Science.gov

Sample records for acid amplification assays

  1. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    PubMed

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  2. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  3. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  4. Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening.

    PubMed

    Vollmer, T; Knabbe, C; Dreier, J

    2015-10-01

    Acute primary cytomegalovirus (CMV) infections, which commonly occur asymptomatically among blood donors, represent a significant risk for serious morbidity in immunocompromised patients (a major group of transfusion recipients). We implemented a routine CMV pool screening procedure for plasma for the identification of CMV DNA-positive donors, and we evaluated the sensitivities and performance of different CMV DNA amplification systems. Minipools (MPs) of samples from 18,405 individual donors (54,451 donations) were screened for CMV DNA using the RealStar CMV PCR assay (Altona Diagnostic Technologies), with a minimum detection limit of 11.14 IU/ml. DNA was extracted with a high-volume protocol (4.8 ml, Chemagic Viral 5K kit; PerkinElmer) for blood donor pool screening (MP-nucleic acid testing [NAT]) and with the Nuclisens easyMAG system (0.5 ml; bioMérieux) for individual donation (ID)-NAT. In total, six CMV DNA-positive donors (0.03%) were identified by routine CMV screening, with DNA concentrations ranging from 4.35 × 10(2) to 4.30 × 10(3) IU/ml. Five donors already showed seroconversion and detectable IgA, IgM, and/or IgG antibody titers (IgA(+)/IgM(+)/IgG(-) or IgA(+)/IgM(+)/IgG(+)), and one donor showed no CMV-specific antibodies. Comparison of three commercial assays, i.e., the RealStar CMV PCR kit, the Sentosa SA CMV quantitative PCR kit (Vela Diagnostics), and the CMV R-gene PCR kit (bioMérieux), for MP-NAT and ID-NAT showed comparably good analytical sensitivities, ranging from 10.23 to 11.14 IU/ml (MP-NAT) or from 37.66 to 57.94 IU/ml (ID-NAT). The clinical relevance of transfusion-associated CMV infections requires further investigation, and the evaluated methods present powerful basic tools providing sensitive possibilities for viral testing. The application of CMV MP-NAT facilitated the identification of one donor with a window-phase donation during acute primary CMV infection. PMID:26202109

  5. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses.

    PubMed

    Lanciotti, R S; Kerst, A J

    2001-12-01

    The development and application of nucleic acid sequence-based amplification (NASBA) assays for the detection of West Nile (WN) and St. Louis encephalitis (SLE) viruses are reported. Two unique detection formats were developed for the NASBA assays: a postamplification detection step with a virus-specific internal capture probe and electrochemiluminescence (NASBA-ECL assay) and a real-time assay with 6-carboxyfluorescein-labeled virus-specific molecular beacon probes (NASBA-beacon assay). The sensitivities and specificities of these NASBA assays were compared to those of a newly described standard reverse transcription (RT)-PCR and TaqMan assays for SLE virus and to a previously published TaqMan assay for WN virus. The NASBA assays demonstrated exceptional sensitivities and specificities compared to those of virus isolation, the TaqMan assays, and standard RT-PCR, with the NASBA-beacon assay yielding results in less than 1 h. These assays should be of utility in the diagnostic laboratory to complement existing diagnostic testing methodologies and as a tool in conducting flavivirus surveillance in the United States. PMID:11724870

  6. Point-of-care multiplexed assays of nucleic acids using microcapillary-based loop-mediated isothermal amplification.

    PubMed

    Zhang, Yi; Zhang, Lu; Sun, Jiashu; Liu, Yulei; Ma, Xingjie; Cui, Shangjin; Ma, Liying; Xi, Jianzhong Jeff; Jiang, Xingyu

    2014-07-15

    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings. PMID:24937125

  7. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  8. Rapid Point-of-Care Isothermal Amplification Assay for the Detection of Malaria without Nucleic Acid Purification

    PubMed Central

    Modak, Sayli S.; Barber, Cheryl A.; Geva, Eran; Abrams, William R.; Malamud, Daniel; Ongagna, Yhombi Serge Yvon

    2016-01-01

    Malaria remains one of the most prevalent infectious diseases and results in significant mortality. Isothermal amplification (loop-mediated isothermal amplification) is used to detect malarial DNA at levels of ~1 parasite/µL blood in ≤30 minutes without the isolation of parasite nucleic acid from subject’s blood or saliva. The technique targets the mitochondrial cytochrome oxidase subunit 1 gene and is capable of distinguishing Plasmodium falciparum from Plasmodium vivax. Malarial diagnosis by the gold standard microscopic examination of blood smears is generally carried out only after moderate-to-severe symptoms appear. Rapid diagnostic antigen tests are available but generally require infection levels in the range of 200–2,000 parasites/µL for a positive diagnosis and cannot distinguish if the disease has been cleared due to the persistence of circulating antigen. This study describes a rapid and simple molecular assay to detect malarial genes directly from whole blood or saliva without DNA isolation. PMID:26819557

  9. Multicenter evaluation of the Quidel Lyra Direct C. difficile nucleic acid amplification assay.

    PubMed

    Beck, Eric T; Buchan, Blake W; Riebe, Katherine M; Alkins, Brenda R; Pancholi, Preeti; Granato, Paul A; Ledeboer, Nathan A

    2014-06-01

    Clostridium difficile is a Gram-positive bacterium commonly found in health care and long-term-care facilities and is the most common cause of antibiotic-associated diarrhea. Rapid detection of this bacterium can assist physicians in implementing contact precautions and appropriate antibiotic therapy in a timely manner. The purpose of this study was to compare the clinical performance of the Quidel Lyra Direct C. difficile assay (Lyra assay) (Quidel, San Diego, CA) to that of a direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture. This study was performed at three geographically diverse laboratories within the United States using residual stool specimens submitted for routine C. difficile testing. Residual samples were tested using the Lyra assay on three real-time PCR platforms, and results were compared to those for direct CCNA and enhanced toxigenic culture. The test results for all platforms were consistent across all three test sites. The sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500 Fast DX, and ABI QuantStudio DX instruments compared to CCNA were 90.0% and 93.3%, 95.0% and 94.2%, and 93.8% and 95.0%, respectively. Compared to enhanced toxigenic culture, the sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500, and QuantStudio instruments were 82.1% and 96.9%, 89.3% and 98.8%, and 85.7% and 99.0%, respectively. Overall, the Lyra assay is easy to use and versatile and compares well to C. difficile culture methods. PMID:24671790

  10. Multicenter Evaluation of the Quidel Lyra Direct C. difficile Nucleic Acid Amplification Assay

    PubMed Central

    Beck, Eric T.; Buchan, Blake W.; Riebe, Katherine M.; Alkins, Brenda R.; Pancholi, Preeti; Granato, Paul A.

    2014-01-01

    Clostridium difficile is a Gram-positive bacterium commonly found in health care and long-term-care facilities and is the most common cause of antibiotic-associated diarrhea. Rapid detection of this bacterium can assist physicians in implementing contact precautions and appropriate antibiotic therapy in a timely manner. The purpose of this study was to compare the clinical performance of the Quidel Lyra Direct C. difficile assay (Lyra assay) (Quidel, San Diego, CA) to that of a direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture. This study was performed at three geographically diverse laboratories within the United States using residual stool specimens submitted for routine C. difficile testing. Residual samples were tested using the Lyra assay on three real-time PCR platforms, and results were compared to those for direct CCNA and enhanced toxigenic culture. The test results for all platforms were consistent across all three test sites. The sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500 Fast DX, and ABI QuantStudio DX instruments compared to CCNA were 90.0% and 93.3%, 95.0% and 94.2%, and 93.8% and 95.0%, respectively. Compared to enhanced toxigenic culture, the sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500, and QuantStudio instruments were 82.1% and 96.9%, 89.3% and 98.8%, and 85.7% and 99.0%, respectively. Overall, the Lyra assay is easy to use and versatile and compares well to C. difficile culture methods. PMID:24671790

  11. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays

    PubMed Central

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S.; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E.; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D.; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA. PMID:26562415

  12. Molecular amplification assays for the detection of flaviviruses.

    PubMed

    Lanciotti, Robert S

    2003-01-01

    Over the past 10 years, a number of molecular amplification assays have been developed for the detection of flaviviruses. Most of these assays utilize the reverse transcriptase-polymerase chain reaction (RT-PCR) as the amplification format with detection by either agarose gel electrophoresis and ethidium bromide staining or hybridization with molecular probes. Recently, a modification of the standard RT-PCR using fluorescent-labeled oligonucleotide probes for detection (TaqMan) has been described. As a result, several assays for detecting flaviviruses have been developed using this approach. In addition, another amplification format, nucleic acid sequence based amplification (NASBA), has been developed and utilized for the detection of several flaviviruses. The various assay formats will be described and their utility discussed. PMID:14714430

  13. Comparative Study of the One-step Nucleic Acid Amplification Assay and Conventional Histological Examination for the Detection of Breast Cancer Sentinel Lymph Node Metastases.

    PubMed

    Terada, Mizuho; Niikura, Naoki; Tsuda, Banri; Masuda, Shinobu; Kumaki, Nobue; Tang, Xiaoyan; Okamura, Takuho; Saito, Yuki; Suzuki, Yasuhiro; Tokuda, Yutaka

    2014-09-01

    Intraoperative sentinel lymph node (SLN) biopsy is widely used in patients with early-stage breast cancer and is conventionally performed using hematoxylin and eosin-based histological examination. The one-step nucleic acid amplification (OSNA) assay is a molecular diagnostic tool and a semi-automated lymph node examination method. The purpose of this study was to compare the performance of the OSNA assay and conventional histological examination with frozen sections (FSs) by using 111 SLN biopsy samples from 89 patients at the Tokai University Hospital. The SLN samples were split into 3 slices: the middle slice was used for FS histological examination and the other slices were used for the OSNA assay. The McNemar test was used to compare the differences in the sensitivity and specificity between the OSNA assay and FS histological examination. The sensitivity of the OSNA assay (97.1%) was less than that of FS histological examination (100%), but this difference was not statistically significant (P = 0.125). The specificity of both the methods was identical (96.9%). Despite previously published results suggesting that the OSNA assay is as reliable as histological examinations, our results indicate that this assay often fails to detect micrometastases or isolated tumor cells in SLNs. PMID:25248427

  14. Influenza A virus drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid amplification assay in the season 2014/15.

    PubMed

    Huzly, Daniela; Korn, Klaus; Bierbaum, Sibylle; Eberle, Björn; Falcone, Valeria; Knöll, Antje; Steininger, Philipp; Panning, Marcus

    2016-09-01

    The influenza season 2014/15 was dominated by drift variants of influenza A(H3N2), which resulted in a reduced vaccine effectiveness. It was not clear if the performance of commercial nucleic-acid-based amplification (NAT) assays for the detection of influenza was affected. The purpose of this study was to perform a real-life evaluation of two commercial NAT assays. During January-April 2015, we tested a total of 665 samples from patients with influenza-like illness using the Fast Track Diagnostics Respiratory pathogens 21, a commercial multiplex kit, (cohorts 1 and 2, n = 563 patients) and the Xpert Flu/RSV XC assay (cohort 3, n = 102 patients), a single-use cartridge system. An in-house influenza real-time RT-PCR (cohort 1) and the RealStar Influenza RT-PCR 1.0 Kit (cohort 2 and 3) served as reference tests. Compared to the reference assay, an overall agreement of 95.9 % (cohort 1), 95 % (cohort 2), and 98 % (cohort 3) was achieved. A total of 24 false-negative results were observed using the Fast Track Diagnostics Respiratory pathogens 21 kit. No false-negative results occurred using the Xpert Flu/RSV XC assay. The Fast Track Diagnostics Respiratory pathogens 21 kit and the Xpert Flu/RSV XC assay had sensitivities of 90.7 % and 100 % and specificities of 100 % and 94.1 %, respectively, compared to the RealStar 1.0 kit. Upon modification of the Fast Track Diagnostics Respiratory pathogens 21 kit, the sensitivity increased to 97.3 %. Influenza virus strains circulating during the 2014/15 season reduced the detection sensitivity of a commercial NAT assay, and continuous monitoring of test performance is therefore necessary. PMID:27316440

  15. One-step nucleic acid amplification assay for intraoperative prediction of advanced axillary lymph node metastases in breast cancer patients with sentinel lymph node metastasis

    PubMed Central

    KUBOTA, MICHIYO; KOMOIKE, YOSHIFUMI; HAMADA, MIKA; SHINZAKI, WATARU; AZUMI, TATSUYA; HASHIMOTO, YUKIHIKO; IMOTO, SHIGERU; TAKEYAMA, YOSHIFUMI; OKUNO, KIYOTAKA

    2016-01-01

    The one-step nucleic acid amplification (OSNA) assay is used to semiquantitatively measure the cytokeratin (CK)19 mRNA copy numbers of each sentinel lymph node (SLN) in breast cancer patients. The aim of the present study was to evaluate whether the diagnosis of ≥4 LN metastases is possible using the OSNA assay intraoperatively. Between May, 2010 and December, 2014, a total of 134 patients who underwent axillary lymph node dissection (ALND) of positive SLNs were analyzed. The total tumor load (TTL) was defined as the total CK19 mRNA copies of all positive SLNs. The correlation between TTL and ≥4 LN metastases was evaluated. Of the 134 patients, 31 (23.1%) had ≥4 LN metastases. TTL ≥5.4×104 copies/µl evaluated by receiver operator characteristic curve analysis was examined along with other clinicopathological variables. In the multivariate analysis, only TTL ≥5.4×104 copies/µl was correlated with ≥4 LN metastases (odds ratio = 2.95, 95% confidence interval: 1.17–7.97, P=0.022). Therefore, TTL assessed by the OSNA assay has the potential to be a predictor of ≥4 LN metastases and it may be useful for the selection of patients with positive SLNs in whom ALND may be safely omitted. PMID:26893855

  16. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay.

    PubMed

    Rutjes, Saskia A; van den Berg, Harold H J L; Lodder, Willemijn J; de Roda Husman, Ana Maria

    2006-08-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection assays for viruses in water are often repressed by inhibitory factors present in the environment, like humic acids and heavy metals. To study the effect of environmental inhibitors on the performance of nucleic acid sequence-based amplification (NASBA), we developed a real-time norovirus NASBA targeting part of the RNA-dependent RNA polymerase (RdRp) gene. Specificity of the assay was studied with 33 divergent clones that contained part of the targeted RdRp gene of noroviruses from 15 different genogroups. Viral RNA originated from commercial oysters, surface waters, and sewage treatment plants in The Netherlands. Ninety-seven percent of the clones derived from human noroviruses were detected by real-time NASBA. Two clones containing animal noroviruses were not detected by NASBA. We compared the norovirus detection by real-time NASBA with that by conventional reverse transcriptase PCR (RT-PCR) with large-volume river water samples and found that inhibitory factors of RT-PCR had little or no effect on the performance of the norovirus NASBA. This consequently resulted in a higher sensitivity of the NASBA assay than of the RT-PCR. We show that by combining an efficient RNA extraction method with real-time NASBA the sensitivity of norovirus detection in water samples increased at least 100 times, which consequently has implications for the outcome of the infectious risk assessment. PMID:16885286

  17. Characterization and multicentric validation of a common standard for Toxoplasma gondii detection using nucleic acid amplification assays.

    PubMed

    Varlet-Marie, Emmanuelle; Sterkers, Yvon; Brenier-Pinchart, Marie-Pierre; Cassaing, Sophie; Dalle, Frédéric; Delhaes, Laurence; Filisetti, Denis; Pelloux, Hervé; Touafek, Fériel; Yera, Hélène; Bastien, Patrick

    2014-11-01

    The molecular diagnosis of toxoplasmosis essentially relies upon laboratory-developed methods and suffers from lack of standardization, hence the large diversity of performances between laboratories. Moreover, quantifications of parasitic loads differ among centers, a fact which prevents the possible prediction of the severity of this disease as a function of parasitic loads. The objectives of this multicentric study performed in eight proficient laboratories of the Molecular Biology Pole of the French National Reference Center for Toxoplasmosis (NRC-T) were (i) to assess the suitability of a lyophilized preparation of Toxoplasma gondii as a common standard for use in this PCR-based molecular diagnosis and (ii) to make this standard available to the community. High-quality written procedures were used for the production and qualification of this standard. Three independent batches of this standard, containing concentrations ranging from 10(4) to 0.01 T. gondii genome equivalents per PCR, were first assessed: the linear dynamic range was ≥ 6 log, the intra-assay coefficients of variation (CV) from a sample containing 10 T. gondii organisms per PCR were 0.3% to 0.42%, and the interassay CV over a 2-week period was 0.76% to 1.47%. A further assessment in eight diagnostic centers showed that the standard is stable, robust, and reliable. These lyophilized standards can easily be produced at a larger scale when needed and can be made widely available at the national level. To our knowledge, this is the first quality control assessment of a common standard which is usable both for self-evaluation in laboratories and for accurate quantification of parasitic loads in T. gondii prenatal infections. PMID:25187637

  18. Characterization and Multicentric Validation of a Common Standard for Toxoplasma gondii Detection Using Nucleic Acid Amplification Assays

    PubMed Central

    Varlet-Marie, Emmanuelle; Sterkers, Yvon; Brenier-Pinchart, Marie-Pierre; Cassaing, Sophie; Dalle, Frédéric; Delhaes, Laurence; Filisetti, Denis; Pelloux, Hervé; Touafek, Fériel; Yera, Hélène

    2014-01-01

    The molecular diagnosis of toxoplasmosis essentially relies upon laboratory-developed methods and suffers from lack of standardization, hence the large diversity of performances between laboratories. Moreover, quantifications of parasitic loads differ among centers, a fact which prevents the possible prediction of the severity of this disease as a function of parasitic loads. The objectives of this multicentric study performed in eight proficient laboratories of the Molecular Biology Pole of the French National Reference Center for Toxoplasmosis (NRC-T) were (i) to assess the suitability of a lyophilized preparation of Toxoplasma gondii as a common standard for use in this PCR-based molecular diagnosis and (ii) to make this standard available to the community. High-quality written procedures were used for the production and qualification of this standard. Three independent batches of this standard, containing concentrations ranging from 104 to 0.01 T. gondii genome equivalents per PCR, were first assessed: the linear dynamic range was ≥6 log, the intra-assay coefficients of variation (CV) from a sample containing 10 T. gondii organisms per PCR were 0.3% to 0.42%, and the interassay CV over a 2-week period was 0.76% to 1.47%. A further assessment in eight diagnostic centers showed that the standard is stable, robust, and reliable. These lyophilized standards can easily be produced at a larger scale when needed and can be made widely available at the national level. To our knowledge, this is the first quality control assessment of a common standard which is usable both for self-evaluation in laboratories and for accurate quantification of parasitic loads in T. gondii prenatal infections. PMID:25187637

  19. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  20. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples. PMID:25822163

  1. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  2. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    PubMed

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences. PMID:26669715

  3. An integrated lateral flow assay for effective DNA amplification and detection at the point of care.

    PubMed

    Choi, Jane Ru; Hu, Jie; Gong, Yan; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-10

    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future. PMID:27010033

  4. A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround

    PubMed Central

    Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381

  5. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay. PMID:25981257

  6. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique. PMID:25467448

  7. Electrical and Electrochemical Monitoring of Nucleic Acid Amplification

    PubMed Central

    Goda, Tatsuro; Tabata, Miyuki; Miyahara, Yuji

    2015-01-01

    Nucleic acid amplification is a gold standard technique for analyzing a tiny amount of nucleotides in molecular biology, clinical diagnostics, food safety, and environmental testing. Electrical and electrochemical monitoring of the amplification process draws attention over conventional optical methods because of the amenability toward point-of-care applications as there is a growing demand for nucleic acid sensing in situations outside the laboratory. A number of electrical and electrochemical techniques coupled with various amplification methods including isothermal amplification have been reported in the last 10 years. In this review, we highlight recent developments in the electrical and electrochemical monitoring of nucleic acid amplification. PMID:25798440

  8. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  9. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    PubMed

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. PMID:26854117

  11. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  12. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    PubMed

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  13. Rapid detection of European orthobunyaviruses by reverse transcription loop-mediated isothermal amplification assays.

    PubMed

    Camp, Jeremy V; Nowotny, Norbert

    2016-10-01

    The development of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assays are described herein for the detection of two orthobunyaviruses (Bunyaviridae), which represent the two main serogroups found in mosquitoes in Central Europe. The RT-LAMP assays were optimized for the detection of Ťahyňa virus (a California encephalitis group virus found in Aedes sp or Ochlerotatus sp mosquitoes) and Batai virus (also called Čalovo virus, a Bunyamwera group virus found in Anopheles maculipennis s.l. mosquitoes) nucleic acid using endemic European virus isolates. The sensitivity of the RT-LAMP assays was determined to be comparable to that of conventional tests, with a limit of detection<0.1 pfu per reaction. The assays can be performed in 60min under isothermal conditions using very simple equipment. Furthermore, it was possible to proceed with the assays without nucleic acid extraction, albeit at a 100-fold loss of sensitivity. The RT-LAMP assays are a sensitive, cost-efficient method for both arbovirus surveillance as well as diagnostic laboratories to detect the presence of these endemic orthobunyaviruses. PMID:27491341

  14. False-Positive Transcription-Mediated Amplification Assay Detection of West Nile Virus in Blood from a Patient with Viremia Caused by an Usutu Virus Infection▿

    PubMed Central

    Gaibani, Paolo; Pierro, Anna Maria; Cavrini, Francesca; Rossini, Giada; Landini, Maria Paola; Sambri, Vittorio

    2010-01-01

    Detection of West Nile virus (WNV) by nucleic acid amplification technology (NAAT) is used widely to screen blood and organ donations in areas where WNV is endemic. We report a false-positive result of a WNV transcription-mediated amplification assay (TMA) in a patient with viremia that was caused by Usutu virus, a mosquito-borne flavivirus. PMID:20592138

  15. Development and evaluation of loop-mediated isothermal amplification assay for rapid detection of Capripoxvirus

    PubMed Central

    Batra, Kanisht; Kumar, Aman; Kumar, Vinay; Nanda, Trilok; Maan, Narender S; Maan, Sushila

    2015-01-01

    Aim: The present study was undertaken to develop a nucleic acid-based diagnostic assay loop-mediated isothermal amplification assay (LAMP) targeting highly conserved genomic regions of Capripoxvirus (CaPVs) and its comparative evaluation with real-time polymerase chain reaction (PCR). Material and Methods: Lyophilized vaccine strain of sheeppox virus (SPPV) was used for optimization of LAMP assay. The LAMP assay was designed using envelope immunogenic protein (P32) coding gene targeting highly conserved genomic regions of CaPV responsible for causing sheep pox, goat pox, and lumpy skin disease in sheep, goat and cattle respectively. Serial tenfold dilution of SPPV recombinant plasmid DNA was used for a calculating limit of detection. Analytical sensitivity and specificity were performed. Results: The test described is quick (30 min), sensitive and specific for detection of CaPVs. The described assay did not show any cross-reactivity to other related viruses that cause apparently similar clinical signs. It was found to be ten times more sensitive than conventional PCR however, 100 times less sensitive than quantitative PCR (qPCR). LAMP assay results were monitored by color change method using picogreen dye and agarose gel electrophoresis. Conclusion: LAMP assay can be a very good alternative for CaPV detection to other molecular techniques requiring sophisticated equipments. PMID:27047031

  16. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  17. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents.

