Sample records for acid bacteria belonging

  1. Lactic acid bacteria in the quality improvement and depreciation of wine.

    PubMed

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  2. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.

    PubMed

    Luengo, José M; Olivera, Elías R

    2017-01-01

    The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and other steroids (e.g., testosterone and 4-androsten-3,17-dione). From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemical defined media containing some cyclopentane-perhydro-phenantrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the 9,10-seco pathway, the route involved in the aerobic assimilation of steroids. In this manuscript, we describe the most relevant methods required for (1) isolation and characterization of these species; (2) determining the chromosomal location, nucleotide sequence, and functional analysis of the catabolic genes (or gene clusters) encoding the enzymes from this pathway; and (3) the tools employed to establish the role of some of the proteins that participate in this route.

  3. Lactic acid bacteria isolated from apples are able to catabolise arginine.

    PubMed

    Savino, María J; Sánchez, Leandro A; Saguir, Fabiana M; de Nadra, María C Manca

    2012-03-01

    We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.

  4. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  5. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  6. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  7. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    NASA Astrophysics Data System (ADS)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  8. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria.

    PubMed

    Lefèvre, Christopher T; Viloria, Nathan; Schmidt, Marian L; Pósfai, Mihály; Frankel, Richard B; Bazylinski, Dennis A

    2012-02-01

    Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoautotrophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiometrically to sulfate. They appear to utilize the Calvin-Benson-Bassham cycle for autotrophy based on ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity and the presence of partial sequences of RubisCO genes. Strains BW-2 and SS-5 biomineralize chains of octahedral magnetite crystals, although the crystals of SS-5 are elongated. Based on 16S rRNA gene sequences, both strains are phylogenetically affiliated with the Gammaproteobacteria class. Strain SS-5 belongs to the order Chromatiales; the cultured bacterium with the highest 16S rRNA gene sequence identity to SS-5 is Thiohalocapsa marina (93.0%). Strain BW-2 clearly belongs to the Thiotrichales; interestingly, the organism with the highest 16S rRNA gene sequence identity to this strain is Thiohalospira alkaliphila (90.2%), which belongs to the Chromatiales. Each strain represents a new genus. This is the first report of magnetite-producing MTB phylogenetically associated with the Gammaproteobacteria. This finding is important in that it significantly expands the phylogenetic diversity of the MTB. Physiology of these strains is similar to other MTB and continues to demonstrate their potential in nitrogen, iron, carbon and sulfur cycling in natural environments.

  9. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  10. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  11. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Molecular taxonomy and phylogenetic position of lactic acid bacteria.

    PubMed

    Stackebrandt, E; Teuber, M

    1988-03-01

    Lactic acid bacteria, important in food technology, are Gram-positive organisms exhibiting a DNA G + C content of less than 50 mol%. Phylogenetically they are members of the Clostridium-Bacillus subdivision of Gram-positive eubacteria. Lactobacillus and streptococci together with related facultatively anaerobic taxa evolved as individual lines of descent about 1.5-2 billion years ago when the earth passed from an anaerobic to an aerobic environment. In contrast to the traditional, morphology-based classification, the genus Lactobacillus is intermixed with strains of Pediococcus and Leuconostoc. Similarly, the physiology-based clustering of lactobacilli into Thermo-, Strepto- and Betabacterium does not agree with their phylogenetic relationships. On the other hand, the phenotypically defined genus Streptococcus is not a phylogenetic coherent genus but its members fall into at least 3 moderately related genera, i.e. Streptococcus, Lactococcus and Enterococcus. The genus Bifidobacterium, frequently grouped with the lactobacilli, is the most ancient group of the second, the Actinomycetes subdivision of the Gram-positive eubacteria. In addition, propionibacteria, microbacteria and brevibacteria belong to this subdivision but the latter organisms appear as offshoots of non-lactic acid bacteria.

  13. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia.

    PubMed

    Sun, Z H; Liu, W J; Zhang, J C; Yu, J; Gao, W; Jiri, M; Menghe, B; Sun, T S; Zhang, H P

    2010-05-01

    Five samples of Airag and 20 of Tarag (both in Mongolia) were collected from scattered households. One hundred strains of lactic acid bacteria (LAB) were isolated and identified from these samples according to phenotypic characterization and 16S rRNA gene sequence analysis. Eighty-five isolates belonged to the genus Lactobacillus, 15 being classified as coccoid LAB. All isolates belonged to 5 genera and 11 to different species and subspecies. Lactobacillus (Lb.) helveticus was predominant population in Airag samples, Lb. fermentum and Lb. helveticus were the major LAB microflora in Tarag.

  14. Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben).

    PubMed

    Ouadghiri, Mouna; Amar, Mohamed; Vancanneyt, Marc; Swings, Jean

    2005-10-15

    The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.

  15. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient.

    PubMed

    Leisner, J J; Pot, B; Christensen, H; Rusul, G; Olsen, J E; Wee, B W; Muhamad, K; Ghazali, H M

    1999-02-01

    Ninety-two strains of lactic acid bacteria (LAB) were isolated from a Malaysian food ingredient, chili bo, stored for up to 25 days at 28 degreesC with no benzoic acid (product A) or with 7,000 mg of benzoic acid kg-1 (product B). The strains were divided into eight groups by traditional phenotypic tests. A total of 43 strains were selected for comparison of their sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) whole-cell protein patterns with a SDS-PAGE database of LAB. Isolates from product A were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus farciminis, Pediococcus acidilactici, Enterococcus faecalis, and Weissella confusa. Five strains belonging to clusters which could not be allocated to existing species by SDS-PAGE were further identified by 16S rRNA sequence comparison. One strain was distantly related to the Lactobacillus casei/Pediococcus group. Two strains were related to Weissella at the genus or species level. Two other strains did not belong to any previously described 16S rRNA group of LAB and occupied an intermediate position between the L. casei/Pediococcus group and the Weissella group and species of Carnobacterium. The latter two strains belong to the cluster of LAB that predominated in product B. The incidence of new species and subspecies of LAB in chili bo indicate the high probability of isolation of new LAB from certain Southeast Asian foods. None of the isolates exhibited bacteriocin activity against L. plantarum ATCC 14917 and LMG 17682.

  18. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    PubMed

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  19. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  20. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced.

  1. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  3. Comparative genomics of the lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, K.; Slesarev, A.; Wolf, Y.

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less

  4. Identification of Lactic Acid Bacteria from Chili Bo, a Malaysian Food Ingredient

    PubMed Central

    Leisner, Jørgen J.; Pot, Bruno; Christensen, Henrik; Rusul, Gulam; Olsen, John E.; Wee, Bee Wah; Muhamad, Kharidah; Ghazali, Hasanah M.

    1999-01-01

    Ninety-two strains of lactic acid bacteria (LAB) were isolated from a Malaysian food ingredient, chili bo, stored for up to 25 days at 28°C with no benzoic acid (product A) or with 7,000 mg of benzoic acid kg−1 (product B). The strains were divided into eight groups by traditional phenotypic tests. A total of 43 strains were selected for comparison of their sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) whole-cell protein patterns with a SDS-PAGE database of LAB. Isolates from product A were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus farciminis, Pediococcus acidilactici, Enterococcus faecalis, and Weissella confusa. Five strains belonging to clusters which could not be allocated to existing species by SDS-PAGE were further identified by 16S rRNA sequence comparison. One strain was distantly related to the Lactobacillus casei/Pediococcus group. Two strains were related to Weissella at the genus or species level. Two other strains did not belong to any previously described 16S rRNA group of LAB and occupied an intermediate position between the L. casei/Pediococcus group and the Weissella group and species of Carnobacterium. The latter two strains belong to the cluster of LAB that predominated in product B. The incidence of new species and subspecies of LAB in chili bo indicate the high probability of isolation of new LAB from certain Southeast Asian foods. None of the isolates exhibited bacteriocin activity against L. plantarum ATCC 14917 and LMG 17682. PMID:9925588

  5. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications

    PubMed Central

    2014-01-01

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed. PMID:25186038

  6. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    PubMed

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.

  7. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  8. Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus.

    PubMed

    Gaisin, Vasil A; Grouzdev, Denis S; Namsaraev, Zorigto B; Sukhacheva, Marina V; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2016-03-01

    Isolated environments such as hot springs are particularly interesting for studying the microbial biogeography. These environments create an 'island effect' leading to genetic divergence. We studied the phylogeographic pattern of thermophilic anoxygenic phototrophic bacteria, belonging to the Roseiflexus genus. The main characteristic of the observed pattern was geographic and geochronologic fidelity to the hot springs within Circum-Pacific and Alpine-Himalayan-Indonesian orogenic belts. Mantel test revealed a correlation between genetic divergence and geographic distance among the phylotypes. Cluster analysis revealed a regional differentiation of the global phylogenetic pattern. The phylogeographic pattern is in correlation with geochronologic events during the break up of Pangaea that led to the modern configuration of continents. To our knowledge this is the first geochronological scenario of intercontinental prokaryotic taxon divergence. The existence of the modern phylogeographic pattern contradicts with the existence of the ancient evolutionary history of the Roseiflexus group proposed on the basis of its deep-branching phylogenetic position. These facts indicate that evolutionary rates in Roseiflexus varied over a wide range. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Borovilos, M.; Zhou, M

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less

  10. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  12. Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria.

    PubMed

    Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah

    2018-06-15

    Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae , but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented

  13. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  14. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  15. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  16. [Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae].

    PubMed

    Rudikovskaya, E G; Akimova, G P; Rudikovskii, A V; Katysheva, N B; Dudareva, L V

    2017-01-01

    A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.

  17. Citric acid metabolism in hetero- and homofermentative lactic acid bacteria.

    PubMed Central

    Drinan, D F; Robin, S; Cogan, T M

    1976-01-01

    The effect of citrate on production of diacetyl and acetoin by four strains each of heterofermentative and homofermentative lactic acid bacteria capable of utilizing citrate was studied. Acetoin was quantitatively the more important compound. The heterofermentative bacteria produced no acetoin or diacetyl in the absence of citrate, and two strains produced traces of acetoin in its presence. Citrate stimulated the growth rate of the heterofermentative lactobacilli. Acidification of all heterofermentative cultures with citric acid resulted in acetoin production. Destruction of accumulated acetoin appeared to coincide with the disappearance of citrate. All homofermentative bacteria produced more acetoin and diacetyl in the presence of citrate than in its absence. Citrate utilization was begun immediately by the streptococci but was delayed until at least the middle of the exponential phase in the case of the lactobacilli. PMID:5054

  18. Lactic acid bacteria found in fermented fish in Thailand.

    PubMed

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  19. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  20. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  1. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  2. Humic Acid Reduction by Propionibacterium freudenreichii and Other Fermenting Bacteria

    PubMed Central

    Benz, Marcus; Schink, Bernhard; Brune, Andreas

    1998-01-01

    Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments. PMID:9797315

  3. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria.

    PubMed

    Fujita, Koji; Ichimasa, Shiro; Zendo, Takeshi; Koga, Shoko; Yoneyama, Fuminori; Nakayama, Jiro; Sonomoto, Kenji

    2007-05-01

    Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.

  4. Review - Lactic acid bacteria in traditional fermented Asian foods.

    PubMed

    Azam, Mariya; Mohsin, Mashkoor; Ijaz, Hira; Tulain, Ume Ruqia; Ashraf, Muhammad Adnan; Fayyaz, Ahad; Abadeen, Zainul; Kamran, Qindeel

    2017-09-01

    Lactic acid bacteria play vital roles in various fermented foods in Asia. This paper reviews many types of the world's lactic acid fermented foods and discusses the beneficial effects of lactic acid fermentation of food. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Lactic acid bacteria (LAB) are involved in many fermentation processes of Asian traditional foods, demonstrating their profound effects on improving food quality and food safety. During the past few decades' interest has arisen in the use of the varied antagonistic activities of LAB to extent the shelf-life of protein-rich products such as meats and fish. This review article outlines the main types of LAB fermentation as well as their typical fermented foods such as idli, kishk, sauerkraut, koumiss, Suan-tsai, stinky tofu, Chinese sausage and kefir. The roles of LAB and the reasons for their common presence are also discussed.

  5. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures.

    PubMed

    Kostinek, M; Specht, I; Edward, V A; Pinto, C; Egounlety, M; Sossa, C; Mbugua, S; Dortu, C; Thonart, P; Taljaard, L; Mengu, M; Franz, C M A P; Holzapfel, W H

    2007-03-20

    A total of 375 lactic acid bacteria were isolated from fermenting cassava in South Africa, Benin, Kenya and Germany, and were characterised by phenotypic and genotypic tests. These could be divided into five main groups comprising strains of facultatively heterofermentative rods, obligately heterofermentative rods, heterofermentative cocci, homofermentative cocci and obligately homofermentative rods, in decreasing order of predominance. Most of the facultatively heterofermentative rods were identified by phenotypic tests as presumptive Lactobacillus plantarum-group strains, which also comprised the most predominant bacteria (54.4% of strains) isolated in the study. The next predominant group of lactic acid bacteria (14.1% of total isolates) consisted of obligately heterofermentative rods belonging either to the genus Lactobacillus or Weissella, followed by the heterofermentative cocci (13.9% of isolates) belonging to the genera Weissella or Leuconostoc. Homofermentative cocci were also isolated (13.3% of isolates). Biochemical properties such as production of alpha-amylase, beta-glucosidase, tannase, antimicrobials (presumptive bacteriocin and H(2)O(2)-production), acidification and fermentation of the indigestible sugars raffinose and stachyose, were evaluated in vitro for selection of potential starter strains. A total of 32 strains with one or more desirable biochemical properties were pre-selected and identified using rep-PCR fingerprinting in combination with 16S rRNA sequencing of representative rep-PCR cluster isolates. Of these strains, 18 were identified as L. plantarum, four as Lactobacillus pentosus, two each as Leuconostoc fallax, Weissella paramesenteroides and Lactobacillus fermentum, one each as Leuconostoc mesenteroides subsp. mesenteroides and Weissella cibaria, while two remained unidentified but could be assigned to the L. plantarum-group. These strains were further investigated for clonal relationships, using RAPD-PCR with three primers, and of

  6. Characterization of lactic acid bacteria from local cow´s milk kefir

    NASA Astrophysics Data System (ADS)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  7. Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk

    NASA Astrophysics Data System (ADS)

    Jatmiko, Yoga Dwi; Howarth, Gordon S.; Barton, Mary D.

    2017-11-01

    This study aimed to characterize the probiotic properties of lactic acid bacteria from the naturally fermented milk of Indonesia, namely dangke and dadih. Fifty-one representative lactic acid bacteria belonging to the species Lactobacillus Plantarum, Lactococcus lactis subsp. lactis and Enterococcus faecium were evaluated in vitro for potential probiotic properties based on their bile salt resistance, low pH tolerance, antimicrobial activity, antibiotic susceptibility and adherence to Caco-2 colon cancer cells. In addition, bacteriocin related gene (plantaricin A), bile salt hydrolase (bsh) and mannose-specific adhesin (msa) genes in the genome of lactobacilli were also examined. None of the dangke isolates, which belonged to the species L. lactis subsp. lactis tolerated low pH. However, eight of the isolates were able to grow in the presence of bile salts. It was observed that L. plantarum strain S1.30 and SL2.7 from dadih tolerated low pH, survived bile salt concentrations and were resistant to vancomycin. Furthermore, these strains also contained bacteriocin regulating gene (plantaricin A) and msa and bsh genes in their genome. However, only the strain S1.30 exhibited optimal antimicrobial activity against the selected pathogens and was able to adhere to Caco-2 cells by up to 82.24±0.14%. Antagonistic activity of L. lactis subsp. lactis from dadih and dangke was not detected. However, 73.94±1.26% adherence to Caco-2 cells was demonstrated by L. lactis subsp. lactis strain SL3.34 sourced from dangke. These results suggest that Lactobacillus plantarum strain S1.30 associated with dadih fulfilled the in vitro probiotic criteria and could be exploited for further in vivo evaluation. In addition, dadih was an effective probiotic carrier compared to dangke.

  8. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  9. Human milk is a source of lactic acid bacteria for the infant gut.

    PubMed

    Martín, Rocío; Langa, Susana; Reviriego, Carlota; Jimínez, Esther; Marín, María L; Xaus, Jordi; Fernández, Leonides; Rodríguez, Juan M

    2003-12-01

    To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.

  10. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication.

    PubMed

    Eijsink, Vincent G H; Axelsson, Lars; Diep, Dzung B; Håvarstein, Leiv S; Holo, Helge; Nes, Ingolf F

    2002-08-01

    Lactic acid bacteria (LAB) fight competing Gram-positive microorganisms by secreting anti-microbial peptides called bacteriocins. Peptide bacteriocins are usually divided into lantibiotics (class I) and non-lantibiotics (class II), the latter being the main topic of this review. During the past decade many of these bacteriocins have been isolated and characterized, and elements of the genetic mechanisms behind bacteriocin production have been unravelled. Bacteriocins often have a narrow inhibitory spectrum, and are normally most active towards closely related bacteria likely to occur in the same ecological niche. Lactic acid bacteria seem to compensate for these narrow inhibitory spectra by producing several bacteriocins belonging to different classes and having different inhibitory spectra. The latter may also help in counteracting the possible development of resistance mechanisms in target organisms. In many strains, bacteriocin production is controlled in a cell-density dependent manner, using a secreted peptide-pheromone for quorum-sensing. The sensing of its own growth, which is likely to be comparable to that of related species, enables the producing organism to switch on bacteriocin production at times when competition for nutrients is likely to become more severe. Although today a lot is known about LAB bacteriocins and the regulation of their production, several fundamental questions remain to be solved. These include questions regarding mechanisms of immunity and resistance, as well as the molecular basis of target-cell specificity.

  11. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    PubMed Central

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J.; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence. Images PMID:16347150

  13. Biotechnological applications of acetic acid bacteria.

    PubMed

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  14. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  15. Preliminary Analysis of Lipids and Fatty Acids of Green Bacteria and Chloroflexus aurantiacus

    PubMed Central

    Kenyon, Christine N.; Gray, Alane M.

    1974-01-01

    The complex lipids and fatty acids of the seven type species of green bacteria and three strains of Chloroflexus aurantiacus were analyzed. The green bacteria contained lipids that behaved as cardiolipin and phosphatidylglycerol on thin-layer chromatography. They did not contain phosphatidylethanolamine or phosphatidylserine. Similarly, Chloroflexus contained lipids that behaved as phosphatidylglycerol and phosphatidylinositol on thin-layer chromatography and did not contain phosphatidylethanolamine or phosphatidylserine. The green bacteria contained glycolipids I and II of Constantopoulos and Bloch (monogalactosyldiglyceride and a galactose- and rhamnose-containing diglyceride). Chloroflexus exhibited galactose-containing glycolipids that behaved identically with the mono- and digalactosyldiglycerides of spinach on thin-layer chromatography, and each contained galactose as well as at least one other sugar. The fatty acids of both groups of bacteria consisted entirely of saturated and monounsaturated fatty acids. In the green bacteria, myristic, palmitic, and hexadecenoic acids predominated. In Chloroflexus, palmitic, stearic, and oleic acids predominated. The positions of the double bonds in the monounsaturated fatty acids of Chloroflexus indicated synthesis by the anaerobic pathway. The lipid analyses suggest a close relationship between the green bacteria and Chloroflexus and further suggest that these groups of photosynthetic bacteria are more closely related to the blue-green algae than are the purple bacteria. Images PMID:4421249

  16. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  17. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  18. Heme and menaquinone induced electron transport in lactic acid bacteria.

    PubMed

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  19. Production of Value-added Products by Lactic Acid Bacteria

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  20. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  1. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria.

    PubMed

    Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G; Coda, Rossana

    2017-01-01

    This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8-9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus , while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes . Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications.

  2. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria

    PubMed Central

    Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G.; Coda, Rossana

    2017-01-01

    This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8–9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus, while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes. Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications. PMID:29312174

  3. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    PubMed Central

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  4. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  5. Genetic Approach for the Fast Discovery of Phenazine Producing Bacteria

    PubMed Central

    Schneemann, Imke; Wiese, Jutta; Kunz, Anna Lena; Imhoff, Johannes F.

    2011-01-01

    A fast and efficient approach was established to identify bacteria possessing the potential to biosynthesize phenazines, which are of special interest regarding their antimicrobial activities. Sequences of phzE genes, which are part of the phenazine biosynthetic pathway, were used to design one universal primer system and to analyze the ability of bacteria to produce phenazine. Diverse bacteria from different marine habitats and belonging to six major phylogenetic lines were investigated. Bacteria exhibiting phzE gene fragments affiliated to Firmicutes, Alpha- and Gammaproteobacteria, and Actinobacteria. Thus, these are the first primers for amplifying gene fragments from Firmicutes and Alphaproteobacteria. The genetic potential for phenazine production was shown for four type strains belonging to the genera Streptomyces and Pseudomonas as well as for 13 environmental isolates from marine habitats. For the first time, the genetic ability of phenazine biosynthesis was verified by analyzing the metabolite pattern of all PCR-positive strains via HPLC-UV/MS. Phenazine production was demonstrated for the type strains known to produce endophenazines, 2-hydroxy-phenazine, phenazine-1-carboxylic acid, phenazine-1,6-dicarboxylic acid, and chlororaphin as well as for members of marine Actinobacteria. Interestingly, a number of unidentified phenazines possibly represent new phenazine structures. PMID:21673888

  6. Generation of volatile fatty acids by axillary bacteria.

    PubMed

    James, A G; Hyliands, D; Johnston, H

    2004-06-01

    It is generally accepted that short-chain (C(2)-C(5)) volatile fatty acids (VFAs) are among the causal molecules of axillary malodour. It is also widely acknowledged that malodour generation is attributable to the biotransformation of odourless natural secretions, into volatile odorous products, by axillary bacteria. However, little information is available on the biochemical origins of VFAs on axillary skin. In these studies, assay systems were developed to investigate the generation of VFAs from substrates readily available to the bacteria resident on axillary skin. Propionibacteria and staphylococci were shown to ferment glycerol and lactic acid to the short-chain (C(2)-C(3)) VFAs, acetic and propionic acid. Furthermore, staphylococci are capable of converting branched aliphatic amino acids, such as leucine, to highly odorous short-chain (C(4)-C(5)) methyl-branched VFAs, such as isovaleric acid, which are traditionally associated with the acidic note of axillary malodour. However, in vitro kinetic data indicates that these pathways contribute less to axillary VFA levels, than fatty acid biotransformations by a recently defined sub-group of the Corynebacterium genus, corynebacteria (A). The results of these studies provide new understanding on the biochemical origins of VFA-based axillary malodour which, in turn, should lead to the development of novel deodorant systems.

  7. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  8. Purification of bacteriocins produced by lactic acid bacteria.

    PubMed

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  9. Characterization of Acetic Acid Bacteria in Traditional Acetic Acid Fermentation of Rice Vinegar (Komesu) and Unpolished Rice Vinegar (Kurosu) Produced in Japan

    PubMed Central

    Nanda, Kumiko; Taniguchi, Mariko; Ujike, Satoshi; Ishihara, Nobuhiro; Mori, Hirotaka; Ono, Hisayo; Murooka, Yoshikatsu

    2001-01-01

    Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation. PMID:11157275

  10. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes.

    PubMed

    Davis, Carl K; Webb, Richard I; Sly, Lindsay I; Denman, Stuart E; McSweeney, Chris S

    2012-06-01

    Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species. © 2012 Commonwealth of Australia.

  11. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    PubMed

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  12. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  13. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis.

    PubMed

    Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M

    2015-09-01

    The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry.

  14. Discrimination of wine lactic acid bacteria by Raman spectroscopy.

    PubMed

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2017-08-01

    Species of Lactobacillus, Pediococcus, Oenococcus, and Leuconostoc play an important role in winemaking, as either inoculants or contaminants. The metabolic products of these lactic acid bacteria have considerable effects on the flavor, aroma, and texture of a wine. However, analysis of a wine's microflora, especially the bacteria, is rarely done unless spoilage becomes evident, and identification at the species or strain level is uncommon as the methods required are technically difficult and expensive. In this work, we used Raman spectral fingerprints to discriminate 19 strains of Lactobacillus, Pediococcus, and Oenococcus. Species of Lactobacillus and Pediococcus and strains of O. oeni and P. damnosus were classified with high sensitivity: 86-90 and 84-85%, respectively. Our results demonstrate that a simple, inexpensive method utilizing Raman spectroscopy can be used to accurately identify lactic acid bacteria isolated from wine.

  15. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  16. Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana▿

    PubMed Central

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S.; Vancanneyt, Marc; De Vuyst, Luc

    2007-01-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and

  17. Lactic Acid Bacteria – Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating a-(1,6) and a-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, we have developed improved...

  18. Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria.

    PubMed

    Fernández, M; Martínez-Bueno, M; Martín, M C; Valdivia, E; Maqueda, M

    2007-05-01

    Enterococcus faecalis produces a cationic and circular enterocin, AS-48, of 7149 Da, the genetic determinants of which are located within the pMB2 plasmid. We have compared enterocin AS-48 production by different enterococci species with that of other 'safe' lactic acid bacteris (LAB) (GRAS status) and looked into the subsequent application of this enterocin in food production. In an effort to exploit this system for the heterologous expression of enterocin AS-48, a number of vectors containing the as-48 cluster were constructed and used to transform several LAB strains (genera Enterococcus, Lactococcus and Lactobacillus) Heterologous production of enterocin AS-48 failed when bacteria other than those belonging to the genus Enterococcus were used as hosts, although expression of a partial level of resistance against AS-48 were always detected, ruling out the possibility of a lack of recognition of the enterococcal promoters. Our results reveal the special capacity of species from the genus Enterococcus to produce AS-48, an enterocin that requires a post-transcriptional modification to generate a circular peptide with a wide range of inhibitory activity against pathogenic and spoilage bacteria. Preliminary experiments in foodstuffs using nonvirulent enterococci with interesting functional properties reveal the possibility of a biotechnological application of these transformants.

  19. Acid and bile tolerance of spore-forming lactic acid bacteria.

    PubMed

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  20. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period.

