J; Liu, Qing-song

    2014-01-01

    The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.

  15. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  16. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth.

    PubMed

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M L; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro . We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia . By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.

  17. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth

    PubMed Central

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M. L.; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present. PMID:27729900

  18. How amide hydrogens exchange in native proteins.

    PubMed

    Persson, Filip; Halle, Bertil

    2015-08-18

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  19. How amide hydrogens exchange in native proteins

    PubMed Central

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  20. Teratology study of derivatives of tetramethylcyclopropyl amide analogues of valproic acid in mice.

    PubMed

    Okada, Akinobu; Onishi, Yuko; Aoki, Yoshinobu; Yagen, Boris; Sobol, Eyal; Bialer, Meir; Fujiwara, Michio

    2006-06-01

    Although valproic acid (VPA) is used extensively for treating various kinds of epilepsies, it is well known that it causes neural tube and skeletal defects in both humans and animals. The amide and urea derivatives of the tetramethylcylcopropyl VPA analogue, N-methoxy-2,2,3,3-tetramethylcyclopropanecarboxamide (N-methoxy-TMCD) and 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMC-urea), were synthesized and shown to have a more potent anticonvulsant activity than VPA. The objective of this study was to investigate the teratogenic effects of these compounds in NMRI mice. Pregnant NMRI mice were given a single subcutaneous injection of either VPA, N-methoxy-TMCD, or TMC-urea at 1.8 and 3.6 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18. First, the live fetuses were examined to detect any external malformations, then their skeletons were double-stained for bone and cartilage and subsequently examined. Significant increases in fetal losses and neural tube defects were observed with administration of VPA at 3.6 mmol/kg when compared to the vehicle control. In contrast, upon cesarean section, there were no significant differences between either N-methoxy-TMCD or TMC-urea and the control groups for any parameter. Skeletal examination revealed that a number of the abnormalities were induced by VPA dose-dependently at high rates of incidence. These abnormalities were mainly at the axial skeletal level. However, lower frequencies of skeletal abnormality were observed with N-methoxy-TMCD and TMC-urea than with VPA. In addition to their more potent antiepileptic activity, these findings clearly indicate that N-methoxy-TMCD and TMC-urea are distinctly less teratogenic than VPA in NMRI mice.