    PubMed

    Euler, Milena; Wang, Yongjie; Heidenreich, Doris; Patel, Pranav; Strohmeier, Oliver; Hakenberg, Sydney; Niedrig, Matthias; Hufert, Frank T; Weidmann, Manfred

    2013-04-01

    Syndromic panels for infectious disease have been suggested to be of value in point-of-care diagnostics for developing countries and for biodefense. To test the performance of isothermal recombinase polymerase amplification (RPA) assays, we developed a panel of 10 RPAs for biothreat agents. The panel included RPAs for Francisella tularensis, Yersinia pestis, Bacillus anthracis, variola virus, and reverse transcriptase RPA (RT-RPA) assays for Rift Valley fever virus, Ebola virus, Sudan virus, and Marburg virus. Their analytical sensitivities ranged from 16 to 21 molecules detected (probit analysis) for the majority of RPA and RT-RPA assays. A magnetic bead-based total nucleic acid extraction method was combined with the RPAs and tested using inactivated whole organisms spiked into plasma. The RPA showed comparable sensitivities to real-time RCR assays in these extracts. The run times of the assays at 42°C ranged from 6 to 10 min, and they showed no cross-detection of any of the target genomes of the panel nor of the human genome. The RPAs therefore seem suitable for the implementation of syndromic panels onto microfluidic platforms. PMID:23345286

  18. Development of a Panel of Recombinase Polymerase Amplification Assays for Detection of Biothreat Agents

    PubMed Central

    Euler, Milena; Wang, Yongjie; Heidenreich, Doris; Patel, Pranav; Strohmeier, Oliver; Hakenberg, Sydney; Niedrig, Matthias; Hufert, Frank T.

    2013-01-01

    Syndromic panels for infectious disease have been suggested to be of value in point-of-care diagnostics for developing countries and for biodefense. To test the performance of isothermal recombinase polymerase amplification (RPA) assays, we developed a panel of 10 RPAs for biothreat agents. The panel included RPAs for Francisella tularensis, Yersinia pestis, Bacillus anthracis, variola virus, and reverse transcriptase RPA (RT-RPA) assays for Rift Valley fever virus, Ebola virus, Sudan virus, and Marburg virus. Their analytical sensitivities ranged from 16 to 21 molecules detected (probit analysis) for the majority of RPA and RT-RPA assays. A magnetic bead-based total nucleic acid extraction method was combined with the RPAs and tested using inactivated whole organisms spiked into plasma. The RPA showed comparable sensitivities to real-time RCR assays in these extracts. The run times of the assays at 42°C ranged from 6 to 10 min, and they showed no cross-detection of any of the target genomes of the panel nor of the human genome. The RPAs therefore seem suitable for the implementation of syndromic panels onto microfluidic platforms. PMID:23345286

  19. Development of a rapid recombinase polymerase amplification assay for detection of Brucella in blood samples.

    PubMed

    Ren, Hang; Yang, Mingjuan; Zhang, Guoxia; Liu, Shiwei; Wang, Xinhui; Ke, Yuehua; Du, Xinying; Wang, Zhoujia; Huang, Liuyu; Liu, Chao; Chen, Zeliang

    2016-04-01

    A rapid and sensitive recombinase polymerase amplification (RPA) assay, Bruce-RPA, was developed for detection of Brucella. The assay could detect as few as 3 copies of Brucella per reaction within 20 min. Bruce-RPA represents a candidate point-of-care diagnosis assay for human brucellosis. PMID:26911890

  20. Visual detection of H3 subtype avian influenza viruses by reverse transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background Recent epidemiological investigation of different HA subtypes of avian influenza viruses (AIVs) shows that the H3 subtype is the most predominant among low pathogenic AIVs (LPAIVs), and the seasonal variations in isolation of H3 subtype AIVs are consistent with that of human H3 subtype influenza viruses. Consequently, the development of a rapid, simple, sensitive detection method for H3 subtype AIVs is required. The loop-mediated isothermal amplification (LAMP) assay is a simple, rapid, sensitive and cost-effective nucleic acid amplification method that does not require any specialized equipment. Results A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect the H3 subtype AIVs visually. Specific primer sets target the sequences of the hemagglutinin (HA) gene of H3 subtype AIVs were designed, and assay reaction conditions were optimized. The established assay was performed in a water bath for 50 minutes, and the amplification result was visualized directly as well as under ultraviolet (UV) light reflections. The detection limit of the RT-LAMP assay was 0.1pg total RNA of virus, which was one hundred-fold higher than that of RT-PCR. The results on specificity indicated that the assay had no cross-reactions with other subtype AIVs or avian respiratory pathogens. Furthermore, a total of 176 clinical samples collected from birds at the various live-bird markets (LBMs) were subjected to the H3-subtype-specific RT-LAMP (H3-RT-LAMP). Thirty-eight H3 subtype AIVs were identified from the 176 clinical samples that were consistent with that of virus isolation. Conclusions The newly developed H3-RT-LAMP assay is simple, sensitive, rapid and can identify H3 subtype AIVs visually. Consequently, it will be a very useful screening assay for the surveillance of H3 subtype AIVs in underequipped laboratories as well as in field conditions. PMID:21729297

  1. Multiplex Strand Invasion Based Amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae.

    PubMed

    Eboigbodin, Kevin E; Hoser, Mark J

    2016-01-01

    Nucleic acid amplification tests have become a common method for diagnosis of STIs due to their improved sensitivity over immunoassays and traditional culture-based methods. Isothermal nucleic acid amplification methods offer significant advantages over polymerase chain reaction (PCR) because they do not require sophisticated instruments needed for thermal cycling of PCR. We recently reported a novel isothermal nucleic acid amplification method, Strand Invasion-Based Amplification (SIBA), which exhibited high analytical sensitivity and specificity for amplification of DNA. However, because the reactions were detected using an intercalating dye, this method was only suitable for amplifying a single genomic target. Here, we report the development of multiplexed SIBA (mSIBA) that allows simultaneous detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and an internal control in the same reaction tube. SIBA is compatible with probes, allowing the detection of multiple DNA targets in the same reaction tube. The IC was developed to assess the quality of the isolated DNA and the integrity of the enzyme system, as well as to test oligonucleotides. The mSIBA assay retained high analytical sensitivity and specificity for the detection of CT and NG. The development of mSIBA enables rapid screening for CT and NG within point-of-care or central laboratory settings. PMID:26837460

  2. Multiplex Strand Invasion Based Amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae

    PubMed Central

    Eboigbodin, Kevin E.; Hoser, Mark J.

    2016-01-01

    Nucleic acid amplification tests have become a common method for diagnosis of STIs due to their improved sensitivity over immunoassays and traditional culture-based methods. Isothermal nucleic acid amplification methods offer significant advantages over polymerase chain reaction (PCR) because they do not require sophisticated instruments needed for thermal cycling of PCR. We recently reported a novel isothermal nucleic acid amplification method, Strand Invasion-Based Amplification (SIBA), which exhibited high analytical sensitivity and specificity for amplification of DNA. However, because the reactions were detected using an intercalating dye, this method was only suitable for amplifying a single genomic target. Here, we report the development of multiplexed SIBA (mSIBA) that allows simultaneous detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and an internal control in the same reaction tube. SIBA is compatible with probes, allowing the detection of multiple DNA targets in the same reaction tube. The IC was developed to assess the quality of the isolated DNA and the integrity of the enzyme system, as well as to test oligonucleotides. The mSIBA assay retained high analytical sensitivity and specificity for the detection of CT and NG. The development of mSIBA enables rapid screening for CT and NG within point-of-care or central laboratory settings. PMID:26837460

  3. Simple Bulk Readout of Digital Nucleic Acid Quantification Assays.

    PubMed

    Morinishi, Leanna S; Blainey, Paul

    2015-01-01

    Digital assays are powerful methods that enable detection of rare cells and counting of individual nucleic acid molecules. However, digital assays are still not routinely applied, due to the cost and specific equipment associated with commercially available methods. Here we present a simplified method for readout of digital droplet assays using a conventional real-time PCR instrument to measure bulk fluorescence of droplet-based digital assays. We characterize the performance of the bulk readout assay using synthetic droplet mixtures and a droplet digital multiple displacement amplification (MDA) assay. Quantitative MDA particularly benefits from a digital reaction format, but our new method applies to any digital assay. For established digital assay protocols such as digital PCR, this method serves to speed up and simplify assay readout. Our bulk readout methodology brings the advantages of partitioned assays without the need for specialized readout instrumentation. The principal limitations of the bulk readout methodology are reduced dynamic range compared with droplet-counting platforms and the need for a standard sample, although the requirements for this standard are less demanding than for a conventional real-time experiment. Quantitative whole genome amplification (WGA) is used to test for contaminants in WGA reactions and is the most sensitive way to detect the presence of DNA fragments with unknown sequences, giving the method great promise in diverse application areas including pharmaceutical quality control and astrobiology. PMID:26436576

  4. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.

    PubMed

    Ahmad, Farhan; Hashsham, Syed A

    2012-07-01

    Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10-20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics. PMID:22704369

  5. Evaluation of a Loop-Mediated Isothermal Amplification Assay for Diagnosis of Clostridium difficile Infections▿

    PubMed Central

    Lalande, Valérie; Barrault, Laurence; Wadel, Sophie; Eckert, Catherine; Petit, Jean-Claude; Barbut, Frédéric

    2011-01-01

    A new assay (illumigene C. difficile; Meridian Bioscience), based on the original loop-mediated isothermal amplification (LAMP) assay, was evaluated with 472 unformed stools from patients suspected of Clostridium difficile infection. Compared to the toxigenic culture, the sensitivity, specificity, and positive and negative predictive values were 91.8, 99.1, 91.8, and 99.1% for the illumigene C. difficile assay and 69.4, 100, 100, and 96.6% for the cytotoxicity assay, respectively. PMID:21525213

  6. Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections.

    PubMed

    Lalande, Valérie; Barrault, Laurence; Wadel, Sophie; Eckert, Catherine; Petit, Jean-Claude; Barbut, Frédéric

    2011-07-01

    A new assay (illumigene C. difficile; Meridian Bioscience), based on the original loop-mediated isothermal amplification (LAMP) assay, was evaluated with 472 unformed stools from patients suspected of Clostridium difficile infection. Compared to the toxigenic culture, the sensitivity, specificity, and positive and negative predictive values were 91.8, 99.1, 91.8, and 99.1% for the illumigene C. difficile assay and 69.4, 100, 100, and 96.6% for the cytotoxicity assay, respectively. PMID:21525213

  7. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  8. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    PubMed

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control. PMID:27118244

  9. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  10. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    PubMed Central

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61–65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique. PMID:26154567

  11. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  12. Multiplex nucleic acid amplification test for diagnosis of dengue fever, malaria, and leptospirosis.

    PubMed

    Waggoner, Jesse J; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz; Pinsky, Benjamin A

    2014-06-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  13. Multiplex Nucleic Acid Amplification Test for Diagnosis of Dengue Fever, Malaria, and Leptospirosis

    PubMed Central

    Waggoner, Jesse J.; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K.; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz

    2014-01-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  14. Simple and sensitive microbial pathogen detection using a label-free DNA amplification assay.

    PubMed

    Sun, Yuhuan; Zhao, Chuanqi; Yan, Zhengqing; Ren, Jinsong; Qu, Xiaogang

    2016-06-14

    By the combination of quaternized magnetic nanoparticles and a label-free exonuclease III-assisted DNA amplification assay, we report a simple and facile strategy for the convenient and highly sensitive detection of microbial pathogens, with a detection limit of down to 50 cells mL(-1). PMID:27210898

  15. Development of rapid isothermal amplification assays for Phytophthora species from plant tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real time ...

  16. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay.

    PubMed

    Niessen, Ludwig; Vogel, Rudi F

    2010-06-15

    Loop-mediated isothermal amplification (LAMP) of DNA is a simple, cost effective, and rapid method for the specific detection of genomic DNA using a set of six oligonucleotide primers with eight binding sites hybridizing specifically to different regions of a target gene, and a thermophilic DNA polymerase from Geobacillus stearothermophilus for DNA amplification. The method has been applied in various assays for the diagnosis of bacterial and viral infections of humans and animals, sexing of bovine and swine embryos, and in the detection of bacteria from environmental samples. Only recently, first applications for fungal organisms were published. During the current study a LAMP assay was developed for the specific detection of Fusarium graminearum, the major causative agent of Fusarium head blight of small cereals and producer of the mycotoxins deoxynivalenol, nivalenol, and zearalenone. The assay was based on the gaoA gene (galactose oxidase) of the fungus. Amplification of DNA during the reaction was indirectly detected in situ by using calcein fluorescence as a marker without the necessity of time-consuming electrophoretic analysis. The assay was optimized for rapidness, specificity, and sensitivity and was shown to detect the presence of less than 2pg of purified target DNA per reaction within 30 min. Within 132 fungal species tested, exclusively DNA isolated from cultures of F. graminearum (lineages 1-9) resulted in a fluorescent signal after amplification with the LAMP assay. The method was demonstrated to be useful in the analysis of fungal cultures by direct analysis of surface scrapings from agar plate cultures, direct testing of single infected barley grains, and detection of F. graminearum in total genomic DNA isolated from bulk samples of ground wheat grains. Results obtained indicate that LAMP offers an interesting new assay format for the rapid and specific DNA-based detection and identification of agriculturally important toxigenic fungi in pure

  17. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    PubMed

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  18. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  19. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform. PMID:26649493

  20. Development of reverse transcription loop mediated isothermal amplification assay for rapid detection of bluetongue viruses.

    PubMed

    Mohandas, Sreekala S; Muthuchelvan, Dhanavelu; Pandey, Awadh Bihari; Biswas, Sanchay Kumar; Chand, Karam; Venkatesan, Gnanavel; Choudhary, Dheeraj; Ramakrishnan, Muthannan Andavar; Mondal, Bimalendu

    2015-09-15

    A single-step reverse transcription loop mediated isothermal amplification (RT-LAMP) assay targeting NS1 - a highly conserved gene among BTV serotypes was optimized and validated with seven serotypes: BTV-1, BTV-2, BTV-9, BTV-10, BTV-16, BTV-21 and BTV-23. The relative sensitivity of the assay was 0.3 TCID50 and no cross reactivity could be observed with foot and mouth disease, peste-des-petits-ruminants, goatpox, sheeppox and orf viruses. The established assay was also assessed by screening of clinical samples and the result is comparable with conventional RT-PCR. The RT-LAMP assay described here could be an additional tool to the existing assays for diagnosis/surveillance of BTV. PMID:26073661

  1. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples.

    PubMed

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-03-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance. PMID:25510713

  2. A loop-mediated isothermal amplification assay for the visual detection of duck circovirus

    PubMed Central

    2014-01-01

    Background Duck circovirus (DuCV) infection in farmed ducks is associated with growth problems or retardation syndromes. Rapid identification of DuCV infected ducks is essential to control DuCV effectively. Therefore, this study aims to develop of an assay for DuCV to be highly specific, sensitive, and simple without any specialized equipment. Methods A set of six specific primers was designed to target the sequences of the Rep gene of DuCV, and A loop-mediated isothermal amplification (LAMP) assay were developed and the reaction conditions were optimized for rapid detection of DuCV. Results The LAMP assay reaction was conducted in a 62°C water bath condition for 50 min. Then the amplification products were visualized directly for color changes. This LAMP assay is highly sensitive and able to detect twenty copies of DuCV DNA. The specificity of this LAMP assay was supported by no cross-reaction with other duck pathogens. Conclusion This LAMP method for DuCV is highly specific and sensitive and can be used as a rapid and direct diagnostic assay for testing clinical samples. PMID:24775810

  3. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection

    PubMed Central

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients’ serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  4. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  5. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay.

    PubMed Central

    Chehab, F F; Kan, Y W

    1989-01-01

    We have developed a color complementation assay that allows rapid screening of specific genomic DNA sequences. It is based on the simultaneous amplification of two or more DNA segments with fluorescent oligonucleotide primers such that the generation of a color, or combination of colors, can be visualized and used for diagnosis. Color complementation assay obviates the need for gel electrophoresis and has been applied to the detection of a large and small gene deletion, a chromosomal translocation, an infectious agent, and a single-base substitution. DNA amplification with fluorescent oligonucleotide primers has also been used to multiplex and discriminate five different amplified DNA loci simultaneously. Each primer set is conjugated to a different dye, and the fluorescence of each dye respective to its amplified DNA locus is scored on a fluorometer. This method is valuable for DNA diagnostics of genetic, acquired, and infectious diseases, as well as in DNA forensics. It also lends itself to complete automation. Images PMID:2594760

  6. Evaluation of the Hologic Panther Transcription-Mediated Amplification Assay for Detection of Mycoplasma genitalium.

    PubMed

    Tabrizi, S N; Costa, A M; Su, J; Lowe, P; Bradshaw, C S; Fairley, C K; Garland, S M

    2016-08-01

    The detection of Mycoplasma genitalium was evaluated on 1,080 urine samples by the use of a Panther instrument. Overall sensitivity, specificity, positive predictive values, and negative predictive values were 100%, 99.4%, 93.6%, and 100%, respectively. Detection of M. genitalium by the use of the Panther transcription-mediated amplification assay offers a simple, accurate, and sensitive platform for diagnostic laboratories. PMID:27307453

  7. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection.

    PubMed

    Guo, Limin; Hao, Lihua; Zhao, Qiang

    2016-07-01

    We describe a sensitive aptamer-based sandwich assay for protein detection on microplate by using rolling circle amplification (RCA) coupled with thrombin catalysis. This assay takes advantage of RCA generating long DNA oligonucleotides with repeat thrombin-binding aptamer sequence, specific aptamer affinity binding to achieve multiple thrombin labeling, and enzyme activity of thrombin for signal generation. Protein target is specifically captured by antibody-coated microplate. Then, an oligonucleotide containing an aptamer for protein and a primer sequence is added to form a typical sandwich structure. Following a template encoded with complementary sequence of aptamer for thrombin, RCA reaction extends the primer sequence into a long oligonucleotide. Many thrombin molecules bind with the RCA product. Thrombin catalyzes the conversion of its chromogenic or fluorogenic peptide substrates into detectable products for final quantification of protein targets. We applied this strategy to the detection of a model protein target, platelet-derived growth factor-BB (PDGF-BB). Due to double signal amplifications from RCA and thrombin catalysis, this assay enabled the detection of PDGF-BB as low as 3.1 pM when a fluorogenic peptide substrate was used. This assay provides a new way for signal generation in RCA-involved assay through direct thrombin labeling, circumventing time-consuming preparation of enzyme-conjugate and affinity probes. This method has promise for a variety of analytical applications. PMID:27108282

  8. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Bovine Rotavirus

    PubMed Central

    2012-01-01

    Background Bovine rotavirus (BRV) infection is common in young calves. This viral infection causes acute diarrhea leading to death. Rapid identification of infected calves is essential to control BRV successfully. Therefore development of simple, highly specific, and sensitive detection method for BRV is needed. Results A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and optimized for rapid detection of BRV. Specific primer sets were designed to target the sequences of the VP6 gene of the neonatal calf diarrhea virus (NCDV) strain of BRV. The RT-LAMP assay was performed in a water bath for 60 minutes at 63°C, and the amplification products were visualized either directly or under ultraviolet light. This BRV specific RT-LAMP assay could detect 3.32 copies of subtype A BRV. No cross-reactions were detected with other bovine pathogens. The ability of RT-LAMP to detect bovine rotavirus was further evaluated with 88 bovine rectal swab samples. Twenty-nine of these samples were found to be positive for BRV using RT-LAMP. The BRV-specific-RT-LAMP results were also confirmed by real-time RT-PCR assay. Conclusions The bovine rotavirus-specific RT-LAMP assay was highly sensitive and holds promise as a prompt and simple diagnostic method for the detection of group A bovine rotavirus infection in young calves. PMID:22894568

  9. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection. PMID:27283884

  10. A Rapid and Versatile Assay for Ago2-Mediated Cleavage by Using Branched Rolling Circle Amplification.

    PubMed

    Hesse, Marlen; Arenz, Christoph

    2016-02-01

    Micro RNA (miRNA) research has evolved into an essential part of investigating gene regulation in which deregulation of numerous miRNAs is associated with various cellular dysfunction and diseases. Here, we describe a rapid and homogenous assay for Ago2-mediated target RNA cleavage, based on branched rolling circle amplification (BRCA). In particular, the ability to investigate small molecule binders for inhibition of miRNA function is within the potential of our assay. This method uses no artificial fluorescence labeling of RNA components, which can be an advantage in screening of potential inhibitors. To visualize cleavage of RNA substrate by Ago2, we developed a two-step assay composed of Ago2-mediated cleavage and BRCA-based detection. The assay is cost-effective and practicable and can be performed in 96-well format by using a standard qPCR machine. PMID:26677110

  11. Detection of Mycoplasma pneumoniae by loop-mediated isothermal amplification (LAMP) assay and serology in pediatric community-acquired pneumonia.

    PubMed

    Gotoh, Kensei; Nishimura, Naoko; Ohshima, Yasunori; Arakawa, Yasuko; Hosono, Haruki; Yamamoto, Yasuto; Iwata, Yasushi; Nakane, Kazumasa; Funahashi, Keiji; Ozaki, Takao

    2012-10-01

    Rapid diagnosis of Mycoplasma pneumoniae pneumonia is required for treatment with effective antimicrobial agents without delay; however, this capacity has not yet been established in clinical practice. Recently, a novel nucleic acid amplification method termed loop-mediated isothermal amplification (LAMP) has been used to rapidly diagnose various infectious diseases. In this study, we prospectively evaluated the efficacy of the LAMP assay to rapidly diagnose M. pneumoniae pneumonia in clinical practice. Three hundred sixty-eight children (median age, 3.8 years; range, 0.1-14.3 years) admitted to our hospital between April 2009 and March 2010 for community-acquired pneumonia were enrolled in this study. We obtained throat swabs on admission to detect M. pneumoniae DNA and paired serum samples on admission and at discharge to assay M. pneumoniae antibody titers. M. pneumoniae pneumonia was diagnosed by either a positive LAMP assay or a fourfold or greater increase in antibody titer. Overall, 46 children (12.5% of the patients with pneumonia) were diagnosed with M. pneumoniae pneumonia; of these, 27 (58.7%) were aged less than 6 years. Of the aforementioned 46 children, 38 (82.6%) and 37 (80.4%) were identified by LAMP and serology, respectively. When the results of serology were taken as the standard, the sensitivity and specificity and positive and negative predictive values of the LAMP assay were 78.4%, 97.3%, 76.3%, and 97.6%, respectively. We concluded the LAMP assay may be useful for rapid diagnosis of M. pneumoniae pneumonia. PMID:22370920

  12. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection.