    PubMed

    Delavenne, E; Mounier, J; Déniel, F; Barbier, G; Le Blay, G

    2012-04-16

    Antifungal lactic acid bacteria (ALAB) biodiversity was evaluated in raw milk from ewe, cow and goat over one year period. Lactic acid bacteria were enumerated using 8 semi-selective media, and systematically screened for their antifungal activity against 4 spoilage fungi commonly encountered in dairy products. Depending on the selective medium, between 0.05% (Elliker agar) and 5.5% (LAMVAB agar) screened colonies showed an antifungal activity. The great majority of these active colonies originated from cow (49%) and goat (43%) milks, whereas only 8% were isolated from ewe milk. Penicillium expansum was the most frequently inhibited fungus with 48.5% of colonies active against P. expansum among the 1235 isolated, followed by Mucor plumbeus with 30.6% of active colonies, Kluyveromyces lactis with only 12.1% of active colonies and Pichia anomala with 8.7% of active colonies. In the tested conditions, 94% of the sequenced active colonies belonged to Lactobacillus. Among them, targeted fungal species differed according to the Lactobacillus group, whose presence largely depended on year period and milk origin. The Lb. casei and Lb. reuteri groups, predominantly recovered in summer/fall, were overrepresented in the population targeting M. plumbeus, whereas isolates from the Lb. plantarum group, predominantly recovered in spring, were overrepresented in the population targeting K. lactis, the ones belonging to the Lb. buchneri group, predominantly recovered in spring, were overrepresented in the population targeting P. anomala. Raw milk, especially cow and goat milks from the summer/fall period appeared to be a productive reservoir for antifungal lactobacilli. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Animal Rennets as Sources of Dairy Lactic Acid Bacteria

    PubMed Central

    Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L.; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo

    2014-01-01

    The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167

  2. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  3. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  4. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  5. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  6. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  7. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  8. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  9. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    PubMed Central

    Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295

  10. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  11. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  12. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    USDA-ARS?s Scientific Manuscript database

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  13. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    NASA Astrophysics Data System (ADS)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  14. The growth of Steroidobacter agariperforans sp. nov., a novel agar-degrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to Rhizobiales.

    PubMed

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5-B(T), belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FS(T), at the species level with 96.5% similarity. Strain KA5-B(T) was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15-37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0-8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso-C15:0, C16:1ω7c, and iso-C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FS(T) was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5-B(T) (JCM 18477(T) = KCTC 32107(T)) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed.

  15. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami.

    PubMed

    Samelis, J; Maurogenakis, F; Metaxopoulos, J

    1994-10-01

    A total of 348 lactic acid bacteria isolated from five batches of naturally fermented dry salami at various stages of ripening were characterised. The majority of the strains were assigned to two main phylogenetic groups of species: (i) the psychrotrophic, formerly called atypical, meat streptobacteria (169 strains) and (ii) a new genus Weissella (120), which was recently proposed (Collins et al., 1993) to include Leuconostoc paramesenteroides and some other closely related species. Meat streptobacteria were identified as Lactobacillus curvatus (88 strains) and L. sake (76), whereas 5 strains were indistinguishable and, thus designated L. sake/curvatus. Non-psychrotrophic streptobacteria were also isolated and identified as L. plantarum (34 strains), L. farciminis (10), L. coryniformis (1) and L. casei subsp. pseudoplantarum (1). The majority of the Weissella strains (86) were leuconostoc-like bacteria; four of them were identified as W. viridescens, 11 belonged to the newly described W. hellenica (Collins et al., 1993), another 11 resembled W. paramesenteroides, whereas 60 isolates were not classified to any species. The latter group comprised strains that produced D(L)-lactate. The remaining Weissella were gas-forming, arginine-positive rods assigned to W. minor (31) and W. halotolerans (3). Other species identified were Enterococcus faecium (10), Leuconostoc mesenteroides (1), L. brevis (1) and Pediococcus sp. (1). The main criteria used to distinguish between above species as well as their distribution on the five salami batches in relation to their succession with time and suitability as starters were discussed.

  16. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    PubMed Central

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  17. [Composition diversity of lactic acid bacteria (LAB) community Al2 used for alfalfa silage].

    PubMed

    Wang, Xiao-Fen; Gao, Li-Juan; Yang, Hong-Yan; Wang, Wei-Dong; Cui, Zong-Jun

    2006-10-01

    Alfalfa is the most important forage grass that is difficult to ensile for good quality. Using silage inoculants are the important way for preservation of alfalfa silage. Through continuous restricted subcultivation, a lactic acid bacteria (LAB) community Al2 was selected from well-fermented alfalfa silage. Plate isolation and Denaturing Gradient Gel Electrophoresis (DGGE), construction of 16S rDNA clone library were used to identify the composition diversity of Al2 community, with 7 strains detected, and they were all belonged to Lactobacillus. The composition ratios of the 7 strains were 55.21%, 19.79%, 14.58%, 3.13%, 3.13%, 3.13%, 1.03% according to 16S rDNA clone library. Al2-1i, Al2-2i, Al2-3i, corresponding to L. plantarum (99.9%), L. kimchii (99.4%), L. farciminis (100%) were detected by plate isolation. Among 3 isolates, Al2-1i had the highest ability of dropping pH and producing lactic acid, and the amount of lactic acid was reach to 18g/L at 24h cultivated in MRS media. The ability of dropping pH and producing lactic acid of Al2-3i was the lowest. From DGGE profiles, the dominant strains in Al2 community were L. plantarum and L. kimchii. L. plantarum was detected during the whole process, and L. kimchii was detected in the later phase.

  18. Lactic acid bacteria in dried vegetables and spices.

    PubMed

    Säde, Elina; Lassila, Elisa; Björkroth, Johanna

    2016-02-01

    Spices and dried vegetable seasonings are potential sources of bacterial contamination for foods. However, little is known about lactic acid bacteria (LAB) in spices and dried vegetables, even though certain LAB may cause food spoilage. In this study, we enumerated LAB in 104 spices and dried vegetables products aimed for the food manufacturing industry. The products were obtained from a spice wholesaler operating in Finland, and were sampled during a one-year period. We picked isolates (n = 343) for species identification based on numerical analysis of their ribotyping patterns and comparing them with the corresponding patterns of LAB type strains. We found LAB at levels >2 log CFU/g in 68 (65%) of the samples, with the highest counts detected from dried onion products and garlic powder with counts ranging from 4.24 to 6.64 log CFU/g. The LAB identified were predominantly Weissella spp. (61%) and Pediococcus spp. (15%) with Weissella confusa, Weissella cibaria, Weissella paramesenteroides, Pediococcus acidilactici and Pediococcus pentosaceus being the species identified. Other species identified belonged to the genera of Enterococcus spp. (8%), Leuconostoc spp. (6%) and Lactobacillus spp. (2%). Among the LAB identified, Leuconostoc citreum, Leuconostoc mesenteroides and W. confusa have been associated with food spoilage. Our findings suggest that spices and dried vegetables are potential sources of LAB contamination in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    PubMed

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  20. Characterization and application of lactic acid bacteria for tropical silage preparation.

    PubMed

    Pholsen, Suradej; Khota, Waroon; Pang, Huili; Higgs, David; Cai, Yimin

    2016-10-01

    Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  1. Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains.

    PubMed

    Zare Mirzaei, Elnaze; Lashani, Elahe; Davoodabadi, Abolfazl

    2018-01-01

    Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri , four S. sonnei ) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.

  2. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    PubMed

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  3. Relation between chemotaxis and consumption of amino acids in bacteria

    PubMed Central

    Yang, Yiling; M. Pollard, Abiola; Höfler, Carolin; Poschet, Gernot; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    Summary Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, E scherichia coli and B acillus subtilis. We demonstrate that in E . coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B . subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues. PMID:25807888

  4. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [Clinical application of testing methods on acid-fast bacteria].

    PubMed

    Ichiyama, Satoshi; Suzuki, Katsuhiro

    2005-02-01

    Clinical bacteriology pertaining to acid-fast bacteria has made marked advances over the past decade, initiated by the development of a DNA probe kit for identification of acid-fast bacteria. Wide-spread use of nucleic acid amplification for rapid detection of tubercle bacillus contributed more greatly than any other factor to such advances in this field. At present, 90% of all kits used for nucleic acid amplification in the world are consumed in Japan. Unfortunately, not a few clinicians in Japan have a false idea that the smear method and nucleic acid amplification are necessary but culture is not. In any event nucleic acid amplification has exerted significant impacts on the routine works at bacteriology laboratories. Among others, collecting bacteria by pretreatment with NALC-NaOH has simplified the introduction of the collective mode smear method and liquid media. Furthermore, as clinicians have become increasingly more experienced with various methods of molecular biology, it now seems possible to apply these techniques for detection of genes encoding drug resistance and for utilization of molecular epidemiology in routine laboratory works. Meanwhile, attempts to diagnose acid-fast bacteriosis by checking blood for antibody have also been made, primarily in Japan. At present, two kits for detecting antibodies to glycolipids (LAM, TDM, etc.) are covered by national health insurance in Japan. We have an impression that in Japan clinicians do not have adequate knowledge and skill to make full use of these new testing methods clinically. We, as the chairmen of this symposium, hope that this symposium will help clinicians increase their skill related to new testing methods, eventually leading to stimulation of advances in clinical practices related to acid-fast bacteria in Japan. 1. Smear microscopy by concentration method and broth culture system: Kazunari TSUYUGUCHI (Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center) Smear

  6. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  7. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  9. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria.

    PubMed

    Imai, Kenichi; Yamada, Kiyoshi; Tamura, Muneaki; Ochiai, Kuniyasu; Okamoto, Takashi

    2012-08-01

    Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.

  10. [Metabolic pattern of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method].

    PubMed

    Ma, Meilei; He, Xiangyu; Zhu, Weiyun

    2016-11-04

    This experiment was conducted to study different metabolic patterns of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method. Ileum, cecum and colon chyme in Duroc, Landrace and Yorkshire goods hybridization pigs were taken as inoculum. The single aromatic amino acid concentration was kept 10 mmol/L in fermentation flask. Then the fermentation flask was incubated at 37℃ for 24 h. Gas production was measured at 4, 8, 12, 16 and 24 h, and samples of fermentation collected at 0 h and 24 h were used to measure ammonia nitrogen NH3-N and microbial crude protein (MCP). Denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor and quantify the development of bacteria community in zymotic fluid.[ The concentrations of NH3-N and MCP were significantly affected by aromatic amino acids and intestinal segments (P<0.01). Intestinal segments also affected gas production (GP) significantly (P0.01). NH3-N, MCP and GP were affected by interaction of aromatic amino acids and intestinal segments. DGGE analysis showed bacteria of aromatic amino acids shared amount of bands together, especially similarity analysis of DGGE profile of Phe and Tyr in ileum, Tyr and Trp in colon were 87.9% and 80.5% separately. Shannon diversity indices analysis revealed that aromatic amino acids in cecum and colon varied significantly (P<0.05). Real-time PCR results showed that the quantity of total bacteria were affected by aromatic amino acids and intestinal segments significantly (P<0.05). The potential as proportion of different aromatic amino acids are different. Compared with Trp and Phe, the diversity of bacteria utilizing Tyr in cecum or colon is low; compared with Tyr and Trp, a large number of Phe participated in synthesizing bacteria.The fermentation pattern of specific aromatic amino acids in different intestinal segment was unique. Compared with ileum and cecum, much more aromatic amino acids participated in the synthesis of bacteria in

  11. Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf.

    PubMed

    Al-Awadhi, H; Sulaiman, Rasha H D; Mahmoud, Huda M; Radwan, S S

    2007-11-01

    Green animate materials from the intertidal zone of the Arabian Gulf coast accommodated more alkaliphilic and halophilic bacteria than inanimate materials. The alkaliphilic oil-utilizing bacteria, as identified by their 16S ribonucleic acid sequences, belonged to the following genera arranged in decreasing frequences: Marinobacter, Micrococcus, Dietzia, Bacillus, Oceanobacillus, and Citricoccus. The halophilic oil-utilizing bacteria belonged to the genera: Marinobacter, Georgenia, Microbacterium, Stappia, Bacillus, Isoptericola, and Cellulomonas. Most isolates could grow on a wide range of pure n-alkanes and aromatic compounds, as sole sources of carbon and energy. Quantitative gas liquid chromatographic analysis showed that individual isolates attenuated crude oil and representative pure hydrocarbons in culture. The optimum pH for most of the alkaliphilic genera was pH 10, and the optimum salinity for the halophiles ranged between 2.5 and 5% NaCl (w/v). It was concluded that as far as their microbial makeup is concerned, oily alkaline and saline intertidal areas of the Kuwaiti coasts have a self-cleaning potential.

  12. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.

    PubMed

    Wang, C C; Lee, C M

    2006-01-01

    The aim of this study is to isolate the acrylic acid utilizing bacteria from the ABS resin manufactured wastewater treatment system. The bacteria should have the ability to remove acrylic acid and tolerate the acrylonitrile and acrylamide toxicity. The aim is also to understand the performance of isolated pure strain for treating different initial acrylic acid concentrations from synthetic wastewater. The results are: twenty strains were isolated from the ABS resin manufactured wastewater treatment system and twelve of them could utilize 600 mg/l acrylic acid for growth. Seven of twelve strains could tolerate the acrylonitrile and acrylamide toxicity, when the concentration was below 300 mg/l. Bacillus thuringiensis was one of the seven strains and the optimum growth temperature was 32 degrees C. Bacillus thuringiensis could utilize acrylic acid for growth, when the initial acrylic acid concentration was below 1,690.4 mg/l. Besides this, when the initial acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal efficiency exceeded 96.3%. Bacillus thuringiensis could tolerate 295.7 mg/l acrylamide and 198.4 mg/l acrylonitrile toxicity but could not tolerate 297.3 mg/l epsilon-caprolactam.

  13. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.

    PubMed

    Zhang, Gaosen; Sun, Henry J

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.

  14. Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria

    PubMed Central

    Russo, Pasquale; de Chiara, Maria Lucia Valeria; Vernile, Anna; Amodio, Maria Luisa; Arena, Mattia Pia; Capozzi, Vittorio; Massa, Salvatore; Spano, Giuseppe

    2014-01-01

    Due to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored. Finally, probiotic Lactobacillus were further investigated for their antagonistic effect against Listeria monocytogenes and Escherichia coli O157:H7 on pineapple plugs. Our results show that at eight days of storage, the concentration of L. plantarum and L. fermentum on pineapples pieces ranged between 7.3 and 6.3 log cfu g−1, respectively, without affecting the final quality of the fresh-cut pineapple. The antagonistic assays indicated that L. plantarum was able to inhibit the growth of both pathogens, while L. fermentum was effective only against L. monocytogenes. This study suggests that both L. plantarum and L. fermentum could be successfully applied during processing of fresh-cut pineapples, contributing at the same time to inducing a protective effect against relevant foodborne pathogens. PMID:25093163

  15. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  16. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. Copyright © 2015. Published by Elsevier GmbH.

  17. Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria.

    PubMed

    Kostinek, Melanie; Ban-Koffi, Louis; Ottah-Atikpo, Margaret; Teniola, David; Schillinger, Ulrich; Holzapfel, Wilhelm H; Franz, Charles M A P

    2008-04-01

    The fermentation of cocoa relies on a complex succession of bacteria and filamentous fungi, all of which can have an impact on cocoa flavor. So far, few investigations have focused on the diversity of lactic acid bacteria involved in cocoa fermentation, and many earlier investigations did not rely on polyphasic taxonomical approaches, which take both phenotypic and genotypic characterization techniques into account. In our study, we characterized predominant lactic acid bacteria from cocoa fermentations in Nigeria, using a combination of phenotypic tests, repetitive extragenic palindromic PCR, and sequencing of the 16S rRNA gene of representative strains for accurate species identification. Thus, of a total of 193 lactic acid bacteria (LAB) strains isolated from common media used to cultivate LAB, 40 (20.7%) were heterofermentative and consisted of either L. brevis or L. fermentum strains. The majority of the isolates were homofermentative rods (110 strains; 57% of isolates) which were characterized as L. plantarum strains. The homofermentative cocci consisted predominantly of 35 (18.1% of isolates) Pediococcus acidilactici strains. Thus, the LAB populations derived from these media in this study were accurately described. This can contribute to the further assessment of the effect of common LAB strains on the flavor characteristics of fermenting cocoa in further studies.

  18. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  19. Diversity of Lactic Acid Bacteria Associated with Banana Fruits in Taiwan.

    PubMed

    Chen, Yi-Sheng; Liao, Yu-Jou; Lan, Yi-Shan; Wu, Hui-Chung; Yanagida, Fujitoshi

    2017-04-01

    Banana is a popular fruit worldwide. The lactic acid bacteria (LAB) microflora in banana fruits has not been studied in detail. A total of 164 LAB were isolated from banana fruits in Taiwan. These isolates were initially divided into nine groups (r1 to r9) using restriction fragment length polymorphism analysis and 16S ribosomal DNA sequencing. Isolates belonging to Lactobacillus plantarum group were further divided into three additional groups using multiplex PCR assay targeting the recA gene. The most common bacterial genera found in banana fruits were Lactobacillus and Weissella. The distribution of LAB indicated that, in most cases, neighboring regions shared common strains, but there were still some differences between regions. On the basis of phylogenetic analysis of 16S rRNA, rpoA, and pheS gene sequences, two strains included in the genera Lactobacillus were identified as potential novel species or subspecies. In addition, a total 36 isolates were found to have bacteriocin-producing abilities. These results suggest that various LAB are associated with banana fruits in Taiwan. This is the first report describing the distribution and varieties of LAB associated with banana fruits. In addition, one potential novel LAB species was also found in this study.

  20. [The antagonistic properties of microaerophilic bacteria isolated from the human and mink digestive tracts].

    PubMed

    Sudenko, V I; Groma, L I; Podgorskiĭ, V S

    1996-01-01

    Study of antagonistic properties of microaerophilic bacteria isolated from human and mink gastroenteric tract have helped to establish differences in species composition, quantity and level of antagonistic activity of the studied microorganisms in respect to pathogenic microflora. It is shown that lactic acid bacteria identified as Lactobacillus fermentum and L. reuteri prevail among the strains isolated from the stomach and thin intestine of minks kept in the 30-km zone of Chernobyl NPP. Species composition of microaerophilic bacteria isolated from the digestive tract of the control minks is more variable. Antagonistically active bifidobacteria prevail in large intestine of experimental and control animals. Strains of lactic acid bacteria with the expressed antagonistic activity belonging to L. bavaricus, L. reuteri, L. coryniformis and L. maltaromicus have been found parallel with such known producers of antibiotic-like substances as L. fermentum. L. acidophilum. Streptococcus faecalis and bifidobacteria. L. maltaromicus most frequently occurred among antagonistically active strains revealed in feces of people which stayed in the zone of liquidation of the Chernobyl accident. Microaerophilic strains of bacteria (lactic acid, bifidobacteria and enterococci) manifest the expressed antagonistic activity connected with the capacity to not only acid formation but also to accumulation of antibiotic products of unknown nature. A strain of lactic acid bacteria L. fermentum 91 has been isolated from the contents of human gastroenteric tract. These bacteria are distinguished by most expressed and stable antagonism and characterized by the lack of pathogenicity in respect of albino mice that may be used to raise the microorganism resistance to gastric diseases.

  1. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    PubMed

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    PubMed

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  3. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Racemization in Reverse: Evidence that D-Amino Acid Toxicity on Earth Is Controlled by Bacteria with Racemases

    PubMed Central

    Zhang, Gaosen; Sun, Henry J.

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free. PMID:24647559

  5. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation.

    PubMed

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined "time of detection." With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis , and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation.

  6. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production.

    PubMed

    Sauer, Michael; Russmayer, Hannes; Grabherr, Reingard; Peterbauer, Clemens K; Marx, Hans

    2017-08-01

    Lactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context. Here, we illuminate these features and describe why the distinctive adaptation of lactic acid bacteria is particularly useful when developing a microbial process for chemical production from renewable resources. High carbon uptake rates with low biomass formation combined with strictly regulated simple metabolic pathways, leading to a limited number of metabolites, are among the key factors defining their success in both nature and industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lipoquinones of some spore-forming rods, lactic-acid bacteria and actinomycetes.

    PubMed

    Hess, A; Holländer, R; Mannheim, W

    1979-11-01

    The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.

  8. Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.

    2018-01-01

    Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.

  9. [Biodiversity of phosphate-dissolving and plant growth--promoting endophytic bacteria of two crops].

    PubMed

    Huang, Jing; Sheng, Xiafang; He, Linyan

    2010-06-01

    We isolated and characterized phosphate-dissolving endophytic bacteria from two commonly cultivated crops. Phosphate-dissolving endophytic bacteria were isolated by plating and screening from interior tissues of rape and maize plants on NBRIP medium with tricalcium phosphate as sole phosphate source. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-indoleacetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase production,and further classified by restriction analysis of 16S rDNA. Eleven typical strains were identified by 16S rDNA sequence analysis. Thirty-two phosphate-dissolving endophytic bacteria were isolated from maize and rape plants and classified by restriction analysis of 16S rDNA in 8 different taxonomic groups at the similarity level of 76%. All the isolates could release phosphate from tricalcium phosphate and decrease the pH of the medium. The maximum phosphate content (537.6 mg/L) in the solution was obtained with strain M1L5. Thirteen isolates isolated from rape produced indoleacetic acid and siderophore, 68.4% and 63.2% of the strains isolated from maize produced indoleacetic acid and siderophore,respectively. 63.2% of the strains isolated from maize were able to grow on 1-aminocyclopropane-1-carboxylic acid as the sole nitrogen source. The eleven strains belonged to five different genera including Pantoea, Pseudomonas, Burkholderia, Acinetobacter and Ralstonia. Phosphate-dissolving endophytic bacteria isolated from rape and maize plants have abundant characteristics relative to promoting plant growth and genetic diversity.

  10. Preservation of acidified cucumbers with a combination of fumaric acid and cinnamaldehyde that target lactic acid bacteria and yeasts

    USDA-ARS?s Scientific Manuscript database

    The naturally occurring compound, fumaric acid, was evaluated as a potential preservative for the long-term storage of cucumbers. Fumaric acid inhibited growth of lactic acid bacteria (LAB) in an acidified cucumber juice medium model system resembling conditions that could allow preservation of cucu...

  11. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan.

    PubMed

    Chao, Shiou-Huei; Wu, Ruei-Jie; Watanabe, Koichi; Tsai, Ying-Chieh

    2009-11-15

    Fu-tsai and suan-tsai are spontaneously fermented mustard products traditionally prepared by the Hakka tribe of Taiwan. We chose 5 different processing stages of these products for analysis of the microbial community of lactic acid bacteria (LAB) by 16S rRNA gene sequencing. From 500 LAB isolates we identified 119 representative strains belonging to 5 genera and 18 species, including Enterococcus (1 species), Lactobacillus (11 species), Leuconostoc (3 species), Pediococcus (1 species), and Weissella (2 species). The LAB composition of mustard fermented for 3 days, known as the Mu sample, was the most diverse, with 11 different LAB species being isolated. We used sequence analysis of the 16S rRNA gene to identify the LAB strains and analysis of the dnaA, pheS, and rpoA genes to identify 13 LAB strains for which identification by 16S rRNA gene sequences was not possible. These 13 strains were found to belong to 5 validated known species: Lactobacillus farciminis, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Weissella cibaria, and Weissella paramesenteroides, and 5 possibly novel Lactobacillus species. These results revealed that there is a high level of diversity in LAB at the different stages of fermentation in the production of suan-tsai and fu-tsai.

  12. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  13. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis.

    PubMed

    Ercolini, D; Moschetti, G; Blaiotta, G; Coppola, S

    2001-03-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects.

  14. Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs.

    PubMed

    Ruiz Rodríguez, L; Vera Pingitore, E; Rollan, G; Cocconcelli, P S; Fontana, C; Saavedra, L; Vignolo, G; Hebert, E M

    2016-05-01

    To analyse lactic acid bacteria (LAB) diversity and technological-functional and safety properties of strains present during spontaneous fermented quinoa sourdoughs. Fermentation was performed by daily backslopping at 30°C for 10 days. Autochthonous LAB microbiota was monitored by a biphasic approach combining random amplified polymorphic DNA (RAPD)-PCR and rRNA gene sequencing with PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Identification and intraspecies differentiation allowed to group isolates within nine LAB species belonging to four genera. A succession of LAB species occurred during 10-days backslopping; Lactobacillus plantarum and Lactobacillus brevis were detected as dominant species in the consortium. The characterization of 15 representative LAB strains was performed based on the acidifying capacity, starch and protein hydrolysis, γ-aminobutyric acid and exopolysaccharides production, antimicrobial activity and antibiotic resistance. Strains characterization led to the selection of Lact. plantarum CRL1905 and Leuconostoc mesenteroides CRL1907 as candidates to be assayed as functional starter culture for the gluten-free (GF) quinoa fermented products. Results on native LAB microbiota present during quinoa sourdough fermentation will allow the selection of strains with appropriate technological properties to be used as a novel functional starter culture for GF-fermented products. © 2016 The Society for Applied Microbiology.

  15. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.

    PubMed

    Moi, Ibrahim Musa; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Sabri, Suriana

    2018-05-10

    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.

  16. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    PubMed Central

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  17. [Studies on anaerobic infection in oro-maxillary region--rapid diagnosis by gas-liquid chromatography and antibiotic susceptibilities of anaerobic bacteria].

    PubMed

    Tanaka, J I

    1989-08-01

    Subject material for this study was pus collected from patients with purulent inflammation in the oro-maxillary region. Direct gas-liquid chromatography (GLC) analysis was made, bacterial isolation and identification were carried out, and comparisons were made with results from GLC analysis and anaerobic isolates in a PYG medium. In addition, antibiotic susceptibilities of anaerobic bacteria were examined. Results 1. Anaerobic bacteria were isolated from 85 of 100 cases of obstructive abscesses. Of the 85, 49 were cases of mixed infection involving both anaerobic and aerobic bacteria; and 64 cases were involved with more than 2 species of anaerobic bacteria. Of the 184 strains of anaerobic isolates, 53 were Bacteroides sp. and 51 were Peptostreptococcus sp. The 2 groups accounted for more than half of the isolates. 2. Group A, in which no VFA was detected, accounted for 17 out of 100 cases. Group B, in which acetic acid was detected, accounted for 20 cases; and Group C, in which butyric acid was detected, accounted for 20 cases; and Group D, in which iso-valeric acid was detected, accounted for 8 cases. Direct GLC analysis revealed iso-caproic and caproic acids in the 35 cases constituting Group E. 3. Whereas the percentage of anaerobic bacteria was 64.7% in Group A and 60% in Group B, significantly higher percentages were noted in Group C (95%), Group D (100%) and Group E (100%). The following species were isolated as major member in the groups; Group A--Streptococcus intermedius, Group B--Peptostreptococcus micros, Group C--Fusobacterium nucleatum, Group D--Bacteroides gingivalis, and Group E--Peptostreptococcus anaerobius. 4. In all cases, the sum of VFA produced in the PYG medium by anaerobic isolates was classified into Group A' to E'. Ratios of agreement between VFA as revealed by direct GLC and VFA as revealed by PYG.GLC were as follows: Group A-A'; 47.1%, Group B-B' and C-C'; 45%, Group D-D'; 87.5%, and Group E-E'; 62.9%. 5. In Group B, no propionic acid

  18. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    PubMed

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  19. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi

    PubMed Central

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-01-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively. PMID:24471087

  20. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag.