    PubMed

    Yehia, Nahed; Arafa, Abdel-Satar; Abd El Wahed, Ahmed; El-Sanousi, Ahmed A; Weidmann, Manfred; Shalaby, Mohamed A

    2015-10-01

    The 2006 outbreaks of H5N1 avian influenza in Egypt interrupted poultry production and caused staggering economic damage. In addition, H5N1 avian influenza viruses represent a significant threat to public health. Therefore, the rapid detection of H5 viruses is very important in order to control the disease. In this study, a qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of hemagglutinin gene of H5 subtype influenza viruses was developed. The results were compared to the real-time reverse transcription polymerase chain reaction (RT-PCR). An in vitro transcribed RNA standard of 970 nucleotides of the hemagglutinin gene was developed and used to determine the assay sensitivity. The developed H5 RT-RPA assay was able to detect one RNA molecule within 7 min, while in real-time RT-PCR, at least 90 min was required. H5 RT-RPA assay did not detect nucleic acid extracted from H5 negative samples or from other pathogens producing respiratory manifestation in poultry. The clinical performance of the H5 RT-RPA assay was tested in 30 samples collected between 2014 and 2015; the sensitivity of H5 RT-RPA and real-time RT-PCR was 100%. In conclusion, H5 RT-RPA was faster than real-time RT-PCR and easily operable in a portable device. Moreover, it had an equivalent sensitivity and specificity. PMID:26225482

  13. Meat Species Identification using Loop-mediated Isothermal Amplification Assay Targeting Species-specific Mitochondrial DNA

    PubMed Central

    2014-01-01

    Meat source fraud and adulteration scandals have led to consumer demands for accurate meat identification methods. Nucleotide amplification assays have been proposed as an alternative method to protein-based assays for meat identification. In this study, we designed Loop-mediated isothermal amplification (LAMP) assays targeting species-specific mitochondrial DNA to identify and discriminate eight meat species; cattle, pig, horse, goat, sheep, chicken, duck, and turkey. The LAMP primer sets were designed and the target genes were discriminated according to their unique annealing temperature generated by annealing curve analysis. Their unique annealing temperatures were found to be 85.56±0.07℃ for cattle, 84.96±0.08℃ for pig, and 85.99±0.05℃ for horse in the BSE-LAMP set (Bos taurus, Sus scrofa domesticus and Equus caballus); 84.91±0.11℃ for goat and 83.90±0.11℃ for sheep in the CO-LAMP set (Capra hircus and Ovis aries); and 86.31±0.23℃ for chicken, 88.66±0.12℃ for duck, and 84.49±0.08℃ for turkey in the GAM-LAMP set (Gallus gallus, Anas platyrhynchos and Meleagris gallopavo). No cross-reactivity was observed in each set. The limits of detection (LODs) of the LAMP assays in raw and cooked meat were determined from 10 pg/μL to 100 fg/μL levels, and LODs in raw and cooked meat admixtures were determined from 0.01% to 0.0001% levels. The assays were performed within 30 min and showed greater sensitivity than that of the PCR assays. These novel LAMP assays provide a simple, rapid, accurate, and sensitive technology for discrimination of eight meat species. PMID:26761677

  14. Fluorescent vesicles for signal amplification in reverse phase protein microarray assays.

    PubMed

    Bally, Marta; Syed, Shahida; Binkert, Andreas; Kauffmann, Ekkehard; Ehrat, Markus; Vörös, Janos

    2011-09-15

    Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning. PMID:21669176

  15. Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Detection of Ehrlichia ruminantium

    PubMed Central

    2010-01-01

    Background The rickettsial bacterium Ehrlichia ruminantium is the causative agent of heartwater, a potential zoonotic disease of ruminants transmitted by ticks of the genus Amblyomma. The disease is distributed in nearly all of sub-Saharan Africa and some islands of the Caribbean, from where it threatens the American mainland. This report describes the development of two different loop-mediated isothermal amplification (LAMP) assays for sensitive and specific detection of E. ruminantium. Results Two sets of LAMP primers were designed from the pCS20 and sodB genes. The detection limits for each assay were 10 copies for pCS20 and 5 copies for sodB, which is at least 10 times higher than that of the conventional pCS20 PCR assay. DNA amplification was completed within 60 min. The assays detected 16 different isolates of E. ruminantium from geographically distinct countries as well as two attenuated vaccine isolates. No cross-reaction was observed with genetically related Rickettsiales, including zoonotic Ehrlichia species from the USA. LAMP detected more positive samples than conventional PCR but less than real-time PCR, when tested with field samples collected in sub-Saharan countries. Conclusions Due to its simplicity and specificity, LAMP has the potential for use in resource-poor settings and also for active screening of E. ruminantium in both heartwater-endemic areas and regions that are at risk of contracting the disease. PMID:21087521

  16. Considerations on the use of nucleic acid-based amplification for malaria parasite detection

    PubMed Central

    2011-01-01

    Background Nucleic acid amplification provides the most sensitive and accurate method to detect and identify pathogens. This is primarily useful for epidemiological investigations of malaria because the infections, often with two or more Plasmodium species present simultaneously, are frequently associated with microscopically sub-patent parasite levels and cryptic mixed infections. Numerous distinct equally adequate amplification-based protocols have been described, but it is unclear which to select for epidemiological surveys. Few comparative studies are available, and none that addresses the issue of inter-laboratory variability. Methods Blood samples were collected from patients attending malaria clinics on the Thai-Myanmar border. Frozen aliquots from 413 samples were tested independently in two laboratories by nested PCR assay. Dried blood spots on filter papers from the same patients were also tested by the nested PCR assay in one laboratory and by a multiplex PCR assay in another. The aim was to determine which protocol best detected parasites below the sensitivity level of microscopic examination. Results As expected PCR-based assays detected a substantial number of infected samples, or mixed infections, missed by microscopy (27 and 42 for the most sensitive assay, respectively). The protocol that was most effective at detecting these, in particular mixed infections, was a nested PCR assay with individual secondary reactions for each of the species initiated with a template directly purified from the blood sample. However, a lesser sensitivity in detection was observed when the same protocol was conducted in another laboratory, and this significantly altered the data obtained on the parasite species distribution. Conclusions The sensitivity of a given PCR assay varies between laboratories. Although, the variations are relatively minor, they primarily diminish the ability to detect low-level and mixed infections and are sufficient to obviate the main

  17. Field-Applicable Recombinase Polymerase Amplification Assay for Rapid Detection of Mycoplasma capricolum subsp. capripneumoniae

    PubMed Central

    Yu, Mingyan; O'Brien, Elizabeth; Heller, Martin; Nepper, Julia F.; Weibel, Douglas B.; Gluecks, Ilona; Younan, Mario; Frey, Joachim; Falquet, Laurent; Jores, Joerg

    2015-01-01

    Contagious caprine pleuropneumonia (CCPP) is a highly contagious disease caused by Mycoplasma capricolum subsp. capripneumoniae that affects goats in Africa and Asia. Current available methods for the diagnosis of Mycoplasma infection, including cultivation, serological assays, and PCR, are time-consuming and require fully equipped stationary laboratories, which make them incompatible with testing in the resource-poor settings that are most relevant to this disease. We report a rapid, specific, and sensitive assay employing isothermal DNA amplification using recombinase polymerase amplification (RPA) for the detection of M. capricolum subsp. capripneumoniae. We developed the assay using a specific target sequence in M. capricolum subsp. capripneumoniae, as found in the genome sequence of the field strain ILRI181 and the type strain F38 and that was further evidenced in 10 field strains from different geographical regions. Detection limits corresponding to 5 × 103 and 5 × 104 cells/ml were obtained using genomic DNA and bacterial culture from M. capricolum subsp. capripneumoniae strain ILRI181, while no amplification was obtained from 71 related Mycoplasma isolates or from the Acholeplasma or the Pasteurella isolates, demonstrating a high degree of specificity. The assay produces a fluorescent signal within 15 to 20 min and worked well using pleural fluid obtained directly from CCPP-positive animals without prior DNA extraction. We demonstrate that the diagnosis of CCPP can be achieved, with a short sample preparation time and a simple read-out device that can be powered by a car battery, in <45 min in a simulated field setting. PMID:26085615

  18. Field-Applicable Recombinase Polymerase Amplification Assay for Rapid Detection of Mycoplasma capricolum subsp. capripneumoniae.

    PubMed

    Liljander, Anne; Yu, Mingyan; O'Brien, Elizabeth; Heller, Martin; Nepper, Julia F; Weibel, Douglas B; Gluecks, Ilona; Younan, Mario; Frey, Joachim; Falquet, Laurent; Jores, Joerg

    2015-09-01

    Contagious caprine pleuropneumonia (CCPP) is a highly contagious disease caused by Mycoplasma capricolum subsp. capripneumoniae that affects goats in Africa and Asia. Current available methods for the diagnosis of Mycoplasma infection, including cultivation, serological assays, and PCR, are time-consuming and require fully equipped stationary laboratories, which make them incompatible with testing in the resource-poor settings that are most relevant to this disease. We report a rapid, specific, and sensitive assay employing isothermal DNA amplification using recombinase polymerase amplification (RPA) for the detection of M. capricolum subsp. capripneumoniae. We developed the assay using a specific target sequence in M. capricolum subsp. capripneumoniae, as found in the genome sequence of the field strain ILRI181 and the type strain F38 and that was further evidenced in 10 field strains from different geographical regions. Detection limits corresponding to 5 × 10(3) and 5 × 10(4) cells/ml were obtained using genomic DNA and bacterial culture from M. capricolum subsp. capripneumoniae strain ILRI181, while no amplification was obtained from 71 related Mycoplasma isolates or from the Acholeplasma or the Pasteurella isolates, demonstrating a high degree of specificity. The assay produces a fluorescent signal within 15 to 20 min and worked well using pleural fluid obtained directly from CCPP-positive animals without prior DNA extraction. We demonstrate that the diagnosis of CCPP can be achieved, with a short sample preparation time and a simple read-out device that can be powered by a car battery, in <45 min in a simulated field setting. PMID:26085615

  19. Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis.

    PubMed

    Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L

    2014-07-01

    A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. PMID:24792836

  20. Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei.

    PubMed

    Mirzai, S; Safi, S; Mossavari, N; Afshar, D; Bolourchian, M

    2016-01-01

    The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders. PMID:27609471

  1. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay.

    PubMed

    Du, Ruijun; Zhu, Lina; Gan, Jinrui; Wang, Yuning; Qiao, Liang; Liu, Baohong

    2016-07-01

    A mass spectrometry signal amplification method is developed for the ultrasensitive and selective detection of low-abundance protein biomarkers by utilizing tag molecules on gold nanoparticles (AuNPs). EpCAM and thrombin as model targets are captured by specific aptamers immobilized on the AuNPs. With laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), the mass tag molecules are detected to represent the protein biomarkers. Benefiting from the MS signal amplification, the assay can achieve a limit of detection of 100 aM. The method is further applied to detect thrombin in fetal bovine serum and EpCAM in cell lysates to demonstrate its selectivity and feasibility in complex biological samples. With the high sensitivity and specificity, the protocol shows great promise for providing a new route to single-cell analysis and early disease diagnosis. PMID:27253396

  2. Rapid and Sensitive Detection of Didymella bryoniae by Visual Loop-Mediated Isothermal Amplification Assay

    PubMed Central

    Yao, Xiefeng; Li, Pingfang; Xu, Jinghua; Zhang, Man; Ren, Runsheng; Liu, Guang; Yang, Xingping

    2016-01-01

    Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB) in Cucurbitaceae crops (e.g., cantaloupe, muskmelon, cucumber, and watermelon). GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP) assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462) common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII) of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR). The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL-1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics. PMID:27625648

  3. Rapid and Sensitive Detection of Didymella bryoniae by Visual Loop-Mediated Isothermal Amplification Assay.

    PubMed

    Yao, Xiefeng; Li, Pingfang; Xu, Jinghua; Zhang, Man; Ren, Runsheng; Liu, Guang; Yang, Xingping

    2016-01-01

    Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB) in Cucurbitaceae crops (e.g., cantaloupe, muskmelon, cucumber, and watermelon). GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP) assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462) common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII) of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR). The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL(-1) of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics. PMID:27625648

  4. Development of loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive identification of ostrich meat.

    PubMed

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  5. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat

    PubMed Central

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  6. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay.

    PubMed

    Amer, H M; Abd El Wahed, A; Shalaby, M A; Almajhdi, F N; Hufert, F T; Weidmann, M

    2013-11-01

    Bovine coronavirus (BCoV) is an economically significant cause of calf scours and winter dysentery of adult cattle, and may induce respiratory tract infections in cattle of all ages. Early diagnosis of BCoV helps to diminish its burden on the dairy and beef industry. Real-time RT-PCR assay for the detection of BCoV has been described, but it is relatively expensive, requires well-equipped laboratories and is not suitable for on-site screening. A novel assay, using reverse transcription recombinase polymerase amplification (RT-RPA), for the detection of BCoV is developed. The BCoV RT-RPA was rapid (10-20 min) and has an analytical sensitivity of 19 molecules. No cross-reactivity with other viruses causing bovine gastrointestinal and/or respiratory infections was observed. The assay performance on clinical samples was validated by testing 16 fecal and 14 nasal swab specimens and compared to real-time RT-PCR. Both assays provided comparable results. The RT-RPA assay was significantly more rapid than the real-time RT-PCR assay. The BCoV RT-RPA constitutes a suitable accurate, sensitive and rapid alternative to the common measures used for BCoV diagnosis. In addition, the use of a portable fluorescence reading device extends its application potential to use in the field and point-of-care diagnosis. PMID:23811231

  7. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay.

    PubMed

    Zhang, Yan; Hu, Juan; Zhang, Chun-Yang

    2012-11-01

    Transcription factors regulate gene expression by binding to specific DNA sequences within the regulatory regions of genes and have become potential targets in clinical diagnosis and drug development. However, traditional approaches for the detection of transcription factors are usually laborious and time-consuming with a low sensitivity. Here, we develop an isothermal exponential amplification reaction (EXPAR)-based colorimetric assay for simple and sensitive detection of transcription factor NF-κB p50. In this assay, the presence of NF-κB p50 is converted to the reporter oligonucleotides through protein-DNA interaction, exonuclease III digestion, and isothermal exponential amplification. The subsequent sandwich hybridization of the reporter oligonucleotides with the gold nanoparticle (AuNP)-labeled DNA probes generates a red-to-purple color change, allowing the visual detection of NF-κB p50 with the naked eye. Notably, this method converts the detection of transcription factors to the detection of DNA without the requirement of DNA marker-linked antibodies in the case of immuno-PCR and can sensitively measure NF-κB p50 with a detection limit of 3.8 pM, which has improved by as much as 4 orders of magnitude as compared with the conventional AuNP-based colorimetric assay and the label-free luminescence assay and up to 4 orders of magnitude as compared with fluorescence resonance energy transfer (FRET)-based assay as well. Importantly, this method can be used to measure TNF-α-induced endogenous NF-κB p50 in HeLa cell nuclear extracts and might be further applied for the detection of various DNA-binding proteins and aptamer-binding molecules. PMID:23050558

  8. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    PubMed

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative. PMID:25776596

  9. RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples.

    PubMed Central

    Morré, S A; Sillekens, P; Jacobs, M V; van Aarle, P; de Blok, S; van Gemen, B; Walboomers, J M; Meijer, C J; van den Brule, A J

    1996-01-01

    In the present study, the suitability of RNA amplification by nucleic acid sequence-based amplification (NASBA) for the detection of Chlamydia trachomatis infection was investigated. When comparing different primer sets for their sensitivities in NASBA, use of both the plasmid and omp1 targets resulted in a detection limit of 1 inclusion-forming unit (IFU), while the 16S rRNA appeared to be the most sensitive RNA target for amplification (10(-3) IFU). In contrast, for DNA amplification by PCR, the plasmid target was optimal (10(-2) IFU), which is 10 times less sensitive than rRNA NASBA. To exclude false negativity in NASBA detection because of inhibition of amplification and/or inefficient sample preparation, an internal standard was developed. The internal control was added prior to sample preparation. This 16S rRNA NASBA with an internal control was compared with a plasmid DNA PCR by using a group of C. trachomatis-negative (n = 41) and -positive (n = 37) cervical scrapings, as determined by enzyme immunoassay (EIA). In addition, urine samples from the EIA-positive women were tested (n = 17). Both NASBA and PCR assays were able to detect C. trachomatis in all EIA-positive cervical scrapings, the corresponding urine samples, and two samples from the EIA-negative group. The internal NASBA standard was found clearly in all EIA-negative samples. In conclusion, these results indicate that detection of C. trachomatis by RNA amplification by NASBA with an internal standard is a suitable and highly sensitive detection method, with potential use in the diagnosis of urogenital C. trachomatis infections with cervical scrapings as well as urine specimens. PMID:8940456

  10. Rapid Detection of Shrimp White Spot Syndrome Virus by Real Time, Isothermal Recombinase Polymerase Amplification Assay

    PubMed Central

    Xia, Xiaoming; Yu, Yongxin; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    White spot syndrome virus (WSSV) causes large economic losses to the shrimp aquaculture industry, and thus far there are no efficient therapeutic treatments available against this lethal virus. In this study, we present the development of a novel real time isothermal recombinase polymerase amplification (RPA) assay for WSSV detection on a small ESEQuant Tube Scanner device. The RPA sensitivity, specificity and rapidity were evaluated by using a plasmid standard as well as viral and shrimp genomic DNAs. Compared with qPCR, the RPA assay revealed more satisfactory performance. It reached a detection limit up to 10 molecules in 95% of cases as determined by probit analysis of 8 independent experiments within 6.41±0.17 min at 39°C. Consequently, this rapid RPA method has great application potential for field use or point of care diagnostics. PMID:25121957

  11. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay.

    PubMed

    Xia, Xiaoming; Yu, Yongxin; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    White spot syndrome virus (WSSV) causes large economic losses to the shrimp aquaculture industry, and thus far there are no efficient therapeutic treatments available against this lethal virus. In this study, we present the development of a novel real time isothermal recombinase polymerase amplification (RPA) assay for WSSV detection on a small ESEQuant Tube Scanner device. The RPA sensitivity, specificity and rapidity were evaluated by using a plasmid standard as well as viral and shrimp genomic DNAs. Compared with qPCR, the RPA assay revealed more satisfactory performance. It reached a detection limit up to 10 molecules in 95% of cases as determined by probit analysis of 8 independent experiments within 6.41 ± 0.17 min at 39 °C. Consequently, this rapid RPA method has great application potential for field use or point of care diagnostics. PMID:25121957

  12. Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs.

    PubMed

    Mader, Andreas; Riehle, Ulrike; Brandstetter, Thomas; Stickeler, Elmar; Ruehe, Juergen

    2012-11-19

    A universal NASBA assay is presented for simultaneous amplification of multiple microRNA (miRNA) and messengerRNA (mRNA) sequences. First, miRNA and mRNA sequences are reverse transcribed using tailed reverse transcription primer pairs containing a gene-specific and an non-specific region. For reverse transcription of small miRNA molecules a non-specific region is incorporated into a structured stem-loop reverse transcription primer. Second, a universal NASBA primer pair that recognizes the tagged cDNA molecules enables a simultaneous, transcription-based amplification reaction (NASBA) of all different cDNA molecules in one reaction. The NASBA products (RNA copies) are detected by gene-specific DNA probes immobilized on a biochip. By using the multiplex reverse transcription combined with the universal NASBA amplification up to 14 different mRNA and miRNA sequences can be specifically amplified and detected in parallel. In comparison with standard multiplex NASBA assays this approach strongly enhances the multiplex capacity of NASBA-based amplification reactions. Furthermore simultaneous assaying of different RNA classes can be achieved that might be beneficial for studying miRNA-based regulation of gene expression or for RNA-based tumor diagnostics. PMID:23140948

  13. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    PubMed

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane. PMID:27014303

  14. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay

    PubMed Central

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane. PMID:27014303

  15. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination

    PubMed Central

    Karthik, K.; Rathore, Rajesh; Thomas, Prasad; Arun, T.R.; Viswas, K.N.; Dhama, Kuldeep; Agarwal, R.K.

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A new closed tube LAMP assay based on agar dye capsule was developed in the present study and this technique has some advantages over the other closed tube technique.•Agar at the concentration of 1.5% was used to sandwich SYBR green dye I with the aid of intradermal syringe. This agar dye capsule was placed over the LAMP reaction mixture before it was amplified.•To eliminate the hazardous nature of Ultra Violet (UV) light during result visualization of LAMP products, the present study demonstrates the use of Light Emitting Diode (LED) lights for result visualization.•LAMP was carried out for Brucella species detection using this modified techniques yielding good results without any cross contamination and LED showed similar fluorescence compared to UV. PMID:26150945

  16. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    PubMed

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  17. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

    PubMed Central

    Linnes, J. C.; Rodriguez, N. M.; Liu, L.

    2016-01-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  18. Significant Closure of the Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Preseroconversion Detection Windows with a Transcription-Mediated-Amplification-Driven Assay

    PubMed Central

    Kolk, Daniel P.; Dockter, Janel; Linnen, Jeff; Ho-Sing-Loy, Marcy; Gillotte-Taylor, Kristin; McDonough, Sherrol H.; Mimms, Larry; Giachetti, Cristina

    2002-01-01

    While the present generation of serology-based assays has significantly decreased the number of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections acquired by transfusion, the possibility of infected donations escaping detection still exists. The average seronegative viremic window duration during which immunological assays are unable to detect the virus is estimated to be between 16 and 22 days for HIV-1 and approximately 70 days for HCV. Significant reduction of detection window duration was demonstrated using a nucleic acid amplification assay, the Procleix HIV-1/HCV Assay, which utilizes transcription-mediated amplification technology to simultaneously detect HIV-1 and HCV RNAs. For 26 commercially available HIV-1 seroconversion panels tested, specimens were reactive in the HIV-1/HCV assay at the same time as or earlier than in serological assays. Overall, the HIV-1/HCV assay was able to reduce the detection window duration by an average of 14 days and 6 days compared to tests relying on recognition of HIV-1 antibody and p24 antigen, respectively. For 24 commercially available HCV seroconversion panels tested, the specimens were reactive in the HIV-1/HCV assay at an earlier blood sampling date than in serological assays, reducing the detection window duration by an average of 26 days. Similar results were obtained in testing the HIV-1 and HCV seroconversion panels in the virus-specific HIV-1- and HCV-discriminatory assays, respectively. In conclusion, the HIV-1/HCV assay and corresponding discriminatory assays significantly reduced detection window durations compared to immunoassays. PMID:11980957

  19. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products.

    PubMed

    Ferrara, M; Perrone, G; Gallo, A; Epifani, F; Visconti, A; Susca, A

    2015-06-01

    The need of powerful diagnostic tools for rapid, simple, and cost-effective detection of food-borne fungi has become very important in the area of food safety. Currently, several isothermal nucleic acid amplification methods have been developed as an alternative to PCR-based analyses. Loop-mediated isothermal amplification (LAMP) is one of these innovative methods; it requires neither gel electrophoresis to separate and visualize the products nor expensive laboratory equipment and it has been applied already for detection of pathogenic organisms. In the current study, we developed a LAMP assay for the specific detection of Penicillium nordicum, the major causative agent of ochratoxin A contamination in protein-rich food, especially dry-cured meat products. The assay was based on targeting otapksPN gene, a key gene in the biosynthesis of ochratoxin A (OTA) in P. nordicum. Amplification of DNA during the reaction was detected directly in-tube by color transition of hydroxynaphthol blue from violet to sky blue, visible to the naked eye, avoiding further post amplification analyses. Only DNAs isolated from several P. nordicum strains led to positive results and no amplification was observed from non-target OTA and non OTA-producing strains. The assay was able to detect down to 100 fg of purified targeted genomic DNA or 10(2) conidia/reaction within 60 min. The LAMP assay for detection and identification of P. nordicum was combined with a rapid DNA extraction method set up on serially diluted conidia, providing an alternative rapid, specific and sensitive DNA-based method suitable for application directly "on-site", notably in key steps of dry-cured meat production. PMID:25771218

  20. Zero-Background Helicase-Dependent Amplification and Its Application to Reliable Assay of Telomerase Activity in Cancer Cell by Eliminating Primer-Dimer Artifacts.

    PubMed

    Chen, Feng; Zhang, Dexin; Zhang, Qing; Zuo, Xiaolei; Fan, Chunhai; Zhao, Yongxi

    2016-06-16

    Primer-dimer artifacts resulting from unintended template-independent primer-primer interactions often hinder the specific amplification of nucleic acids. We demonstrate, for the first time, zero-background helicase-dependent amplification (HDA), with low concentrations of both ATP and dNTPs. This strategy achieved the reliable evaluation of telomerase activity in cancer cells by eliminating primer-dimer artifacts, which have plagued many previous methods with reduced specificity. We found that the performance of the telomerase assay by zero-background HDA was negatively affected by highly concentrated cellular proteins. This inhibitory effect is attributed to the binding of DNA templates to proteins, thus making them unavailable for polymerases. However, gold nanoparticles were demonstrated to highly attenuate such inhibition by abundant proteins, and to enhance the assay sensitivity and reliability when the reaction was performed with concentrated cell extracts. PMID:26690725

  1. A Reverse Transcription Loop-Mediated Isothermal Amplification Assay Optimized to Detect Multiple HIV Subtypes

    PubMed Central

    Ocwieja, Karen E.; Sherrill-Mix, Scott; Liu, Changchun; Song, Jinzhao; Bau, Haim; Bushman, Frederic D.

    2015-01-01

    Diagnostic methods for detecting and quantifying HIV RNA have been improving, but efficient methods for point-of-care analysis are still needed, particularly for applications in resource-limited settings. Detection based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is particularly useful for this, because when combined with fluorescence-based DNA detection, RT-LAMP can be implemented with minimal equipment and expense. Assays have been developed to detect HIV RNA with RT-LAMP, but existing methods detect only a limited subset of HIV subtypes. Here we report a bioinformatic study to develop optimized primers, followed by empirical testing of 44 new primer designs. One primer set (ACeIN-26), targeting the HIV integrase coding region, consistently detected subtypes A, B, C, D, and G. The assay was sensitive to at least 5000 copies per reaction for subtypes A, B, C, D, and G, with Z-factors of above 0.69 (detection of the minor subtype F was found to be unreliable). There are already rapid and efficient assays available for detecting HIV infection in a binary yes/no format, but the rapid RT-LAMP assay described here has additional uses, including 1) tracking response to medication by comparing longitudinal values for a subject, 2) detecting of infection in neonates unimpeded by the presence of maternal antibody, and 3) detecting infection prior to seroconversion. PMID:25675344

  2. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus.

    PubMed

    Shen, Wentao; Tuo, Decai; Yan, Pu; Yang, Yong; Li, Xiaoying; Zhou, Peng

    2014-08-01

    Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya. PMID:24769198

  3. APTIMA® Trichomonas vaginalis, a transcription-mediated amplification assay for detection of Trichomonas vaginalis in urogenital specimens.

    PubMed

    Chapin, Kimberle; Andrea, Sarah

    2011-09-01

    The APTIMA(®) Trichomonas vaginalis (APTIMA TV; Gen-Probe Inc.) assay is the only amplification-based assay for T. vaginalis (TV) currently cleared by the US FDA. The assay was cleared in April 2011. APTIMA TV utilizes target capture specimen processing, transcription-mediated amplification and chemiluminescent probe hybridization for the qualitative detection of TV ribosomal RNA. The assay is used for the screening/diagnosis of trichomoniasis in women. Specimen types that can be used include physician-collected endocervical swabs, vaginal swabs, endocervical specimens collected in PreservCyt(®) (Thin Prep, Hologic Incorporated, MA, USA) solution and female urine specimens. The APTIMA TV assay has shown superior performance in side-by-side comparisons with other diagnostic methods in all patient populations and specimen types tested. Clinical sensitivity and specificity are >95 and 98%, respectively. The APTIMA TV assay fills a significant void in sexually transmitted infection diagnostics. PMID:21902528

  4. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    PubMed Central

    Mauk, Michael G.; Liu, Changchun; Song, Jinzhao; Bau, Haim H.

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  5. Isothermal target and probe amplification assay for the real-time rapid detection of Staphylococcus aureus.

    PubMed

    Shin, Hyewon; Kim, Minhwan; Yoon, Eunju; Kang, Gyoungwon; Kim, Seungyu; Song, Aelee; Kim, Jeongsoon

    2015-04-01

    Staphylococcus aureus, the species most commonly associated with staphylococcal food poisoning, is one of the most prevalent causes of foodborne disease in Korea and other parts of the world, with much damage inflicted to the health of individuals and economic losses estimated at $120 million. To reduce food poisoning outbreaks by implementing prevention methods, rapid detection of S. aureus in foods is essential. Various types of detection methods for S. aureus are available. Although each method has advantages and disadvantages, high levels of sensitivity and specificity are key aspects of a robust detection method. Here, we describe a novel real-time isothermal target and probe amplification (iTPA) method that allows the rapid and simultaneous amplification of target DNA (the S. aureus nuc gene) and a fluorescence resonance energy transfer-based signal probe under isothermal conditions at 61 °C or detection of S. aureus in real time. The assay was able to specifically detect all 91 S. aureus strains tested without nonspecific detection of 51 non-S. aureus strains. The real-time iTPA assay detected S. aureus at an initial level of 10(1) CFU in overnight cultures of preenriched food samples (kiwi dressing, soybean milk, and custard cream). The advantage of this detection system is that it does not require a thermal cycler, reducing the cost of the real-time PCR and its footprint. Combined with a miniaturized fluorescence detector, this system can be developed into a simplified quantitative hand-held real-time device, which is often required. The iTPA assay was highly reliable and therefore may be used as a rapid and sensitive means of identifying S. aureus in foods. PMID:25836397

  6. Rapid and label-free amplification and detection assay for genotyping of cancer biomarker.

    PubMed

    Shin, Yong; Soo, Ross A; Yoon, Jaeyun; Perera, Agampodi Promoda; Yoon, Yong-Jin; Park, Mi Kyoung

    2015-06-15

    As understanding of the molecular pathways that drive malignancy in human cancer improves, personalized genotype-based therapy in combination with the predictive biomarker for the efficacy of targeted therapy is becoming more popular in cancer management. Sanger sequencing, that has been the gold standard for mutation analysis in cancer since the 1970s, suffers from low sensitivity, complexity, and time-consuming and labor-intensive procedure. Although several PCR based molecular testing methods are being emerged, there is no universal assay available for genotyping of cancer biomarkers. Here we present a rapid, simple and sensitive assay for the detection of epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancers (NSCLCs). The assay employs a novel double mis-matched primer (DMP) set to improve the detection ability of isothermal solid-phase amplification/detection (ISAD) based on silicon microring biosensor. We show that the EGFR-DMP can detect EGFR gene mutations within 20 min in a label-free and real-time manner. The EGFR-DMP was able to detect a mutation in a sample containing only 1% of the mutant cells in a mixture of wild-type cells. Furthermore, to validate the proposed assay for potential applications in clinical diagnostics, we examined paraffin-embedded tissue samples from 10 NSCLC patients for the presence of EGFR mutations by performing EGFR-DMP and direct sequencing. The EGFR-DMP assay was able to rapidly detect the mutation, with high sensitivity and specificity. The EGFR-DMP assay offers a robust and sensitive approach for the rapid identification of the EGFR mutation. The high sensitivity and specificity and rapidity of this approach may make it useful for predicting the clinical response to targeted EGFR TKIs as a companion diagnostic. PMID:25569872

  7. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection. PMID:26202628

  8. Development of a Recombinase Polymerase Amplification Assay for the Detection of Pathogenic Leptospira

    PubMed Central

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A.

    2014-01-01

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning. PMID:24814943

  9. Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira.

    PubMed

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A

    2014-05-01

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning. PMID:24814943

  10. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia.

    PubMed

    Lau, Yee-Ling; Lai, Meng-Yee; Fong, Mun-Yik; Jelip, Jenarun; Mahmud, Rohela

    2016-02-01

    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent. PMID:26598573

  11. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia

    PubMed Central

    Lau, Yee-Ling; Lai, Meng-Yee; Fong, Mun-Yik; Jelip, Jenarun; Mahmud, Rohela

    2016-01-01

    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent. PMID:26598573

  12. Reverse transcription genome exponential amplification reaction assay for rapid and universal detection of human rhinoviruses.

    PubMed

    Guan, Li; Zhao, Lin-Qing; Zhou, Hang-Yu; Nie, Kai; Li, Xin-Na; Zhang, Dan; Song, Juan; Qian, Yuan; Ma, Xue-Jun

    2016-07-01

    Human rhinoviruses (HRVs) have long been recognized as the cause of more than one-half of acute viral upper respiratory illnesses, and they are associated with more-serious diseases in children, such as asthma, acute otitis media and pneumonia. A rapid and universal test for of HRV infection is in high demand. In this study, a reverse transcription genome exponential amplification reaction (RT-GEAR) assay targeting the HRV 5' untranslated region (UTR) was developed for pan-HRV detection. The reaction was performed in a single tube in one step at 65 °C for 60 min using a real-time fluorometer (Genie(®)II; Optigene). The RT-GEAR assay showed no cross-reactivity with common human enteroviruses, including HEV71, CVA16, CVA6, CVA10, CVA24, CVB5, Echo30, and PV1-3 or with other common respiratory viruses including FluA H3, FluB, PIV1-4, ADV3, RSVA, RSVB and HMPV. With in vitro-transcribed RNA containing the amplified regions of HRV-A60, HRV-B06 and HRV-C07 as templates, the sensitivity of the RT-GEAR assay was 5, 50 and 5 copies/reaction, respectively. Experiments to evaluate the clinical performance of the RT-GEAR assay were also carried out with a panel of 143 previously verified samples, and the results were compared with those obtained using a published semi-nested PCR assay followed by sequencing. The tested panel comprised 91 HRV-negative samples and 52 HRV-positive samples (18 HRV-A-positive samples, 3 HRV-B-positive samples and 31 HRV-C-positive samples). The sensitivity and specificity of the pan-HRVs RT-GEAR assay was 98.08 % and 100 %, respectively. The kappa correlation between the two methods was 0.985. The RT-GEAR assay based on a portable Genie(®)II fluorometer is a sensitive, specific and rapid assay for the universal detection of HRV infection. PMID:27132014

  13. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA.

    PubMed

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in

  14. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  15. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories.

    PubMed Central

    Noordhoek, G T; van Embden, J D; Kolk, A H

    1996-01-01

    Nucleic acid amplification to detect Mycobacterium tuberculosis in clinical specimens is increasingly used as a laboratory tool for the diagnosis of tuberculosis. However, the specificity and sensitivity of these tests may be questioned, and no standardized reagents for quality control assessment are available. To estimate the performance of amplification tests for routine diagnosis, we initiated an interlaboratory study involving 30 laboratories in 18 countries. We prepared blinded panels of 20 sputum samples containing no, 100, or 1,000 mycobacterial cells. Each laboratory was asked to detect M. tuberculosis by their routine method of nucleic acid amplification. Only five laboratories correctly identified the presence or absence of mycobacterial DNA in all 20 samples. Seven laboratories detected mycobacterial DNA in all positive samples, and 13 laboratories correctly reported the absence of DNA in the negative samples. Lack of specificity was more of a problem than lack of sensitivity. Reliability was not found to be associated with the use of any particular method. Reliable detection of M. tuberculosis in clinical samples by nucleic acid amplification techniques is possible, but many laboratories do not use adequate quality controls. This study underlines the need for good laboratory practice and reference reagents to monitor the performance of the whole assay, including pretreatment of clinical samples. PMID:8880513

  16. Rapid, sensitive, and specific detection of Clostridium tetani by loop-mediated isothermal amplification assay.

    PubMed

    Jiang, Dongneng; Pu, Xiaoyun; Wu, Jiehong; Li, Meng; Liu, Ping

    2013-01-01

    Tetanus is a specific infectious disease, which is often associated with catastrophic events such as earthquakes, traumas, and war wounds. The obligate anaerobe Clostridium tetani is the pathogen that causes tetanus. Once the infection of tetanus progresses to an advanced stage within the wounds of limbs, the rates of amputation and mortality increase manifold. Therefore, it is necessary to devise a rapid and sensitive point-of-care detection method for C. tetani so as to ensure an early diagnosis and clinical treatment of tetanus. In this study, we developed a detection method for C. tetani using loop-mediated isothermal amplification (LAMP) assay, wherein the C. tetani tetanus toxin gene was used as the target gene. The method was highly specific and sensitive, with a detection limit of 10 colony forming units (CFU)/ml, and allowed quantitative analysis. While detecting C. tetani in clinical samples, it was found that the LAMP results completely agreed with those of the traditional API 20A anaerobic bacteria identification test. As compared with the traditional API test and PCR assay, LAMP detection of C. tetani is simple and rapid, and the results can be identified through naked-eye observation. Therefore, it is an ideal and rapid point-of-care testing method for tetanus. PMID:23314360

  17. Simple detection of Pythium irregulare using loop-mediated isothermal amplification assay.

    PubMed

    Feng, Wenzhuo; Ishiguro, Yasushi; Hotta, Keisuke; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2015-11-01

    Pythium irregulare is an important soil-borne pathogen that causes seed, stem and root rot, and seedling damping-off in various crops. Here, we have developed a rapid and reliable approach for detecting the pathogen using loop-mediated isothermal amplification (LAMP) in combination with primers designed from the sequences of the P. irregulare ribosomal DNA internal transcribed spacer region. The specificity of the primers for P. irregulare was tested using 50 isolates of 40 Pythium species, 11 Phytophthora isolates and 8 isolates of 7 other soil-borne pathogens. The assay showed that the limit of sensitivity of the LAMP method was 100 fg of pure DNA, a similar level to that of a polymerase chain reaction. LAMP detected P. irregulare from the supernatant after mixing culture medium (template DNA source) with distilled water. Similarly, positive results were obtained using a 'Plant-LAMP' method applied to a suspension rotted roots in water. A 'Bait-LAMP' method using the supernatant of autoclaved perilla seeds incubated in a soil/water mixture for 1 week at 25°C successfully detected P. irregulare from the soil. The LAMP assay described in this study is therefore a simple and effective way for practical detection of P. irregulare. PMID:26394643

  18. Reverse Transcription Recombinase Polymerase Amplification Assay for the Detection of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV. PMID:24459611

  19. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus.

    PubMed

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T; Weidmann, Manfred

    2013-01-01

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV. PMID:24459611

  20. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and sensitive identification of Arcanobacterium pluranimalium.

    PubMed

    Abdulmawjood, A; Wickhorst, J; Sammra, O; Lämmler, C; Foster, G; Wragg, P N; Prenger-Berninghoff, E; Klein, G

    2015-12-01

    In the present study 28 Arcanobacterium pluranimalium strains isolated from various origins could successfully be identified with a newly designed loop-mediated isothermal amplification (LAMP) assay based on gene pla encoding pluranimaliumlysin. No comparable reaction could be observed with control strains representing five species of genus Arcanobacterium and five species of genus Trueperella. The presented pla LAMP assay might allow a reliable and low cost identification of this bacterial pathogen also in laboratories with less specified equipment. PMID:26093093

  1. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection.

    PubMed

    Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions. PMID:26831931

  2. Development and validation of the AmpFℓSTR® Identifiler® Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples.

    PubMed

    Wang, Dennis Y; Chang, Chien-Wei; Lagacé, Robert E; Oldroyd, Nicola J; Hennessy, Lori K

    2011-07-01

    The AmpFℓSTR(®) Identifiler(®) Direct PCR Amplification Kit is a new short tandem repeat multiplex assay optimized to allow the direct amplification of single-source blood and buccal samples on FTA(®) card without the need for sample purification and quantification. This multiplex assay has been validated according to the FBI/National Standards and SWGDAM guidelines. Validation results revealed that slight variations in primer concentration, master mix component concentration, and thermal cycling parameters did not affect the performance of the chemistry. The assay's sensitivity was demonstrated by amplifying known amounts of white blood cells spotted onto FTA(®) cards, and the assay's specificity was verified by establishing minimal cross-reactivity with nonhuman DNA. No effect on the age of the sample stored on the FTA(®) substrate was observed and full concordance was established in the population study. These findings of the validation study support the use of the Identifiler(®) Direct Kit for forensic standards and database samples genotyping. PMID:21418220

  3. Development of Recombinase Polymerase Amplification Assays for Detection of Orientia tsutsugamushi or Rickettsia typhi

    PubMed Central

    Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei

    2015-01-01

    Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37oC followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39oC. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus. PMID:26161793

  4. Development of Recombinase Polymerase Amplification Assays for Detection of Orientia tsutsugamushi or Rickettsia typhi.

    PubMed

    Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei

    2015-01-01

    Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37°C followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39°C. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus. PMID:26161793

  5. Enzymatic Amplification of DNA/RNA Hybrid Molecular Beacon Signaling in Nucleic Acid Detection

    PubMed Central

    Jacroux, Thomas; Rieck, Daniel C.; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2012-01-01

    A rapid assay operable under isothermal or non-isothermal conditions is described wherein the sensitivity of a typical molecular beacon (MB) system is improved by utilizing thermostable RNase H to enzymatically cleave an MB comprised of a DNA stem and RNA loop (R/D-MB). Upon hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7x above background) due to an opening of the probe and concomitant reduction in the Förster resonance energy transfer efficiency. Addition of thermostable RNase H resulted in the cleavage of the RNA loop which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9x above background), resulting in a ~2–2.8 fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time PCR reactions by measuring enhancement of donor fluorescence upon R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  6. Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection.

    PubMed

    Jacroux, Thomas; Rieck, Daniel C; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2013-01-15

    A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  7. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. PMID:26706801

  8. Droplet-Free Digital Enzyme-Linked Immunosorbent Assay Based on a Tyramide Signal Amplification System.

    PubMed

    Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo

    2016-07-19

    Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers. PMID:27322525

  9. Reverse transcription loop-mediated isothermal amplification assay for detecting tomato chlorosis virus.

    PubMed

    Zhao, Li-ming; Li, Gang; Gao, Ying; Zhu, You-rong; Liu, Jin; Zhu, Xiao-ping

    2015-03-01

    A betaine-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and optimised for detecting tomato chlorosis virus (ToCV), one of the most important viruses that infect tomato crops worldwide. A set of four specific primers was designed against the RNA-dependent RNA polymerase (RdRp) gene. The betaine-free RT-LAMP procedure could be completed within 40 min under isothermal conditions at 60 °C without a thermal cycler, and no cross-reactivity was seen with other tomato viral pathogens. Sensitivity analysis showed that RT-LAMP could detect viral dilutions up to 2.0×10(-7)ng, which is 100-times more sensitive than reverse transcription-polymerase chain reaction (RT-PCR). In addition, naked-eye observation after staining in-tube RT-LAMP products with SYBR Green I facilitated detection of ToCV by avoiding the requirement for ethidium staining following gel electrophoresis. These results suggest that ToCV RT-LAMP is a rapid, sensitive, and affordable diagnostic tool that is more suitable than RT-PCR for the detection and surveillance of ToCV in field samples. PMID:25486081

  10. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-01

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity. PMID:27142084

  11. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection.

    PubMed

    Lahdenperä, Susanne; Spangar, Anni; Lempainen, Anna-Maija; Joki, Laura; Soukka, Tero

    2015-06-21

    Switchable lanthanide luminescence is a binary probe technology that inherently enables a high signal modulation in separation-free detection of DNA targets. A luminescent lanthanide complex is formed only when the two probes hybridize adjacently to their target DNA. We have now further adapted this technology for the first time in the integration of a 2-plex polymerase chain reaction (PCR) amplification and hybridization-based solid-phase detection of the amplification products of the Staphylococcus aureus gyrB gene and an internal amplification control (IAC). The assay was performed in a sealed polypropylene PCR chip containing a flat-bottom reaction chamber with two immobilized capture probe spots. The surface of the reaction chamber was functionalized with NHS-PEG-azide and alkyne-modified capture probes for each amplicon, labeled with a light harvesting antenna ligand, and covalently attached as spots to the azide-modified reaction chamber using a copper(i)-catalyzed azide-alkyne cycloaddition. Asymmetric duplex-PCR was then performed with no template, one template or both templates present and with a europium ion carrier chelate labeled probe for each amplicon in the reaction. After amplification europium fluorescence was measured by scanning the reaction chamber as a 10 × 10 raster with 0.6 mm resolution in time-resolved mode. With this assay we were able to co-amplify and detect the amplification products of the gyrB target from 100, 1000 and 10,000 copies of isolated S. aureus DNA together with the amplification products from the initial 5000 copies of the synthetic IAC template in the same sealed reaction chamber. The addition of 10,000 copies of isolated non-target Escherichia coli DNA in the same reaction with 5000 copies of the synthetic IAC template did not interfere with the amplification or detection of the IAC. The dynamic range of the assay for the synthetic S. aureus gyrB target was three orders of magnitude and the limit of detection of 8 p

  12. Electrochemiluminescent Graphene Quantum Dots as a Sensing Platform: A Dual Amplification for MicroRNA Assay.

    PubMed

    Zhang, Pu; Zhuo, Ying; Chang, Yuanyuan; Yuan, Ruo; Chai, Yaqin

    2015-10-20

    Graphene quantum dots (GQDs) with an average diameter as small as 2.3 nm were synthesized to fabricate an electrochemiluminescence (ECL) biosensor based on T7 exonuclease-assisted cyclic amplification and three-dimensional (3D) DNA-mediated silver enhancement for microRNA (miRNA) analysis. Herein, to overcome the barrier in immobilizing GQDs, aminated 3,4,9,10-perylenetetracarboxylic acid (PTCA-NH2) was introduced to load GQDs through π-π stacking (GQDs/PTCA-NH2), realizing the solid-state GQDs application. Furthermore, Fe3O4-Au core-shell nanocomposite (Au@Fe3O4) was adopted as a probe anchor to form a novel electrochemiluminescent signal tag of GQDs/PTCA-NH2/Au@Fe3O4. The prepared ECL signal tag was decorated on the electrode surface, exhibiting excellent film-forming performance, good electronic conductivity, and favorable stability, all of which overcame the obstacle for applying GQDs in ECL biosensing and showed a satisfactory ECL response under the coreactant of S2O8(2-) (peroxydisulfate). Afterward, hairpin probe modified on the electrode was opened by helper DNA, followed by assembling target to hybridize with the exposed stem of the helper DNA. Significantly, T7 exonuclease was employed to digest the DNA/RNA duplex and trigger the target recycling without asking for a specific recognition site in the target sequence, realizing a series of RNA/DNA detections by changing the sequence of the complementary DNA. At last, the ECL signal was further enhanced by silver nanoparticles (AgNPs)-based 3D DNA networks. After the two amplifications, the ECL signal of GQDs was extraordinarily increased and the prepared biosensor achieved a high sensitivity with the detection limit of 0.83 fM. The biosensor was also explored in real samples, and the result was in good accordance with the performance of quantitative real-time polymerase chain reaction (qRT-PCR). Considering the excellent sensitivity and applicability, we believe that the proposed biosensor is a potential

  13. Integrated sample-to-detection chip for nucleic acid test assays.

    PubMed

    Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S

    2016-06-01

    Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes. PMID:27165104

  14. Development and evaluation of a loop-mediated isothermal amplification assay for detection of Ehrlichia canis DNA in naturally infected dogs using the p30 gene.