    PubMed

    Batdorj, B; Dalgalarrondo, M; Choiset, Y; Pedroche, J; Métro, F; Prévost, H; Chobert, J-M; Haertlé, T

    2006-10-01

    The aim of this study was to isolate and identify bacteriocin-producing lactic acid bacteria (LAB) issued from Mongolian airag (traditional fermented mare's milk), and to purify and characterize bacteriocins produced by these LAB. Identification of the bacteria (Enterococcus durans) was carried out on the basis of its morphological, biochemical characteristics and carbohydrate fermentation profile and by API50CH kit and 16S rDNA analyses. The pH-neutral cell-free supernatant of this bacterium inhibited the growth of several Lactobacillus spp. and food-borne pathogens including Escherichia coli, Staphylococcus aureus and Listeria innocua. The antimicrobial agent (enterocin A5-11) was heat stable and was not sensitive to acid and alkaline conditions (pH 2-10), but was sensitive to several proteolytic enzymes. Its inhibitory activity was completely eliminated after treatment with proteinase K and alpha-chymotrypsin. The activity was however not completely inactivated by other proteases including trypsin and pepsin. Three-step purification procedure with high recovery yields was developed to separate two bacteriocins. The applied procedure allowed the recovery of 16% and 64% of enterocins A5-11A and A5-11B, respectively, present in the culture supernatant with purity higher than 99%. SDS-PAGE analyses revealed that enterocin A5-11 has a molecular mass of 5000 Da and mass spectrometry analyses demonstrates molecular masses of 5206 and 5218 Da for fractions A and B, respectively. Amino acid analyses of both enterocins indicated significant quantitative difference in their contents in threonine, alanine, isoleucine and leucine. Their N-termini were blocked hampering straightforward Edman degradation. Bacteriocins A5-11A and B from Ent. durans belong to the class II of bacteriocins. Judging from molecular masses, amino acid composition and spectrum of activities, bacteriocins A5-11A and B from Ent. durans show high degree of similarity with enterocins L50A and L50B

  1. Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel, Argentina.

    PubMed

    Cristóbal, Héctor A; Benito, Juliana; Lovrich, Gustavo A; Abate, Carlos M

    2015-05-01

    The phylogenetic and physiological characteristics of cultivable-dependent approaches were determined to establish the diversity of marine bacteria associated with the intestines of benthonic organisms and seawater samples from the Argentina's Beagle Channel. A total of 737 isolates were classified as psychrophlic and psychrotolerant culturable marine bacteria. These cold-adapted microorganisms are capable of producing cold-active glycosyl hydrolases, such as β-glucosidases, celulases, β-galactosidases, xylanases, chitinases, and proteases. These enzymes could have potential biotechnological applications for use in low-temperature manufacturing processes. According to polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S ribosomal DNA (ARDRA) and DNA gyrase subunit B (gyrB-RFLP), 11 operational taxonomic units (OTU) were identified and clustered in known genera using InfoStat software. The 50 isolates selected were sequenced based on near full sequence analysis of 16S rDNA and gyrB sequences and identified by their nearest neighbors ranging between 96 and 99 % of identities. Phylogenetic analyses using both genes allowed relationships between members of the cultured marine bacteria belonging to the γ-Proteobacteria group (Aeromonas, Halteromonas, Pseudomonas, Pseudoalteromonas, Shewanella, Serratia, Colwellia, Glacielocola, and Psychrobacter) to be evaluated. Our research reveals a high diversity of hydrolytic bacteria, and their products actuality has an industrial use in several bioprocesses at low-temperature manufacturing.

  2. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  3. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid).

    PubMed

    Probian, Christina; Wülfing, Annika; Harder, Jens

    2003-03-01

    The degradability of pivalic acid was established by the isolation of several facultative denitrifying strains belonging to Zoogloea resiniphila, to Thauera and Herbaspirillum, and to Comamonadaceae, related to [Aquaspirillum] and Acidovorax, and of a nitrate-reducing bacterium affiliated with Moraxella osloensis. Pivalic acid was completely mineralized to carbon dioxide. The catabolic pathways may involve an oxidation to dimethylmalonate or a carbon skeleton rearrangement, a putative 2,2-dimethylpropionyl coenzyme A mutase.

  5. Antagonistic effect of chosen lactic acid bacteria strains on Salmonella species in meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The aim of this study was to determine of influence of 15 strains of lactic acid bacteria on the growth of 7 Salmonella spp. strains in model set-ups, and in meat and ripened fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus spp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Salmonella strains studied was, depending on the alternate, 1:1, 1:2 and 2:1, respectively. The investigations also covered the water activity (a(w)) and pH of the tested products. The results obtained are shown in 12 figures and suggest that all the lactic acid bacteria strains used within the framework of the model set-ups showed antagonistic effect on all the Salmonella spp. strains. However, these abilities were not observed with respect to some lactic acid bacteria strains in meat and fermented sausage. The temperature and length of the incubation period of sausages, but not a(w) and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria.

  6. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria

    PubMed Central

    Bitencourt, José A. P.; Sahoo, Prafulla K.; Alves, Joner Oliveira; Siqueira, José O.

    2017-01-01

    Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment. PMID:29119111

  7. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    PubMed Central

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  8. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  9. In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide

    PubMed Central

    2011-01-01

    Background Hydrogen peroxide (H2O2) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H2O2 are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H2O2. Here we used conditions more like those in vivo to compare the effects of physiologically plausible concentrations of H2O2 and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli. Methods Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H2O2, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H2O2 and lactic acid was also measured. Results Physiological concentrations of H2O2 (< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H2O2. At 10 mM, H2O2 inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H2O2. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid. Conclusions Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H2O2

  10. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  11. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid.

    PubMed

    Wu, Zhen; Wu, Jing; Cao, Pei; Jin, Yifeng; Pan, Daodong; Zeng, Xiaoqun; Guo, Yuxing

    2017-06-01

    Yogurt products fermented with probiotic bacteria are a consumer trend and a challenge for functional food development. So far, limited research has focused on the behavior of the various probiotic strains used in milk fermentation. In the present study, we characterized folic acid production and the sensory and textural characteristics of yogurt products fermented with probiotic bacteria. Yogurt fermented with Lactobacillus plantarum had improved nutrient content and sensory and textural characteristics, but the presence of L. plantarum significantly impaired the growth and survival of Lactobacillus delbrueckii ssp. bulgaricus during refrigerated storage. Overall, L. plantarum was a good candidate for probiotic yogurt fermentation; further studies are needed to understand the major metabolite path of lactic acid bacteria in complex fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.

    PubMed

    Lynch, Kieran M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2018-03-25

    Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

  13. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation

    PubMed Central

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined “time of detection.” With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation. PMID:27799925

  14. THE PRODUCTION OF VOLATILE FATTY ACIDS BY BACTERIA OF THE DYSENTERY GROUP

    PubMed Central

    Zoller, Harper F.; Clark, W. Mansfield

    1921-01-01

    These studies show: 1. A close agreement exists among all the organisms studied in the total quantity of volatile fatty acids produced and in the ratio of formic to acetic, under aerobic conditions, and in the presence of 1 per cent of glucose. 2. When grown upon peptone alone, with free access of air to the cultures, volatile fatty acids are produced in appreciable quantities, although the reaction of the solution has gone more alkaline as shown by colorimetric pH tests. Formic acid is not found, but in its place we obtain propionic acid. 3. Upon exhaustion of air from the non-sugar medium the bacteria again produce formic acid, and in addition some butyric. This is true for both Shiga and non-Shiga cultures. The reaction is distinctly more acid. 4. The presence of glucose in the medium from which the air has been pumped furnishes a condition which provokes about the same type and degree of fermentation that operates in the glucose medium bathed in air at atmospheric pressure. 5. The enormous quantity of formic acid produced by these bacteria may play a significant part in the digestive disturbances and toxic symptoms accompanying their infection of the human intestinal tract. PMID:19871867

  15. Commensal bacteria and essential amino acids control food choice behavior and reproduction

    PubMed Central

    Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M.; Piper, Matthew D. W.

    2017-01-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits. PMID:28441450

  16. Commensal bacteria and essential amino acids control food choice behavior and reproduction.

    PubMed

    Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos

    2017-04-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

  17. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    PubMed

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  18. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    USDA-ARS?s Scientific Manuscript database

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  19. Antigenotoxic properties of lactic acid bacteria in the S. typhimurium mutagenicity assay.

    PubMed

    Pool-Zobel, B L; Münzner, R; Holzapfel, W H

    1993-01-01

    A high percentage of human tumors is reported to be related to dietary habits. One way to improve the nutritional impact is to increase the intake of protective factors, such as inhibitors of DNA damage and other types of anticarcinogens. Specific strains of lactic acid bacteria used to ferment milk are promising candidates that may be antimutagenic and anticarcinogenic. We have studied the antimutagenicity of 10 isolated strains of beneficial lactic acid bacteria. Four types of fermented milk products were also studied for their protective properties. The effect of these bacteria on the yield of revertants induced by nitrosated beef extract was investigated in the Salmonella typhimurium mutagenicity assay. Eight of 10 isolated Lactobacillus strains reduced the yield of his+ revertants almost back to the levels of the untreated controls. Different fermented fresh yogurts containing viable bacteria (probably Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus or Lactobacillus acidophilus and Bifidobacteria) showed protective effects as well. The degree of suppressing revertants was independent of the yogurt's fat content. In contrast, yogurt products that had been heat treated were not inhibitory. The other fresh fermented milk products (e.g., buttermilk, kefir, and "Dickmilch") were not antimutagenic in this study. The results imply that some bacteria used in milk processing have an antimutagenic potential and that this property is specific for the bacterial strain.

  20. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  1. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures.

    PubMed

    Zanirati, Débora Ferreira; Abatemarco, Mário; Sandes, Sávio Henrique de Cicco; Nicoli, Jacques Robert; Nunes, Álvaro Cantini; Neumann, Elisabeth

    2015-04-01

    Brazilian kefir is a homemade fermented beverage that is obtained by incubating milk or a brown sugar solution with kefir grains that contribute their different microbiological compositions. It is highly important to isolate and characterize microorganisms from Brazilian kefir grains to obtain starter cultures for the industrial production of a standardized commercial kefir. Thus, the present study aimed to isolate lactic acid bacteria from eight kefir grains that were propagated in milk or sugar solutions from five different locations in Brazil and to select Lactobacillus isolates based on desirable in vitro probiotic properties. One hundred eight isolates from both substrates were identified by amplified ribosomal DNA restriction analysis and/or 16S rRNA gene sequencing and were determined to belong to the following 11 species from the genera: Lactococcus, Leuconostoc, Lactobacillus (L.), and Oenococcus. Leuconostoc mesenteroides, Lactobacillus kefiri, and Lactobacillus kefiranofaciens were isolated only from milk grains, whereas Lactobacillus perolens, Lactobacillus parafarraginis, Lactobacillus diolivorans, and Oenococcus oeni were isolated exclusively from sugar water grains. When the microbial compositions of four kefir grains were evaluated with culture-independent analyses, L. kefiranofaciens was observed to predominant in milk grains, whereas Lactobacillus hilgardii was most abundant in sugar water kefir. Unfortunately, L. hilgardii was not isolated from any grain, although this bacteria was detected with a culture-independent methodology. Fifty-two isolated Lactobacilli were tested for gastric juice and bile salt tolerance, antagonism against pathogens, antimicrobial resistance, and surface hydrophobicity. Three Lactobacillus strains (L. kefiranofaciens 8U, L. diolivorans 1Z, and Lactobacillus casei 17U) could be classified as potential probiotics. In conclusion, several lactic acid bacteria that could be used in combination with yeasts as starter

  2. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  3. Selection of bacteriocin producer strains of lactic acid bacteria from a dairy environment.

    PubMed

    Lasagno, M; Beoleito, V; Sesma, F; Raya, R; Font de Valdez, G; Eraso, A

    2002-01-01

    Two strains showing bacteriocin production were selected from a total of 206 lactic acid bacteria isolated from samples of milk, milk serum, whey and homemade cheeses in Southern Cordoba, Argentina. This property was detected by means of well diffusion assays. The strains were identified as Enterococcus hirae and Enterococcus durans. The protein nature of those substances was proved by showing their sensitivity to type IV and XXV proteases, papaine, trypsin, pepsin and K proteinase. The bacteriocins inhibited the growth of Listeria monocytogenes, Bacillus cereus, Clostridium perfringes and two strains of Staphylococcus aureus, an A-enterotoxin and a B-enterotoxin producers. All of these bacteria are common pathogens usually associated with food borne diseases (ETA). These lactic acid bacteria or their bacteriocins could be suitable candidates for food preservation and specially useful in the our regional dairy industry.

  4. Bacteriophages of lactic acid bacteria and their impact on milk fermentations

    PubMed Central

    2011-01-01

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed. PMID:21995802

  5. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients.

    PubMed

    Pochard, Pierre; Gosset, Philippe; Grangette, Corinne; Andre, Claude; Tonnel, André-Bernard; Pestel, Joël; Mercenier, Annick

    2002-10-01

    Among factors potentially involved in the increased prevalence of allergic diseases, modification of the intestinal bacteria flora or lack of bacterial stimulation during childhood has been proposed. Lactic acid bacteria (LAB) present in fermented foods or belonging to the natural intestinal microflora were shown to exert beneficial effects on human health. Recent reports have indicated their capacity to reduce allergic symptoms. The purpose of this investigation was to determine the effect of LAB on the production of type 2 cytokines, which characterize allergic diseases. PBMCs from patients allergic to house dust mite versus those from healthy donors were stimulated for 48 hours with the related Dermatophagoides pteronyssinus allergen or with a staphylococcal superantigen. The effect of LAB preincubation was assessed by measuring the type 2 cytokine production by means of specific ELISA. The tested gram-positive LAB were shown to inhibit the secretion of T(H)2 cytokines (IL-4 and IL-5). This effect was dose dependent and was observed irrespective of the LAB strain used. No significant inhibition was induced by the control, gram-negative Escherichia coli TG1. Interestingly, LAB reduced the T(H)2 cytokine production from allergic PBMCs specifically restimulated with the related allergen. The inhibition mechanism was shown to be dependent on antigen-presenting cells (ie, monocytes) and on the involvement of IL-12 and IFN-gamma. The tested LAB strains were demonstrated to exhibit an anti-T(H)2 activity, and thus different strains of this family might be useful in the prevention of allergic diseases.

  6. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    PubMed

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  8. Identification and Characterization of Lactic Acid Bacteria in a Commercial Probiotic Culture

    PubMed Central

    MENCONI, Anita; KALLAPURA, Gopala; LATORRE, Juan D.; MORGAN, Marion J.; PUMFORD, Neil R.; HARGIS, Billy M.; TELLEZ, Guillermo

    2014-01-01

    The aim of the present study was to describe the identification and characterization (physiological properties) of two strains of lactic acid bacteria (LAB 18 and 48) present in a commercial probiotic culture, FloraMax®-B11. Isolates were characterized morphologically, and identified biochemically. In addition, the MIDI System ID, the Biolog ID System, and 16S rRNA sequence analyses for identification of LAB 18 and LAB 48 strains were used to compare the identification results. Tolerance and resistance to acidic pH, high osmotic concentration of NaCl, and bile salts were tested in broth medium. In vitro assessment of antimicrobial activity against enteropathogenic bacteria and susceptibility to antibiotics were also tested. The results obtained in this study showed tolerance of LAB 18 and LAB 48 to pH 3.0, 6.5% NaCl and a high bile salt concentration (0.6%). Both strains evaluated showed in vitro antibacterial activity against Salmonella enterica serovar Enteritidis, Escherichia coli (O157:H7), and Campylobacter jejuni. These are important characteristics of lactic acid bacteria that should be evaluated when selecting strains to be used as probiotics. Antimicrobial activity of these effective isolates may contribute to efficacy, possibly by direct antimicrobial activity in vivo. PMID:24936379

  9. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.

    PubMed

    Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren

    2016-01-01

    This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    PubMed Central

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  11. Antibacterial Activity of Lactic Acid Bacteria Isolated from Gastrointestinal Tract of “Ayam Kampung” Chicken Against Food Pathogens

    NASA Astrophysics Data System (ADS)

    Nur Jannah, Siti; Rini Saraswati, Tyas; Handayani, Dwi; Pujiyanto, Sri

    2018-05-01

    Food borne disease results from ingestion of water and wide variety of food contaminated with pathogenic organisms. The main causes of food borne diseases are bacteria, such as Escherichia coli and Staphylococcus aureus. The objective of this study was to determine antimicrobial activity of lactic acid bacteria (LAB) isolated from local chicken gastrointestinal tract with an emphasis on their probiotic properties. The colonies of bacteria that producing clear zone on MRSA plus 0.5% CaCO3, Gram-positive and catalase-negative were isolated as lactic acid bacteria. Some of the strains (10 isolates) were tested for their ability to inhibit growth of Escherichia coli and Staphylococcus aureus, and for acid pH and bile salt tolerance. The results showed that the all selected isolates producing antimicrobial compounds inhibits the growth of Escherichia coli and Staphylococcus aureus, both in the supernatant and supernatant plus 2M NaOH, and still growing in medium condition with pH 2.0 and 0.1% bile salt. It revealing the potential use of the lactic acid bacteria from chicken gastrointestinal tract for probiotics in food.

  12. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  13. DNA Fingerprinting of Lactic Acid Bacteria in Sauerkraut Fermentations▿ † ‡

    PubMed Central

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P.

    2007-01-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics. PMID:17921264

  14. Diversity of lactic acid bacteria in sian-sianzih (fermented clams), a traditional fermented food in Taiwan.

    PubMed

    Chen, Yi-sheng; Wu, Hui-chung; Li, Ya-han; Leong, Kun-hon; Pua, Xiao-hui; Weng, Ming-kai; Yanagida, Fujitoshi

    2012-01-30

    Sian-sianzih (fermented clams) is a popular traditional fermented food in Taiwan. The lactic acid bacteria (LAB) microflora in sian-sianzih have not been studied in detail. In this study, LAB from sian-sianzih were isolated, characterized and identified. A total of 186 cultures of LAB were isolated from seven sian-sianzih samples and 29 cultures were isolated from its main raw substrate: clams. The identification results revealed up to 11 distinct bacterial species belonging to five genera in sian-sianzih, and three species belonging to two genera in clams. The most common bacterial genera in sian-sianzih were Lactobacillus and Weissella, followed by Leuconostoc, Pediococcus and Lactococcus. A regional similarity in LAB, with differences in diversity, was observed in the current study. On the other hand, Lactococcus lactis subsp. lactis was the most common species found in raw clam samples. The results also suggested that greater LAB diversity could be observed in wild clams than in cultured ones. Furthermore, antibacterial activities of the isolates were determined, and one Weisella hellenica strain showed inhibitory activity against the indicator strain Lactobacilluas sakei JCM 1157(T) . A sensory assessment of seven sian-sianzih samples was also performed and the results indicated that diversity of LAB has a great effect on its aroma and taste formation. The results demonstrate that various LAB species are distributed in sian-sianzih and have a great effect on the flavor of sian-sianzih. Copyright © 2011 Society of Chemical Industry.

  15. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microalgae-bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage.

    PubMed

    Abinandan, Sudharsanam; Subashchandrabose, Suresh R; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2018-02-01

    Microalgae and bacteria offer a huge potential in delving interest to study and explore various mechanisms under extreme environments. Acid mine drainage (AMD) is one such environment which is extremely acidic containing copious amounts of heavy metals and poses a major threat to the ecosystem. Despite its extreme conditions, AMD is the habitat for several microbes and their activities. The use of various chemicals in prevention of AMD formation and conventional treatment in a larger scale is not feasible under different geological conditions. It implies that microbe-mediated approach is a viable and sustainable alternative technology for AMD remediation. Microalgae in biofilms play a pivotal role in such bioremediation as they maintain mutualism with heterotrophic bacteria. Synergistic approach of using microalgae-bacteria biofilms provides supportive metabolites from algal biomass for growth of bacteria and mediates remediation of AMD. However, by virtue of their physiology and capabilities of metal removal, non-acidophilic microalgae can be acclimated for use in AMD remediation. A combination of selective acidophilic and non-acidophilic microalgae together with bacteria, all in the form of biofilms, may be very effective for bioremediation of metal-contaminated waters. The present review critically examines the nature of mutualistic interactions established between microalgae and bacteria in biofilms and their role in removal of metals from AMDs, and consequent biomass production for the yield of biofuel. Integration of microalgal-bacterial consortia in fuel cells would be an attractive emerging approach of microbial biotechnology for AMD remediation.

  17. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium)

    NASA Astrophysics Data System (ADS)

    Nurhayati, Rifa; Miftakhussolikhah; Frediansyah, Andri; Lailatul Rachmah, Desy

    2017-12-01

    Type 2 diabetes is a disease that caused by the failure of insulin secretion by the beta cells of the pancreas and insulin resistance in peripheral levels. One therapy for diabetics is by inhibiting the activity of α-glucosidase. Lactic acid bacteria have the ability to inhibit of α-glucosidase activity. The aims of this research was to isolation and screening of lactic acid bacteria from ganyong tuber (Canna Edulis) and kimpul tuber (Xanthosoma sagittifolium), which has the ability to inhibit the activity of α-glucosidase. Eightteen isolates were identified as lactic acid bacteria and all of them could inhibit the activity of α-glukosidase. The GN 8 isolate was perform the highest inhibition acivity.

  19. Uptake of free amino acids by bacteria-free larvae of the sand dollar Dendraster excentricus.

    PubMed

    Davis, J P; Stephens, G C

    1984-10-01

    Larvae of Dendraster excentricus were produced by collecting gametes and carrying out fertilization under aseptic conditions. Since gametes are free of bacteria in the gonad, bacteria-free (axenic) suspensions of larvae result. Net rates of entry of 14 amino acids and the rate of production of ammonia were simultaneously determined by high-performance liquid chromatography. The net rates of uptake of neutral amino acids were an order of magnitude greater than rates for basic and acidic amino acids. Influx of 14C-labeled leucine, arginine, and glutamate accurately reflects the net entry rate of these substrates. Uptake of amino acids by axenic suspensions of larvae was compared with uptake by suspensions prepared without aseptic precautions. There was no significant difference in net uptake of the 14 amino acids or in the pattern of oxidation and assimilation of [14C]leucine during short-term experiments of 4-h duration or less.

  20. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization.

    PubMed

    Smitinont, T; Tansakul, C; Tanasupawat, S; Keeratipibul, S; Navarini, L; Bosco, M; Cescutti, P

    1999-10-15

    Lactic Acid Bacteria (LAB) isolated from various traditional Thai fermented foods were screened for exopolysaccharides (EPS) production. From 104 isolates, two rod-shaped and five coccal-shaped LAB were able to produce EPS from sucrose on solid media. However, only the cocci were capable of producing EPS in liquid media and these were identified as Pediococcus pentosaceus. Pediococcus pentosaceus strains AP-1 and AP-3 produced EPS in high yield. In liquid media containing sucrose as carbon source, the amount of EPS produced by AP-1 and AP-3 strains was 6.0 and 2.5 g/L, respectively. The isolated and purified EPSs were chemically characterized. On the basis of sugar composition, methylation analysis and nuclear magnetic resonance spectroscopy, both the EPSs were shown to belong to the same dextran class. In particular, both EPSs differed from linear dextran by branching through 3,6-di-Osubstituted alpha-D-glucopyranosyl residues. The EPS from P. pentosaceus AP-3 was characterized by a relatively higher degree of branching and by a higher molecular weight than that from P. pentosaceus AP-1.

  1. Diversity of lactic acid bacteria associated with fish and the fish farm environment, established by amplified rRNA gene restriction analysis.

    PubMed

    Michel, Christian; Pelletier, Claire; Boussaha, Mekki; Douet, Diane-Gaëlle; Lautraite, Armand; Tailliez, Patrick

    2007-05-01

    Lactic acid bacteria have become a major source of concern for aquaculture in recent decades. In addition to true pathogenic species of worldwide significance, such as Streptococcus iniae and Lactococcus garvieae, several species have been reported to produce occasional fish mortalities in limited geographic areas, and many unidentifiable or ill-defined isolates are regularly isolated from fish or fish products. To clarify the nature and prevalence of different fish-associated bacteria belonging to the lactic acid bacterium group, a collection of 57 isolates of different origins was studied and compared with a set of 22 type strains, using amplified rRNA gene restriction analysis (ARDRA). Twelve distinct clusters were delineated on the basis of ARDRA profiles and were confirmed by sequencing of sodA and 16S rRNA genes. These clusters included the following: Lactococcus raffinolactis, L. garvieae, Lactococcus l., S. iniae, S. dysgalactiae, S. parauberis, S. agalactiae, Carnobacterium spp., the Enterococcus "faecium" group, a heterogeneous Enterococcus-like cluster comprising indiscernible representatives of Vagococcus fluvialis or the recently recognized V. carniphilus, V. salmoninarum, and Aerococcus spp. Interestingly, the L. lactis and L. raffinolactis clusters appeared to include many commensals of fish, so opportunistic infections caused by these species cannot be disregarded. The significance for fish populations and fish food processing of three or four genetic clusters of uncertain or complex definition, namely, Aerococcus and Enterococcus clusters, should be established more accurately.

  2. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  3. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA

    PubMed Central

    Sigal, Nicole; Senez, Jacques C.; Le Gall, Jean; Sebald, Madeleine

    1963-01-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318. 1963—The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c3 and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin (“nigrificans” and “orientis”) are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively. PMID:14047223

  4. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    PubMed

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  5. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  6. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    PubMed Central

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta. PMID:21562600

  7. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  8. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    PubMed

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Detoxification of cancerogenic compounds by lactic acid bacteria strains.

    PubMed

    Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang

    2017-10-20

    Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.

  10. Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads.

    PubMed

    Ua-Arak, Tharalinee; Jakob, Frank; Vogel, Rudi F

    2017-08-01

    Buckwheat sourdoughs supplemented with molasses as natural sucrose source were fermented with levan-producing Gluconobacter (G.) albidus TMW 2.1191 and Kozakia (K.) baliensis NBRC 16680. Cell growth, concomitant levan and low-molecular-weight metabolite production were monitored. Sourdough breads were prepared with different sourdoughs from both strains (24, 30 and 48 h fermentation, respectively) and analyzed with respect to bread volume, crumb hardness and sensory characteristics. During fermentation, levan, acetic and gluconic acids were increasingly produced, while spontaneously co-growing lactic acid bacteria additionally formed acetic and lactic acids. Sourdoughs from both strains obtained upon 24 h of fermentation significantly improved the bread sensory and quality, including higher specific volume as well as lower crumb hardness. Buckwheat doughs containing isolated levan, with similar molecular size and mass compared to in situ produced levan in the sourdough at 48 h, verified the positive effect of levan on bread quality. However, the positive effects of levan were masked to a certain extent by the impact from the natural acidification during fermentations. While levan-producing acetic acid bacteria are a promising alternative for the development of clean-label gluten-free breads without the need of additives, an appropriate balance between acidification and levan production (amount and structure) must be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  12. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    PubMed

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  13. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    PubMed

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. (GTG)5-PCR reference framework for acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Cleenwerck, Ilse; De Vos, Paul; De Vuyst, Luc

    2009-11-01

    One hundred and fifty-eight strains of acetic acid bacteria (AAB) were subjected to (GTG)(5)-PCR fingerprinting to construct a reference framework for their rapid classification and identification. Most of them clustered according to their respective taxonomic designation; others had to be reclassified based on polyphasic data. This study shows the usefulness of the method to determine the taxonomic and phylogenetic relationships among AAB and to study the AAB diversity of complex ecosystems.