    PubMed

    Pinhanelli, V C; Costa, P N M; Silva, G; Aguiar, D M; Silva, C M L; Fachin, A L; Marins, M

    2015-01-01

    Canine monocytic ehrlichiosis (CME) is a common tick-borne disease caused by the rickettsial bacterium Ehrlichia canis (Rickettsiales: Anaplasmataceae). In view of the different stages and variable clinical signs of CME, which can overlap with those of other infections, a conclusive diagnosis can more readily be obtained by combining clinical and hematological evaluations with molecular diagnostic methods. In this study, a loop-mediated isothermal amplification (LAMP) assay targeting the p30 gene of E. canis was developed. The assay was developed using DNA extracted from E. canis-infected cultures of the macrophage cell line DH82 and samples from dogs testing positive for E. canis DNA by PCR. The LAMP assay was compared to a p30-based PCR assay, using DNA extracted from EDTA-anticoagulated blood samples of 137 dogs from an endemic region in Brazil. The LAMP assay was sensitive enough to detect a single copy of the target gene, and identified 74 (54.0%) E. canis DNA-positive samples, while the p30 PCR assay detected 50 positive samples (36.5%) among the field samples. Agreement between the two assays was observed in 42 positive and 55 negative samples. However, 32 positive samples that were not detected by the PCR assay were identified by the LAMP assay, while eight samples identified as E. canis-positive by PCR showed negative results in LAMP. The developed E. canis LAMP assay showed the potential to maximize the use of nucleic acid tests in a veterinary clinical laboratory, and to improve the diagnosis of CME. PMID:26782434

  15. Comparison of a TaqMan real-time polymerase chain reaction assay with a loop-mediated isothermal amplification assay for detection of Gallid herpesvirus 1.

    PubMed

    Ou, Shan-Chia; Giambrone, Joseph J; Macklin, Kenneth S

    2012-01-01

    A TaqMan real-time polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) assay were developed to detect Gallid herpesvirus 1 (GaHV-1, formerly Infectious laryngotracheitis virus). The standard curve of real-time PCR was established, and the sensitivity reached 10 copies/μl. In the current study, the conversion between viral titer and GaHV-1 genomic copy number was constructed. Six primers for LAMP assay amplified target gene at 65°C within 45 min, and the detection limit was 60 copies/μl. The 6 primers were highly specific, sensitive, and reproducible for detection of GaHV-1. Although the sensitivity of LAMP was lower than that of real-time PCR, LAMP was faster, less expensive, and did not require a thermocycler. The LAMP assay would be a viable alternative assay in diagnostic laboratories that do not employ real-time PCR technology. PMID:22362944

  16. Application of a loop-mediated isothermal amplification (LAMP) assay for molecular identification of Trueperella pyogenes isolated from various origins.

    PubMed

    Abdulmawjood, A; Wickhorst, J; Hashim, O; Sammra, O; Hassan, A A; Alssahen, M; Lämmler, C; Prenger-Berninghoff, E; Klein, G

    2016-08-01

    In the present study 28 Trueperella pyogenes strains isolated from various origins could successfully be identified with a newly designed loop-mediated isothermal amplification (LAMP) assay based on gene cpn60 encoding chaperonin. No cross reaction could be observed with control strains representing four species of genus Trueperella and seven species of closely related genus Arcanobacterium. The present cpn60 LAMP assay might allow a reliable and low cost identification of T. pyogenes also in laboratories with less specified equipment. PMID:27242007

  17. Evaluation of Loop-Mediated Isothermal Amplification Assay for the Detection of Pneumocystis jirovecii in Immunocompromised Patients

    PubMed Central

    Singh, Preeti; Singh, Sundeep; Mirdha, Bijay Ranjan; Guleria, Randeep; Agarwal, Sanjay Kumar; Mohan, Anant

    2015-01-01

    Pneumocystis pneumonia (PCP) is one of the common opportunistic infection among HIV and non-HIV immunocompromised patients. The lack of a rapid and specific diagnostic test necessitates a more reliable laboratory diagnostic test for PCP. In the present study, the loop-mediated isothermal amplification (LAMP) assay was evaluated for the detection of Pneumocystis jirovecii. 185 clinical respiratory samples, including both BALF and IS, were subjected to GMS staining, nested PCR, and LAMP assay. Of 185 respiratory samples, 12/185 (6.5%), 41/185 (22.2%), and 49/185 (26.5%) samples were positive by GMS staining, nested PCR, and LAMP assay, respectively. As compared to nested PCR, additional 8 samples were positive by LAMP assay and found to be statistically significant (p < 0.05) with the detection limit of 1 pg. Thus, the LAMP assay may serve as a better diagnostic tool for the detection of P. jirovecii with high sensitivity and specificity, less turn-around time, operational simplicity, single-step amplification, and immediate visual detection. PMID:26664746

  18. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method.

    PubMed

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5' end (Nr and N), whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C-65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 10(9) copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  19. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method

    PubMed Central

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5’ end (Nr and N), whereas their 3’ end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C–65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 109 copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  20. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  1. Evaluation of the rapid loop-mediated isothermal amplification assay Illumigene for diagnosis of Clostridium difficile in an outbreak situation.

    PubMed

    Norén, Torbjörn; Unemo, Magnus; Magnusson, Cecilia; Eiserman, Maud; Matussek, Andreas

    2014-02-01

    An outbreak of Clostridium difficile infection (CDI) at Höglandet Hospital Eksjö in southern Sweden in 2011 was mainly due to a multidrug-resistant PCR ribotype 046 (30% of all samples). Diagnostics used routinely was the Vidas CDAB assay, but to control the outbreak the rapid loop-mediated isothermal amplification (LAMP) assay Illumigene was introduced and both techniques were compared to Toxigenic culture (TC) prospectively. The LAMP assay had a superior sensitivity, that is, 98% compared to 79% for the Vidas CDAB assay. Most importantly, the mean turn-around-time from collecting sample to result was reduced from 59 h to 2 h enabling early isolation of patients and effective hygiene precautions. This may potentially decrease the morbidity and nosocomial transmissions of C. difficile. PMID:23758095

  2. Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Trichosporon asahii in Experimental and Clinical Samples

    PubMed Central

    Zhou, Jianfeng; Liao, Yong; Li, Haitao; Lu, Xuelian; Han, Xiufeng; Tian, Yanli; Chen, Shanshan; Yang, Rongya

    2015-01-01

    Invasive trichosporonosis is a deep mycosis found mainly in immunocompromised hosts, and the major pathogen is Trichosporon asahii. We detected the species-specific intergenic spacers (IGS) of rRNA gene of T. asahii using a loop-mediated isothermal amplification (LAMP) assay in 15 isolates with 3 different visualization methods, including SYBR green detection, gel electrophoresis, and turbidimetric methods. The LAMP assay displayed superior rapidity to other traditional methods in the detection time; that is, only 1 h was needed for detection and identification of the pathogen DNA. Furthermore, the detection limit of the LAMP assay was more sensitive than the PCR assay. We also successfully detect the presence of T. asahii in samples from experimentally infected mice and samples from patients with invasive trichosporonosis caused by T. asahii, suggesting that this method may become useful in clinical applications in the near future. PMID:25692144

  3. Development of a loop-mediated isothermal amplification assay for rapid detection of Trichosporon asahii in experimental and clinical samples.

    PubMed

    Zhou, Jianfeng; Liao, Yong; Li, Haitao; Lu, Xuelian; Han, Xiufeng; Tian, Yanli; Chen, Shanshan; Yang, Rongya

    2015-01-01

    Invasive trichosporonosis is a deep mycosis found mainly in immunocompromised hosts, and the major pathogen is Trichosporon asahii. We detected the species-specific intergenic spacers (IGS) of rRNA gene of T. asahii using a loop-mediated isothermal amplification (LAMP) assay in 15 isolates with 3 different visualization methods, including SYBR green detection, gel electrophoresis, and turbidimetric methods. The LAMP assay displayed superior rapidity to other traditional methods in the detection time; that is, only 1 h was needed for detection and identification of the pathogen DNA. Furthermore, the detection limit of the LAMP assay was more sensitive than the PCR assay. We also successfully detect the presence of T. asahii in samples from experimentally infected mice and samples from patients with invasive trichosporonosis caused by T. asahii, suggesting that this method may become useful in clinical applications in the near future. PMID:25692144

  4. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection.

    PubMed

    Mauk, Michael G; Liu, Changchun; Sadik, Mohamed; Bau, Haim H

    2015-01-01

    Molecular (nucleic acid)-based diagnostics tests have many advantages over immunoassays, particularly with regard to sensitivity and specificity. Most on-site diagnostic tests, however, are immunoassay-based because conventional nucleic acid-based tests (NATs) require extensive sample processing, trained operators, and specialized equipment. To make NATs more convenient, especially for point-of-care diagnostics and on-site testing, a simple plastic microfluidic cassette ("chip") has been developed for nucleic acid-based testing of blood, other clinical specimens, food, water, and environmental samples. The chip combines nucleic acid isolation by solid-phase extraction; isothermal enzymatic amplification such as LAMP (Loop-mediated AMPlification), NASBA (Nucleic Acid Sequence Based Amplification), and RPA (Recombinase Polymerase Amplification); and real-time optical detection of DNA or RNA analytes. The microfluidic cassette incorporates an embedded nucleic acid binding membrane in the amplification reaction chamber. Target nucleic acids extracted from a lysate are captured on the membrane and amplified at a constant incubation temperature. The amplification product, labeled with a fluorophore reporter, is excited with a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such as available in a smartphone). For blood analysis, a companion filtration device that separates plasma from whole blood to provide cell-free samples for virus and bacterial lysis and nucleic acid testing in the microfluidic chip has also been developed. For HIV virus detection in blood, the microfluidic NAT chip achieves a sensitivity and specificity that are nearly comparable to conventional benchtop protocols using spin columns and thermal cyclers. PMID:25626529

  5. Developmental validation of the GlobalFiler(®) Express PCR Amplification Kit: A 6-dye multiplex assay for the direct amplification of reference samples.

    PubMed

    Wang, Dennis Y; Gopinath, Siddhita; Lagacé, Robert E; Norona, Wilma; Hennessy, Lori K; Short, Marc L; Mulero, Julio J

    2015-11-01

    In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing. PMID:26226223

  6. Rapid and simple detection of methicillin-resistance staphylococcus aureus by orfX loop-mediated isothermal amplification assay

    PubMed Central

    2014-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prevalent pathogens responsible for nosocomial infections throughout the world. As clinical MRSA diagnosis is concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for MRSA detection. This study aimed at developing a simple loop-mediated isothermal amplification (LAMP) assay targeting on orfX for the rapid detection of methicillin-resistance Staphylococcus aureus (MRSA). Results The protocol was designed by targeting orfX, a highly conserved open reading frame in S. aureus. One hundred and sixteen reference strains, including 52 Gram-positive and 64 Gram-negative isolates, were included for evaluation and optimization of the orfX-LAMP assay. This assay had been further performed on 667 Staphylococcus (566 MRSA, 25 MSSA, 53 MRCNS and 23 MSCNS) strains and were comparatively validated by PCR assay using primers F3 and B3, with rapid template DNA processing, simple equipments (water bath) and direct result determination (both naked eye and under UV light) applied. The indispensability of each primer had been confirmed, and the optimal amplification was obtained under 65°C for 45 min. The 25 μl reactant was found to be the most cost-efficient volume, and the detection limit was determined to be 10 DNA copies and 10 CFU/reaction. High specificity was observed when orfX-LAMP assay was subjected to 116 reference strains. For application, 557 (98.4%, 557/566) and 519 (91.7%, 519/566) tested strains had been detected positive by LAMP and PCR assays. The detection rate, positive predictive value (PPV) and negative predictive value (NPV) of orfX-LAMP were 98.4%, 100% and 92.7% respectively. Conclusions The established orfX-LAMP assay had been demonstrated to be a valid and rapid detection method on MRSA. PMID:24456841

  7. Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel.

    PubMed

    Loens, K; van Loon, A M; Coenjaerts, F; van Aarle, Y; Goossens, H; Wallace, P; Claas, E J C; Ieven, M

    2012-03-01

    An external quality assessment (EQA) panel consisting of a total of 48 samples in bronchoalveolar lavage (BAL) fluid or transport medium was prepared in collaboration with Quality Control for Molecular Diagnostics (QCMD) (www.qcmd.org). The panel was used to assess the proficiency of the three laboratories that would be responsible for examining the 6,000 samples to be collected in the GRACE Network of Excellence (www.grace-lrti.org). The main objective was to decide on the best-performing testing approach for the detection of influenza viruses A and B, parainfluenza virus types 1 to 3, respiratory syncytial virus (RSV), human metapneumovirus, coronavirus, rhinovirus, adenovirus, Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila by nucleic acid amplification techniques (NAATs). Two approaches were chosen: (i) laboratories testing samples using their in-house procedures for extraction and amplification and (ii) laboratories using their in-house amplification procedures on centrally extracted samples. Furthermore, three commercially available multiplex NAAT tests-the ResPlex (Qiagen GmbH, Hilden, Germany), RespiFinder plus (PathoFinder, Maastricht, The Netherlands), and RespiFinder Smart 21 (PathoFinder) tests-were evaluated by examination of the same EQA panel by the manufacturer. No large differences among the 3 laboratories were noticed when the performances of the assays developed in-house in combination with the in-house extraction procedures were compared. Also, the extraction procedure (central versus local) had little effect on performance. However, large differences in amplification efficacy were found between the commercially available tests; acceptable results were obtained by using the PathoFinder assays. PMID:22170925

  8. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk.

    PubMed

    Bosward, Katrina L; House, John K; Deveridge, Amber; Mathews, Karen; Sheehy, Paul A

    2016-03-01

    Streptococcus agalactiae is a well-characterized bovine mastitis pathogen that is known to be highly contagious and capable of spreading rapidly in affected dairy herds. Loop-mediated isothermal amplification (LAMP) is a novel molecular diagnostic method that has the capability to provide rapid, cost-effective screening for pathogens to support on-farm disease control and eradication programs. In the current study, a LAMP test was developed to detect S. agalactiae in milk. The assay was validated on a bank of existing clinical mastitis milk samples that had previously been identified as S. agalactiae positive via traditional microbiological culture techniques and PCR. The LAMP assay was conducted on bacterial colonies and DNA extracted from milk in tube- and plate-based formats using multiple detection platforms. The 1-h assay conducted at 64 °C exhibited repeatability (coefficient of variation) of 2.07% (tube) and 8.3% (plate), sensitivity to ~20 pg of extracted DNA/reaction, and specificity against a panel of known bacterial mastitis pathogens. Of the 109 known S. agalactiae isolates assessed by LAMP directly from bacterial cells in culture, 108 were identified as positive, in accordance with PCR analysis. The LAMP analysis from the corresponding milk samples indicated that 104 of these milks exhibited a positive amplification curve. Although exhibiting some limitations, this assay provides an opportunity for rapid screening of milk samples to facilitate on-farm management of this pathogen. PMID:26778303

  9. A Loop-Mediated Isothermal Amplification Assay and Sample Preparation Procedure for Sensitive Detection of Xanthomonas fragariae in Strawberry

    PubMed Central

    Wang, Hehe; Turechek, William W.

    2016-01-01

    Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×103 CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2–3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management. PMID:26766068

  10. Development of a rapid assay to detect the jellyfish Cyanea nozakii using a loop-mediated isothermal amplification method.

    PubMed

    Liu, Zhongyuan; Dong, Zhijun; Liu, Dongyan

    2016-07-01

    Blooms of the harmful jellyfish Cyanea nozakii, which are a severe nuisance to fisheries and tourisms, frequently occur in the northern East China Sea, Yellow Sea, and Bohai Sea. To provide early warning of this species, a simple and effective molecular method for identifying C. nozakii was developed using the loop-mediated isothermal amplification method (LAMP). The LAMP assay is highly specific and uses a set of four primers that target six different regions on the mitochondrial cytochrome c oxidase subunit I (COI) gene of C. nozakii. The amplification conditions, including the dNTP and betaine concentrations, the inner primer to outer primer concentration ratio, reaction time and temperature, were optimized. The LAMP assay amplified DNA extracted from tissue samples of C. nozakii but did not amplify DNA from other common scyphozoans and hydrozoans collected in the same region. In addition, the LAMP assay was more sensitive than conventional PCR. Therefore, the established LAMP assay is a sensitive, specific, fast, and easily performed method for detection of C. nozakii at different stages in their life cycle. PMID:25774948

  11. Detection of DNA Sequences Refractory to PCR Amplification Using a Biophysical SERRS Assay (Surface Enhanced Resonant Raman Spectroscopy)

    PubMed Central

    Feuillie, Cécile; Merheb, Maxime M.; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2014-01-01

    The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage. PMID:25502338

  12. Rapid detection of newly isolated Tembusu-related Flavivirus by reverse-transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions. PMID:22185513

  13. A Simple Strain Typing Assay for Trypanosoma cruzi: Discrimination of Major Evolutionary Lineages from a Single Amplification Product

    PubMed Central

    Cosentino, Raul O.; Agüero, Fernán

    2012-01-01

    Background Trypanosoma cruzi is the causative agent of Chagas' Disease. The parasite has a complex population structure, with six major evolutionary lineages, some of which have apparently resulted from ancestral hybridization events. Because there are important biological differences between these lineages, strain typing methods are essential to study the T. cruzi species. Currently, there are a number of typing methods available for T. cruzi, each with its own advantages and disadvantages. However, most of these methods are based on the amplification of a variable number of loci. Methodology/Principal Findings We present a simple typing assay for T. cruzi, based on the amplification of a single polymorphic locus: the TcSC5D gene. When analyzing sequences from this gene (a putative lathosterol/episterol oxidase) we observed a number of interesting polymorphic sites, including 1 tetra-allelic, and a number of informative tri- and bi-allelic SNPs. Furthermore, some of these SNPs were located within the recognition sequences of two commercially available restriction enzymes. A double digestion with these enzymes generates a unique restriction pattern that allows a simple classification of strains in six major groups, corresponding to DTUs TcI–TcIV, the recently proposed Tcbat lineage, and TcV/TcVI (as a group). Direct sequencing of the amplicon allows the classification of strains into seven groups, including the six currently recognized evolutionary lineages, by analyzing only a few discriminant polymorphic sites. Conclusions/Significance Based on these findings we propose a simple typing assay for T. cruzi that requires a single PCR amplification followed either by restriction fragment length polymorphism analysis, or direct sequencing. In the panel of strains tested, the sequencing-based method displays equivalent inter-lineage resolution to recent multi- locus sequence typing assays. Due to their simplicity and low cost, the proposed assays represent a good

  14. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    PubMed

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM. PMID:25233044

  15. Rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) by real-time, isothermal recombinase polymerase amplification assay.

    PubMed

    Xia, Xiaoming; Yu, Yongxin; Hu, Linghao; Weidmann, Manfred; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-04-01

    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) causes mortality or runt deformity syndrome in penaeid shrimps and is responsible for significant economic losses in the shrimp aquaculture industry. Here, we describe a novel real-time isothermal recombinase polymerase amplification (RPA) assay developed for IHHNV detection. Using IHHNV plasmid standards and DNA samples from a variety of organisms, we evaluated the ability of the IHHNV-RPA assay to detect IHHNV based on analysis of its sensitivity, specificity, rapidity, and reproducibility. Probit analysis of eight independent experimental replicates indicated satisfactory performance of the RPA assay, which is sufficiently sensitive to detect as few as 4 copies of the IHHNV genome within 7 min at 39 °C with 95 % reliability. Therefore, this rapid RPA method has great potential for applications, either in field use or as a point of care diagnostic technique. PMID:25655264

  16. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid diagnosis of chilli veinal mottle virus.

    PubMed

    Banerjee, Amrita; Roy, Somnath; Sharma, Susheel Kumar; Dutta, Sudip Kumar; Chandra, Satish; Ngachan, S V

    2016-07-01

    Chilli veinal mottle virus (ChiVMV) causes significant economic loss to chilli cultivation in northeastern India, as well as in eastern Asia. In this study, we have developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid, sensitive and specific diagnosis of ChiVMV. Amplification could be visualized after adding SYBR Green I (1000×) dye within 60 min under isothermal conditions at 63 °C, with a set of four primers designed based on the large nuclear inclusion protein (NIb) domain of ChiVMV (isolate KC-ML1). The RT-LAMP method was 100 times more sensitive than one-step reverse transcription polymerase chain reaction (RT-PCR), with a detection limit of 0.0001 ng of total RNA per reaction. PMID:27063408

  17. Nanoparticle-bridge assay for amplification-free electrical detection of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Teimouri, Manouchehr

    The aim of this research is to investigate a highly sensitive, fast, inexpensive, and field-applicable amplification-free nanoparticle-based oligonucleotide detection method which does not rely on any enzymatic or signal amplification process. In this approach, target oligonucleotide strands are detected through the formation of nanoparticle satellites which make an electrical path between two electrodes. This method enables an extremely sensitive oligonucleotide detection because even a few oligonucleotide strands can form a single nanoparticle satellite which can solely generates an electrical output signal. Results showed that this oligonucleotide detection method can detect oligonucleotide single strands at concentrations as low as 50 femtomolar without any amplification process. This detection method can be implemented in many fields such as biodefense, food safety, clinical research, and forensics.

  18. Multicenter Clinical Evaluation of the Novel Alere i Strep A Isothermal Nucleic Acid Amplification Test

    PubMed Central

    Russo, Michael E.; Jaggi, Preeti; Kline, Jennifer; Gluckman, William; Parekh, Amisha

    2015-01-01

    Rapid detection of group A beta-hemolytic streptococcus (GAS) is used routinely to help diagnose and treat pharyngitis. However, available rapid antigen detection tests for GAS have relatively low sensitivity, and backup testing is recommended in children. Newer assays are more sensitive yet require excessive time for practical point-of-care use as well as laboratory personnel. The Alere i strep A test is an isothermal nucleic acid amplification test designed to offer highly sensitive results at the point of care within 8 min when performed by nonlaboratory personnel. The performance of the Alere i strep A test was evaluated in a multicenter prospective trial in a Clinical Laboratory Improvement Amendments (CLIA)-waived setting in comparison to bacterial culture in 481 children and adults. Compared to culture, the Aleri i strep A test had 96.0% sensitivity and 94.6% specificity. Discrepant results were adjudicated by PCR and found the Alere i strep A test to have 98.7% sensitivity and 98.5% specificity. Overall, the Alere i strep A test could provide a one-step, rapid, point-of-care testing method for GAS pharyngitis and obviate backup testing on negative results. PMID:25972418

  19. Development and Evaluation of a Novel and Rapid Detection Assay for Botrytis cinerea Based on Loop-Mediated Isothermal Amplification

    PubMed Central

    Duan, Ya-Bing; Ge, Chang-Yan; Zhang, Xiao-Ke; Wang, Jian-Xin; Zhou, Ming-Guo

    2014-01-01

    Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB). The LAMP reaction was optimal at 63°C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10−3 ng µL−1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10−2 ng µL−1). Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2%) were confirmed as positive by LAMP, 172 (90.1%) positive by the tissue separation, while 147 (77.0%) positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables. PMID:25329402

  20. Detection of Puccinia kuehnii Causing Sugarcane Orange Rust with a Loop-Mediated Isothermal Amplification-Based Assay.

    PubMed

    Chandra, Amaresh; Keizerweerd, Amber T; Grisham, Michael P

    2016-03-01

    Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection. PMID:26837389

  1. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    PubMed

    Duan, Ya-Bing; Ge, Chang-Yan; Zhang, Xiao-Ke; Wang, Jian-Xin; Zhou, Ming-Guo

    2014-01-01

    Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB). The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3) ng µL(-1) of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2) ng µL(-1)). Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2%) were confirmed as positive by LAMP, 172 (90.1%) positive by the tissue separation, while 147 (77.0%) positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables. PMID:25329402

  2. A Novel Loop-Mediated Isothermal Amplification Assay for Serogroup Identification of Neisseria meningitidis in Cerebrospinal Fluid.

    PubMed

    Lee, DoKyung; Kim, Eun Jin; Kilgore, Paul E; Takahashi, Hideyuki; Ohnishi, Makoto; Tomono, Jun; Miyamoto, Shigehiko; Omagari, Daisuke; Kim, Dong Wook; Seki, Mitsuko

    2015-01-01

    We have developed a novel Neisseria meningitidis serogroup-specific loop-mediated isothermal amplification (LAMP) assay for six of the most common meningococcal serogroups (A, B, C, W, X, and Y). The assay was evaluated using a set of 31 meningococcal LAMP assay positive cerebrospinal fluid (CSF) specimens from 1574 children with suspected meningitis identified in prospective surveillance between 1998 and 2002 in Vietnam, China, and Korea. Primer specificity was validated using 15 N. meningitidis strains (including serogroups A, B, C, E, W, X, Y, and Z) and 19 non-N. meningitidis species. The N. meningitidis serogroup LAMP detected down to ten copies and 100 colony-forming units per reaction. Twenty-nine CSF had N. meningitidis serogroup identified by LAMP compared with two CSF in which N. meningitidis serogroup was identified by culture and multi-locus sequence typing. This is the first report of a serogroup-specific identification assay for N. meningitidis using the LAMP method. Our results suggest that this assay will be a rapid, sensitive, and uniquely serogroup-specific assay with potential for application in clinical laboratories and public health surveillance systems. PMID:26793181

  3. Development of multiplex loop-mediated isothermal amplification assays to detect medically important yeasts in dairy products.

    PubMed

    Kasahara, Kohei; Ishikawa, Hiroshi; Sato, Sumie; Shimakawa, Yasuhisa; Watanabe, Koichi

    2014-08-01

    Rapid detection of yeast contamination is important in the food industry. We have developed loop-mediated isothermal amplification (LAMP) assays to detect the emerging opportunistic pathogenic yeasts: Candida albicans, Candida glabrata, Candida tropicalis, the Candida parapsilosis group, Trichosporon asahii, and Trichosporon mucoides. These yeasts may cause deep-seated candidiasis or trichosporonosis. Four LAMP primer sets specific for Candida were designed to target the internal transcribed spacer 2 (ITS2) region between the 5.8S and 26S rRNA genes, and two LAMP primer sets specific for Trichosporon were designed to target the intergenic spacer 1 (IGS1) region between the 26S and 5S rRNA genes. The LAMP assays could detect these yeasts in a range between 10(0) and 10(3)  cells mL(-1) in a contaminated dairy product within 1 h. We also developed multiplex LAMP assays to detect these Candida or Trichosporon species in a single reaction. Multiplex LAMP assays can detect contamination if at least one of the target species is present; they are more time- and cost-efficient than conventional methods and could detect target yeasts with sensitivity close to that of the LAMP assays. Multiplex LAMP assays established in this study can be used as a primary screening method for yeast contamination in food products. PMID:24965944

  4. A Novel Loop-Mediated Isothermal Amplification Assay for Serogroup Identification of Neisseria meningitidis in Cerebrospinal Fluid

    PubMed Central

    Lee, DoKyung; Kim, Eun Jin; Kilgore, Paul E.; Takahashi, Hideyuki; Ohnishi, Makoto; Tomono, Jun; Miyamoto, Shigehiko; Omagari, Daisuke; Kim, Dong Wook; Seki, Mitsuko

    2016-01-01

    We have developed a novel Neisseria meningitidis serogroup-specific loop-mediated isothermal amplification (LAMP) assay for six of the most common meningococcal serogroups (A, B, C, W, X, and Y). The assay was evaluated using a set of 31 meningococcal LAMP assay positive cerebrospinal fluid (CSF) specimens from 1574 children with suspected meningitis identified in prospective surveillance between 1998 and 2002 in Vietnam, China, and Korea. Primer specificity was validated using 15 N. meningitidis strains (including serogroups A, B, C, E, W, X, Y, and Z) and 19 non-N. meningitidis species. The N. meningitidis serogroup LAMP detected down to ten copies and 100 colony-forming units per reaction. Twenty-nine CSF had N. meningitidis serogroup identified by LAMP compared with two CSF in which N. meningitidis serogroup was identified by culture and multi-locus sequence typing. This is the first report of a serogroup-specific identification assay for N. meningitidis using the LAMP method. Our results suggest that this assay will be a rapid, sensitive, and uniquely serogroup-specific assay with potential for application in clinical laboratories and public health surveillance systems. PMID:26793181

  5. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    PubMed

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings. PMID:27031184

  6. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV.

    PubMed

    Nguyen Van, J C; Caméléna, F; Dahoun, M; Pilmis, B; Mizrahi, A; Lourtet, J; Behillil, S; Enouf, V; Le Monnier, A

    2016-05-01

    The rapid and accurate detection of influenza virus in respiratory specimens is required for optimal management of patients with acute respiratory infections. Because of the variability of the symptoms and the numerous other causes of influenza-like illness, the diagnosis of influenza cannot be made on the basis of clinical criteria alone. Thus, rapid influenza diagnostic tests have been developed such as the Alere i Influenza A&B isothermal nucleic acid assay. We prospectively evaluated the performance of the Alere i Influenza A&B assay in comparison with our routine Xpert Flu/RSV assay. Positive samples were subtyped according to the protocol from the National Influenza Center (Paris, France). A total of 96 respiratory nasal swab samples were analyzed: with both methods, 38 were positive and 56 were negative. Samples were prospectively collected from January 20 to April 8, 2015, from patient (86 adult and 10 pediatric patients) presenting with an influenza-like illness through the French influenza season. In comparison with the Xpert Flu/RSV assay, the overall sensitivity and specificity of the Alere i Influenza A&B assay were 95% and 100%, respectively. Our results indicate that the Alere i Influenza A&B assay has a good overall analytical performance and a high degree of concordance with the PCR-based Xpert Flu/RSV assay. The Alere i Influenza A&B isothermal nucleic acid amplification test is a powerful tool for influenza detection due to its high sensitivity and specificity as well as its ability to generate results within 15min. PMID:26899154

  7. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  8. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis.

    PubMed

    Santiago-Felipe, S; Tortajada-Genaro, L A; Puchades, R; Maquieira, A

    2014-02-01

    Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR-ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA-ELISA combination is proposed for amplification at a low, constant temperature (40°C) in a short time (40 min), for the hybridisation of labelled products to specific 5'-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA-ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA-ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings. PMID:24456598

  9. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for

  10. Loop-Mediated Isothermal Amplification (LAMP) assay for the identification of Echinococcus multilocularis infections in canine definitive hosts

    PubMed Central

    2014-01-01

    Background Alveolar echinococcosis, caused by the metacestode larval stage of Echinococcus multilocularis, is a zoonosis of public health significance and is highly prevalent in northwest China. To effectively monitor its transmission, we developed a new rapid and cheap diagnostic assay, based on loop-mediated isothermal amplification (LAMP), to identify canine definitive hosts infected with E. multilocularis. Methods The primers used in the LAMP assay were based on the mitochondrial nad5 gene of E. multilocularis and were designed using Primer Explorer V4 software. The developed LAMP assay was compared with a conventional PCR assay, using DNA extracted from the feces of dogs experimentally infected with E. multilocularis, on 189 dog fecal samples collected from three E. multilocularis-endemic regions in Qinghai province, the People’s Republic of China, and 30 negative control copro-samples from dogs from an area in Gansu province that had been subjected to an intensive de-worming program. Light microscopy was also used to examine the experimentally obtained and field collected dog copro-samples for the presence of E. multilocularis eggs. Results The E. multilocularis-positivity rates obtained for the field-collected fecal samples were 16.4% and 5.3% by the LAMP and PCR assays, respectively, and all samples obtained from the control dogs were negative. The LAMP assay was able to detect E. multilocularis DNA in the feces of experimentally infected dogs at 12 days post-infection, whereas the PCR assay was positive on the 17th day and eggs were first detectable by light microscopy at day 44 post-challenge. Conclusion The earlier specific detection of an E. multilocularis infection in dog copro-samples indicates that the LAMP assay we developed is a realistic alternative method for the field surveillance of canines in echinococcosis-endemic areas. PMID:24886279

  11. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.

    PubMed

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A; Hufert, Frank T; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection. PMID:23977101

  12. A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus

    PubMed Central

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A.; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4–10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection. PMID:23977101

  13. Bicinchoninic acid (BCA) assay in low volume.

    PubMed

    Bainor, Anthony; Chang, Lyra; McQuade, Thomas J; Webb, Brian; Gestwicki, Jason E

    2011-03-15

    The BCA assay is a colorimetric method for estimating protein concentration. In 96-well plates, the relationship between protein content and absorbance is nearly linear over a wide range; however, performance is reduced in lower volume. To overcome this limitation, we performed the BCA assays in opaque, white 384-well plates. These plates emit fluorescence between 450-600 nm when excited at 430 nm; thus, their fluorescence is quenched by the BCA chromophore (λ(max) 562 nm). This arrangement allowed accurate determination of protein content using only 2 μL of sample. Moreover, soluble flourescein could replace the white plates, creating a homogenous format. PMID:21078286

  14. On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria.

    PubMed

    Kunze, A; Dilcher, M; Abd El Wahed, A; Hufert, F; Niessner, R; Seidel, M

    2016-01-01

    This work presents an on-chip isothermal nucleic acid amplification test (iNAAT) for the multiplex amplification and detection of viral and bacterial DNA by a flow-based chemiluminescence microarray. In a principle study, on-chip recombinase polymerase amplification (RPA) on defined spots of a DNA microarray was used to spatially separate the amplification reaction of DNA from two viruses (Human adenovirus 41, Phi X 174) and the bacterium Enterococcus faecalis, which are relevant for water hygiene. By establishing the developed assay on the microarray analysis platform MCR 3, the automation of isothermal multiplex-amplification (39 °C, 40 min) and subsequent detection by chemiluminescence imaging was realized. Within 48 min, the microbes could be identified by the spot position on the microarray while the generated chemiluminescence signal correlated with the amount of applied microbe DNA. The limit of detection (LOD) determined for HAdV 41, Phi X 174, and E. faecalis was 35 GU/μL, 1 GU/μL, and 5 × 10(3) GU/μL (genomic units), which is comparable to the sensitivity reported for qPCR analysis, respectively. Moreover the simultaneous amplification and detection of DNA from all three microbes was possible. The presented assay shows that complex enzymatic reactions like an isothermal amplification can be performed in an easy-to-use experimental setup. Furthermore, iNAATs can be potent candidates for multipathogen detection in clinical, food, or environmental samples in routine or field monitoring approaches. PMID:26624222

  15. A Sensitive, Colorimetric, High-Throughput Loop-Mediated Isothermal Amplification Assay for the Detection of Plasmodium knowlesi.

    PubMed

    Britton, Sumudu; Cheng, Qin; Grigg, Matthew J; William, Timothy; Anstey, Nicholas M; McCarthy, James S

    2016-07-01

    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool. PMID:27162264

  16. Specificity of IS6110-based amplification assays for Mycobacterium tuberculosis complex.

    PubMed Central

    Hellyer, T J; DesJardin, L E; Assaf, M K; Bates, J H; Cave, M D; Eisenach, K D

    1996-01-01

    The specificity of IS6110 for the Mycobacterium tuberculosis complex has recently been questioned. We observed no cross-reaction with 27 nontuberculous mycobacteria using strand displacement- and PCR-based amplification of the nucleotide 970 to 1026 and 762 to 865 regions of IS6110. These data support use of selected regions of IS6110 as M. tuberculosis complex-specific targets. PMID:8897197

  17. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    PubMed

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-01

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications

  18. Loop-mediated isothermal amplification (LAMP) assay for the rapid detection of the sexually-transmitted parasite, Trichomonas vaginalis.

    PubMed

    Adao, Davin Edric V; Rivera, Windell L

    2016-01-01

    A loop-mediated isothermal amplification (LAMP) assay was developed to detect the sexually-transmitted parasite, Trichomonas vaginalis in vaginal swabs. The presence of T. vaginalis was detected from 121 female sex workers attending a social hygiene clinic in Balibago, Angeles City, Pampanga, Philippines using culture, polymerase chain reaction (PCR), and the developed LAMP assay. The high analytical sensitivity of LAMP detected a higher prevalence of T. vaginalis (42.06%) compared to culture (8.26%) and PCR (7.44%). Additionally, this assay did not cross-react with DNAs of other trichomonads that can infect humans such as Trichomonas tenax and Pentatrichomonas hominis as well as the pathogens, Candida albicans and Staphylococcus aureus. The LAMP assay developed had a limit of detection (0.036 ng/μl) lower than that of PCR using the primers TvK3 and TvK7 (0.36 ng/μl). Prevalence of T. vaginalis in female sex workers in this area of the Philippines may be higher than previously estimated. Discordant results of PCR and LAMP may be due to different reactions to different kinds of inhibitors in the vaginal swabs. PMID:27262954

  19. Establishment of a sensitive and specific hyper-branched rolling circle amplification assay and test strip for TSV.

    PubMed

    Zhao, Yuran; Yin, Weili; Wang, Ying; Wang, Gongpu; Li, Bafang

    2014-12-01

    A specific padlock probe (PLP) and detection probe were designed to target the capsid protein gene of Taura syndrome virus (TSV), and a hyper-branched rolling circle amplification (HRCA) assay and a corresponding strip-based test were produced. The reaction time and temperature were optimized for both. The PLPs were linked with the target sequence via T4 DNA ligase under conditions of 37°C for 30 min, followed by reaction with Bst DNA polymerase Large Fragment at 61°C for 30 min, and then the test strip was made using the detection probe. Both the assay and the strip had similarly high accuracy and specificity, and their sensitivity was close to 10 copies, which is 100 times higher than that of conventional RT-PCR. We tested 89 batches of shrimps for TSV to assess the HRCA assay and test strip; the results indicated that the TSV HRCA assay and the test strip are rapid diagnostic tools for detection in the field, and have potential for early diagnosis of TSV. PMID:25196450

  20. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    PubMed Central

    Lee, Siwon; Kim, Jin-Ho; Choi, Ji-Young; Jang, Won-Cheoul

    2015-01-01

    We developed a loop-mediated isothermal amplification (LAMP) method to rapidly diagnose Wheat streak mosaic virus (WSMV) during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections. PMID:26674930

  1. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants.

    PubMed

    Lee, Siwon; Kim, Jin-Ho; Choi, Ji-Young; Jang, Won-Cheoul

    2015-12-01

    We developed a loop-mediated isothermal amplification (LAMP) method to rapidly diagnose Wheat streak mosaic virus (WSMV) during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections. PMID:26674930

  2. Information Limited Oligonucleotide Amplification Assay for Affinity-Based, Parallel Detection Studies

    PubMed Central

    Bokkasam, Harish; Ott, Albrecht

    2016-01-01

    Molecular communication systems encounter similar constraints as telecommunications. In either case, channel crosstalk at the receiver end will result in information loss that statistical analysis cannot compensate. This is because in any communication channel there is a physical limit to the amount of information that can be transmitted. We present a novel and simple modified end amplification (MEA) technique to generate reduced and defined amounts of specific information in form of short fragments from an oligonucleotide source that also contains unrelated and redundant information. Our method can be a valuable tool to investigate information overflow and channel capacity in biomolecular recognition systems. PMID:26978653

  3. Visual Detection of Brucella spp. in Spiked Bovine Semen Using Loop-Mediated Isothermal Amplification (LAMP) Assay.

    PubMed

    Prusty, Bikash R; Chaudhuri, Pallab; Chaturvedi, V K; Saini, Mohini; Mishra, B P; Gupta, Praveen K

    2016-06-01

    Several pathogens including Brucella spp. are shed in semen of infected bulls and can be transmitted to cows through contaminated semen during artificial insemination. The present study reports omp2a and bcsp31 gene based loop-mediated isothermal amplification (LAMP) assays for detection of Brucella genomic DNA in semen from infected bulls. The positive results could be interpreted visually by change in colour of reaction mixture containing hydroxyl naphthol blue (HNB) dye from violet to sky blue. LAMP assays based on omp2a and bcsp31 could detect as little as 10 and 100 fg of B. abortus S19 genomic DNA, respectively. Sensitivity of omp2a and bcsp31 LAMP assays for direct detection of organisms in bovine semen was 2.28 × 10(1) CFU and 2.28 × 10(2) CFU of B. abortus S19 in spiked bovine semen, respectively. The omp2a LAMP assay was found equally sensitive to TaqMan probe based real-time PCR and 100 times more sensitive than conventional PCR in identifying Brucella in spiked semen. The diagnostic applicability of the omp2a LAMP assay was evaluated with seventy-nine bovine semen samples and results were re-evaluated through TaqMan probe based real-time PCR and conventional PCR. Taken together, the omp2a LAMP assay is easy to perform, rapid and sensitive in diagnosis of Brucella spp. in bovine semen. PMID:27570305

  4. Loop-Mediated Isothermal Amplification Assays for Detecting Shiga Toxin-Producing Escherichia coli in Ground Beef and Human Stools

    PubMed Central

    Wang, Fei; Jiang, Lin

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157 and non-O157 STEC, is a significant cause of food-borne illnesses and deaths in the United States and worldwide. Shiga toxins (encoded by stx) and intimin (encoded by eae) are important virulence factors for STEC strains linked to severe human illnesses such as hemorrhagic colitis and hemolytic-uremic syndrome. In this study, the stx1, stx2, and eae genes were chosen as targets to design loop-mediated isothermal amplification (LAMP) assays for the rapid, specific, sensitive, and quantitative detection of STEC strains. The assay performances in pure culture and spiked ground beef and human stools were evaluated and compared with those of quantitative PCR (qPCR). No false-positive or false-negative results were observed among 90 bacterial strains used to evaluate assay specificity. The limits of detection for seven STEC strains of various serogroups (O26, O45, O103, O111, O121, O145, and O157) were approximately 1 to 20 CFU/reaction in pure culture and 103 to 104 CFU/g in spiked ground beef, which were comparable to the results of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. When applied in ground beef samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of STEC cultures, the LAMP assays achieved accurate detection after 6 to 8 h enrichment. The assays also consistently detected STEC in human stool specimens spiked with 103 or 104 CFU/0.5 g stool after 4 h enrichment, while qPCR required 4 to 6 h. In conclusion, the LAMP assays developed in this study may facilitate rapid and reliable identification of STEC contaminations in high-risk food commodities and also facilitate prompt diagnosis of STEC infections in clinical laboratories. PMID:22031701

  5. Successful Combination of Nucleic Acid Amplification Test Diagnostics and Targeted Deferred Neisseria gonorrhoeae Culture

    PubMed Central

    Wind, Carolien M.; de Vries, Henry J. C.; Schim van der Loeff, Maarten F.; Unemo, Magnus

    2015-01-01

    Nucleic acid amplification tests (NAATs) are recommended for the diagnosis of N. gonorrhoeae infections because of their superior sensitivity. Increasing NAAT use causes a decline in crucial antimicrobial resistance (AMR) surveillance data, which rely on culture. We analyzed the suitability of the ESwab system for NAAT diagnostics and deferred targeted N. gonorrhoeae culture to allow selective and efficient culture based on NAAT results. We included patients visiting the STI Clinic Amsterdam, The Netherlands, in 2013. Patient characteristics and urogenital and rectal samples for direct N. gonorrhoeae culture, standard NAAT, and ESwab were collected. Standard NAAT and NAAT on ESwab samples were performed using the Aptima Combo 2 assay for N. gonorrhoeae and C. trachomatis. Two deferred N. gonorrhoeae cultures were performed on NAAT-positive ESwab samples after storage at 4°C for 1 to 3 days. We included 2,452 samples from 1,893 patients. In the standard NAAT, 107 samples were N. gonorrhoeae positive and 284 were C. trachomatis positive. The sensitivities of NAAT on ESwab samples were 83% (95% confidence interval [CI], 75 to 90%) and 87% (95% CI, 82 to 90%), respectively. ESwab samples were available for 98 of the gonorrhea-positive samples. Of these, 82% were positive in direct culture and 69% and 56% were positive in the 1st and 2nd deferred cultures, respectively (median storage times, 27 and 48 h, respectively). Deferred culture was more often successful in urogenital samples or when the patient had symptoms at the sampling site. Deferred N. gonorrhoeae culture of stored ESwab samples is feasible and enables AMR surveillance. To limit the loss in NAAT sensitivity, we recommend obtaining separate samples for NAAT and deferred culture. PMID:25832300

  6. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  7. Quantification of cytomegalovirus DNA in peripheral blood leukocytes by a branched-DNA signal amplification assay.