  15. In Silico Evidence for the Horizontal Transfer of gsiB, a σΒ-Regulated Gene in Gram-Positive Bacteria, to Lactic Acid Bacteria

    PubMed Central

    Asteri, Ioanna-Areti; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E.; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2011-01-01

    gsiB, coding for glucose starvation-inducible protein B, is a characteristic member of the σΒ stress regulon of Bacillus subtilis and several other Gram-positive bacteria. Here we provide in silico evidence for the horizontal transfer of gsiB in lactic acid bacteria that are devoid of the σΒ factor. PMID:21421783

  16. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    PubMed

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  17. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    PubMed

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  18. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  19. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    PubMed

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm

  1. Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations.

    PubMed

    Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2016-02-01

    The presence and enumeration of halophilic and alkaliphilic bacteria in Spanish-style table-olive fermentations was studied. Twenty 10-tonne fermenters at two large manufacturing companies in Spain, previously studied through both culture dependent and independent (PCR-DGGE) methodologies, were selected. Virtually all this microbiota was isolated during the initial fermentation stage. A total of 203 isolates were obtained and identified based on 16S rRNA gene sequences. They belonged to 13 bacterial species, included in 11 genera. It was noticeable the abundance of halophilic and alkaliphilic lactic acid bacteria (HALAB). These HALAB belonged to the three genera of this group: Alkalibacterium, Marinilactibacillus and Halolactibacillus. Ten bacterial species were isolated for the first time from table olive fermentations, including the genera Amphibacillus, Natronobacillus, Catenococcus and Streptohalobacillus. The isolates were genotyped through RAPD and clustered in a dendrogram where 65 distinct strains were identified. Biodiversity indexes found statistically significant differences between both patios regarding genotype richness, diversity and dominance. However, Jaccard similarity index suggested that the halophilic/alkaliphilic microbiota in both patios was more similar than the overall microbiota at the initial fermentation stage. Thus, up to 7 genotypes of 6 different species were shared, suggesting adaptation of some strains to this fermentation stage. Morisita-Horn similarity index indicated a high level of codominance of the same species in both patios. Halophilic and alkaliphilic bacteria, especially HALAB, appeared to be part of the characteristic microbiota at the initial stage of this table-olive fermentation, and they could contribute to the conditioning of the fermenting brines in readiness for growth of common lactic acid bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain).

    PubMed

    Gonzalez, I; Laiz, L; Hermosin, B; Caballero, B; Incerti, C; Saiz-Jimenez, C

    1999-05-01

    The Sierra de la Plata is an Aljibe yellow sandstone formation from the Acheulian period. There are a few shelters, some of them with rock art paintings. The most representative one, and subjected to anthropogenic pressure, is that of Atlanterra, situated in a residential area. This shelter contains some rock art paintings made with iron oxides. The bacteria present in these paintings were isolated and identified using an automatic method: fatty acid methyl esters profiling. Most of the bacteria belong to the Bacillus genus, B. megaterium being the most abundant species. The isolated strains are able to reduce hematite. This is significant due to the fact that Fe(III)-(hydr)oxides are the most abundant pigments in rock art.

  3. Lactic Acid Bateria - Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating alpha-(1,6) and alpha-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, improved strains f...

  4. Antiallergic effect of milk fermented with lactic acid bacteria in a murine animal model.

    PubMed

    Peng, Sandy; Lin, Jin-Yuarn; Lin, Meei-Yn

    2007-06-27

    The objective of this study was to assess the antiallergic effect of fermented milk prepared, respectively, with Streptococcus thermophilus MC, Lactobacillus acidophilus B, Lactobacillus bulgaricus Lb, L. bulgaricus 448, and Bifidobacterium longum B6. Female BALB/c mice fed fermented milk were immunized intraperitoneally with ovalbumin (OVA)/complete Freund's adjuvant (CFA) to evaluate the immune response by observing the secretion of cytokines IL-2, IL-4, and IFN-gamma and serum antibody IgE. The results showed that supplementation with lactic acid bacteria fermented milk did not significantly change the IL-2 spontaneous and OVA-stimulated secretions of splenocytes. However, both spontaneous and OVA-stimulated secretions of splenocytes from mice fed lactic acid bacteria fermented milk showed significantly (P < 0.05) lower levels of IL-4 (Th2 cytokine) than those from OVA/CFA-immunized mice fed non-fermented milk (OVA/CFA-milk group). The spontaneous secretion of IFN-gamma (Th1 cytokine) by splenocytes from mice fed L. bulgaricus 448 or L. bulgaricus Lb fermented milk significantly increased as compared to that from the OVA/CFA-milk group. The results showed that the ratios of IFN-gamma to IL-4 of both spontaneous and OVA-stimulated secretions in splenocytes from mice fed lactic acid bacteria fermented milk increased significantly as compared to that of PBS- or OVA/CFA-milk groups. The serum levels of OVA-specific IgE in fermented milk fed groups, especially the group fed S. thermophilus MC fermented milk, were significantly lower than those in the OVA/CFA-milk group through a 6 week feeding experiment. The results showed that milk fermented with lactic acid bacteria demonstrated in vivo antiallergic effects on OVA/CFA-immunized mice via increasing the secretion ratio of IFN-gamma/IL-4 (Th1/Th2) by splenocytes and decreasing the serum level of OVA-specific IgE.

  5. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria.

    PubMed

    Guzzo, F; Cappello, M S; Azzolini, M; Tosi, E; Zapparoli, G

    2011-08-15

    The lysozyme of hen's egg white is used in winemaking to control spontaneous lactic acid bacteria (LAB). A total of eight LAB strains, isolated from grape must and wine, were used to assess the inhibitory effects of wine phenolics on lysozyme activity. The presence of phenolics, extracted from grape pomace, in growth medium reduced the mortality rate due to the lysozyme activity. This effect was especially clear in the case of strains belonging to Lactobacillus uvarum, Pediococcus parvulus and Oenococccus oeni, which are more sensitive to lysozyme than L. plantarum and L. hilgardii strains. Cell lysis assays carried out on four strains sensitive to lysozyme and Micrococcus lysodeikticus ATCC 4698, used as a reference strain, confirmed the inhibition of grape pomace phenolics on the muramidase. There was no interference from non-flavonoids, flavanols and flavonol compounds, when they were tested individually, on the lysozyme activity against the strains. Anthocyanins extracted from grape skins slightly inhibited the activity only against M. lysodeikticus. However, proanthocyanidins extracted from seed berries, strongly inhibited the lysozyme. In this extract, dimers were the predominant oligomers of flavan-3-ol. The study demonstrated that the effectiveness of lysozyme against LAB in red winemaking is related to the amount of low molecular weight proanthocyanidins that are released when the grapes are macerating. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses.

    PubMed

    Morales, Fredy; Morales, Jesús I; Hernández, César H; Hernández-Sánchez, Humberto

    2011-07-01

    Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, a(w), pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses.

  7. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  8. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine.

    PubMed

    Pardali, Eleni; Paramithiotis, Spiros; Papadelli, Marina; Mataragas, Marios; Drosinos, Eleftherios H

    2017-06-01

    The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30 °C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.

  9. Phenotypic and genotypic characterization of lactic acid bacteria from traditional cheese in Khorramabad city of Iran with probiotic potential.

    PubMed

    Ghahremani, Enayat; Mardani, Mahnaz; Rezapour, Sadegh

    2015-03-01

    Lactic acid bacteria (LAB) with proteolitic activity are used as aromatic and antibacterial substances, cholesterol reduces, bile salt hydrolyses, and probiotic. The aims of this project were to isolate and identify natural LAB flora involved in traditional fermentation in cheeses of Khoramabad city and also to survey their probiotic potential. In order to achieve this goal, LAB were isolated and characterized using phenotypic and genotypic methods (PCR-sequencing); in the next stage, they were analyzed lowering cholesterol medium, hydrolysis of the bile, resistance to bile-resistant PH acidic stomach. At the end of the study, 88 cocci and 3 bacill were found: 58 Enterococcus faecium, 16 Enterococcus hirae, 5 Lactococcus lactis, 3 Lactobacillus plantarum, and 9 undetermined. The probiotic results of the bacteria had effects on the reduction of cholesterol, resistance to stomach acid, had relative antibacterial effects, and some strains had effects on hydrolyzing the bile. For further identification, the PCR method and the application of 16s-DNA-ITS genes and its sequencing were found useful. This study showed that lactic acid bacteria in the traditional cheese of the Khorramabad city have relative probiotic effect and that these lactic acid bacteria in fermented milk are suitable.

  10. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Screening lactic acid bacteria strains with ability to bind di-n-butyl phthalate via Turbiscan technique.

    PubMed

    Lili, Zhao; Hongfei, Zhao; Shoukat, Sana; Xiaochen, Zhang; Bolin, Zhang

    2017-06-01

    Di-n-butyl phthalate (DBP) is a ubiquitous environmental contaminant that poses a risk to humans. Previous work indicates that the ability of lactic acid bacteria (LAB) to bind phthalic acid esters is strain-specific. As cell suspensions of LAB strains in aqueous solution are likely to be colloidal dispersions, this study provided a technique to efficiently screen LAB strains that bind DBP via Turbiscan, which has been widely used to measure the stability of emulsions or colloidal dispersions. Eleven LAB strains belonging to Lactobacillus plantarum, Lb. pentosus, Lb. paralimentarius, Lb. helveticus, Leuconostoc mesenteroides, Lb. acidophilus, Bifidobacterium lactis, and Bifidobacterium bifidum species were used in this study, and seven of them were selected to test in an earlier stage of exploring the process for finding a screening method; others were used for a validation test. It was observed that the various values of the 10 h Turbiscan Stability Index (TSI) of the cell suspension from each strain, at the equilibrium time of dispersed particles according to the peak thickness of cell-suspensions as measured by Turbiscan, had significant negative correlations with the DBP-binding percentage of LAB strains. Higher TSI values are correlated with lower binding of bacteria strains to DBP with a correlation coefficient of 0.8292. Cell surface hydrocarbons of LAB strains and their adherence were observed to correlate with DBP-binding percentages and may lead to the different states of aggregation or equilibrium of bacterial cell-suspensions, and the aggregation of bacterial cells resulted in fewer binding sites in the cell wall for DBP. Finally, four LAB strains were randomly selected to verify the feasibility of the method. In all, the findings demonstrate that TSI might be used as a tool to quickly screen strains that bind DBP. The present work could be extended to the removal of other toxic compounds, when screening of high-efficiency strains is required.

  12. Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins.

    PubMed Central

    Cook, W B; Walker, J C

    1992-01-01

    A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929

  13. Survival and growth of probiotic lactic acid bacteria in refrigerated pickle products

    USDA-ARS?s Scientific Manuscript database

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures ...

  14. Total lactic acid bacteria, antioxidant activity, and acceptance of synbiotic yoghurt with red ginger extract (Zingiberofficinale var. rubrum)

    NASA Astrophysics Data System (ADS)

    Larasati, B. A.; Panunggal, B.; Afifah, D. N.; Anjani, G.; Rustanti, N.

    2018-02-01

    Antioxidant related to oxidative stress can caused the metabolic disorders. A functional food that high in antioxidant can be use as the alternative prevention. The addition of red ginger extract in yoghurt could form a functional food, that high in antioxidant, synbiotic and fiber. The influence of red ginger extract on yoghurt synbiotic against lactic acid bacteria, antioxidant activity and acceptance were analyzed. This was an experimental research with one factor complete randomized design, specifically the addition of red ginger extract 0%; 0,1%; 0,3% and 0,5% into synbiotic yoghurt. Total plate count method used to analyze the lactic acid bacteria, 1-1-diphenyl-2-picrylhydrazyl (DPPH) method for antioxidant activity, and acceptance analyzed with hedonic test. The higher the dose of extract added to synbiotic yoghurt, the antioxidant activity got significantly increased (ρ=0,0001), while the lactic acid bacteria got insignificantly decreased (ρ=0,085). The addition of 0,5% red ginger extract obtained the antioxidant activity of 71% and 4,86 × 1013 CFU/ml on lactic acid bacteria, which the requirement for probiotic on National Standard of Indonesia is >107 CFU/ml. The addition of extract had a significant effect on acceptance (ρ=0,0001) in flavor, color, and texture, but not aroma (ρ=0,266). The optimal product in this research was the yoghurt synbiotic with addition of 0,1% red ginger extract. To summarize, the addition of red ginger extract in synbiotic yoghurt had significant effect on antioxidant activity, flavor, color, and texture, but no significant effect on lactic acid bacteria and aroma.

  15. Phellodonic acid, a new biologically active hirsutane derivative from Phellodon melaleucus (Thelephoraceae, Basidiomycetes).

    PubMed

    Stadler, M; Anke, T; Dasenbrock, J; Steglich, W

    1993-01-01

    A new hirsutane derivative, phellodonic acid (1), has been isolated from fermentations of Phellodon melaleucus strain 87113. Its structure was elucidated by spectroscopic methods. The compound exhibits antibiotic activities towards bacteria and fungi. 1 is the first bioactive metabolite from cultures of a species belonging to the family Thelephoraceae.

  16. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  17. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  18. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions.

    PubMed

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik; Wittmann, Christoph

    2014-08-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.

  19. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  20. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  1. Evolution of siderophore pathways in human pathogenic bacteria.

    PubMed

    Franke, Jakob; Ishida, Keishi; Hertweck, Christian

    2014-04-16

    Ornibactin and malleobactin are hydroxamate siderophores employed by human pathogenic bacteria belonging to the genus Burkholderia. Similarities in their structures and corresponding biosynthesis gene clusters strongly suggest an evolutionary relationship. Through gene coexpression and targeted gene manipulations, the malleobactin pathway was successfully morphed into an ornibactin assembly line. Such an evolutionary-guided approach has been unprecedented for nonribosomal peptide synthetases. Furthermore, the timing of amino acid acylation before peptide assembly, the absolute configuration of the ornibactin side chain, and the function of the acyl transferase were elucidated. Beyond providing a proof of principle for the rational design of siderophore pathways, a compelling model for the evolution of virulence traits is presented.

  2. Glucansucrases from lactic acid bacteria which produce water-insoluble polysaccharides from sucrose

    USDA-ARS?s Scientific Manuscript database

    Dextrans and related glucans produced from sucrose by lactic acid bacteria have been studied for many years and are used in numerous commercial applications and products. Most of these glucans are water-soluble, except for a few notable exceptions from cariogenic Streptococcus spp. and a very small ...

  3. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    PubMed

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  4. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  5. Antagonistic effect of chosen lactic acid bacteria strains on Yersinia enterocolitica species in model set-ups, meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The present study was aimed at determining the influence of 15 strains of lactic acid bacteria on the growth of 8 Yersinia enterocolitica strains in model set-ups, and in meat and ageing fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus sp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Yersinia enterocolitica strains studied was, depending on the variant of experiment, 1:1, 1:2 and 2:1, respectively. The study also considered water activity (aw) and pH of the products investigated. The results suggest that all the lactic acid bacteria strains used within the framework of the model set-ups had antagonistic effect on all the Salmonella sp. strains. However, this ability was not observed with respect to of tested lactic acid bacteria strains in meat and fermented sausage. This ability was possessed by one of the strains investigated--Lactobacillus helveticus T 78. The temperature and time of the incubation of sausages, but not aw and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria tested.

  6. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    NASA Astrophysics Data System (ADS)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  7. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.

  8. Amino acid composition of rumen bacteria and protozoa in cattle.

    PubMed

    Sok, M; Ouellet, D R; Firkins, J L; Pellerin, D; Lapierre, H

    2017-07-01

    Because microbial crude protein (MCP) constitutes more than 50% of the protein digested in cattle, its AA composition is needed to adequately estimate AA supply. Our objective was to update the AA contributions of the rumen microbial AA flowing to the duodenum using only studies from cattle, differentiating between fluid-associated bacteria (FAB), particle-associated bacteria (PAB), and protozoa, based on published literature (53, 16, and 18 treatment means were used for each type of microorganism, respectively). In addition, Cys and Met reported concentrations were retained only when an adequate protection of the sulfur groups was performed before the acid hydrolysis. The total AA (or true protein) fraction represented 82.4% of CP in bacteria. For 10 AA, including 4 essential AA, the AA composition differed between protozoa and bacteria. The most noticeable differences were a 45% lower Lys concentration and 40% higher Ala concentration in bacteria than in protozoa. Differences between FAB and PAB were less pronounced than differences between bacteria and protozoa. Assuming 33% FAB, 50% PAB, and 17% of protozoa in MCP duodenal flow, the updated concentrations of AA would decrease supply estimates of Met, Thr, and Val originating from MCP and increase those of Lys and Phe by 5 to 10% compared with those calculated using the FAB composition reported previously. Therefore, inclusion of the contribution of PAB and protozoa to the duodenal MCP flow is needed to adequately estimate AA supply from microbial origin when a factorial method is used to estimate duodenal AA flow. Furthermore, acknowledging the fact that hydrolysis of 1 kg of true microbial protein yields 1.16 kg of free AA substantially increases the estimates of AA supply from MCP. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. [Design of primers to DNA of lactic acid bacteria].

    PubMed

    Lashchevskiĭ, V V; Kovalenko, N K

    2003-01-01

    Primers LP1-LP2 to the gene 16S rRNA have been developed, which permit to differentiate lactic acid bacteria: Lactobacillus plantarum, L. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus. The strain-specific and species-specific differentiations are possible under different annealing temperature. Additional fragments, which are synthesized outside the framework of gene 16S rRNA reading, provide for the strain-specific type of differentiation, and the fragment F864 read in the gene 16S rRNA permits identifying L. plantarum.

  10. Bacteriocins from lactic acid bacteria as an alternative to antibiotics.

    PubMed

    Ołdak, Aleksandra; Zielińska, Dorota

    2017-05-05

    Bacteriocins are ribosomally synthesized, proteinaceous substances that inhibit the growth of closely related species through numerous mechanisms. The classification system used in this review divided bacteriocins into four sub-groups based on their size. Currently, there is extensive research focused on bacteriocins and their usage as a food preservative. The increasing incidence of multidrug resistant bacterial pathogens is one of the most pressing medical problems in recent years. Recently, the potential clinical application of LAB (Lactic Acid Bacteria) bacteriocin has been the subject of investigations by many scientists. Bacteriocins can be considered in a sense as antibiotic, although they differ from conventional antibiotics in numerous aspects. The gene-encoded nature of bacteriocins makes them easily amenable through bioengineering to either increase their activity or specify target microorganism. Owing to this feature of bacteriocins, antibiotic therapy would become less damaging to the natural gut microflora, which is a common drawback of conventional antibiotic use. Bacteriocins from lactic acid bacteria represent one of the most studied microbial defense systems and the idea of subjecting them to bioengineering to either increase antimicrobial activity or further specify their target microorganism is now a rapidly expanding field. This review aimed to present bacteriocins as a possible alternative to conventional antibiotics basic on latest scientific data.

  11. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry

    NASA Astrophysics Data System (ADS)

    He, Shengbin; Hong, Xinyi; Huang, Tianxun; Zhang, Wenqiang; Zhou, Yingxing; Wu, Lina; Yan, Xiaomei

    2017-06-01

    A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.

  12. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors.

    PubMed

    Newman, Karyn L; Chatterjee, Subhadeep; Ho, Kimberly A; Lindow, Steven E

    2008-03-01

    Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that

  13. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.

    PubMed

    Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana

    2013-01-01

    Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.

  14. Direct quantitation of fatty acids present in bacteria and fungi: stability of the cyclopropane ring to chlorotrimethylsilane.

    PubMed

    Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon

    2008-07-09

    The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.

  15. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  16. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    PubMed

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  17. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium.

    PubMed

    Bag, A; Chattopadhyay, R R

    2017-11-01

    The aim of the study was to evaluate possible antibacterial and antibiofilm efficacy of a bacteriocin, nisin with two essential oil components linalool and p-coumaric acid in combination against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Their inhibition effects on planktonic cells and preformed biofilms were evaluated using microbroth dilution and checkerboard titration methods. Nisin/p-coumaric acid combination showed synergistic effects against planktonic cells of both the studied bacteria, whereas nisin/linalool combination showed synergistic activity against B. cereus and additive effect against S. typhimurium. In preformed biofilms, nisin by itself failed to show >50% antibiofilm efficacy against both the studied bacteria, but in combination with linalool and p-coumaric acid, it exerted >50% antibiofilm efficacy. On the basis of fractional inhibitory concentration indices values, nisin/p-coumaric acid combination exhibited synergistic antibiofilm activity, whereas nisin/linalool combination showed additive effects against preformed biofilms of studied bacteria. The results provide evidence that p-coumaric acid due to its synergistic interactions with nisin against planktonic cells and biofilms of both Gram-positive and Gram-negative food-borne bacteria enhanced the antibacterial spectrum of nisin, which subsequently may facilitate their use in the food industry. In the present work, synergistic interactions between a bacteriocin, nisin and essential oil component p-coumaric acid on planktonic cells as well as on biofilms of Gram-positive and Gram-negative food-borne bacteria have been reported. The results of this study provide evidence that nisin/p-coumaric acid combination can be considered as a promising source for development of more potent broad spectrum antimicrobial blend for food preservation, which subsequently may facilitate their use in the food industry. To the best of our knowledge, this is the first report of the

  18. Oxalic Acid from Lentinula edodes Culture Filtrate: Antimicrobial Activity on Phytopathogenic Bacteria and Qualitative and Quantitative Analyses

    PubMed Central

    Kwak, A-Min; Lee, In-Kyoung; Lee, Sang-Yeop

    2016-01-01

    The culture filtrate of Lentinula edodes shows potent antimicrobial activity against the plant pathogenic bacteria Ralstonia solanacearum. Bioassay-guided fractionation was conducted using Diaion HP-20 column chromatography, and the insoluble active compound was not adsorbed on the resin. Further fractionation by high-performance liquid chromatography (HPLC) suggested that the active compounds were organic acids. Nine organic acids were detected in the culture filtrate of L. edodes; oxalic acid was the major component and exhibited antibacterial activity against nine different phytopathogenic bacteria. Quantitative analysis by HPLC revealed that the content of oxalic acid was higher in the water extract from spent mushroom substrate than in liquid culture. This suggests that the water extract of spent L. edodes substrate is an eco-friendly control agent for plant diseases. PMID:28154495

  19. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    PubMed Central

    Richter, Stefan G.; Elli, Derek; Kim, Hwan Keun; Hendrickx, Antoni P. A.; Sorg, Joseph A.; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics. PMID:23401520

  20. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  1. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  3. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    PubMed

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  4. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  5. Bacteria and Archaea in acidic environments and a key to morphological identification

    USGS Publications Warehouse

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH <4.5 environments. This paper reviews the worldwide literature and provide tables of morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  6. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  7. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    PubMed

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering.

  8. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.

    PubMed

    Kikuchi, Yo; Umekage, So

    2018-02-01

    Extracellular nucleic acids of high molecular weight are detected ubiquitously in seawater. Recent studies have indicated that these nucleic acids are, at least in part, derived from active production by some bacteria. The marine bacterium Rhodovulum sulfidophilum is one of those bacteria. Rhodovulumsulfidophilum is a non-sulfur phototrophic marine bacterium that is known to form structured communities of cells called flocs, and to produce extracellular nucleic acids in culture media. Recently, it has been revealed that this bacterium produces gene transfer agent-like particles and that this particle production may be related to the extracellular nucleic acid production mechanism. This review provides a summary of recent physiological and genetic studies of these phenomena and also introduces a new method for extracellular production of artificial and biologically functional RNAs using this bacterium. In addition, artificial RNA production using Escherichia coli, which is related to this topic, will also be described. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Comparative Studies of Class IIa Bacteriocins of Lactic Acid Bacteria

    PubMed Central

    Eijsink, Vincent G. H.; Skeie, Marianne; Middelhoven, P. Hans; Brurberg, May Bente; Nes, Ingolf F.

    1998-01-01

    Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibiting Listeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active toward Listeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria. PMID:9726871

  10. Stress Physiology of Lactic Acid Bacteria

    PubMed Central

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  11. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Acetic acid bacteria in fermented foods and beverages.

    PubMed

    De Roos, Jonas; De Vuyst, Luc

    2018-02-01

    Although acetic acid bacteria (AAB) are commonly found in spontaneous or backslopped fermented foods and beverages, rather limited knowledge about their occurrence and functional role in natural food fermentation ecosystems is available. Not only is their cultivation, isolation, and identification difficult, their cells are often present in a viable but not culturable state. Yet, they are promising starter cultures either to better control known food fermentation processes or to produce novel fermented foods and beverages. This review summarizes the most recent findings on the occurrence and functional role of AAB in natural food fermentation processes such as lambic beer, water kefir, kombucha, and cocoa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria.

    PubMed

    Herzallah, Saqer

    2013-01-01

    1. The aim of this work was to compare conjugated linoleic acid (CLA) concentrations in chickens supplemented with 4 American Tissue Culture Collection (ATCC) bacterial strains, Lactobacillus plantarum, Lactobacillus lactis, Lactobacillus casei and Lactobacillus fermentum, and 4 isolates of Lactobacillus reuteri from camel, cattle, sheep and goat rumen extracts. 2. Micro-organisms were grown anaerobically in MRS broth, and 10(6) CFU/ml of bacteria were administered orally to mixed-sex, 1-d-old broiler chickens weekly for 4 weeks and to 23-week-old layer hens weekly for 6 weeks. 3. The 4 strains were evaluated for their effects on synthesis of CLA in hen eggs and broiler meat cuts. 4. Administration of pure Lactobacillus and isolated L. reuteri strains from camel, cattle, goat and sheep led to significantly increased CLA concentrations of 0.2-1.2 mg/g of fat in eggs and 0.3-1.88 mg/g of fat in broiler chicken flesh homogenates of leg, thigh and breast. 5. These data demonstrate that lactic acid bacteria of animal origin (L. reuteri) significantly enhanced CLA synthesis in both eggs and broiler meat cuts.

  14. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity.

    PubMed

    Campanella, Daniela; Rizzello, Carlo Giuseppe; Fasciano, Cristina; Gambacorta, Giuseppe; Pinto, Daniela; Marzani, Barbara; Scarano, Nicola; De Angelis, Maria; Gobbetti, Marco

    2017-08-01

    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (>9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification by using MALDI-TOF mass spectrometry of lactic acid bacteria isolated from non-commercial yogurts in southern Anatolia, Turkey.

    PubMed

    Karaduman, Ayse; Ozaslan, Mehmet Ozaslan; Kilic, Ibrahim H; Bayil-Oguzkan, Sibel; Kurt, Bekir S; Erdogan, Nese

    2017-03-01

    Yogurt is a dairy product obtained by bacterial fermentation of milk. Commercial yogurts are produced using standard starters while, in the production of non-commercial yogurt, the microbiota is quite different since yogurts are used as starter for years. To determine the final characteristics of the fermented product it is necessary to know the biochemical properties of the starter cultures, such as acidity, aroma and flavor. This can only be achieved by identifying and characterizing the bacteria in starter cultures. In our study, 208 non-commercial yogurt samples were collected from 9 different locations in Anatolia, southern Turkey. Their pH and lactic acid bacteria profiles were analyzed. Isolated bacteria were identified by MALDI-TOF MS (matrix-assisted laser sesorption-ionization time-of-flight, mass spectrometry), which is a fast and reliable method for identification of bacterial isolates compared to classical laboratory methods. In this study, 41% of the isolates were identified by using this method, which is 99.9% and 34.0% confidence. The isolates contained two genera (Enterococcus and Lactobacillus) and four species. Afterwards, the four lactic acid bacteria were characterized physiologically and biochemically and we found that they differed from lactic acid bacteria used in commercial yogurt production. [Int Microbiol 20(1): 25-30 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria.

    PubMed

    Aspmo, Stein Ivar; Horn, Svein Jarle; Eijsink, Vincent G H

    2005-07-01

    Hydrolysates of cod viscera were tested as an alternative to commonly used complex nitrogen sources (peptones and/or extracts) for the type strains of the lactic acid bacteria Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus casei, Lactobacillus sakei and Pediococcus pentosaceus. Comparative studies with MRS-like media containing different nitrogen sources showed that all the fish hydrolysates performed equally well or better than commercial extracts/peptones for all selected lactic acid bacteria.

  17. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments.

    PubMed Central

    Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C

    1982-01-01

    Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712

  18. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria

    PubMed Central

    2013-01-01

    Background Secondary hyperoxaluria either based on increased intestinal absorption of oxalate (enteric), or high oxalate intake (dietary), is a major risk factor of calcium oxalate urolithiasis. Oxalate-degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Methods Twenty healthy subjects were studied initially while consuming a diet normal in oxalate. Study participants were then placed on a controlled oxalate-rich diet for a period of 6 weeks. Starting with week 2 of the oxalate-rich diet, participants received 2.6 g/day of a lactic acid bacteria preparation for 5 weeks. Finally, subjects were examined 4 weeks after treatment while consuming again a normal-oxalate diet. Participants provided weekly 24-hour urine specimens. Analyses of blood samples were performed before and at the end of treatment. Results Urinary oxalate excretion increased significantly from 0.354 ± 0.097 at baseline to 0.542 ± 0.163 mmol/24 h under the oxalate-rich diet and remained elevated until the end of treatment, as did relative supersaturation of calcium oxalate. Plasma oxalate concentration was significantly higher after 5 weeks of treatment compared to baseline. Four weeks after treatment, urinary oxalate excretion and relative supersaturation of calcium oxalate fell to reach initial values. Conclusions Persistent dietary hyperoxaluria and increased plasma oxalate concentration can already be induced in healthy subjects without disorders of oxalate metabolism. The study preparation neither reduced urinary oxalate excretion nor plasma oxalate concentration. The preparation may be altered to select for lactic acid bacteria strains with the highest oxalate-degrading activity. PMID:24330782

  19. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterialmore » populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.« less

  20. Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro.

    PubMed

    Lima, Janaína R; Ribon, Andréa de O Barros; Russell, James B; Mantovani, Hilário C

    2009-03-01

    Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL(-1)) or monensin (5 microM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.

  1. Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria.

    PubMed Central

    Hovanec, T A; DeLong, E F

    1996-01-01

    Three nucleic acid probes, two for autotrophic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria and one for alpha subdivision nitrite-oxidizing bacteria, were developed and used to study nitrifying bacterial phylotypes associated with various freshwater and seawater aquarium biofilters. Nitrosomonas europaea and related species were detected in all nitrifying seawater systems and accounted for as much as 20% of the total eubacterial rRNA. In contrast, nitrifying bacteria belonging to the beta-proteobacterial subdivision were detected in only two samples from freshwater aquaria showing vigorous nitrification rates. rRNA originating from nitrite-oxidizing alpha subdivision proteobacteria was not detected in samples from either aquarium environment. The data obtained indicate that chemolithotrophic ammonia oxidation in the freshwater aquaria was not due to beta-proteobacterial phylotypes related to members of the genus Nitrosomonas and their close relatives, the organisms usually implicated in freshwater nitrification. It is likely that nitrification in natural environments is even more complex than nitrification in these simple systems and is less well characterized with regard to the microorganisms responsible. PMID:8702281

  2. Ultrastructural localization of acid phosphatase in some bacteria, after treatment with Lubrol W1.

    PubMed

    Cherepova, N; Spasova, D

    1996-01-01

    The ultracytochemical localization of acid phosphatase from some bacteria (Listeria monocytogenes, Salmonella typhimurium, Pseudomonas pseudomallei and Pseudomonas aeruginosa) was dependent on the changes in the lipoprotein content of the membranes as a result of the action of the Lubrol W1.

  3. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    PubMed

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.

    PubMed

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-12-19

    The use of sourdough fermented with specific strains of antifungal lactic acid bacteria can reduce chemical preservatives in bakery products. The main objective of this study was to investigate the production of antifungal carboxylic acids after sourdough fermentation of quinoa and rice flour using the antifungal strains Lactobacillus reuteri R29 and Lactobacillus brevis R2Δ as bioprotective cultures and the non-antifungal L. brevis L1105 as a negative control strain. The impact of the fermentation substrate was evaluated in terms of metabolic activity, acidification pattern and quantity of antifungal carboxylic acids. These in situ produced compounds (n=20) were extracted from the sourdough using a QuEChERS method and detected by a new UHPLC-MS/MS chromatography. Furthermore, the sourdough was applied in situ using durability tests against environmental moulds to investigate the biopreservative potential to prolong the shelf life of bread. Organic acid production and TTA values were lowest in rice sourdough. The sourdough fermentation of the different flour substrates generated a complex and significantly different profile of carboxylic acids. Extracted quinoa sourdough detected the greatest number of carboxylic acids (n=11) at a much higher concentration than what was detected from rice sourdough (n=9). Comparing the lactic acid bacteria strains, L. reuteri R29 fermented sourdoughs contained generally higher concentrations of acetic and lactic acid but also the carboxylic acids. Among them, 3-phenyllactic acid and 2-hydroxyisocaproic acid were present at a significant concentration. This was correlated with the superior protein content of quinoa flour and its high protease activity. With the addition of L. reuteri R29 inoculated sourdough, the shelf life was extended by 2 days for quinoa (+100%) and rice bread (+67%) when compared to the non-acidified controls. The L. brevis R2Δ fermented sourdough bread reached a shelf life of 4 days for quinoa (+100%) and

  5. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.

    PubMed

    Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen

    2007-10-01

    The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.

  6. Chemical compositions and antibacterial activity of extracts obtained from the inflorescences of Cirsium canum (L.) all.

    PubMed

    Kozyra, Małgorzata; Biernasiuk, Anna; Malm, Anna; Chowaniec, Marcin

    2015-01-01

    The aim of this study was to investigate phenolic acids and flavonoids in methanolic, dichloromethane, acetone and ethyl acetate extracts and fractions from inflorescences of Cirsium canum (L.). RP-HPLC analysis enabled identification of the following: chlorogenic acid, caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-cinnamic acid, luteolin-7-glucoside, apigenin-7-glucoside, kaempferol-3-glucoside, linarin, apigenin, rutoside, luteolin and kaempferol. The antimicrobial activity of tested extracts was determined in vitro against reference microorganisms, including bacteria or fungi, belonging to yeasts. Our data showed that the tested extracts had no influence on the growth of the reference strains of Gram-negative bacteria and yeasts belonging to Candida spp. Among them, the fractions possessed the highest activity against Gram-positive bacteria, especially Streptococcus aureus and Streptococcus pneumoniae belonging to pathogens and Streptococcus epidermidis, Bacilluscereus and Bacillus subtilis belonging to opportunistic microorganisms.

  7. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  8. Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract.

    PubMed

    Chaikaew, Siriporn; Baipong, Sasitorn; Sone, Teruo; Kanpiengjai, Apinun; Chui-Chai, Naradorn; Asano, Kozo; Khanongnuch, Chartchai

    2017-09-01

    The microbiota of lactic acid bacteria (LAB) in thirty-five samples of Miang, a traditional fermented tea leaf product, collected from twenty-two different regions of eight provinces in upper northern Thailand was revealed through the culture-dependent technique. A total of 311 presumptive LAB strains were isolated and subjected to clustering analysis based on repetitive genomic element-PCR (rep-PCR) fingerprinting profiles. The majority of the strains belonged to the Lactobacillus genera with an overwhelming predominance of the Lb. plantarum group. Further studies of species-specific PCR showed that 201 of 252 isolates in the Lb. plantarum group were Lb. plantarum which were thus considered as the predominant LAB in Miang, while the other 51 isolates belonged to Lb. pentosus. In contrast to Lb. plantarum, there is a lack of information on the tannase gene and the tea tannin-tolerant ability of Lb. pentosus. Of the 51 Lb. pentosus isolates, 33 were found to harbor the genes encoding tannase and shared 93-99% amino acid identity with tannase obtained from Lb. pentosus ATCC 8041 T . Among 33 tannase gene-positive isolates, 23 isolates exhibited high tannin- tolerant capabilities when cultivated on de Man Rogosa and Sharpe agar-containing bromocresol purple (0.02 g/L, MRS-BCP) supplemented with 20% (v/v) crude tea extract, which corresponded to 2.5% (w/v) tannins. These Lb. pentosus isolates with high tannin-tolerant capacity are expected to be the high potential strains for functional tannase production involved in Miang fermentation as they will bring about certain benefits and could be used to improve the fermentation of tea products.

  9. Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation

    NASA Astrophysics Data System (ADS)

    Baniyah, Laelatul; Nur Jannah, Siti; Rukmi, Isworo; Sugiharto

    2018-05-01

    Lactic Acid Bacteria (LAB) is a digestive tract microflora that have a positive role in poultry health. The number and diversity of LAB in the digestive tract affected by several factors, among them was the kind of feed. The purpose of this research was to know diversity of Lactic Acid Bacteria (LAB) ileum broiler’s after feeding with prebiotic bran and Rhizopus oryzae fermented bran which was added to commercial feed. As much as 15 broilers were used to determine the diversity of LAB. All broilers were fed using commercial feed. The control used commercial feed no addition of bran or fermented bran, and commercial feed with fermented bran and nonfermented bran were as a treatment. To determine the diversity of LAB, T-RFLP method was applied. The Hae III and Msp I were used as restriction enzymes. The number of phylotype, relative abundance, Shannon diversity index (H '), evenness (E), and Dominance (D) were examined. The results indicated that the addition of prebiotic bran on commercial feed showed a higher diversity of lactic acid bacteria on broiler’s ileum, compared with control and addition of Rhizopus oryzae fermented bran. LAB group that dominates in the ileum is Lactobacillus sp. and L. delbruecii subs bulgaricus.

  11. Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation.

    PubMed

    Chen, Taojing; Zhao, Quanyu; Wang, Liang; Xu, Yunfeng; Wei, Wei

    2017-11-01

    Co-culture of microalgae with many types of bacteria usually comes out with significant different treatment efficiencies for COD, nitrogen, and phosphorus in wastewater remediation, compared with the single culture. In order to understand the mechanism behind, a comparative experiment was designed in this study, using the green microalgae species Chlorella sorokiniana in the single culture and a consortium with a bacterium, Pseudomonas H4, for nutrient removal. Comparative metabolome profile analysis was conducted to reveal the Chlorella cell responses to the synergistic growth with the bacteria, and possible relations between the metabolic regulation of microalgae and the nutrient degradation were discussed. The detectable differential metabolites of Chlorella belonged to several classes, including carbohydrates, fatty acids, amino acids, phosphates, polyols, etc. The orthogonal partial least squares discriminant analysis (OPLS-DA) model of the identified metabolites suggests the metabolism in this alga was significantly affected by the bacteria, corresponding to different treatment behaviors.

  12. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

    PubMed Central

    Fautz, E; Rosenfelder, G; Grotjahn, L

    1979-01-01

    The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159

  13. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria.

    PubMed

    Patra, F; Tomar, S K; Arora, S

    2009-01-01

    Lactic acid bacteria (LAB) have been extensively used for centuries as starter cultures to carry out food fermentations and are looked upon as burgeoning "cell factories" for production of host of functional biomolecules and food ingredients. Low-calorie sugars have been a recent addition and have attracted a great deal of interest of researchers, manufacturers, and consumers for varied reasons. These sweeteners also getting popularized as low-carb sugars have been granted generally recommended as safe (GRAS) status by the U.S. Federal Drug Administration (USFDA) and include both sugars and sugar alcohols (polyols) which in addition to their technological attributes (sugar replacer, bulking agent, texturiser, humectant, cryoprotectant) have been observed to exert a number of health benefits (low calories, low glycemic index, anticariogenic, osmotic diuretics, obesity control, prebiotic). Some of these sweeteners successfully produced by lactic acid bacteria include mannitol, sorbitol, tagatose, and trehalose and there is a potential to further enhance their production with the help of metabolic engineering. These safe sweeteners can be exploited as vital food ingredients for development of low-calorie foods with added functional values especially for children, diabetic patients, and weight watchers.

  14. Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology.

    PubMed

    Pérez-Martín, Fátima; Seseña, Susana; Izquierdo, Pedro Miguel; Martín, Raúl; Palop, María Llanos

    2012-04-01

    The aim of this study was to evaluate the ability from a number of lactic acid bacteria isolated from different sources to produce glycosidase enzymes. Representative isolates (225) from clusters obtained after genotyping, using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis, of 1,464 isolates, were screened for β-D-glucosidase activity. Thirty-five of them were selected for subsequent analysis. These strains were able to hydrolyze α-D-glucopyranoside, β-D-xylopyranoside and α-L-arabinofuranoside although β-D-glucosidase activity was the predominant activity for 22 of the selected strains. Only some of them did so with α-L-rhamnopyranoside. All of these were from wine samples and were identified as belonging to the Oenococcus oeni species using Amplification and Restriction Analysis of 16S-rRNA gene (16S-ARDRA). When the influence of pH, temperature and ethanol or sugars content on β-D-glucosidase activity was assayed, a strain-dependent response was observed. The β-D-glucosidase activity occurred in both whole and sonicated cells but not in the supernatants from cultures or obtained after cell sonication. Strains 10, 17, 21, and 23 retained the most β-D-glucosidase activity when they were assayed at the conditions of temperature, pH, ethanol and sugar content used in winemaking. These results suggest that these strains could be used as a source of glycosidase enzymes for use in winemaking.

  15. 3-Nitroasterric Acid Derivatives from an Antarctic Sponge-Derived Pseudogymnoascus sp. Fungus.

    PubMed

    Figueroa, Luis; Jiménez, Carlos; Rodríguez, Jaime; Areche, Carlos; Chávez, Renato; Henríquez, Marlene; de la Cruz, Mercedes; Díaz, Caridad; Segade, Yuri; Vaca, Inmaculada

    2015-04-24

    Four new nitroasterric acid derivatives, pseudogymnoascins A-C (1-3) and 3-nitroasterric acid (4), along with the two known compounds questin and pyriculamide, were obtained from the cultures of a Pseudogymnoascus sp. fungus isolated from an Antarctic marine sponge belonging to the genus Hymeniacidon. The structures of the new compounds were determined by extensive NMR and MS analyses. These compounds are the first nitro derivatives of the known fungal metabolite asterric acid. Several asterric acid derivatives isolated from other fungal strains have shown antibacterial and antifungal activities. However, the new compounds described in this work were inactive against a panel of bacteria and fungi (MIC > 64 μg/mL).

  16. Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria.

    PubMed Central

    Ka, J O; Holben, W E; Tiedje, J M

    1994-01-01

    Competition among indigenous and inoculated 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was studied in a native Kansas prairie soil following 2,4-D additions. The soil was inoculated with four different 2,4-D-degrading strains at densities of 10(3) cells per g of soil; the organisms used were Pseudomonas cepacia DBO1(pJP4) and three Michigan soil isolates, strain 745, Sphingomonas paucimobilis 1443, and Pseudomonas pickettii 712. Following 2,4-D additions, total soil DNA was extracted and analyzed on Southern blots by using a tfdA gene probe which detected three of the strains and another probe that detected the fourth strain, S. paucimobilis 1443, which belongs to a different class of 2,4-D degraders. P. cepacia DBO1(pJP4), a constructed strain, outcompeted the other added strains and the indigenous 2,4-D-degrading populations. The S. paucimobilis population was the secondary dominant population, and strain 745 and P. pickettii were not detected. Relative fitness coefficients determined in axenic broth cultures predicted the outcome of competition in soil for some but not all strains. Lag time was shown to be a principal determinant of competitiveness among the strains, but the lag times were significantly reduced in mixed broth cultures, which changed the competitive outcome. Plasmids containing the genes for the 2,4-D pathway were important determinants of competitiveness since plasmid pKA4 in P. cepacia DBO1 resulted in the slower growth characteristic of its original host, P. pickettii, rather than the rapid growth observed when this strain harbors pJP4. Images PMID:8017909

  17. Effects of levan-type fructan on growth performance, nutrient digestibility, diarrhoea scores, faecal shedding of total lactic acid bacteria and coliform bacteria, and faecal gas emission in weaning pigs.

    PubMed

    Lei, Xin Jian; Kim, Yong Min; Park, Jae Hong; Baek, Dong Heon; Nyachoti, Charles Martin; Kim, In Ho

    2018-03-01

    The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to evaluate effects of levan-type fructan on growth performance, nutrient digestibility, faecal shedding of lactic acid bacteria and coliform bacteria, diarrhoea scores, and faecal gas emission in weaning pigs. A total of 144 weaning pigs [(Yorkshire × Landrace) × Duroc] were randomly allocated to four diets: corn-soybean meal-based diets supplemented with 0, 0.1, 0.5, or 1.0 g kg -1 levan-type fructan during this 42-day experiment. During days 0 to 21 and 0 to 42, average daily gain and average daily feed intake were linearly increased (P < 0.01) with increasing dietary levan-type fructan inclusion. The apparent total tract digestibility of dry matter, crude protein, and gross energy were linearly increased (P < 0.001) with increasing dietary levan-type fructan content. With increasing levels of levan-type fructan, faecal lactic acid bacteria counts were linearly increased (P = 0.001). The results indicate that dietary supplementation with increasing levan-type fructan enhanced growth performance, improved nutrient digestibility, and increased faecal lactic acid bacteria counts in weaning pigs linearly. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods.

    PubMed

    Lin, Xiao-Li; Pan, Qin-Jian; Tian, Hong-Gang; Douglas, Angela E; Liu, Tong-Xian

    2015-03-01

    Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  19. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DOE PAGES

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N. M.; ...

    2016-07-05

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters asmore » assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less

  20. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    PubMed Central

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  1. The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish

    NASA Astrophysics Data System (ADS)

    Putra, T. F.; Suprapto, H.; Tjahjaningsih, W.; Pramono, H.

    2018-04-01

    Peda is an Indonesian traditional fermented whole fish prepared by addition of salt prior to fermentation and drying process. Salt used to control the growth of the lactic acid bacteria for the fermentation process. The objectives of this study were isolating and characterize the potential lactic acid bacteria (LAB) from peda as culture starter candidate, particularly its activity against pathogenic bacteria. A total of five samples from five regions of East Java Province was collected and subjected to LAB isolation. Fifty-seven of 108 colonies that show clear zone in de Man, Rogosa and Sharpe (MRS) agar supplemented with 0.5% CaCO3 were identified as LAB. Twenty-seven of the LAB isolates were exhibit inhibition against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853. Isolate Aerococcus NJ-20 was exhibited strong inhibition against S. aureus ATCC 6538 (7.6 ± 1.35 mm inhibition zone) but was not produce bacteriocin. This finding suggests that the isolate Aerococcus NJ-20 can be applied as biopreservative culture starter on peda production. Further analysis on technological properties of isolates will be needed prior to application.

  2. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    PubMed

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  3. Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2007-10-01

    A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.

  4. [Clinical usefulness of urine-formed elements' information obtained from bacteria detection by flow cytometry method that uses nucleic acid staining].

    PubMed

    Nakagawa, Hiroko; Yuno, Tomoji; Itho, Kiichi

    2009-03-01

    Recently, specific detection method for Bacteria, by flow cytometry method using nucleic acid staining, was developed as a function of automated urine formed elements analyzer for routine urine testing. Here, we performed a basic study on this bacteria analysis method. In addition, we also have a comparison among urine sediment analysis, urine Gram staining and urine quantitative cultivation, the conventional methods performed up to now. As a result, the bacteria analysis with flow cytometry method that uses nucleic acid staining was excellent in reproducibility, and higher sensitivity compared with microscopic urinary sediment analysis. Based on the ROC curve analysis, which settled urine culture method as standard, cut-off level of 120/microL was defined and its sensitivity = 85.7%, specificity = 88.2%. In the analysis of scattergram, accompanied with urine culture method, among 90% of rod positive samples, 80% of dots were appeared in the area of 30 degrees from axis X. In addition, one case even indicated that analysis of bacteria by flow cytometry and scattergram of time series analysis might be helpful to trace the progress of causative bacteria therefore the information supposed to be clinically significant. Reporting bacteria information with nucleic acid staining flow cytometry method is expected to contribute to a rapid diagnostics and treatment of urinary tract infections. Besides, the contribution to screening examination of microbiology and clinical chemistry, will deliver a more efficient solution to urine analysis.

  5. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    PubMed

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  7. Current status and emerging role of glutathione in food grade lactic acid bacteria

    PubMed Central

    2012-01-01

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms. PMID:22920585

  8. Biochemical characterisation of the esterase activities of wine lactic acid bacteria.

    PubMed

    Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir

    2007-11-01

    Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.

  9. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample.

    PubMed

    De Marco, P; Murrell, J C; Bordalo, A A; Moradas-Ferreira, P

    2000-02-01

    Two novel bacterial strains that can utilize methanesulfonic acid as a source of carbon and energy were isolated from a soil sample collected in northern Portugal. Morphological, physiological, biochemical and molecular biological characterization of the two isolates indicate that strain P1 is a pink-pigmented facultative methylotroph belonging to the genus Methylobacterium, while strain P2 is a restricted methylotroph belonging to the genus Hyphomicrobium. Both strains are strictly aerobic, degrade methanesulfonate, and release small quantities of sulfite into the medium. Growth on methanesulfonate induces a specific polypeptide profile in each strain. This, together with the positive hybridization to a DNA probe that carries the msm genes of Methylosulfonomonas methylovora strain M2, strongly endorses the contention that a methanesulfonic acid monooxygenase related to that found in the previously known methanesulfonate-utilizing bacteria is present in strains P1 and P2. The isolation of bacteria containing conserved msm genes from diverse environments and geographical locations supports the hypothesis that a common enzyme may be globally responsible for the oxidation of methanesulfonate by natural methylotrophic communities.

  10. Differential Proteomic Analysis of Lactic Acid Bacteria-Escherichia coli O157:H7 Interaction and Its Contribution to Bioprotection Strategies in Meat.

    PubMed

    Orihuel, Alejandra; Terán, Lucrecia; Renaut, Jenny; Vignolo, Graciela M; De Almeida, André M; Saavedra, María L; Fadda, Silvina

    2018-01-01

    Human infection by Enterohemorrhagic Escherichia (E.) coli (EHEC) occurs through the ingestion of contaminated foods such as milk, vegetable products, water-based drinks, and particularly minced meats. Indeed EHEC is a pathogen that threatens public health and meat industry. The potential of different Lactic Acid Bacteria (LAB) strains to control EHEC in a meat-based medium was evaluated by using a simple and rapid method and by analyzing the growth kinetics of co-cultures (LAB-EHEC) in a meat-based medium. The activity of LAB toward EHEC in co-cultures showed variable inhibitory effect. Although, LAB were able to control EHEC, neither the produced acid nor bacteriocins were responsible of the inhibition. The bacteriocinogenic Enteroccus (Ent.) mundtii CRL35 presented one of the highest inhibition activities. A proteomic approach was used to evaluate bacterial interaction and antagonistic mechanisms between Ent. mundtii and EHEC. Physiological observations, such as growth kinetics, acidification ability and EHEC inhibitory potential were supported by the proteomic results, demonstrating significant differences in protein expression in LAB: (i) due to the presence of the pathogen and (ii) according to the growth phase analyzed. Most of the identified proteins belonged to carbohydrate/amino acid metabolism, energy production, transcription/translation, and cell division. These results contribute to the knowledge of competition strategies used by Ent. mundtii during its co-culture with EHEC setting new perspectives for the use of LAB to control this pathogen in meat.

  11. High-volume extraction of nucleic acids by magnetic bead technology for ultrasensitive detection of bacteria in blood components.

    PubMed

    Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2007-01-01

    Nucleic acid isolation, the most technically demanding and laborious procedure performed in molecular diagnostics, harbors the potential for improvements in automation. A recent development is the use of magnetic beads covered with nucleic acid-binding matrices. We adapted this technology with a broad-range 23S rRNA real-time reverse transcription (RT)-PCR assay for fast and sensitive detection of bacterial contamination of blood products. We investigated different protocols for an automated high-volume extraction method based on magnetic-separation technology for the extraction of bacterial nucleic acids from platelet concentrates (PCs). We added 2 model bacteria, Staphylococcus epidermidis and Escherichia coli, to a single pool of apheresis-derived, single-donor platelets and assayed the PCs by real-time RT-PCR analysis with an improved primer-probe system and locked nucleic acid technology. Co-amplification of human beta(2)-microglobulin mRNA served as an internal control (IC). We used probit analysis to calculate the minimum concentration of bacteria that would be detected with 95% confidence. For automated magnetic bead-based extraction technology with the real-time RT-PCR, the 95% detection limit was 29 x 10(3) colony-forming units (CFU)/L for S. epidermidis and 22 x 10(3) CFU/L for E. coli. No false-positive results occurred, either due to nucleic acid contamination of reagents or externally during testing of 1030 PCs. High-volume nucleic acid extraction improved the detection limit of the assay. The improvement of the primer-probe system and the integration of an IC make the RT-PCR assay appropriate for bacteria screening of platelets.

  12. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  13. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    PubMed

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  14. Prevention by lactic acid bacteria of the oxidation of human LDL.

    PubMed

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  15. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    PubMed

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  16. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    PubMed Central

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472

  17. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  18. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    PubMed

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Enological Qualities and Interactions Between Native Yeast and Lactic Acid Bacteria from Queretaro, Mexico.