    PubMed Central

    Chernoff, D N; Miner, R C; Hoo, B S; Shen, L P; Kelso, R J; Jekic-McMullen, D; Lalezari, J P; Chou, S; Drew, W L; Kolberg, J A

    1997-01-01

    Quantification of cytomegalovirus (CMV) DNA in blood may aid in the identification of patients at highest risk for developing CMV disease, the evaluation of new therapeutics, and the prompt recognition of drug-resistant CMV strains. A branched-DNA (bDNA) assay was developed for the reliable quantification of CMV DNA in peripheral blood leukocytes. The bDNA assay allowed for the highly specific and reproducible quantification of CMV DNA in clinical specimens. Furthermore, the bDNA assay was at least as sensitive as culture techniques and displayed a nearly 3 log10 dynamic range in quantification. Changes in CMV DNA levels measured by the bDNA assay in a human immunodeficiency virus-positive patient undergoing therapy were consistent with CMV culture, antigen, and genotype results and correlated with disease progression and resistance markers. The bDNA assay for the quantification of CMV DNA may provide a useful tool that can be used to aid physicians in monitoring disease progression, evaluating therapeutic regimens, and recognizing viral resistance and drug failure. PMID:9350724

  8. Rapid and simple identification of Beijing genotype strain of Mycobacterium tuberculosis using a loop-mediated isothermal amplification assay.

    PubMed

    Nagai, Yuhki; Iwade, Yoshito; Nakano, Manabu; Akachi, Shigehiro; Kobayashi, Takashi; Nishinaka, Takamichi

    2016-07-01

    Beijing genotype strains of Mycobacterium tuberculosis are geographically widespread and pose a notorious public health problem, these strains causing outbreaks of multidrug-resistant tuberculosis (TB); some studies have reported an association with drug resistance. Because the prevalence of Beijing strain has a substantial impact on TB control programs, the availability of a rapid and reliable method for detecting these strains is important for epidemiological monitoring of their circulation. The main methods currently used to identify Beijing genotype strains are IS6110 DNA fingerprinting, spoligotyping and PCR to detect specific deletions such as region of difference (RD)207. More recently, multiplex PCR assay using a Beijing-specific single nucleotide polymorphism (SNP) has been developed for detecting Beijing lineage strains. However, these methods are time-consuming and technically demanding. In the present study, a loop-mediated isothermal amplification (LAMP) assay that allows specific identification of Beijing genotype strain was developed. This Beijing genotype strain-identifying LAMP assay was performed 214 clinical isolates and the results compared with those of conventional PCR that targeted RD207 and Rv0679c-targreting multiplex PCR for Beijing lineage identification. LAMP assay showed 100% sensitivity and specificity compared with RD207-PCR. Furthermore, the sensitivity and specificity were 99.3% and 100%, respectively, compared with Rv0679c-multiplex PCR. This LAMP assay could be used routinely in local laboratories to monitor the prevalence of the Beijing genotype strain and thereby used to help control the spread of these potentially highly virulent and drug resistant strains. PMID:27213686

  9. Loop-mediated isothermal amplification (LAMP) assays for detection of Theileria parva infections targeting the PIM and p150 genes.

    PubMed

    Thekisoe, Oriel M M; Rambritch, Natasha E; Nakao, Ryo; Bazie, Raoul S; Mbati, Peter; Namangala, Boniface; Malele, Imna; Skilton, Robert A; Jongejan, Frans; Sugimoto, Chihiro; Kawazu, Shin-Ichiro; Inoue, Noboru

    2010-01-01

    We have developed two loop-mediated isothermal amplification (LAMP) assays for the detection of Theileria parva, the causative agent of East Coast fever (ECF), an economically important cattle disease in eastern, central and southern Africa. These assays target the polymorphic immunodominant molecule (PIM) and p150 LAMP genes. The primer set for each gene target consists of six primers, and each set recognises eight distinct regions on the target gene to give highly specific detection of T. parva. The detection limit of each primer set is 1fg, which is equivalent to one copy of the PIM and p150 T. parva genes. These PIM and p150 LAMP primer sets amplify DNA of T. parva isolates from cattle and buffalo from different countries including Kenya, South Africa, Tanzania, Rwanda, Uganda and Burundi, indicating their ability to detect T. parva from different countries. With the advantages of simplicity, rapidity and cost effectiveness, these LAMP assays are good candidates for molecular epidemiology studies and for monitoring control programs in ECF-endemic, resource poor countries. PMID:19654009

  10. Development of phage immuno-loop-mediated isothermal amplification assays for organophosphorus pesticides in agro-products.

    PubMed

    Hua, Xiude; Yin, Wei; Shi, Haiyan; Li, Ming; Wang, Yanru; Wang, Hong; Ye, Yonghao; Kim, Hee Joo; Gee, Shirley J; Wang, Minghua; Liu, Fengquan; Hammock, Bruce D

    2014-08-19

    Two immuno-loop-mediated isothermal amplification assays (iLAMP) were developed by using a phage-borne peptide that was isolated from a cyclic eight-peptide phage library. One assay was used to screen eight organophosphorus (OP) pesticides with limits of detection (LOD) between 2 and 128 ng mL(-1). The iLAMP consisted of the competitive immuno-reaction coupled to the LAMP reaction for detection. This method provides positive results in the visual color of violet, while a negative response results in a sky blue color; therefore, the iLAMP allows one to rapidly detect analytes in yes or no fashion. We validated the iLAMP by detecting parathion-methyl, parathion, and fenitrothion in Chinese cabbage, apple, and greengrocery, and the detection results were consistent with the enzyme-linked immunosorbent assay (ELISA). In conclusion, the iLAMP is a simple, rapid, sensitive, and economical method for detecting OP pesticide residues in agro-products with no instrumental requirement. PMID:25135320

  11. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015.

    PubMed

    Faye, Oumar; Faye, Ousmane; Soropogui, Barré; Patel, Pranav; El Wahed, Ahmed Abd; Loucoubar, Cheikh; Fall, Gamou; Kiory, Davy; Magassouba, N'Faly; Keita, Sakoba; Kondé, Mandy Kader; Diallo, Alpha Amadou; Koivogui, Lamine; Karlberg, Helen; Mirazimi, Ali; Nentwich, Oliver; Piepenburg, Olaf; Niedrig, Matthias; Weidmann, Manfred; Sall, Amadou Alpha

    2015-01-01

    In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement. PMID:26558690

  12. Development of reverse transcription loop-mediated isothermal amplification assay as a simple detection method of Chrysanthemum stem necrosis virus in chrysanthemum and tomato.

    PubMed

    Suzuki, Ryoji; Fukuta, Shiro; Matsumoto, Yuho; Hasegawa, Toru; Kojima, Hiroko; Hotta, Makiko; Miyake, Noriyuki

    2016-10-01

    For a simple and rapid detection of Chrysanthemum stem necrosis virus (CSNV) from chrysanthemum and tomato, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed. A primer set designed to the genome sequences of CSNV worked most efficiently at 63°C and could detect CSNV RNA within 12min by fluorescence monitoring using an isothermal DNA amplification and fluorescence detection device. The result of a specificity test using seven other viruses and one viroid-infectable chrysanthemum or tomato showed that the assay could amplify CSNV specifically, and a sensitivity comparison showed that the RT-LAMP assay was as sensitive as the reverse transcriptase polymerase chain reaction. The RT-LAMP assay using crude RNA, extracted simply, could detect CSNV. Overall, the RT-LAMP assay was found to be a simple, specific, convenient, and time-saving method for CSNV detection. PMID:27400833

  13. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. PMID:26613510

  14. Suppression of Acid Diffusion in Chemical Amplification Resists by Molecular Control of Base Matrix Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Okazaki, Shinji

    1995-12-01

    Suppression of acid diffusion during post-exposure baking (PEB) of chemical amplification resists is investigated from the standpoint of molecular control of base matrix polymers. Negative-type chemical amplification resists composed of cresol novolak-based matrix polymers, acid-catalyzed crosslinkers of melamine resins, and acid generators of onium salts are prepared. The molecular weight distributions of the base matrix polymers are controlled by means of a precipitation method. The resists are exposed with electron beams in isolated lines to evaluate the acid diffusion characteristics. Dependence of pattern sizes on the PEB time clearly shows that acid diffusion determines the resist pattern sizes based on Fick's law. The diffusion coefficients of resists with base matrix polymers with small polydispersities are smaller than those of resists with base matrix polymers with large polydispersities. Acid diffusion can still be suppressed by applying base matrix polymers with small weight-average molecular weights and small polydispersities. Diffusion coefficients can be further decreased by using base matrix polymers with more p-cresol components. A diffusion mechanism is proposed based on acid diffusion channels composed of active OH-groups and vacancies in the base matrix polymers.

  15. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP.

    PubMed

    Shamsipur, Mojtaba; Farzin, Leila; Tabrizi, Mahmoud Amouzadeh; Shanehsaz, Maryam

    2016-12-01

    A "signal off" voltammetric aptasensor was developed for the sensitive and selective detection of ultra-low levels of adenosine triphosphate (ATP). For this purpose, a new strategy based on the principle of recognition-induced switching of aptamers from DNA/DNA duplex to DNA/target complex was designed using thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) as the signal amplifying nano-platforms. Owing to the small size, high surface-to-volume ratio and good conductivity, quantum dots were immobilized on the electrode surface for signal amplification. In this work, methylene blue (MB) adsorbed to DNA was used as a sensitive redox reporter. The intensity of voltammetric signal of MB was found to decrease linearly upon ATP addition over a concentration range of 0.1nM to 1.6μM with a correlation coefficient of 0.9924. Under optimized conditions, the aptasensor was able to selectively detect ATP with a limit of detection of 45pM at 3σ. The results also demonstrated that the QDs-based amplification strategy could be feasible for ATP assay and presented a potential universal method for other small biomolecular aptasensors. PMID:27612836

  16. Detection of human enteric viruses in oysters by in vivo and in vitro amplification of nucleic acids.

    PubMed Central

    Chung, H; Jaykus, L A; Sobsey, M D

    1996-01-01

    This study describes the detection of enteroviruses and hepatitis A virus in 31 naturally contaminated oyster specimens by nucleic acid amplification and oligonucleotide probing. Viruses were extracted by adsorption-elution-precipitation from 50-g oyster samples harvested from an area receiving sewage effluent discharge. Ninety percent of each extract was inoculated into primate kidney cell cultures for virus isolation and infectivity assay. Viruses in the remaining 10% of oyster extract that was not inoculated into cell cultures were further purified and concentrated by a procedure involving Freon extraction, polyethylene glycol precipitation, and Pro-Cipitate precipitation. After 3 to 4 weeks of incubation, RNA was extracted from inoculated cultures that were negative for cytopathic effects (CPE). These RNA extracts and the RNA from virions purified and concentrated directly from oyster extracts were subjected to reverse transcriptase PCR (RT-PCR) with primer pairs for human enteroviruses and hepatitis A virus. The resulting amplicons were confirmed by internal oligonucleotide probe hybridization. For the portions of oyster sample extracts inoculated into cell cultures, 12 (39%) were positive for human enteroviruses by CPE and 6 (19%) were positive by RT-PCR and oligoprobing of RNA extracts from CPE-negative cell cultures. For the remaining sample portions tested by direct RT-PCR and oligoprobing after further concentration, five (about 16%) were confirmed to be positive for human enteroviruses. Hepatitis A virus was also detected in RNA extracts of two CPE-positive samples by RT-PCR and oligoprobing. Combining the data from all three methods, enteric viruses were detected in 18 of 31 (58%) samples. Detection by nucleic acid methods increased the number of positive samples by 50% over detection by CPE in cell culture. Hence, nucleic acid amplification methods increase the detection of noncytopathic human enteric viruses in oysters. PMID:8837433

  17. Loop-mediated Isothermal Amplification (LAMP) Assays for the Species-specific Detection of Eimeria that Infect Chickens

    PubMed Central

    Barkway, Christopher P.; Pocock, Rebecca L.; Vrba, Vladimir; Blake, Damer P.

    2015-01-01

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable. PMID:25741643

  18. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.

    PubMed

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Woźniakowski, Grzegorz; Gnat, Sebastian; Małek, Wanda

    2014-08-01

    Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae. PMID:24975021

  19. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    PubMed

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications. PMID:26353676

  20. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    PubMed

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR. PMID:27288706

  1. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen

    PubMed Central

    2012-01-01

    Background HIV-1 p24 antigen is a major viral component of human immunodeficiency virus type 1 (HIV-1) which can be used to identify persons in the early stage of infection and transmission of HIV-1 from infected mothers to infants. The detection of p24 is usually accomplished by using an enzyme-linked immunosorbent assay (ELISA) with low detection sensitivity. Here we report the use of two bio-barcode amplification (BCA) assays combined with polymerase chain reaction (PCR) and gel electrophoresis to quantify HIV-1 p24 antigen. Method A pair of anti-p24 monoclonal antibodies (mAbs) were used in BCA assays to capture HIV-1 p24 antigen in a sandwich format and allowed for the quantitative measurement of captured p24 using PCR and gel electrophoresis. The first 1 G12 mAb was coated on microplate wells or magnetic microparticles (MMPs) to capture free p24 antigens. Captured p24 in turn captured 1D4 mAb coated gold nanoparticle probes (GNPs) containing double-stranded DNA oligonucleotides. One strand of the oligonucleotides was covalently immobilized whereas the unbound complimentary bio-barcode DNA strand could be released upon heating. The released bio-barcode DNA was amplified by PCR, electrophoresed in agarose gel and quantified. Results The in-house ELISA assay was found to quantify p24 antigen with a limit of detection (LOD) of 1,000 pg/ml and a linear range between 3,000 and 100,000 pg/ml. In contrast, the BCA-based microplate method yielded an LOD of 1 pg/ml and a linear detection range from 1 to 10,000 pg/ml. The BCA-based MMP method yielded an LOD of 0.1 pg/ml and a linear detection range from 0.1 to 1,000 pg/ml. Conclusions When combined with PCR and simple gel electrophoresis, BCA-based microplate and MMPs assays can be used to quantify HIV-1 p24 antigen. These methods are 3–4 orders of magnitude more sensitive than our in-house ELISA-based assay and may provide a useful approach to detect p24 in patients newly infected with HIV. PMID

  2. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  3. Development of a quantitative loop-mediated isothermal amplification (qLAMP) assay for the detection of Magnaporthe oryzae airborne inoculum in turf ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grey Leaf Spot (GLS) is a detrimental disease of perennial ryegrass caused by a host-specialized form of Magnaporthe oryzae (Mot). In order to improve turf management, a quantitative loop-mediated isothermal amplification (LAMP) assay coupled with a simple spore trap is being developed to monitor GL...

  4. Development of reverse transcription loop-mediated isothermal amplification assay for rapid detection of an emerging potyvirus: tomato necrotic stunt virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato necrotic stunt virus (ToNStV) is an emerging potyvirus that causes severe stunting to the infected tomato plants. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for a sensitive detection of ToNStV. The sensitivity of RT-LAMP was comparable to th...

  5. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  6. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  7. Quantitative nucleic acid amplification by digital PCR for clinical viral diagnostics.

    PubMed

    Zhang, Kuo; Lin, Guigao; Li, Jinming

    2016-09-01

    In the past few years, interest in the development of digital PCR (dPCR) as a direct nucleic acid amplification technique for clinical viral diagnostics has grown. The main advantages of dPCR over qPCR include: quantification of nucleic acid concentrations without a calibration curve, comparable sensitivity, superior quantitative precision, greater resistance to perturbations by inhibitors, and increased robustness to the variability of the target sequence. In this review, we address the application of dPCR to viral nucleic acid quantification in clinical applications and for nucleic acid quantification standardization. Further development is required to overcome the current limitations of dPCR in order to realize its widespread use for viral load measurements in clinical diagnostic applications. PMID:26845722

  8. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum

    NASA Astrophysics Data System (ADS)

    Das, Jagotamoy; Ivanov, Ivaylo; Montermini, Laura; Rak, Janusz; Sargent, Edward H.; Kelley, Shana O.

    2015-07-01

    The analysis of cell-free nucleic acids (cfNAs), which are present at significant levels in the blood of cancer patients, can reveal the mutational spectrum of a tumour without the need for invasive sampling of the tissue. However, this requires differentiation between the nucleic acids that originate from healthy cells and the mutated sequences shed by tumour cells. Here we report an electrochemical clamp assay that directly detects mutated sequences in patient serum. This is the first successful detection of cfNAs without the need for enzymatic amplification, a step that normally requires extensive sample processing and is prone to interference. The new chip-based assay reads out the presence of mutations within 15 minutes using a collection of oligonucleotides that sequester closely related sequences in solution, and thus allow only the mutated sequence to bind to a chip-based sensor. We demonstrate excellent levels of sensitivity and specificity and show that the clamp assay accurately detects mutated sequences in a collection of samples taken from lung cancer and melanoma patients.

  9. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  10. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  11. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  12. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  13. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  14. Nuclemeter: a reaction-diffusion based method for quantifying nucleic acids undergoing enzymatic amplification.

    PubMed

    Liu, Changchun; Sadik, Mohamed M; Mauk, Michael G; Edelstein, Paul H; Bushman, Frederic D; Gross, Robert; Bau, Haim H

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  15. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  16. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. PMID:26761615

  17. A generic assay for whole-genome amplification and deep sequencing of enterovirus A71

    PubMed Central

    Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L.; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C.; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier

    2015-01-01

    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples. PMID:25704598

  18. A generic assay for whole-genome amplification and deep sequencing of enterovirus A71.

    PubMed

    Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H Rogier

    2015-04-01

    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples. PMID:25704598

  19. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis.

    PubMed

    Balne, P K; Basu, S; Rath, S; Barik, M R; Sharma, S

    2015-01-01

    This study is a comparative evaluation (Chi-square test) of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP), real-time polymerase chain reaction (PCR) and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8%) was higher (not significant, P value 0.2) than conventional PCR (57.6%) and lower than real-time PCR (90.9%). Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20) by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings. PMID:26470966

  20. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    PubMed

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs. PMID:25582179

  1. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS).

    PubMed

    Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A

    2014-10-13

    Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists. PMID:25209570

  2. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS. PMID:10520585

  3. Development and comparative evaluation of loop mediated isothermal amplification (LAMP) assay for simple visual detection of orf virus in sheep and goats.

    PubMed

    Venkatesan, G; Bhanuprakash, V; Balamurugan, V

    2015-06-01

    A loop-mediated isothermal amplification (LAMP) assay targeting DNA Pol gene was optimized and evaluated for the rapid detection of orf virus in clinical samples. The LAMP assay was found to be specific and sensitive. The detection rate of LAMP (89.3%) was better than PCR (67.9%) and comparable to real-time PCR (91.1%) in clinical samples by gel electrophoresis and visual detection methods. This LAMP assay is simple and does not rely upon any special equipment and could be employed in clinical diagnosis and epidemiological survey of orf infection. PMID:25828693

  4. Effect of basic additives on sensitivity and diffusion of acid in chemical amplification resists

    NASA Astrophysics Data System (ADS)

    Asakawa, Koji; Ushirogouchi, Tohru; Nakase, Makoto

    1995-06-01

    The effect of amine additives in chemical amplification resists is discussed. Phenolic amines such as 4-aminophenol and 2-(4-aminophenyl)-2-(4-hydroxyphenyl) propane were investigated as model compounds from the viewpoint of sensitivity, diffusion and resolution. Equal molar amounts of acid and amine deactivated at the very beginning of post-exposure bake, and could not participate in decomposing the inhibitor as a catalyst. Only the acid which survived from the deactivation diffuses in the resist, decomposing the inhibitors from the middle to late stage of PEB. The basic additives reduce the diffusion range of the acid, especially for long-range diffusion, resulting in higher contrast at the interfaces between the exposed and unexposed areas. In addition, the amine concentration required is found to be less than the concentration which causes the resist sensitivity to start decreasing.

  5. Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays.

    PubMed

    Huang, Yong; Liu, Xiaoqian; Zhang, Liangliang; Hu, Kun; Zhao, Shulin; Fang, Baizong; Chen, Zhen-Feng; Liang, Hong

    2015-01-15

    In this work, two different configurations for novel amplified fluorescence polarization (FP) aptasensors based on nicking enzyme signal amplification (NESA) and graphene oxide (GO) enhancement have been developed for ultrasensitive and selective detection of biomolecules in homogeneous solution. One approach involves the aptamer-target binding induced the stable hybridization between an aptamer probe and a fluorophore-labeled DNA probe linked to GO, and forms a nicking site-containing duplex DNA region due to the enhancement of base stacking. The second analytical method involves the target induced the assembly of two aptamer subunits into an aptamer-target complex, and then hybridizes with a fluorophore-labeled DNA probe linked to GO, forming a nicking site-containing duplex DNA region. The formation of the duplex DNA region in both methods triggers the NESA process, resulting in the release of many short DNA fragments carrying the fluorophore from GO, generating a significant decrease of the FP value that provides the readout signal for the amplified sensing process. By using the NESA coupled GO enhancement path, the sensitivity of the developed aptasensors can be significantly improved by four orders of magnitude over traditional aptamer-based homogeneous assays. Moreover, these aptasensors also exhibit high specificity for target molecules, which are capable of detecting target molecule in biological samples. Considering these qualities, the proposed FP aptasensors based NESA and GO enhancement can be expected to provide an ultrasensitive platform for amplified analysis of target molecules. PMID:25087158

  6. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification.

    PubMed

    Cho, Il-Hoon; Bhunia, Arun; Irudayaraj, Joseph

    2015-08-01

    To date most LF-ICA format for pathogen detection is based on generating color signals from gold nanoparticle (AuNP) tracers that are perceivable by naked eye but often these methods exhibit sensitivity lower than those associated with the conventional enzyme-based immunological methods or mandated by the regulatory guidelines. By developing AuNP avidin-biotin constructs in which a number of enzymes can be labeled we report on an enhanced LF-ICA system to detect pathogens at very low levels. With this approach we show that as low as 100 CFU/mL of Escherichia coli O157:H7 can be detected, indicating that the limit of detection can be increased by about 1000-fold due to our signal amplification approach. In addition, extensive cross-reactivity experiments were conducted (19 different organisms were used) to test and successfully validate the specificity of the assay. Semi-quantitative analysis can be performed using signal intensities which were correlated with the target pathogen concentrations for calibration by image processing. PMID:25955290

  7. Development and application of loop-mediated isothermal amplification assays based on ITS-1 for rapid detection of Toxoplasma gondii in pork.