    PubMed

    Miranda-Castilleja, Dalia E; Martínez-Peniche, Ramón Á; Nadal Roquet-Jalmar, Montserrat; Aldrete-Tapia, J Alejandro; Arvizu-Medrano, Sofía M

    2018-06-15

    Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H 2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of

  20. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  1. Viability of lactic acid bacteria coated as synbiotic during storage and gastro-intestinal simulation

    NASA Astrophysics Data System (ADS)

    Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa

    2018-03-01

    Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.

  2. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged vienna sausages.

    PubMed

    Franz, C M; von Holy, A

    1996-02-01

    Heat resistance of three meat spoilage lactic acid bacteria was determined in vitro. D-values at 57, 60 and 63 degrees C were 52.9, 39.3 and 32.5 s for Lactobacillus sake, 34.9, 31.3 and 20.2 s for Leuconostoc mesenteroides and 22.5, 15.6 and 14.4 s for Lactobacillus curvatus, respectively. The three lactic acid bacteria were heat sensitive, as one log reductions in numbers were achieved at 57 degrees C in less than 60 s. Z-values could not be accurately determined as D-values did not change by a factor of 10 over the temperature range studied. In-package pasteurization processes were calculated using the highest in vitro D-value and applied to vacuum-packaged vienna sausages. Microbiological shelf life (time for lactic acid bacteria count to reach 5 x 10(6) CFU/g) increased from 7 days for non-pasteurized samples to 67, 99 and 119 days for samples of the three pasteurization treatments at 8 degrees C storage. Enterobacteriaceae were detected at levels of log 4.0 CFU/g in non-pasteurized samples, but were reduced to < log 1.0 CFU/g in pasteurized samples. The incidence of listeriae in non-pasteurized samples was low as only one Listeria innocua strain was isolated. No Listeria spp. were isolated from pasteurized samples. Numbers of Clostridium isolates increased from one in non-pasteurized samples to 25 in pasteurized samples. Increasing incidences of clostridia, and the presence of C. perfringens in pasteurized samples indicated that in-package pasteurization could compromise product safety.

  3. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    PubMed

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  4. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    PubMed

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  5. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage.

    PubMed

    Carvalho, B F; Ávila, C L S; Bernardes, T F; Pereira, M N; Santos, C; Schwan, R F

    2017-03-01

    The aim of this study was to evaluate the chemical and microbiological characteristics and to identify the lactic acid bacteria (LAB) and yeasts involved in rehydrated corn kernel silage. Four replicates for each fermentation time: 5, 15, 30, 60, 90, 150, 210 and 280 days were prepared. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR-based identification were utilized to identify LAB and yeasts. Eighteen bacteria and four yeast species were identified. The bacteria population reached maximum growth after 15 days and moulds were detected up to this time. The highest dry matter (DM) loss was 7·6% after 280 days. The low concentration of water-soluble carbohydrates (20 g kg -1 of DM) was not limiting for fermentation, although the reduction in pH and acid production occurred slowly. Storage of the rehydrated corn kernel silage increased digestibility up to day 280. This silage was dominated by LAB but showed a slow decrease in pH values. This technique of corn storage on farms increased the DM digestibility. This study was the first to evaluate the rehydrated corn kernel silage fermentation dynamics and our findings are relevant to optimization of this silage fermentation. © 2016 The Society for Applied Microbiology.

  6. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  7. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.

    PubMed

    Malkin, S Y; Meysman, F J R

    2015-02-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    PubMed

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of Geographical Origin and Flour Type on Diversity of Lactic Acid Bacteria in Traditional Belgian Sourdoughs▿ †

    PubMed Central

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2007-01-01

    A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough. PMID:17675431

  10. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  11. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  12. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  13. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    PubMed

    Bouchard, Damien S; Seridan, Bianca; Saraoui, Taous; Rault, Lucie; Germon, Pierre; Gonzalez-Moreno, Candelaria; Nader-Macias, Fatima M E; Baud, Damien; François, Patrice; Chuat, Victoria; Chain, Florian; Langella, Philippe; Nicoli, Jacques; Le Loir, Yves; Even, Sergine

    2015-01-01

    Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  14. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    PubMed

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  15. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    PubMed

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. © 2015 Institute of Food Technologists®

  16. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    PubMed

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  17. Conceptualizing belonging.

    PubMed

    Mahar, Alyson L; Cobigo, Virginie; Stuart, Heather

    2013-06-01

    To develop a transdisciplinary conceptualization of social belonging that could be used to guide measurement approaches aimed at evaluating the effectiveness of community-based programs for people with disabilities. We conducted a narrative, scoping review of peer reviewed English language literature published between 1990 and July 2011 using multiple databases, with "sense of belonging" as a key search term. The search engine ranked articles for relevance to the search strategy. Articles were searched in order until theoretical saturation was reached. We augmented this search strategy by reviewing reference lists of relevant papers. Theoretical saturation was reached after 40 articles; 22 of which were qualitative accounts. We identified five intersecting themes: subjectivity; groundedness to an external referent; reciprocity; dynamism and self-determination. We define a sense of belonging as a subjective feeling of value and respect derived from a reciprocal relationship to an external referent that is built on a foundation of shared experiences, beliefs or personal characteristics. These feelings of external connectedness are grounded to the context or referent group, to whom one chooses, wants and feels permission to belong. This dynamic phenomenon may be either hindered or promoted by complex interactions between environmental and personal factors.

  18. Lactic acid bacteria as oral delivery systems for biomolecules.

    PubMed

    Berlec, A; Ravnikar, M; Strukelj, B

    2012-11-01

    Lactic acid bacteria (LAB) have become increasingly studied over the last two decades as potential delivery systems for various biological molecules to the gastrointestinal tract. This article presents an overview of characteristics of LAB as delivery systems and of the applications which have already been developed. The majority of LAB strains are able to survive the intestinal passage and some are also able to persist and colonize the intestine. Several strains were in fact described as members of the human commensal flora. They can interact with their host and are able to deliver large molecular weight biomolecules across the epithelium via M-cells or dendritic cells. The most widely applied LAB species has been Lactococcus lactis; however species from genus Lactobacillus are gaining popularity and the first examples from genus Bifidobacterium are starting to emerge. Bacteria are mostly applied live and enable continuous delivery of the biomolecules. However, killed bacteria (e.g. gram-positive enhancer matrix), with bound biomolecules or as adjuvants, are also being developed. The techniques for genetic modification of LAB are well known. This review focuses on the delivery of recombinant proteins and DNA, which can cause either local or systemic effects. We divide recombinant proteins into antigens and therapeutic proteins. Delivery of antigens for the purpose of vaccination represents the most abundant application with numerous successful demonstrations of the efficacy on the animal model. Therapeutic proteins have mostly been developed for the treatment of the inflammatory bowel disease, by the delivery of anti-inflammatory cytokines, or downregulation of proinflammatory cytokines. Delivery of allergens for the modulation of allergic disorders represents the second most popular application of therapeutic proteins. The delivery of DNA by LAB was demonstrated and offers exciting opportunities, especially as a vaccine. New discoveries may eventually lead to the

  19. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  20. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean.

    PubMed

    Bartkiene, Elena; Krungleviciute, Vita; Juodeikiene, Grazina; Vidmantiene, Daiva; Maknickiene, Zita

    2015-04-01

    The ability of bacteriocin-like inhibitory substance (BLIS)-producing lactic acid bacteria (LAB) to degrade biogenic amines as well as to produce L(+) and D(-)-lactic acid during solid state fermentation (SSF) of lupin and soya bean was investigated. In addition, the protein digestibility and formation of organic acids during SSF of legume were investigated. Protein digestibility of fermented lupin and soya bean was found higher on average by 18.3% and 15.9%, respectively, compared to untreated samples. Tested LAB produced mainly L-lactic acid in soya bean and lupin (D/L ratio 0.38-0.42 and 0.35-0.54, respectively), while spontaneous fermentation gave almost equal amounts of both lactic acid isomers (D/L ratio 0.82-0.98 and 0.92, respectively). Tested LAB strains were able to degrade phenylethylamine, spermine and spermidine, whereas they were able to produce putrescine, histamine and tyramine. SSF improved lupin and soya bean protein digestibility. BLIS-producing LAB in lupin and soya bean medium produced a mixture of D- and L-lactic acid with a major excess of the latter isomer. Most toxic histamine and tyramine in fermented lupin and soya bean were found at levels lower those causing adverse health effects. Selection of biogenic amines non-producing bacteria is essential in the food industry to avoid the risk of amine formation. © 2014 Society of Chemical Industry.

  1. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives

    PubMed Central

    Rokop, Z. P.; Horton, M. A.

    2015-01-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific “core” members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of “noncore” and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  2. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  3. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment

    PubMed Central

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta

    2015-01-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  4. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  6. Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation.

    PubMed

    González-Quijano, Génesis Karendash; Dorantes-Alvarez, Lidia; Hernández-Sánchez, Humberto; Jaramillo-Flores, María Eugenia; de Jesús Perea-Flores, María; Vera-Ponce de León, Arturo; Hernández-Rodríguez, César

    2014-08-01

    The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.5 to 4.9. Moreover, 2 species of yeast were isolated and identified as Hanseniaspora pseudoguilliermondii and Kodamaea ohmeri by their partial 26S rRNA gene sequence. The growth of LAB was evaluated at different sodium chloride contents. L. citreum was the most halotolerant species followed by L. plantarum and W. cibaria with a concentration index to obtain a 50% population reduction (IC(50)) of 7.2%, 6.6%, and 5.2%, respectively. Furthermore, the growth of LAB and Escherichia coli O157:H7 was evaluated in the presence of the main phenylpropanoids from chilli peppers such as p-coumaric and ferulic acid. It was determined that LAB can grow in both acids at 4 mM, unlike E. coli O157:H7, whose growth is inhibited in the presence of these acids. © 2014 Institute of Food Technologists®

  7. Engineering lactic acid bacteria for increased industrial functionality.

    PubMed

    Bron, Peter A; Kleerebezem, Michiel

    2011-01-01

    Based on their spoilage-preventing and flavor-contributing characteristics, lactic acid bacteria (LAB) are employed as starter cultures for the fermentation of foods and feeds. In addition, several specific LAB strains are marketed on basis of their beneficial effects on the consumer's health, representing an explosively growing market for the products containing these so-called probiotics. Due to this extensive industrial use there is a strong interest in unraveling the molecular mechanisms involved in industrial robustness, cognate stress resistance, and health-promoting phenotypes of these LAB that may vary drastically between different starter and probiotic strains currently marketed. This review describes some of the post-genomic tools developed, as well as their employment for the identification of bacterial effector molecules involved in the aforementioned industrially relevant phenotypes. Furthermore, it addresses possible strategies to exploit such knowledge into the rational design of LAB strains with increased industrial functionality.

  8. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses

    NASA Technical Reports Server (NTRS)

    Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.

    1993-01-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  9. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    PubMed

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  10. Inhibitory effect of solar radiation on amino Acid uptake in chesapeake bay bacteria.

    PubMed

    Bailey, C A; Neihof, R A; Tabor, P S

    1983-07-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths.

  11. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow's Milk Cheeses

    PubMed Central

    Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.

    2015-01-01

    “Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  12. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  13. Effect of methionine and lactic acid bacteria as aflatoxin binder on broiler performance

    NASA Astrophysics Data System (ADS)

    Istiqomah, Lusty; Damayanti, Ema; Julendra, Hardi; Suryani, Ade Erma; Sakti, Awistaros Angger; Anggraeni, Ayu Septi

    2017-06-01

    The use of aflatoxin binder product based amino acids, lacic acid bacteria, and natural product gived the opportunity to be an alternative biological decontamination of aflatoxins. A study was conducted to determine the efficacy of aflatoxin binder administration (amino acid methionine and lactic acid bacteria (Lactobacillus plantarum G7)) as feed additive on broiler performance. In this study, 75 Lohmann unsexed day old chicks were distributed randomly into 5 units of cages, each filled with 15 broilers. Five cages were assigned into 5 treatments groups and fed with feed contained aflatoxin. The treatments as follow: P1 (aflatoxin feed without aflatoxin binder), P3 (aflatoxin feed + 0.8% of methionine + 1% of LAB), P4 (aflatoxin feed + 1.2% of methionine + 1% of LAB), P5 (aflatoxin feed + 1% of LAB), and K0 (commercial feed). The measurement of aflatoxin content in feed was performed by Enzyme Linked Immunosorbent Assay method using AgraQuant® Total Aflatoxin Assay Romer Labs procedure. The experimental period was 35 days with feeding and drinking ad libitum. LAB was administered into drinking water, while methionine into feed. Vaccination program of Newcastle Disease (ND) was using active vaccine at 4 and 18 day old, while Infectious Bursal Disease (IBD) was given at 8 day old. Parameter of body weight was observed weekly, while feed consumption noted daily. The result showed that aflatoxin in feed for 35 days period did not significantly affect the body weight gain and feed conversion. The lowest percentage of organ damage at 21 day old was found in P5 treatment (55%), while at 35day old was found in P4 treatment (64%). It could be concluded that technological process of detoxifying aflatoxin could be applied in an attempt to reduce the effect on the toxicity of aflatoxin in poultry feed.

  14. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Study of the lactic acid bacteria throughout the manufacture of dry-cured lacón (a Spanish traditional meat product). Effect of some additives.

    PubMed

    Lorenzo, José M; García Fontán, María C; Cachaldora, Aida; Franco, Inmaculada; Carballo, Javier

    2010-04-01

    Total aerobic mesophilic microflora (on SPC agar), lactic acid bacteria (on MRS agar) and lactobacilli (on Rogosa agar) were enumerated in samples from the surface and the interior of the pieces throughout the manufacture of six batches of lacón. Three of the batches were made without additives and three with additives (glucose (2 g/kg), sodium nitrite (E(250)) (125 mg/kg), sodium nitrate (E(251)) (175 mg/kg), sodium ascorbate (E(301)) (500 mg/kg), and sodium citrate (E(331)) (100 mg/kg)). The counts decreased throughout the manufacturing process, particularly after the salting stage. The use of additives did not affect the counts or the evolution of the microbial groups, except for the lactobacilli, which were present in higher numbers in the batches with additives. In four batches (two without and two with additives), from MRS agar and from Rogosa agar plates, 10 colonies were randomly taken from each sampling point of each batch (five from the surface sample and five from the interior sample) and from each culture medium; a total of 224 strains from MRS agar, and 176 strains from Rogosa agar that were identified by classical methods. The MRS agar displayed moderate selectivity for the isolation of lactic acid bacteria, and only 59% of the isolated strains belonged to this microbial group. Homofermentative and facultative heterofermentative lactobacilli (particularly Lactobacillus curvatus and Lactobacillus sakei) were the most abundant species isolated on this medium. The selectivity of the Rogosa agar for lactobacilli was extremely high. The species of lactobacilli isolated on this medium at different stages of manufacture of the four batches of lacón were consistent with those isolated from MRS agar. The use of additives in the lacón did not appreciably affect the kinds and proportions of species isolated on either MRS agar or Rogosa agar.

  16. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  17. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics

    PubMed Central

    Evivie, Smith Etareri; Huo, Gui-Cheng; Igene, John Oamen; Bian, Xin

    2017-01-01

    ABSTRACT Several mechanism and non-mechanism-based studies supporting the claim that lactic acid bacteria (LAB) strains confer health benefits and play immune-modulatory roles were examined in this review. Probiotic applications of LAB on global burdens such as obesity and type-2 diabetes were discussed as well as the use of yoghurt and ice cream as important vehicles to convey several beneficial LAB strains. Probiotic and symbiotic dairy products may be used in the nearest future to treat a variety of health disorders. Current studies suggest that lactic acid bacteria possess anti-obesity and anti-diabetic propensities on their hosts and thus can play a crucial role in human health care. Research in the rheological and physicochemical properties of ice cream as well as its applications are also on the increase. These applications face certain hurdles including technological (for less developed countries), consumer acceptability of new functional foods may be influenced by culture, ethics or religion. There is need for more studies on the genetic basis for probiotic properties which will give further understanding regarding novel manipulation skills and applicability in nutrition and health sectors. More studies confirming the direct effects of probiotic LABs in lowering the spread of food-borne and other pathogens are also anticipated. PMID:28659729

  18. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  19. Influence of different yeast/lactic acid bacteria combinations on the aromatic profile of red Bordeaux wine.

    PubMed

    Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles

    2017-09-01

    The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria.

    PubMed

    Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-06-01

    Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.

  1. Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine.

    PubMed

    Landete, José María; Pardo, Isabel; Ferrer, Sergi

    2007-04-20

    The ability of wine lactic acid bacteria to produce tyramine and phenylethylamine was investigated by biochemical and genetic methods. An easy and accurate plate medium was developed to detect tyramine-producer strains, and a specific PCR assay that detects the presence of tdc gene was employed. All strains possessing the tdc gene were shown to produce tyramine and phenylethylamine. Wines containing high quantities of tyramine and phenylethylamine were found to contain Lactobacillus brevis or Lactobacillus hilgardii. The main tyramine producer was L. brevis. The ability to produce tyramine was absent or infrequent in the rest of the analysed wine species.

  2. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  3. Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk

    PubMed Central

    Bainbridge, Melissa L.; Saldinger, Laurel K.; Barlow, John W.; Alvez, Juan P.; Roman, Joe; Kraft, Jana

    2018-01-01

    Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP (P < 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM (P < 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA (P < 0.001) and vaccenic acid (P < 0.01), but lower proportions of branched-chain FA (P < 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile. PMID:29867815

  4. Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk.

    PubMed

    Bainbridge, Melissa L; Saldinger, Laurel K; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana

    2018-01-01

    Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP ( P < 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM ( P < 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA ( P < 0.001) and vaccenic acid ( P < 0.01), but lower proportions of branched-chain FA ( P < 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.

  5. Genomics of lactic acid bacteria: Current status and potential applications.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2017-08-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.

  6. Analysis of 16S rRNA gene lactic acid bacteria (LAB) isolate from Markisa fruit (Passiflora sp.) as a producer of protease enzyme and probiotics

    NASA Astrophysics Data System (ADS)

    Hidayat, Habibi

    2017-03-01

    16S rRNA gene analysis of bacteria lactic acid (LAB) isolate from Markisa Kuning Fruit (Passiflora edulis var. flavicarpa) as a producer of protease enzyme and probiotics has been done. The aim of the study is to determine the protease enzyme activity and 16S rRNA gene amplification using PCR. The calculation procedure was done to M4 isolate bacteria lactic acid (LAB) Isolate which has been resistant to acids with pH 2.0 in the manner of screening protease enzyme activity test result 6.5 to clear zone is 13 mm againts colony diametre is 2 mm. The results of study enzyme activity used spectrophotometer UV-Vis obtainable the regression equation Y=0.02983+0.001312X, with levels of protein M4 isolate is 0.6594 mg/mL and enzyme activity of obtainable is 0.8626 unit/ml while the spesific enzyme activity produced is 1.308 unit/mg. Then, 16S rRNA gene amplificatiom and DNA sequencing has been done. The results of study showed that the bacteria species contained from M4 bacteria lactic acid (LAB) isolate is Weisella cibiria strain II-I-59. Weisella cibiria strain II-I-59 is one of bacteria could be utilized in the digestive tract.

  7. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    PubMed

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    PubMed

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  10. The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria.

    PubMed

    Ouoba, L I I; Kando, C; Parkouda, C; Sawadogo-Lingani, H; Diawara, B; Sutherland, J P

    2012-12-01

    To investigate physicochemical characteristics and especially genotypic diversity of the main culturable micro-organisms involved in fermentation of sap from Borassus akeassii, a newly identified palm tree from West Africa. Physicochemical characterization was performed using conventional methods. Identification of micro-organisms included phenotyping and sequencing of: 26S rRNA gene for yeasts, 16S rRNA and gyrB genes for lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Interspecies and intraspecies genotypic diversities of the micro-organisms were screened respectively by amplification of the ITS1-5.8S rDNA-ITS2/16S-23S rDNA ITS regions and repetitive sequence-based PCR (rep-PCR). The physicochemical characteristics of samples were: pH: 3.48-4.12, titratable acidity: 1.67-3.50 mg KOH g(-1), acetic acid: 0.16-0.37%, alcohol content: 0.30-2.73%, sugars (degrees Brix): 2.70-8.50. Yeast included mainly Saccharomyces cerevisiae and species of the genera Arthroascus, Issatchenkia, Candida, Trichosporon, Hanseniaspora, Kodamaea, Schizosaccharomyces, Trigonopsis and Galactomyces. Lactobacillus plantarum was the predominant LAB species. Three other species of Lactobacillus were also identified as well as isolates of Leuconostoc mesenteroides, Fructobacillus durionis and Streptococcus mitis. Acetic acid bacteria included nine species of the genus Acetobacter with Acetobacter indonesiensis as predominant species. In addition, isolates of Gluconobacter oxydans and Gluconacetobacter saccharivorans were also identified. Intraspecies diversity was observed for some species of micro-organisms including four genotypes for Acet. indonesiensis, three for Candida tropicalis and Lactobacillus fermentum and two each for S. cerevisiae, Trichosporon asahii, Candida pararugosa and Acetobacter tropicalis. fermentation of palm sap from B. akeassii involved multi-yeast-LAB-AAB cultures at genus, species and intraspecies level. First study describing microbiological and

  11. Composition of lactic acid bacteria during spontaneous curly kale (Brassica oleracea var. sabellica) fermentation.

    PubMed

    Michalak, Magdalena; Gustaw, Klaudia; Waśko, Adam; Polak-Berecka, Magdalena

    2018-01-01

    The present work is the first report on spontaneous fermentation of curly kale and characteristics of autochthonous lactic acid bacteria (LAB). Our results indicate that curly kale fermentation is the new possibility of the technological use of this vegetable. Bacteria representing ten different species were isolated from three phases of curly kale fermentation and identified by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Among them, four species were identified as Lactobacillus spp. (Lb. plantarum 332, Lb. paraplantarum G2114, Lb. brevis R413, Lb. curvatus 154), two as Weissella spp. (W. hellenica 152, W. cibaria G44), two as Pediococcus spp. (P. pentosaceus 45AN, P. acidilactici 2211), one as Leuconostoc mesenteroides 153, and one as Lactococcus lactis 37BN. The functional properties of isolates, i.e. acid, NaCl and bile salt tolerance, enzyme activities, adhesion to hydrocarbons, and antibiotic resistance, were examined. Among the tested strains, Lb. plantarum 332, Lb. paraplantarum G2114, P. pentosaceus 2211, and Lb. brevis R413 exhibited the best hydrophobicity value and high tolerance to bile salts, NaCl, and low pH. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    PubMed Central

    Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A.; Tarantilis, Petros A.; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2013-01-01

    In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials. PMID:23443163

  13. Inhibitory Effect of Solar Radiation on Amino Acid Uptake in Chesapeake Bay Bacteria

    PubMed Central

    Bailey, Carmela A.; Neihof, Rex A.; Tabor, Paul S.

    1983-01-01

    The effect of solar radiation on a natural bacterial population from the Chesapeake Bay was evaluated from measured changes in numbers of organisms engaged in amino acid uptake. From July through May, freshly collected water samples were exposed in quartz containers to 3.5 h of total sunlight both with and without UV-absorbing filters. Water samples were subsequently incubated with tritiated amino acids, and the uptake-active bacteria were assayed by microauto-radiography-epifluorescence microscopy. The survival index, defined as the fraction of the uptake-active population that remained active after the exposure to sunlight, ranged from 0.93 to 0.20. Decreased survival was correlated with increased solar intensity. The inhibition of amino acid uptake was attributed not only to the UV-B component of the solar spectrum (280 to 320 nm), but also to longer UV and visible wavelengths. PMID:16346351

  14. Lactic acid bacteria in Hamei and Marcha of North East India.

    PubMed

    Tamang, J P; Dewan, S; Tamang, B; Rai, A; Schillinger, U; Holzapfel, W H

    2007-06-01

    Hamei and Marcha are mixed dough inocula used as starters for preparation of various indigenous alcoholic beverages in Manipur and Sikkim in India, respectively. These starters are traditionally prepared from rice with wild herbs and spices. Samples of Hamei and Marcha, collected from Manipur and Sikkim, respectively, were analysed for lactic acid bacterial composition. The population of lactic acid bacteria (LAB) was 6.9 and 7.1 Log cfu/g in Hamei and Marcha, respectively. On the basis of phenotypic and genotypic characters, LAB strains isolated from Hamei and Marcha were identified as Pediococcus pentosaceus, Lactobacillus plantarum and Lactobacillus brevis. Technological properties of LAB such as antimicrobial properties, effect on acidification, ability to produce biogenic amines and ethanol, degree of hydrophobicity and enzymatic activities were also performed. Pediococcus pentosaceus HS: B1, isolated from Hamei, was found to produce bacteriocin. None of the strains produced biogenic amines. LAB strains showed a strong acidifying ability and they also produced a wide spectrum of enzymes.

  15. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  17. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L.) O. Kuntze).

    PubMed

    Gulati, Arvind; Sood, Swati; Rahi, Praveen; Thakur, Rishu; Chauhan, Sunita; Chawla, Isha

    2011-06-01

    The diversity elucidation by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of 96 associative diazotrophs, isolated from the feeder roots of tea on enriched nitrogen-free semisolid media, revealed the predominance of Gram-positive over Gram-negative bacteria within the Kangra valley in Himachal Pradesh, India. The Gram-positive bacteria observed belong to two taxonomic groupings; Firmicutes, including the genera Bacillus and Paenibacillus; and Actinobacteria, represented by the genus Microbacterium. The Gram-negative bacteria included alpha-Proteobacteria genera Brevundimonas, Rhizobium, and Mesorhizobium; gamma-Proteobacteria genera Pseudomonas and Stenotrophomonas; and beta-Proteobacteria genera Azospira, Burkholderia, Delftia, Herbaspirillum and Ralstonia. The low level of similarity of two isolates, with the type strains Paenibacillus xinjiangensis and Mesorhizobium albiziae, suggests the possibility of raising species novum. The bacterial strains of different phylogenetic groups exhibited distinct carbon-source utilization patterns and fatty acid methyl ester profiles. The strains differed in their nitrogenase activities with relatively high activity seen in the Gramnegative strains exhibiting the highest similarity to Azospira oryzae, Delftia lacustris and Herbaspirillum huttiense.

  18. THE FINE STRUCTURE OF GREEN BACTERIA

    PubMed Central

    Cohen-Bazire, Germaine; Pfennig, Norbert; Kunisawa, Riyo

    1964-01-01

    The fine structure of several strains of green bacteria belonging to the genus Chlorobium has been studied in thin sections with the electron microscope. In addition to having general cytological features typical of Gram-negative bacteria, the cells of these organisms always contain membranous mesosomal elements, connected with the cytoplasmic membrane, and an elaborate system of isolated cortical vesicles, some 300 to 400 A wide and 1000 to 1500 A long. The latter structures, chlorobium vesicles, have been isolated in a partly purified state by differential centrifugation of cell-free extracts. They are associated with a centrifugal fraction that has a very high specific chlorophyll content. In all probability, therefore, the chlorobium vesicles are the site of the photosynthetic apparatus of green bacteria. PMID:14195611

  19. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canty, M.

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screenedmore » for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.« less

  20. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2017-11-22

    γ-Aminobutyric acid (GABA) and GABA-rich foods have shown anti-hypertensive and anti-depressant activities as the major functions in humans and animals. Hence, high GABA-producing lactic acid bacteria (LAB) could be used as functional starters for manufacturing novel fermented dairy foods. Glutamic acid decarboxylases (GADs) from LAB are highly conserved at the species level based on the phylogenetic tree of GADs from LAB. Moreover, two functionally distinct GADs and one intact gad operon were observed in all the completely sequenced Lactobacillus brevis strains suggesting its common capability to synthesize GABA. Difficulties and strategies for the manufacture of GABA-rich fermented dairy foods have been discussed and proposed, respectively. In addition, a genetic survey on the sequenced LAB strains demonstrated the absence of cell envelope proteinases in the majority of LAB including Lb. brevis, which diminishes their cell viabilities in milk environments due to their non-proteolytic nature. Thus, several strategies have been proposed to overcome the non-proteolytic nature of Lb. brevis in order to produce GABA-rich dairy foods.

  1. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    PubMed

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  2. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    USDA-ARS?s Scientific Manuscript database

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  3. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    PubMed

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. In vitro testing of commercial and potential probiotic lactic acid bacteria.

    PubMed

    Jensen, Hanne; Grimmer, Stine; Naterstad, Kristine; Axelsson, Lars

    2012-02-01

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host. The objective of this study was to investigate the diversity of selected commercial and potential probiotic lactic acid bacteria using common in vitro screening assays such as transit tolerance in the upper human gastrointestinal tract, adhesion capacity to human intestinal cell lines and effect on epithelial barrier function. The selected bacteria include strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus farciminis, Lactobacillus sakei, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus reuteri and Pediococcus pentosaceus. Viable counts after simulated gastric transit tolerance showed that L. reuteri strains and P. pentosaceus tolerate gastric juice well, with no reduction of viability, whereas L. pentosus, L. farciminis and L. sakei strains lost viability over 180min. All strains tested tolerate the simulated small intestinal juice well. The bacterial adhesion capacity to human intestinal cells revealed major species and strain differences. Overall, L. plantarum MF1298 and three L. reuteri strains had a significant higher adhesion capacity compared to the other strains tested. All strains, both living and UV-inactivated, had little effect on the epithelial barrier function. However, living L. reuteri strains revealed a tendency to increase the transepithelial electrical resistance (TER) from 6 to 24h. This work demonstrates the diversity of 18 potential probiotic bacteria, with major species and strain specific effects in the in vitro screening assays applied. Overall, L. reuteri strains reveal some interesting characteristics compared to the other strains investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    PubMed

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  6. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  7. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    PubMed

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  8. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  10. A murC gene from coryneform bacteria.

    PubMed

    Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K

    1999-02-01

    The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.

  11. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment.

    PubMed

    Waleron, Małgorzata; Waleron, Krzysztof; Podhajska, Anna J; Lojkowska, Ewa

    2002-02-01

    Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi.

  12. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    PubMed Central

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644

  13. Fermentation by amylolytic lactic acid bacteria and consequences for starch digestibility of plantain, breadfruit, and sweet potato flours.

    PubMed

    Haydersah, Julien; Chevallier, Isabelle; Rochette, Isabelle; Mouquet-Rivier, Claire; Picq, Christian; Marianne-Pépin, Thérèse; Icard-Vernière, Christèle; Guyot, Jean-Pierre

    2012-08-01

    The potential of tropical starchy plants such as plantain (Musa paradisiaca), breadfruit (Artocarpus communis), and sweet potato (Ipomoea batatas) for the development of new fermented foods was investigated by exploiting the capacity of some lactic acid bacteria to hydrolyze starch. The amylolytic lactic acid bacteria (ALAB) Lactobacillus plantarum A6 and Lactobacillus fermentum Ogi E1 were able to change the consistency of thick sticky gelatinized slurries of these starchy fruits and tubers into semiliquid to liquid products. Consequently, a decrease in apparent viscosity and an increase in Bostwick flow were observed. These changes and the production of maltooligosaccharides confirmed starch hydrolysis. Sucrose in sweet potato was not fermented by strain A6 and poorly fermented by strain Ogi E1, suggesting possible inhibition of sucrose fermentation. In all 3 starchy plants, rapidly digestible starch (RDS) was higher than slowly digestible starch (SDS) and resistant starch (RS) represented between 17% and 30% dry matter (DM). The digestibility of plantain was not affected by fermentation, whereas the RDS content of breadfruit and sweet potato decreased and the RS content increased after fermentation. The characteristics resulting from different combinations of gluten free starchy plants (plantain, breadfruit, sweet potato) and amylolytic lactic acid bacteria (ALAB) offer opportunities to develop new functional fermented beverages, mainly for breadfruit and sweet potato, after further investigation of their formulation, sensory attributes, nutritional, and prebiotic characteristics. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  14. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador.

    PubMed

    Benavides, Ana B; Ulcuango, Mario; Yépez, Lucía; Tenea, Gabriela N

    Lactic acid bacteria are known for their biotechnological potential. In various regions of Ecuador numerous indigenous biological resources are largely undocumented. In this study, we evaluated the potential probiotic characteristics and antagonistic in vitro properties of some lactic acid bacteria from native niches of the subtropical rain forests of Ecuador. These isolates were identified according to their morphological properties, standard API50CH fermentation profile and RAPD-DNA polymorphism pattern. The selected isolates were further evaluated for their probiotic potential. The isolates grew at 15°C and 45°C, survived at a pH ranging from 2.5 to 4.5 in the presence of 0.3% bile (>90%) and grew under sodium chloride conditions. All selected isolates were sensitive to ampicillin, amoxicillin and cefuroxime and some showed resistance to gentamicin, kanamycin and tetracycline. Moreover, the agar well diffusion assay showed that the supernatant of each strain at pH 3.0 and pH 4.0, but not at pH 7.0 exhibited increased antimicrobial activity (inhibition zone >15mm) against two foodborne pathogens, Escherichia coli and Salmonella spp. To our knowledge, this is the first report describing the antagonistic activity against two foodborne pathogens and the probiotic in vitro potential of lactic acid bacteria isolated from native biota of Ecuador. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    PubMed

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  16. [Cloning and gene expression in lactic acid bacteria].

    PubMed

    Bondarenko, V M; Beliavskaia, V A

    2000-01-01

    The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.

  17. Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    PubMed Central

    Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.

    2011-01-01

    Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the

  18. Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria.

    PubMed

    Papaleo, Maria Cristiana; Fondi, Marco; Maida, Isabel; Perrin, Elena; Lo Giudice, Angelina; Michaud, Luigi; Mangano, Santina; Bartolucci, Gianluca; Romoli, Riccardo; Fani, Renato

    2012-01-01

    The aerobic heterotrophic bacterial communities isolated from three different Antarctic sponge species were analyzed for their ability to produce antimicrobial compounds active toward Cystic Fibrosis opportunistic pathogens belonging to the Burkholderia cepacia complex (Bcc). The phylogenetic analysis performed on the 16S rRNA genes affiliated the 140 bacterial strains analyzed to 15 genera. Just three of them (Psychrobacter, Pseudoalteromonas and Arthrobacter) were shared by the three sponges. The further Random Amplified Polymorphic DNA analysis allowed to demonstrate that microbial communities are highly sponge-specific and a very low degree of genus/species/strain sharing was detected. Data obtained revealed that most of these sponge-associated Antarctic bacteria and belonging to different genera were able to completely inhibit the growth of bacteria belonging to the Bcc. On the other hand, the same Antarctic strains did not have any effect on the growth of other pathogenic bacteria, strongly suggesting that the inhibition is specific for Bcc bacteria. Moreover, the antimicrobial compounds synthesized by the most active Antarctic bacteria are very likely Volatile Organic Compounds (VOCs), a finding that was confirmed by the SPME-GC-MS technique, which revealed the production of a large set of VOCs by a representative set of Antarctic bacteria. The synthesis of these VOCs appeared to be related neither to the presence of pks genes nor the presence of plasmid molecules. The whole body of data obtained in this work indicates that sponge-associated bacteria represent an untapped source for the identification of new antimicrobial compounds and are paving the way for the discovery of new drugs that can be efficiently and successfully used for the treatment of CF infections. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    PubMed

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  1. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  2. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    NASA Technical Reports Server (NTRS)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  4. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  5. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    PubMed

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes , Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa . Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  6. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    PubMed

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Polysaccharide production by lactic acid bacteria: from genes to industrial applications.

    PubMed

    Zeidan, Ahmad A; Poulsen, Vera Kuzina; Janzen, Thomas; Buldo, Patrizia; Derkx, Patrick M F; Øregaard, Gunnar; Neves, Ana Rute

    2017-08-01

    The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal. © FEMS 2017.

  8. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans)

    PubMed Central

    Tran, Phuong N.; Tan, Nicholas E. H.; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J.; Dailey, Lucas K.; Hudson, André O.

    2015-01-01

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. PMID:26586879

  9. Scarce Evidence of Yogurt Lactic Acid Bacteria in Human Feces after Daily Yogurt Consumption by Healthy Volunteers

    PubMed Central

    del Campo, Rosa; Bravo, Daniel; Cantón, Rafael; Ruiz-Garbajosa, Patricia; García-Albiach, Raimundo; Montesi-Libois, Alejandra; Yuste, Francisco-Javier; Abraira, Victor; Baquero, Fernando

    2005-01-01

    In a double-blind prospective study including 114 healthy young volunteers, the presence in human feces of the yogurt organisms Lactobacillus delbrueckii and Streptococcus thermophilus after repeated yogurt consumption (15 days) was analyzed by culture, specific PCR, and DNA hybridization of total fecal DNA. Detection of yogurt lactic acid bacteria in total fecal DNA by bacterial culture and PCR assay was consistently negative. DNA compatible with yogurt bacteria was found by hybridization experiments in only 10 (10.52%) of 96 individuals after consumption of fresh yogurt and in 2 (2.10%) of 96 individuals after consumption of pasteurized yogurt (P = 0.01). PMID:15640233

  10. Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation.

    PubMed

    Cho, Kye Man; Math, Reukaradhya K; Islam, Shah Md Asraful; Lim, Woo Jin; Hong, Su Young; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Yun, Han Dae

    2009-03-11

    We examined the role of microorganisms in the degradation of the organophosphorus (OP) insecticide chlorpyrifos (CP) during kimchi fermentation. During the fermentation of kimchi, 30 mg L(-1) of CP was added and its stability assayed during fermentation. CP was degraded rapidly until day 3 (83.3%) and degraded completely by day 9. Four CP-degrading lactic acid bacteria (LAB) were isolated from kimchi fermentation in the presence of 200 mg L(-1) CP and were identified as Leuconostoc mesenteroides WCP907, Lactobacillus brevis WCP902, Lactobacillus plantarum WCP931, and Lactobacillus sakei WCP904. CP could be utilized by these four strains as the sole source of carbon and phosphorus. Coumaphos (CM), diazinon (DZ), parathion (PT), and methylparathion (MPT) were also degraded by WCP907, WCP902, WCP931, and WCP904 when provided as sole sources of carbon and phosphorus.

  11. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    PubMed

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Histopathology and culturable bacteria associated with "big belly" and "skin nodule" syndromes in ornamental Siamese fighting fish, Betta splendens.

    PubMed

    Dong, H T; Senapin, S; Phiwsaiya, K; Techatanakitarnan, C; Dokladda, K; Ruenwongsa, P; Panijpan, B

    2018-06-02

    The Siamese fighting fish (Betta splendens) is one of the popular aquarium ornamental fish in the global trade. Large numbers of ornamental fish farmed in central Thailand suffered from two common syndromes; preliminarily named skin nodule syndrome (SNS) and big belly syndrome (BBS): they showed noticeable clinical signs of abnormal appearances resulting in depressed saleability. Since very few specifics are known about causative agents of these syndromes, this study aimed at investigating histopathological features and culturable bacteria associated with these fish infected in the process of farming. Histopathologically, SNS fish consistently exhibited necrosis and severe melanization in the muscles and multiple internal organs. Whereas BBS fish exhibited either typical granulomas or tissue damage associated with acid-fast stained bacteria and Gram negative bacteria, respectively. Six different Gram negative bacterial species were recovered from BBS fish while 23 bacterial species belonging to 14 genera were recovered from fish suffering from SNS. Most of the culturable bacteria are new to betta fish and some of them are known to be marine bacteria, suggesting possible entry route via a contaminated live feed, commercial Artemia shrimp. The true causative agents of these syndromes remain unclear. However, histopathological changes and existence of a wide range of bacteria associated with the naturally diseased fish suggest involvement of multiple bacterial infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. © The Author(s) 2015.

  14. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  15. Culturable Facultative Methylotrophic Bacteria from the Cactus Neobuxbaumia macrocephala Possess the Locus xoxF and Consume Methanol in the Presence of Ce3+ and Ca2+

    PubMed Central

    del Rocío Bustillos-Cristales, María; Corona-Gutierrez, Ivan; Castañeda-Lucio, Miguel; Águila-Zempoaltécatl, Carolina; Seynos-García, Eduardo; Hernández-Lucas, Ismael; Muñoz-Rojas, Jesús; Medina-Aparicio, Liliana; Fuentes-Ramírez, Luis Ernesto

    2017-01-01

    Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp301, the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce3+ or Ca2+. The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed. PMID:28855445

  16. Whole-Genome Sequence and Classification of 11 Endophytic Bacteria from Poison Ivy (Toxicodendron radicans).

    PubMed

    Tran, Phuong N; Tan, Nicholas E H; Lee, Yin Peng; Gan, Han Ming; Polter, Steven J; Dailey, Lucas K; Hudson, André O; Savka, Michael A

    2015-11-19

    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy. Copyright © 2015 Tran et al.

  17. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific

    PubMed Central

    Taniguchi, Akito; Hamasaki, Koji

    2008-01-01

    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect. PMID:18177366

  18. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    NASA Astrophysics Data System (ADS)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  19. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers.

    PubMed

    Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier

    2017-03-01

    Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.

  20. Beer spoilage bacteria and hop resistance.

    PubMed

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  1. Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential.

    PubMed

    Mohd Adnan, Ahmad Faris; Tan, Irene K P

    2007-05-01

    Two traditional fermented food 'tapai' (fermented tapioca) and 'tempoyak' (fermented durian flesh), chilli puree and fresh goat's milk were used as sources for the isolation of lactic acid bacteria (LAB). A total of 126 isolates were obtained and by sequential screening for catalase activity and Gram-staining, 55 were determined to be LAB out of which 16 were established to be homofermentative by the gel plug test. Seven isolates were identified by use of the API 50CHL kit and two lactobacilli strains and one lactococci strain were selected to study their growth and lactic acid production profiles in a time course experiment. The lactobacilli strains, both isolated from 'tapai', produced higher amounts of cells and lactic acid from glucose as compared to the lactococci strain isolated from fresh goat's milk.

  2. Molecular identification and quantification of lactic acid bacteria in traditional fermented dairy foods of Russia.

    PubMed

    Yu, J; Wang, H M; Zha, M S; Qing, Y T; Bai, N; Ren, Y; Xi, X X; Liu, W J; Menghe, B L G; Zhang, H P

    2015-08-01

    Russian traditional fermented dairy foods have been consumed for thousands of years. However, little research has focused on exploiting lactic acid bacteria (LAB) resources and analyzing the LAB composition of Russian traditional fermented dairy foods. In the present study, we cultured LAB isolated from fermented mare and cow milks, sour cream, and cheese collected from Kalmykiya, Buryats, and Tuva regions of Russia. Seven lactobacillus species and the Bifidobacterium genus were quantified by quantitative PCR. The LAB counts in these samples ranged from 3.18 to 9.77 log cfu/mL (or per gram). In total, 599 LAB strains were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. The identified LAB belonged to 7 genera and 30 species by 16S rRNA and murE gene sequencing and multiplex PCR assay. The predominant LAB isolates were Lactobacillus helveticus (176 strains) and Lactobacillus plantarum (63 strains), which represented 39.9% of all isolates. The quantitative PCR results revealed that counts of 7 lactobacilli species and Bifidobacterium spp. of 30 fermented cow milk samples ranged from 1.19±0.34 (Lactobacillus helveticus in Tuva) to 8.09±0.71 (Lactobacillus acidophilus in Kalmykiya) log cfu/mL of fermented cow milk (mean ± standard error). The numbers of Bifidobacterium spp., Lb. plantarum, Lb. helveticus, and Lb. acidophilus revealed no significant difference between the 3 regions; nevertheless, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus sakei, and Lactobacillus delbrueckii ssp. bulgaricus exhibited different degrees of variation across 3 regions. The results demonstrate that traditional fermented dairy products from different regions of Russia have complex compositions of LAB species. The diversity of LAB might be related to the type of fermented dairy product, geographical origin, and manufacturing process. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  4. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana▿

    PubMed Central

    Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  5. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome.

    PubMed

    Sheedy, John R; Wettenhall, Richard E H; Scanlon, Denis; Gooley, Paul R; Lewis, Donald P; McGregor, Neil; Stapleton, David I; Butt, Henry L; DE Meirleir, Kenny L

    2009-01-01

    Patients with chronic fatigue syndrome (CFS) are affected by symptoms of cognitive dysfunction and neurological impairment, the cause of which has yet to be elucidated. However, these symptoms are strikingly similar to those of patients presented with D-lactic acidosis. A significant increase of Gram positive facultative anaerobic faecal microorganisms in 108 CFS patients as compared to 177 control subjects (p<0.01) is presented in this report. The viable count of D-lactic acid producing Enterococcus and Streptococcus spp. in the faecal samples from the CFS group (3.5 x 10(7) cfu/L and 9.8 x 10(7) cfu/L respectively) were significantly higher than those for the control group (5.0 x 10(6) cfu/L and 8.9 x 10(4) cfu/L respectively). Analysis of exometabolic profiles of Enterococcus faecalis and Streptococcus sanguinis, representatives of Enterococcus and Streptococcus spp. respectively, by NMR and HPLC showed that these organisms produced significantly more lactic acid (p<0.01) from (13)C-labeled glucose, than the Gram negative Escherichia coli. Further, both E. faecalis and S. sanguinis secrete more D-lactic acid than E. coli. This study suggests a probable link between intestinal colonization of Gram positive facultative anaerobic D-lactic acid bacteria and symptom expressions in a subgroup of patients with CFS. Given the fact that this might explain not only neurocognitive dysfunction in CFS patients but also mitochondrial dysfunction, these findings may have important clinical implications.

  6. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    PubMed Central

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  7. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation.

    PubMed

    Mamhoud, Asma; Nionelli, Luana; Bouzaine, Taroub; Hamdi, Moktar; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2016-05-16

    Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with baker's yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the

  9. Heterotrophic bacteria in an air-handling system.

    PubMed Central

    Hugenholtz, P; Fuerst, J A

    1992-01-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins. Images PMID:1476435

  10. Heterotrophic bacteria in an air-handling system.

    PubMed

    Hugenholtz, P; Fuerst, J A

    1992-12-01

    Heterotrophic bacteria from structural surfaces, drain pan water, and the airstream of a well-maintained air-handling system with no reported building-related illness were enumerated. Visually the system appeared clean, but large populations of bacteria were found on the fin surface of the supply-side cooling coils (10(5) to 10(6) CFU cm-2), in drain pan water (10(5) to 10(7) CFU ml-1), and in the sump water of the evaporative condenser (10(5) CFU ml-1). Representative bacterial colony types recovered from heterotrophic plate count cultures on R2A medium were identified to the genus level. Budding bacteria belonging to the genus Blastobacter dominated the supply surface of the coil fins, the drain pan water, and the postcoil air. These data and independent scanning electron microscopy indicated that a resident population of predominantly Blastobacter bacteria was present as a biofilm on the supply-side cooling coil fins.

  11. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows

    PubMed Central

    Pessione, Enrica

    2012-01-01

    Lactic Acid Bacteria (LAB) are ancient organisms that cannot biosynthesize functional cytochromes, and cannot get ATP from respiration. Besides sugar fermentation, they evolved electrogenic decarboxylations and ATP-forming deiminations. The right balance between sugar fermentation and decarboxylation/deimination ensures buffered environments thus enabling LAB to survive in human gastric trait and colonize gut. A complex molecular cross-talk between LAB and host exists. LAB moonlight proteins are made in response to gut stimuli and promote bacterial adhesion to mucosa and stimulate immune cells. Similarly, when LAB are present, human enterocytes activate specific gene expression of specific genes only. Furthermore, LAB antagonistic relationships with other microorganisms constitute the basis for their anti-infective role. Histamine and tyramine are LAB bioactive catabolites that act on the CNS, causing hypertension and allergies. Nevertheless, some LAB biosynthesize both gamma-amino-butyrate (GABA), that has relaxing effect on gut smooth muscles, and beta-phenylethylamine, that controls satiety and mood. Since LAB have reduced amino acid biosynthetic abilities, they developed a sophisticated proteolytic system, that is also involved in antihypertensive and opiod peptide generation from milk proteins. Short-chain fatty acids are glycolytic and phosphoketolase end-products, regulating epithelial cell proliferation and differentiation. Nevertheless, they constitute a supplementary energy source for the host, causing weight gain. Human metabolism can also be affected by anabolic LAB products such as conjugated linoleic acids (CLA). Some CLA isomers reduce cancer cell viability and ameliorate insulin resistance, while others lower the HDL/LDL ratio and modify eicosanoid production, with detrimental health effects. A further appreciated LAB feature is the ability to fix selenium into seleno-cysteine. Thus, opening interesting perspectives for their utilization as

  12. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    PubMed

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  13. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

    PubMed Central

    Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin

    2017-01-01

    Objective The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results Prior to ensiling Sorghum contained 104 LAB and 106 cfu/g fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production. PMID:28728399

  14. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  15. Teaching Pre-Service Teachers about Belonging

    ERIC Educational Resources Information Center

    Gillies, Ann

    2017-01-01

    This article describes how a Teacher Educator teaches her university students (pre-service teachers) about belonging; how it feels to belong to a group, why they need to spend their time and energy during the school day working to make K-12 students feel that they belong, what belonging looks like, and how to make it happen in the pre-service…

  16. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  17. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi.

    PubMed

    Oh, Chang-Kyung; Oh, Myung-Chul; Kim, Soo-Hyun

    2004-01-01

    Nitrites, whether added or naturally occurring in foods, are potential carcinogens, and controlling their concentrations is important for maintaining a safe food supply. In this study we investigated the depletion of sodium nitrite (150 microg/mL) during the fermentation in Lactobacilli MRS broth at 5, 10, 15, 20, 25, 30, and 36 degrees C by lactic acid bacteria (LAB-A, -B, -C, and -D) isolated from kimchi and Leuconostoc mesenteroides strain KCTC3100. The four species of lactic acid bacteria isolated from kimchi were identified as L. mesenteroides, and all produced depletion of less than 20% of sodium nitrite after 10 days of incubation at 5 degrees C. There was less than 40% depletion after 9 days at 10 degrees C, 86.4-92.8% after 7 days at 15 degrees C, 81.4-87.8% after 4 days and more than 90.0% after 5 days at 20 degrees C, 76.3-85.7% after 3 days and more than 90.0% after 5 days at 25 degrees C, and more than 90.0% after 2 days at 30 and 36 degrees C. The depletion by LAB isolates was similar or higher than that by L. mesenteroides strain KCTC3100, and in particular, the LAB-D strain showed the highest depletion effect of all the strains tested, up to 15 degrees C. From these results, the strains isolated from kimchi were very effective for the depletion of sodium nitrite at high temperature, and all sodium nitrite was depleted at the initial period of incubation (1-2 days) at 30 and 36 degrees C. But as the temperature was lowered, the depletion effect of sodium nitrite was decreased in all the strains tested from kimchi. This illustrates that the depletion of nitrite by each strain is subject to the influence of temperatures.

  18. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    DOE PAGES

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; ...

    2015-12-22

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for

  19. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for

  20. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    PubMed

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  1. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    PubMed Central

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  2. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.

    PubMed

    Carvalheiro, Florbela; Moniz, Patrícia; Duarte, Luís C; Esteves, M Paula; Gírio, Francisco M

    2011-01-01

    Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.

  3. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    PubMed

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of kaolin silver complex on the control of populations of Brettanomyces and acetic acid bacteria in wine.

    PubMed

    Izquierdo-Cañas, P M; López-Martín, R; García-Romero, E; González-Arenzana, L; Mínguez-Sanz, S; Chatonnet, P; Palacios-García, A; Puig-Pujol, A

    2018-05-01

    In this work, the effects of kaolin silver complex (KAgC) have been evaluated to replace the use of SO 2 for the control of spoilage microorganisms in the winemaking process. The results showed that KAgC at a dose of 1 g/L provided effective control against the development of B. bruxellensis and acetic acid bacteria. In wines artificially contaminated with an initial population of B. bruxellensis at 10 4 CFU/mL, a concentration proven to produce off flavors in wine, only residual populations of the contaminating yeast remained after 24 days of contact with the additive. Populations of acetic bacteria inoculated into wine at concentrations of 10 2 and 10 4  CFU/mL were reduced to negligible levels after 72 h of treatment with KAgC. The antimicrobial effect of KAgC against B. bruxellensis and acetic bacteria was also demonstrated in a wine naturally contaminated by these microorganisms, decreasing their population in a similar way to a chitosan treatment. Related to this effect, wines with KAgC showed lower concentrations of acetic acid and 4-ethyl phenol than wines without KAgC. The silver concentration from KAgC that remained in the finished wines was below the legal limits. These results demonstrated the effectiveness of KAgC to reduce spoilage microorganisms in winemaking.

  5. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls.

    PubMed

    Kleessen, B; Kroesen, A J; Buhr, H J; Blaut, M

    2002-09-01

    Endogenous intestinal bacteria and/or specific bacterial pathogens are suspected of being involved in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to investigate IBD tissues for different bacterial population groups harbouring the mucosal surface and/or invading the mucosa. Tissue sections from surgical resections from the terminal ileum and/or the colon from 24 IBD patients (12 active ulcerative colitis (UC), 12 active Crohn disease (CD)) and 14 non-IBD controls were studied by fluorescent in situ hybridization on a quantifiable basis. More bacteria were detected on the mucosal surface of IBD patients than on those of non-IBD controls (P < 0.05). Bacterial invasion of the mucosa was evident in 83.3% of colonic specimens from the UC patients, in 55.6% of the ileal and in 25% of the colonic specimens from the CD patients, but no bacteria were detected in the tissues of the controls. Colonic UC specimens were colonized by a variety of organisms, such as bacteria belonging to the gamma subdivision of Proteobacteria, the Enterobacteriaceae, the Bacteroides/Prevotella cluster, the Clostridium histolyticum/Clostridium lituseburense group, the Clostridium coccoides/Eubacterium rectale group, high G + C Gram-positive bacteria, or sulphate-reducing bacteria, while CD samples harboured mainly bacteria belonging to the former three groups. Pathogenic events in CD and UC may be associated with different alterations in the mucosal flora of the ileum and colon.