    PubMed

    Zhuo, Xunhui; Huang, Bin; Luo, Jiaqing; Yu, Haijie; Yan, Baolong; Yang, Yi; Du, Aifang

    2015-03-15

    The loop-mediated isothermal amplification (LAMP) assay is a novel method that rapidly amplifies DNA with high specificity and sensitivity under isothermal conditions. In this study, we established a LAMP assay with six primers targeting a highly conserved region of Toxoplasma gondii ITS-1 sequence. The amplification protocol completes within 30 min under isothermal condition in a 65°C water bath while specificity tests confirmed no cross-reactivity with DNA templates of Neospora caninum, Eimeria tenella, Cryptosporidium parvum, Listeria monocytogenes and Streptococcus suis. The detection limit of the LAMP assay was 0.9 fg T. gondii genomic DNA, a sensitivity that was 10-fold higher than that of a conventional PCR assay. Both LAMP assay and conventional PCR were applied to detect T. gondii genomic DNA in 118 diaphragm samples obtained from pig farms in Zhejiang Province, China. Our results showed that the LAMP assay is more sensitive than conventional PCR (13.56% and 9.32%). The LAMP assay established in this study provides a simple, specific, sensitive and rapid method of T. gondii genomic DNA detection, hence is expected to plays an important role in the monitoring of T. gondii contamination in various food products. PMID:25624074

  8. Loop-mediated isothermal amplification assay for 16S rRNA methylase genes in Gram-negative bacteria.

    PubMed

    Nagasawa, Mitsuaki; Kaku, Mitsuo; Kamachi, Kazunari; Shibayama, Keigo; Arakawa, Yoshichika; Yamaguchi, Keizo; Ishii, Yoshikazu

    2014-10-01

    Using the loop-mediated isothermal amplification (LAMP) method, we developed a rapid assay for detection of 16S rRNA methylase genes (rmtA, rmtB, and armA), and investigated 16S rRNA methylase-producing strains among clinical isolates. Primer Explorer V3 software was used to design the LAMP primers. LAMP primers were prepared for each gene, including two outer primers (F3 and B3), two inner primers (FIP and BIP), and two loop primers (LF and LB). Detection was performed with the Loopamp DNA amplification kit. For all three genes (rmtA, rmtB, and armA), 10(2) copies/tube could be detected with a reaction time of 60 min. When nine bacterial species (65 strains saved in National Institute of Infectious Diseases) were tested, which had been confirmed to possess rmtA, rmtB, or armA by PCR and DNA sequencing, the genes were detected correctly in these bacteria with no false negative or false positive results. Among 8447 clinical isolates isolated at 36 medical institutions, the LAMP method was conducted for 191 strains that were resistant to aminoglycosides based on the results of antimicrobial susceptibility tests. Eight strains were found to produce 16S rRNA methylase (0.09%), with rmtB being identified in three strains (0.06%) of 4929 isolates of Enterobacteriaceae, rmtA in three strains (0.10%) of 3284 isolates of Pseudomonas aeruginosa, and armA in two strains (0.85%) of 234 isolates of Acinetobacter spp. At present, the incidence of strains possessing 16S rRNA methylase genes is very low in Japan. However, when Gram-negative bacteria showing high resistance to aminoglycosides are isolated by clinical laboratories, it seems very important to investigate the status of 16S rRNA methylase gene-harboring bacilli and monitor their trends among Japanese clinical settings. PMID:25179393

  9. Target-driven self-assembly of stacking deoxyribonucleic acids for highly sensitive assay of proteins.

    PubMed

    Cao, Ya; Chen, Weiwei; Han, Peng; Wang, Zhuxin; Li, Genxi

    2015-08-26

    In this paper, we report a new signal amplification strategy for highly sensitive and enzyme-free method to assay proteins based on the target-driven self-assembly of stacking deoxyribonucleic acids (DNA) on an electrode surface. In the sensing procedure, binding of target protein with the aptamer probe is used as a starting point for a scheduled cycle of DNA hairpin assembly, which consists of hybridization, displacement and target regeneration. Following numbers of the assembly repeats, a great deal of DNA duplexes can accordingly be formed on the electrode surface, and then switch on a succeeding propagation of self-assembled DNA concatemers that provide further signal enhancement. In this way, each target binding event can bring out two cascaded DNA self-assembly processes, namely, stacking DNA self-assembly, and therefore can be converted into remarkably intensified electrochemical signals by associating with silver nanoparticle-based readout. Consequently, highly sensitive detection of target proteins can be achieved. Using interferon-gamma as a model, the assay method displays a linear range from 1 to 500 pM with a detection limit of 0.57 pM, which is comparable or even superior to other reported amplified assays. Moreover, the proposed method eliminates the involvement of any enzymes, thereby enhancing the feasibility in clinical diagnosis. PMID:26347164

  10. Telomerase Activity in the Various Regions of Mouse Brain: Non-Radioactive Telomerase Repeat Amplification Protocol (TRAP) Assay

    PubMed Central

    Grin, Yossi; Admoni, Tamar; Priel, Esther

    2014-01-01

    Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize 32P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region. PMID:25225832

  11. Telomerase activity in the various regions of mouse brain: non-radioactive telomerase repeat amplification protocol (TRAP) assay.

    PubMed

    Grin, Yossi; Admoni, Tamar; Priel, Esther

    2014-01-01

    Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize (32)P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region. PMID:25225832

  12. Development of a reliable dual-gene amplification RT-PCR assay for the detection of Turkey Meningoencephalitis virus in Turkey brain tissues.

    PubMed

    Davidson, Irit; Raibstein, Israel; Al-Tori, Amira; Khinich, Yevgeny; Simanov, Michael; Yuval, Chanoch; Perk, Shimon; Lublin, Avishai

    2012-11-01

    The Turkey Meningoencephalitis virus (TMEV) causes neuroparalytic signs, paresis, in-coordination, morbidity and mortality in turkeys. In parallel to the increased worldwide scientific interest in veterinary avian flaviviruses, including the Bagaza, Tembusu and Tembusu-related BYD virus, TMEV-caused disease also reemergence in commercial turkeys during late summer of 2010. While initially TMEV was detected by NS5-gene RT-PCR, subsequently, the env-gene RT-PCR was employed. As lately several inconsistencies were observed between the clinical, serological and molecular detection of the TMEV env gene, this study evaluated whether genetic changes occurred in the recently isolated viruses, and sought to optimize and improve the direct TMEV amplification from brain tissues of affected turkeys. The main findings indicated that no changes occurred during the years in the TMEV genome, but the PCR detection sensitivities of the env and NS5 genes differed. The RT-PCR and RNA purification were optimized for direct amplification from brain tissues without pre-replication of clinical samples in tissue cultures or in embryonated eggs. The amplification sensitivity of the NS5-gene was 10-100 times more than the env-gene when separate. The new dual-gene amplification RT-PCR was similar to that of the NS5 gene, therefore the assay can be considered as a reliable diagnostic assay. Cases where one of the two amplicons would be RT-PCR negative would alert and warn on the virus identity, and possible genetic changes. In addition, the biochemical environment of the dual-gene amplification reaction seemed to contribute in deleting non-specific byproducts that occasionally appeared in the singular RT-PCR assays on RNA purified from brain tissues. PMID:22705084

  13. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity.

    PubMed

    Xu, Zhenning; Yin, Huanshun; Han, Yunxiang; Zhou, Yunlei; Ai, Shiyun

    2014-06-01

    In this work, a novel electrochemical protocol with signal amplification for determination of DNA methylation and methyltransferase activity using DNA-based hybridization chain reaction (HCR) was proposed. After the gold electrode was modified with dsDNA, it was treated with M.SssI MTase, HpaII endonuclease, respectively. And then the HCR was initiated by the target DNA and two hairpin helper DNAs, which lead to the formation of extended dsDNA polymers on the electrode surface. The signal was amplified by the labeled biotin on the hairpin probes. As a result, the streptavidin-alkaline phosphatase (S-ALP) conjugated on the electrode surface through the specific interaction between biotin and S-ALP. ALP could convert 1-naphthyl phosphate into 1-naphthol and the latter could be electrochemically oxidized, which was used to monitor the methylation event and MTase activity. The HCR assay presents good electrochemical responses for the determination of M.SssI MTase at a concentration as low as 0.0067 uni tmL(-1). Moreover, the effects of anti-cancer drug and environmental phenolic hormone on M.SssI MTase activity were also investigated. The results indicated that 5-fluorouracil and daunorubicin hydrochloride could inhibit the activity, and the opposite results were obtained with bisphenol A and nonylphenol. Therefore, this method can not only provide a platform to screen the inhibitors of DNA MTase and develop new anticancer drugs, but also offer a novel technique to investigate the possible carcinogenesis mechanism. PMID:24856396

  14. In-house phage amplification assay is a sound alternative for detecting rifampin-resistant Mycobacterium tuberculosis in low-resource settings.

    PubMed

    Símboli, Norberto; Takiff, Howard; McNerney, Ruth; López, Beatriz; Martin, Anandi; Palomino, Juan Carlos; Barrera, Lucía; Ritacco, Viviana

    2005-01-01

    An in-house mycobacteriophage amplification assay for detecting rifampin-resistant Mycobacterium tuberculosis showed 100% sensitivity, 97.7% specificity, and 95.2% predictive value for resistance in a test of 129 isolates from a hot spot area of multidrug-resistant M. tuberculosis. The applicability of the test was demonstrated in the routine work flow of a low-resource reference laboratory. PMID:15616326

  15. In-House Phage Amplification Assay Is a Sound Alternative for Detecting Rifampin-Resistant Mycobacterium tuberculosis in Low-Resource Settings

    PubMed Central

    Símboli, Norberto; Takiff, Howard; McNerney, Ruth; López, Beatriz; Martin, Anandi; Palomino, Juan Carlos; Barrera, Lucía; Ritacco, Viviana

    2005-01-01

    An in-house mycobacteriophage amplification assay for detecting rifampin-resistant Mycobacterium tuberculosis showed 100% sensitivity, 97.7% specificity, and 95.2% predictive value for resistance in a test of 129 isolates from a hot spot area of multidrug-resistant M. tuberculosis. The applicability of the test was demonstrated in the routine work flow of a low-resource reference laboratory. PMID:15616326

  16. Simultaneous assay of DNA and RNA targets in the whole blood using novel isolation procedure and molecular colony amplification.

    PubMed

    Chetverina, Helena V; Falaleeva, Marina V; Chetverin, Alexander B

    2004-11-15

    A universal procedure that permits the whole human blood to be tested for the presence of single molecules of DNA and RNA targets is described. The procedure includes a novel protocol for the isolation of total nucleic acids from the guanidinium thiocyanate lysate of unfractionated blood in which, prior to phenol/chloroform extraction, the sample is deproteinized by precipitation with isopropanol. The procedure results in a nearly 100% yield of DNA and RNA, preserves the integrity of RNA, and removes any polymerase chain reaction (PCR) inhibitors. Following reverse transcription (RT), target molecules are counted after having been amplified as molecular colonies by carrying out PCR in a polyacrylamide gel. The entire procedure was checked by assaying viral DNA and RNA in 100-microl aliquots of the whole blood and was found to be capable of detecting 100% molecules of DNA target and 50% molecules of RNA target. Unexpectedly, nucleic acids at relatively high concentrations (1 ng/microl) were found to selectively inhibit the RT activity of Thermus thermophilus DNA polymerase without affecting its DNA-dependent polymerization activity. It follows that the popular single-enzyme RT-PCR format, in which this DNA polymerase serves for both RT and PCR, is not appropriate for assaying rare RNA targets. PMID:15494145

  17. Interference of N-hydroxysuccinimide with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Dixit, Chandra Kumar

    2011-07-29

    We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu(2+) in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time-response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample. PMID:21762678

  18. Development of a stable isotope dilution assay for tenuazonic acid.

    PubMed

    Asam, Stefan; Liu, Yang; Konitzer, Katharina; Rychlik, Michael

    2011-04-13

    A stable isotope dilution assay (SIDA) for the Alternaria mycotoxin tenuazonic acid was developed. Therefore, [(13)C(6),(15)N]-tenuazonic acid was synthesized from [(13)C(6),(15)N]-isoleucine by Dieckmann intramolecular cyclization after acetoacetylation with diketene. The synthesized [(13)C(6),(15)N]-tenuazonic acid was used as the internal standard for determination of tenuazonic acid in tomato products by liquid chromatography tandem mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Method validation revealed a limit of detection of 0.1 μg/kg and a limit of quantitation of 0.3 μg/kg. Recovery was close to 100% in the range of 3-300 μg/kg. Determination of tenuazonic acid in two samples of different tomato ketchups (naturally contaminated) was achieved with a coefficient of variation of 2.3% and 4.7%. Different tomato products (n = 16) were analyzed for their content of tenuazonic acid using the developed SIDA. Values were between 15 and 195 μg/kg (tomato ketchup, n = 9), 363 and 909 μg/kg (tomato paste, n = 2), and 8 and 247 μg/kg (pureed tomatoes and comparable products, n = 5). PMID:21370870

  19. Improved Detection Limit in Rapid Detection of Human Enterovirus 71 and Coxsackievirus A16 by a Novel Reverse Transcription–Isothermal Multiple-Self-Matching-Initiated Amplification Assay

    PubMed Central

    Ding, Xiong; Nie, Kai; Shi, Lei; Zhang, Yong; Guan, Li; Zhang, Dan

    2014-01-01

    Rapid detection of human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) is important in the early phase of hand-foot-and-mouth disease (HFMD). In this study, we developed and evaluated a novel reverse transcription–isothermal multiple-self-matching-initiated amplification (RT-IMSA) assay for the rapid detection of EV71 and CVA16 by use of reverse transcriptase, together with a strand displacement DNA polymerase. Real-time RT-IMSA assays using a turbidimeter and visual RT-IMSA assays to detect EV71 and CVA16 were established and completed in 1 h, and the reported corresponding real-time reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assays targeting the same regions of the VP1 gene were adopted as parallel tests. Through testing VP1 RNAs transcribed in vitro, the real-time RT-IMSA assays exhibited better linearity of quantification, with R2 values of 0.952 (for EV71) and 0.967 (for CVA16), than the real-time RT-LAMP assays, which had R2 values of 0.803 (for EV71) and 0.904 (for CVA16). Additionally, the detection limits of the real-time RT-IMSA assays (approximately 937 for EV71 and 67 for CVA16 copies/reaction) were higher than those of real-time RT-LAMP assays (approximately 3,266 for EV71 and 430 for CVA16 copies/reaction), and similar results were observed in the visual RT-IMSA assays. The new approaches also possess high specificities for the corresponding targets, with no cross-reactivity observed. In clinical assessment, compared to commercial reverse transcription-quantitative PCR (qRT-PCR) kits, the diagnostic sensitivities of the real-time RT-IMSA assays (96.4% for EV71 and 94.6% for CVA16) were higher than those of the real-time RT-LAMP assays (91.1% for EV71 and 90.8% for CVA16). The visual RT-IMSA assays also exhibited the same results. In conclusion, this proof-of-concept study suggests that the novel RT-IMSA assay is superior to the RT-LAMP assay in terms of detection limit and has the potential to rapidly detect EV71

  20. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends

    PubMed Central

    Zhang, Chunsun; Xing, Da

    2007-01-01

    The possibility of performing fast and small-volume nucleic acid amplification and analysis on a single chip has attracted great interest. Devices based on this idea, referred to as micro total analysis, microfluidic analysis, or simply ‘Lab on a chip’ systems, have witnessed steady advances over the last several years. Here, we summarize recent research on chip substrates, surface treatments, PCR reaction volume and speed, architecture, approaches to eliminating cross-contamination and control and measurement of temperature and liquid flow. We also discuss product-detection methods, integration of functional components, biological samples used in PCR chips, potential applications and other practical issues related to implementation of lab-on-a-chip technologies. PMID:17576684

  1. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    PubMed

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. PMID:27044566

  2. Application of loop-mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis.

    PubMed

    Verma, Sandeep; Avishek, Kumar; Sharma, Vanila; Negi, Narendra Singh; Ramesh, Venkatesh; Salotra, Poonam

    2013-04-01

    Loop-mediated isothermal amplification (LAMP) is at the forefront in the search for innovative diagnostics for rapid and specific amplification of target DNA under isothermal conditions. We have applied LAMP assay using SYBR Green for clear-cut naked eye detection of Leishmania (Leishmania) donovani in 200 clinical samples of visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL). The assay was positive in 53/55 VL blood samples (sensitivity, 96.4%; 95% confidence interval [CI], 87.7-99%), 15/15 VL bone marrow aspirate samples (sensitivity, 100%; 95% CI, 79.6-100%), 60/62 PKDL tissue biopsy samples (sensitivity, 96.8%; 95% CI, 88.9-99.1%), and 1/68 control samples (specificity, 98.5%; 95% CI, 92.1-99.7%). The assay was specific for L. (L.) donovani, the causative species for VL and negative for L. (L.) infantum, L. (L.) tropica, and L. (L.) major. This is the first comprehensive clinical study demonstrating the applicability of the LAMP assay for a rapid and reliable molecular diagnosis of VL and PKDL. PMID:23433714

  3. A method for simultaneous detection and identification of Brazilian dog- and vampire bat-related rabies virus by reverse transcription loop-mediated isothermal amplification assay.

    PubMed

    Saitou, Yasumasa; Kobayashi, Yuki; Hirano, Shinji; Mochizuki, Nobuyuki; Itou, Takuya; Ito, Fumio H; Sakai, Takeo

    2010-09-01

    At present, the sporadic occurrence of human rabies in Brazil can be attributed primarily to dog- and vampire bat-related rabies viruses. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) was employed as a simultaneous detection method for both rabies field variants within 60 min. Vampire bat-related rabies viruses could be distinguished from dog variants by digesting amplicons of the RT-LAMP reaction using the restriction enzyme AlwI. Amplification and digestion could both be completed within 120 min after RNA extraction. In addition, the RT-LAMP assay also detected rabies virus in isolates from Brazilian frugivorous bats and Ugandan dog, bovine and goat samples. In contrast, there were false negative results from several Brazilian insectivorous bats and all of Chinese dog, pig, and bovine samples using the RT-LAMP assay. This study showed that the RT-LAMP assay is effective for the rapid detection of rabies virus isolates from the primary reservoir in Brazil. Further improvements are necessary so that the RT-LAMP assay can be employed for the universal detection of genetic variants of rabies virus in the field. PMID:20403387

  4. Analysis of HCV resistance mutations during combination therapy with protease inhibitor boceprevir and PEG-IFN alpha-2b using TaqMan mismatch amplification mutation assay.

    PubMed

    Curry, Stephanie; Qiu, Ping; Tong, Xiao

    2008-11-01

    TaqMan Mismatch Amplification Mutation Assay (TaqMAMA) is a highly sensitive allelic discrimination method. The mismatch amplification mutation assay (MAMA) is based on preferential amplification of mutant allele by the 'MAMA' primer, which is designed to have two mismatches with the wild-type allele and only one mismatch with the mutant allele. In this report, the TaqMAMA method was adapted for the detection and quantitation of minor HCV variants resistant to the protease inhibitor boceprevir (SCH 503034) from clinical samples. A good correlation of mutant frequency was observed between TaqMAMA and the results of clonal sequencing. TaqMAMA detected consistently minor variants at a level as low as 0.1%. Using TaqMAMA, it was demonstrated that resistant variants existed in the viral population before boceprevir treatment. The frequency of two resistant mutants (T54A and V170A) increased significantly during treatment with boceprevir, but was suppressed by combination treatment of PEG-IFN alpha-2b and boceprevir. The prevalence of both mutants decreased at the end of the two-week follow-up period. These results show that TaqMAMA can be used to detect minor resistant variants in pretreatment samples and to study in detail the evolution of mutant viruses during targeted antiviral therapy. PMID:18755220

  5. Investigation of false positives associated with loop-mediated isothermal amplification assays for detection of Toxoplasma gondii in archived tissue samples of captive felids.

    PubMed

    Suleman, Essa; Mtshali, Moses Sibusiso; Lane, Emily

    2016-09-01

    Toxoplasma gondii is a ubiquitous protozoan parasite that infects humans and many different animals, including felids. Many molecular and serologic tests have been developed for detection of T. gondii in a wide range of hosts. Loop-mediated isothermal amplification (LAMP) is a field-friendly technique that lacks the practical drawbacks of other molecular and serologic tests, and LAMP assays have been successfully developed for detection of T. gondii in fresh tissue samples. In the current study, both a previously published and a de-novo designed LAMP assay were compared to a quantitative real-time (q)PCR assay, for the detection of T. gondii in archived formalin-fixed, paraffin-embedded (FFPE) tissue samples from captive wildlife. The LAMP assays produced conflicting results, generating both false positives and false negatives. Furthermore, the LAMP assays were unable to positively identify samples with low levels of parasites as determined by qPCR and histopathology. Therefore, these LAMP assays may not be the most suitable assays for detection of T. gondii in archived FFPE and frozen tissue samples. PMID:27449130

  6. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer.

    PubMed

    Ye, SuJuan; Zhai, XiaoMo; Wu, YanYing; Kuang, ShaoPing

    2016-05-15

    Highly sensitive detection of proteins, especially those associated with cancers, is essential to biomedical research as well as clinical diagnosis. In this work, a simple and novel one-two-three signal amplification surface-enhanced Raman scattering (SERS) method for the detection of protein is fabricated by using label-free aptamer and dual-primer self-generation. Platelet-derived growth factor B-chain (PDGF-BB) is selected as the model protein. The one-two-three cascade DNA amplification means one target-aptamer binding event, two hairpin DNA switches and three DNA amplification reactions. This strategy possesses some remarkable features compared to conventional signal amplification methods: (i) A smart probe including a label-free aptamer is fabricated, for suitable hybridization without hindering the affinity of the aptamer toward its target. (ii) Using the unique structure switch of the aptamer and cooperator, a one-two-three working mode is developed to amplify the SERS signal. The amplification efficiency is enhanced. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish ultrasensitive detection of proteins. The detection limit of PDGF-BB via SERS detection is 0.42 pM, with the linear range from 1.0×10(-12)M to 10(-8)M. It is potentially universal because the aptamer can be easily designed for biomolecules whose aptamers undergo similar conformational changes. PMID:26703991

  7. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate and compare amino acid digestibility of several feedstuffs using 2 commonly accepted methods: the precision-fed cecectomized rooster assay (PFR) and the standardized ileal amino acid assay (SIAAD). Six corn, 6 corn distillers dried grains with or without s...

  8. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.

    PubMed

    Bi, Sai; Jia, Xiaoqiang; Ye, Jiayan; Dong, Ying

    2015-09-15

    Gold nanomaterials promise a wide range of potential applications in chemical and biological sensing, imaging, and catalysis. In this paper, we demonstrate a facile method for room-temperature synthesis of gold nanostars (AuNSs) with a size of ~50 nm via seeded growth. Significantly, the AuNSs are found to have high light-scattering properties, which are successfully used as labels for sensitive and selective detection of nucleic acids and proteins by using exonuclease III (Exo III) as a biocatalyst. For DNA detection, the binding of targets to the functionalized AuNS probes leads to the Exo III-stimulated cascade recycling amplification. As a result, a large amount of AuNSs are released from magnetic nanoparticles (MNPs) into solution, providing a greatly enhanced light-scattering signal for amplified sensing process. Moreover, a binding-induced DNA three-way junction (DNA TWJ) is introduced to thrombin detection, in which the binding of two aptamers to thrombin triggers assembly of the DNA motifs and initiates the subsequent DNA strand displacement reaction (SDR) and Exo III-assisted cascade recycling amplification. The detection limits of 89 fM and 5.6 pM are achieved for DNA and thrombin, respectively, which are comparable to or even exceed that of the reported isothermal amplification methods. It is noteworthy that based on the DNA TWJ strategy the sequences are independent on target proteins. Additionally, the employment of MNPs in the assays can not only simplify the operations but also improve the detection sensitivity. Therefore, the proposed amplified light-scattering assay with high sensitivity and selectivity, acceptable accuracy, and satisfactory versatility of analytes provides various applications in bioanalysis. PMID:25950939

  9. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  10. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM)

    PubMed Central

    Harshman, Dustin K.; Reyes, Roberto; Park, Tu San; You, David J.; Song, Jae-Young; Yoon, Jeong-Yeol

    2013-01-01

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 sec/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/µL or 105 genomes/µL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity. PMID:24140832