  6. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    PubMed

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  8. Sialidases from gut bacteria: a mini-review.

    PubMed

    Juge, Nathalie; Tailford, Louise; Owen, C David

    2016-02-01

    Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces. © 2016 Authors.

  9. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling.

    PubMed

    Patel, Kinjal Samir; Naik, Jinal Hardik; Chaudhari, Sejal; Amaresan, Natarajan

    2017-04-01

    To elucidate the functional diversity of hot spring bacteria, 123 bacteria were isolated and screened for evaluating their multifunctional plant growth promoting (PGP) properties. The antagonistic activity against different phytopathogens showed the presence of a high amount of biocontrol bacteria in the hot springs. During screening for PGP properties, 61.0% isolates showed production of indole acetic acid and 23.6% showed inorganic phosphate solubilization qualitatively. For production of extracellular enzymes, it was found that 61.0% isolates produced lipase, 56.9% produced protease, and 43.9% produced cellulase. In extreme properties, half of the isolates showed tolerance to 5% NaCl (w/v) and 48.8% isolates survived heat shock at 70°C. The identification of 12 multipotential bacteria based on 16S rRNA gene sequencing revealed that the bacteria belonged to Aneurinibacillus aneurinilyticus and Bacillus spp. Bacterization of tomato seeds showed that the hot spring bacteria promoted shoot height, fresh shoot weight, root length, and fresh root weight of tomato seedlings, with values ranging from 3.12% to 74.37%, 33.33% to 350.0%, 16.06% to 130.41%, and 36.36% to 318.18%, respectively, over the control. This research shows that multifunctional bacteria could be isolated from the hot springs. The outcome of this research may have a potential effect on crop production methodologies used in saline and arid environments. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  10. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    PubMed

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery.

    PubMed

    Jiang, Jie; Pan, Chaohu; Xiao, Aiping; Yang, Xiai; Zhang, Guimin

    2017-05-01

    Six bacteria strains from heavy-metal-polluted ramie rhizosphere soil were isolated through Cd 2+ stress, which were numbered as JJ1, JJ2, JJ10, JJ11, JJ15, and JJ18. Sequence alignment and phylogenic analysis showed that strain JJ1 belonged to Pseudomonas, strain JJ2 belonged to Cupriavidus, strains JJ11 and JJ15 belonged to Bacillus, and strains JJ10 and JJ18 belonged to Acinetobacter. The tolerance capability of all the strains was the trend of Pb 2+  > Zn 2+  > Cu 2+  > Cd 2+ , the maximum tolerance concentration to Cd 2+ was 200 mg/L, to Pb 2+ was 1600 mg/L, to Zn 2+ was 600 mg/L, and to Cu 2+ was 265 mg/L. Strains JJ1, JJ11, JJ15, and JJ18 could grow well under pH 9.0, and strains JJ2, JJ11, and JJ18 could grow well under 7% of NaCl. The results showed that as a whole these strains had high environmental adaptability. This is the first report that heavy-metal-tolerant bacteria were found from ramie rhizosphere soil, which could be as a foundation to discover the relationship between ramie, rhizosphere bacteria and heavy metals.

  12. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  13. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    PubMed

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  14. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation.

    PubMed

    Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul

    2016-10-06

    Although many lactic acid bacteria (LAB) influence the consumer's immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects.

  15. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Effects of long-term application of pig manure containing residual tetracycline on the formation of drug-resistant bacteria and resistance genes].

    PubMed

    Zhang, Jun; Yang, Xiao-Hong; Ge, Feng; Wang, Na; Jiao, Shao-Jun; Jiao, Shao-Jun

    2014-06-01

    The effect of residual veterinary tetracycline on the formation of drug-resistant bacteria and corresponding resistance genes was investigated. During the research, the soil with long-term application of pig manure containing residual tetracycline was collected in autumn and summer respectively in the farmland around a certain pig farm in Shuyang City, Huang Huai area, north of Jiangsu province. At the same time, soils without application of pig manure in the farmland of this area were collected as the reference sample. Composition of drug-resistant bacteria in all soil samples was analyzed and three common tetracycline-resistance genes (tetA, tetC, tetE) were studied by PCR as well. During the research, 59 drug-resistant bacteria belonging to 13 bacterial genus respectively were separated from the soil sample collected in autumn while 35 drug- resistant bacteria belonging to 10 bacterial genus respectively were separated from the soil sample collected in summer and as for the reference sample, 3 drug-resistant bacteria belonging to 1 bacterial genus (Streptomyces) were separated with pathogenic bacteria up to 38.14% of total drug-resistant bacteria. PCR result showed that resistance genes were detected in all drug-resistant bacteria and tetC accounted for the most. At the same time, the residual tetracycline in the soil which was in a range of 41.1-61.9 microg x kg(-1) correlated with the amount of resistance genes (4.63 x 10(5)-37.42 x 10(5) copies x g(-1)). Besides, the climate was found accelerating the formation of drug-resistant bacteria and resistance genes.

  17. Colloidal precipitates related to Acid Mine Drainage: bacterial diversity and micro fungi-heavy metal interactions

    NASA Astrophysics Data System (ADS)

    Lucchetti, G.; Carbone, C.; Consani, S.; Zotti, M.; Di Piazza, S.; Pozzolini, M.; Giovine, M.

    2015-12-01

    In Acid Mine Drainage (AMD) settings colloidal precipitates control the mobility of Potential Toxic Elements (PTEs). Mineral-contaminant relationships (i.e. adsorption, ion-exchange, desorption) are rarely pure abiotic processes. Microbes, mainly bacteria and microfungi, can catalyze several reactions modifying the element speciation, as well as the bioavailability of inorganic pollutants. Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a potential reservoir of extremophile bacteria and fungi exploitable for biotechnological purposes. Two different AMD related colloids, an ochraceous precipitate (deposited in weakly acidic conditions, composed by nanocrystalline goethite) and a greenish-blue precipitate (deposited at near-neutral pH, composed by allophane + woodwardite) were sampled. The aims of this work were to a) characterize the mycobiota present in these colloidal minerals by evaluating the presence of alive fungal propagules and extracting bacteria DNA; b) verify the fungal strains tolerance, and bioaccumulation capability on greenish-blue and ZnSO4 enriched media; c) evaluate potential impact of bacteria in the system geochemistry. The preliminary results show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains were isolated in pure culture. Among them, species belonging to Penicillium and Trichoderma genera were tested on both greenish-blue and ZnSO4 enriched media. The results show a significant tolerance and bioaccumulation capability to some PTEs. The same colloidal precipitates were processed to extract bacteria DNA by using a specific procedure developed for sediments. The results give a good yield of nucleic acids and a positive PCR amplification of 16S rDNA accomplished the first step for future metagenomic analyses.

  18. First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria.

    PubMed

    Cescutti, Paola; Scussolin, Silvia; Herasimenka, Yury; Impallomeni, Giuseppe; Bicego, Massimiliano; Rizzo, Roberto

    2006-01-20

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.

  19. Comparative sequence analysis of acid sensitive/resistance proteins in Escherichia coli and Shigella flexneri

    PubMed Central

    Manikandan, Selvaraj; Balaji, Seetharaaman; Kumar, Anil; Kumar, Rita

    2007-01-01

    The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily. PMID:21670792

  20. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  1. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE PAGES

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...

    2017-01-10

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  2. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  3. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    PubMed

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  4. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans

    PubMed Central

    Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-01-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504

  5. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    PubMed

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  6. A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia).

    PubMed

    Vannini, C; Petroni, G; Verni, F; Rosati, G

    2005-04-01

    Bacteria of the family Rickettsiaceae (order Rickettsiales, alpha-Proteobacteria) are mainly known to be endosymbionts of arthropods with the capability to infect also vertebrate cells. Recently, they have also been found as leech endocytobionts. In the present paper, we report the first finding of a bacterium belonging to the family Rickettsiaceae in a natural population of a marine ciliate protozoan, namely Diophrys appendiculata, collected in the Baltic Sea. Bacteria were unambiguously identified through morphological characterization and the "full-cycle rRNA approach" (i.e., 16S rRNA gene characterization and use of specifically designed oligonucleotide probes for in situ detection). Symbionts are rod-shaped bacteria that grow freely in the cytoplasm of the host cell. They present two different morphotypes, similar in size, but different in cytoplasmic density. These are typical morphological features of members of the family Rickettsiaceae. 16S rRNA gene sequence showed that Diophrys symbionts share a high similarity value (>92%) with bacteria belonging to the genus Rickettsia. Phylogenetic analysis revealed that these new endosymbionts are clearly included in the clade of the family Rickettsiaceae, but they occupy an independent phylogenetic position with respect to members of the genus Rickettsia. This is the first report of a member of this family from a host protozoan and from a marine habitat. This result shows that this bacterial group is more diversified and widespread than supposed so far, and that its ecological relevance could until now have been underestimated. In light of these considerations, the two 16S rRNA oligonucleotide probes here presented, specific for members of the Rickettsiaceae, can represent useful tools for further researches on the presence and the spread of these microorganisms in the natural environment.

  7. Interrogating "Belonging" in Belonging, Being and Becoming: The Early Years Learning Framework for Australia

    ERIC Educational Resources Information Center

    Sumsion, Jennifer; Wong, Sandie

    2011-01-01

    In this article, the authors interrogate the use of "belonging" in "Belonging, Being and Becoming: the Early Years Learning Framework for Australia" (EYLF), Australia's first national curriculum for early childhood education and care settings and, from the authors' interrogation, possibilities are offered for thinking about and…

  8. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    PubMed

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Linking wine lactic acid bacteria diversity with wine aroma and flavour.

    PubMed

    Cappello, Maria Stella; Zapparoli, Giacomo; Logrieco, Antonio; Bartowsky, Eveline J

    2017-02-21

    In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Regulation of the Biosynthesis of Amino Acids of the Aspartate Family in Coliform Bacteria and Pseudomonads

    PubMed Central

    Cohen, G. N.; Stanier, R. Y.; Bras, Gisele Le

    1969-01-01

    The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed. PMID:4391829

  11. An ability of endophytic bacteria from nutgrass (cyperus rotundus) from lafau beach of north nias in producing indole acetic acid and in solubilizing phosphate

    NASA Astrophysics Data System (ADS)

    Zega, Atriani; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Endophytic bacteria have taken much attention for their potency to promote plant growth. This study was aimed to isolate endophytic bacteria from nutgrass (Cyperus rotundus) and to examine their potency in producing indole acetic acid (IAA) and in solubilizing phosphate. Isolation of endophytic bacteria was done by slicing and sterilizing root, stem, and leaf sample surface with alcohol 70% and sodium hypochlorite 2%, followed by incubation of the sliced samples in nutrient agar medium. Morphological characterization and simple biochemical tests were performed on bacterial isolates. All bacterial isolates were examined for their ability to produce indole acetic acid and to solubilize phosphate. Three isolates (AZ5, AZ12 and AZ6) out of fifteen indicated the ability to produce indole acetic acid and to solubilize phosphate. IAA producing test using spectrophotometry method showed that AZ5, AZ12,and AZ6 produce more IAA with concentration of 49,91, 48,18, and 44,45 ppm, respectively. Phosphate solubilizing test using Pikovskaya agar medium showed that the three isolates were able to solubilize phosphate with index of 6.27, 3,31, and 3.41 respectively.

  12. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  13. In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria

    PubMed Central

    Tieking, Markus; Korakli, Maher; Ehrmann, Matthias A.; Gänzle, Michael G.; Vogel, Rudi F.

    2003-01-01

    EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter−1 as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives. PMID:12571016

  14. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  15. Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment.

    PubMed

    Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae

    2016-06-28

    To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.

  16. The role of lactic acid bacteria (Lactobacillus sp yel133) from beef in inhibiting of microbial contaminants on various fillers of starter culture

    NASA Astrophysics Data System (ADS)

    Yunilas; Mirwandhono, E.

    2018-02-01

    The role of Lactic Acid Bacteria (LAB) on the starter culture can be seen from the ability to grow and suppress the growth of microbial contaminants (fungi). The research aimed to investigate the role of LAB (Lactobacillus sp YEL133) in inhibiting microbial contaminants (fungi) on starter cultures of various fillers. The materials used in this research was Lactobacillus sp YEL133 from beef and various fillers (rice flour, corn starch and wheat flour). The research methods used completely randomized design (CRD) with 3 treatments and 4 replications. The treatments of this research was P1(rice flour), P2 (corn starch) and P3 (wheat flour) that inoculated with Lactobacillus sp YEL133. Parameters which is observed such as: growth of lactic acid bacteria, total microbes and total fungi as microbial contaminants. The results showed that the starter culture with a filler material of rice flour produce lactic acid bacteria and microbes were highly significant (P <0.01) for corn starch and wheat flour, as well as able to suppress the growth of microbial contaminants (fungi). The conclusion of the research is the use Lactobacillus sp YEL133 can suppress the growth of fungi on the starter culture using rice flour.

  17. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria.

    PubMed

    Coda, Rossana; Rizzello, Carlo Giuseppe; Trani, Antonio; Gobbetti, Marco

    2011-05-01

    Autochthonous lactic acid bacteria from emmer flour were screened based on the kinetic of acidification and used to ferment beverages containing emmer flour, emmer gelatinized flour, and emmer malt at percentages ranging 5-30% (wt/wt). Preliminarily, the concentration of raw flour and malt was selected based on sensory analysis. Different protocols were set up for the manufacture of four different beverages which used Lactobacillus plantarum 6E as the starter. Emmer beverages were mainly differentiated based on the concentration of organic acids, carbohydrates, amino acids, dietary fibers, vitamins, antioxidant and phytase activities, and volatiles and sensory profiles. Wheat flour bread was used as the control to determine the hydrolysis index (HI=100), as an indirect estimation of the glycemic index. The beverage made with 30% (wt/wt) of gelatinized flour showed an HI of 56%, its viscosity was improved by using an EPS-producing strain and it allowed the survival of the potential probiotic Lactobacillus rhamnosus SP1 at cell density of ca. 5 × 10(8) cfu/ml throughout storage at 4 °C. Among the exploited biotechnological options, this latter beverage could be considered as a promising novel functional food. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Leguminosae native nodulating bacteria from a gold mine As-contaminated soil: Multi-resistance to trace elements, and possible role in plant growth and mineral nutrition.

    PubMed

    Rangel, Wesley de M; de Oliveira Longatti, Silvia M; Ferreira, Paulo A A; Bonaldi, Daiane S; Guimarães, Amanda A; Thijs, Sofie; Weyens, Nele; Vangronsveld, Jaco; Moreira, Fatima M S

    2017-10-03

    Efficient N 2 -fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca 3 (PO 4 ) 2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to β-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.

  19. Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria.

    PubMed

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A

    2016-01-01

    Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.

  20. Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    PubMed Central

    Crépin, Alexandre; Barbey, Corinne; Beury-Cirou, Amélie; Hélias, Valérie; Taupin, Laure; Reverchon, Sylvie; Nasser, William; Faure, Denis; Dufour, Alain; Orange, Nicole; Feuilloley, Marc; Heurlier, Karin; Burini, Jean-François; Latour, Xavier

    2012-01-01

    Background Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. Methodology/Principal Findings Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. Conclusions/Significance Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the

  1. Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts.

    PubMed

    Hong, S H; Marshall, R T

    2001-06-01

    Viable lactic acid-producing bacteria in frozen dairy desserts can be a source of beta-galactosidase for persons who absorb lactose insufficiently. However, freezing kills many of the cells, causing loss of enzymatic activity. Cultures selected for high beta-galactosidase activities and high survival rates in the presence of bile were examined for survivability during freezing in reduced-fat ice cream. Encapsulated S. thermophilus strains survived better than their nonencapsulated mutants in reduced-fat ice cream after freezing and frozen storage at -29 degrees C for 16 d (28 vs. 19%). However, a small nonencapsulated strain of Lactobacillus delbrueckii sp. bulgaricus survived better than the large encapsulated strain in reduced-fat ice cream. Factors that improved survival of encapsulated S. thermophilus 1068 in ice cream were 1) harvest of cells in the late-log phase of growth at 37 degrees C rather than at 40, 42.5, or 45 degrees C; 2) overrun at 50% rather than 100%; and 3) storage at -17 degrees C rather than -23 or -29 degrees C. Survival of strain ST1068 was unaffected by 1) neutralization of acid during growth or 2) substitution of nitrogen for air in building overrun.

  2. EFFECT OF DIETARY ANTIBIOTICS UPON COLIFORM BACTERIA AND LACTOBACILLI IN THE INTESTINAL TRACT OF URIC ACID-FED CHICKS.

    PubMed

    BARE, L N; WISEMAN, R F; ABBOTT, O J

    1964-02-01

    Bare, L. N. (University of Kentucky, Lexington), R. F. Wiseman, and O. J. Abbott. Effect of dietary antibiotics upon coliform bacteria and lactobacilli in the intestinal tract of uric acid-fed chicks. J. Bacteriol. 87:329-331. 1964.-Male chicks (1-day-old; Vantress X Arbor Acre) were fed a basal glucose-soybean oil meal diet, a 2% uric acid-containing diet with and without 5 mg/lb of zinc bacitracin and 20 mg/lb of procaine penicillin G, and one supplemented with the antibiotics only. After 4 weeks, the chicks receiving the uric acid without antibiotics showed a weight depression. The presence of antibiotics in the ration with the uric acid reversed this growth depression. Bacteriological and chemical analyses of the contents of the small intestine revealed an increase in numbers of uricolytic Aerobacter spp. and an increased degradation of uric acid in the tract of the "uric-antibiotic"-fed chicks. The counts of lactobacilli were always lowest in this group of chicks

  3. Tyramine and phenylethylamine biosynthesis by food bacteria.

    PubMed

    Marcobal, Angela; De las Rivas, Blanca; Landete, José María; Tabera, Laura; Muñoz, Rosario

    2012-01-01

    Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

  4. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitorymore » than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.« less

  5. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    PubMed

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  6. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  7. Microbial Quality and Direct PCR Identification of Lactic Acid Bacteria and Nonpathogenic Staphylococci from Artisanal Low-Acid Sausages

    PubMed Central

    Aymerich, T.; Martín, B.; Garriga, M.; Hugas, M.

    2003-01-01

    Detection of six species of lactic acid bacteria and six species of gram-positive catalase-positive cocci from low-acid fermented sausages (fuets and chorizos) was assessed by species-specific PCR. Without enrichment, Lactobacillus sakei and Lactobacillus curvatus were detected in 11.8% of the samples, and Lactobacillus plantarum and Staphylococcus xylosus were detected in 17.6%. Enriched samples allowed the detection of L. sakei and S. xylosus in all of the samples (100%) and of Enterococcus faecium in 11.8% of the sausages. The percentages of L. curvatus, L. plantarum, Staphylococcus carnosus, and Staphylococcus epidermidis varied depending on the sausage type. L. curvatus was detected in 80% of fuets and in 57% of chorizos. L. plantarum was found in 50% of fuets and 100% of chorizos. S. epidermidis was detected in only 11.8% of fuets, and S. carnosus was detected in only 5.9% of chorizos. Lactococcus lactis, Staphylococcus warneri, and Staphylococcus simulans were not detected in any sausage type. From a microbiological point of view, 70.6% of the samples could be considered of high quality, as they had low counts of Enterobacteriaceae and did not contain any of the food-borne pathogens assayed. PMID:12902246

  8. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    PubMed

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  9. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    PubMed

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  10. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    PubMed

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar.

    PubMed

    Wang, Zhenyu; Zong, Haiying; Zheng, Hao; Liu, Guocheng; Chen, Lei; Xing, Baoshan

    2015-11-01

    Adding biochar into soils has potential to manipulate soil nitrification process due to its impacts on nitrogen (N) cycling, however, the exact mechanisms underlying the alteration of nitrification process in soils are still not clear. Nitrification in an acidic orchard soil amended with peanut shell biochar (PBC) produced at 400 °C was investigated. Nitrification was weakened by PBC addition due to the decreased NH4(+)-N content and reduced ammonia-oxidizing bacteria (AOB) abundance in PBC-amended soils. Adding phenolic compounds (PHCs) free biochar (PBC-P) increased the AOB abundance and the DGGE band number, indicating that PHCs remaining in the PBC likely reduced AOB abundance and diversity. However, PBC addition stimulated rape growth and increased N bioavailability. Overall, adding PBC could suppress the nitrification process and improve N bioavailability in the agricultural soils, and thus possibly mitigate the environmental negative impacts and improving N use efficiency in the acidic soils added with N fertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics.

    PubMed

    Grimoud, Julien; Durand, Henri; Courtin, Céline; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine

    2010-10-01

    Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  14. Stabilization of polymer lipid complexes prepared with lipids of lactic acid bacteria upon preservation and internalization into eukaryotic cells.

    PubMed

    Alves, P; Hugo, A A; Szymanowski, F; Tymczyszyn, E E; Pérez, P F; Coelho, J F J; Simões, P N; Gómez-Zavaglia, A

    2014-11-01

    The physicochemical characterization of polymer liposome complexes (PLCs) prepared with lipids of lactic acid bacteria and poly(N,N-dimethylaminoethyl methacrylate) covalently bound to cholesterol (CHO-PDMAEMA) was carried out in an integrated approach, including their stability upon preservation and incorporation into eukaryotic cells. PLCs were prepared with different polymer:lipid molar ratios (0, 0.05 and 0.10). Zeta potential, particle size distribution and polydispersity index were determined. The optimal polymer:lipid ratio and the stability of both bare liposomes and PLCs were evaluated at 37 °C and at different pHs, as well as after storage at 4 °C, -80 °C and freeze-drying in the presence or absence of trehalose 250 mM. Internalization of PLCs by eukaryotic cells was assessed to give a complete picture of the system. Incorporation of CHO-PDMAEMA onto bacterial lipids (ratio 0.05 and 0.10) led to stabilization at 37 °C and pH 7. A slight decrease of pH led to their strong destabilization. Bacteria PLCs showed to be more stable than lecithin (LEC) PLCs (used for comparison) upon preservation at 4 and -80 °C. The harmful nature of the preservation processes led to a strong decrease in the stability of PLCs, bacterial formulations being more stable than LEC PLCs. The addition of trehalose to the suspension of liposomes stabilized LEC PLC and did not have effect on bacterial PLCs. In vitro studies on Raw 264.7 and Caco-2/TC7 cells demonstrated an efficient incorporation of PLCs into the cells. Preparations with higher stability were the ones that showed a better cell-uptake. The nature of the lipid composition is determinant for the stability of PLCs. Lipids from lactic acid bacteria are composed of glycolipids and phospholipids like cardiolipin and phosphatidylglycerol. The presence of negatively charged lipids strongly improves the interaction with the positively charged CHO-PDMAEMA, thus stabilizing liposomes. In addition, glycolipids and

  15. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products.

    PubMed

    Simova, E D; Beshkova, D B; Dimitrov, Zh P

    2009-02-01

    To isolate bacteriocin-producing lactic acid bacteria (LAB) with high wide spectrum antibacterial activity and to characterize their inhibitory peptides. Seven LAB strains [Lactobacillus casei ssp. rhamnosus (PC5), Lactobacillus delbrueckii ssp. bulgaricus (BB18), Lactococcus lactis ssp. lactis (BCM5, BK15), Enterococcus faecium (MH3), Lactobacillus plantarum (BR12), Lactobacillus casei ssp. casei (BCZ2)], isolated from authentic Bulgarian dairy products were capable of producing bacteriocins, inhibiting the widest range of pathogenic bacteria. The bacteriocins were resistant to heating at 121 degrees C for 15 min, stable at pH 2-10, sensitive to protease, insensitive to alpha-amylase and lipase. Two of bacteriocins produced by Lact. bulgaricus BB18 (bulgaricin BB18) and E. faecium MH3 (enterocin MH3) were purified and the molecular masses were determined. The N-terminal amino acid sequence of bulgaricin BB18 did not show strong homology to other known bacteriocins. Lactobacillus bulgaricus BB18 and E. faecium MH3 produce two novel bacteriocins highly similar to the pediocin-like nonlantibiotics. The two bacteriocins are potential antimicrobial agents and, in conjunction with their producers, may have use in applications to contribute a positive effect on the balance of intestinal microflora. Furthermore, bulgaricin BB18 strongly inhibits Helicobacter pylori.

  16. Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid.

    PubMed

    Bhat, A R; Irorere, V U; Bartlett, T; Hill, D; Kedia, G; Charalampopoulos, D; Nualkaekul, S; Radecka, I

    2015-03-02

    A major hurdle in producing a useful probiotic food product is bacterial survival during storage and ingestion. The aim of this study was to test the effect of γ-PGA immobilisation on the survival of probiotic bacteria when stored in acidic fruit juice. Fruit juices provide an alternative means of probiotic delivery, especially to lactose intolerant individuals. In addition, the survival of γ-PGA-immobilised cells in simulated gastric juice was also assessed. Bifidobacteria strains (Bifidobacteria longum, Bifidobacteria breve), immobilised on 2.5% γ-PGA, survived significantly better (P<0.05) in orange and pomegranate juice for 39 and 11 days respectively, compared to free cells. However, cells survived significantly better (P<0.05) when stored in orange juice compared to pomegranate juice. Moreover, both strains, when protected with 2.5% γ-PGA, survived in simulated gastric juice (pH2.0) with a marginal reduction (<0.47 log CFU/ml) or no significant reduction in viable cells after 4h, whereas free cells died within 2h. In conclusion, this research indicates that γ-PGA can be used to protect Bifidobacteria cells in fruit juice, and could also help improve the survival of cells as they pass through the harsh conditions of the gastrointestinal tract (GIT). Following our previous report on the use of γ-PGA as a cryoprotectant for probiotic bacteria, this research further suggests that γ-PGA could be used to improve probiotic survival during the various stages of preparation, storage and ingestion of probiotic cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Childhood antecedents of adult sense of belonging.

    PubMed

    Hagerty, Bonnie M; Williams, Reg Arthur; Oe, Hiroaki

    2002-07-01

    Sense of belonging has been proposed to be a basic human need, and deficits in sense of belonging have been linked to problems in social and psychological functioning. Yet, there is little evidence about what early life experiences contribute to sense of belonging. The purpose of this study was to examine potential childhood antecedents of adult sense of belonging. The sample consisted of 362 community college students ranging in age from 18 to 72 years, with a mean age of 26 years. Measures included the Sense of Belonging Instrument, the Parental Bonding Instrument, and the Childhood Adversity and Adolescent Deviance Instrument. Multiple regression analysis was used to correlate childhood antecedents with adult sense of belonging. The final reduced model included 12 variables, which accounted for 25% of the variance in sense of belonging. Significant positive antecedents with a relationship with sense of belonging were perceived caring by both mother and father while growing up, participation in high school athletic activity, and parental divorce. Significant negative variables with a relationship with sense of belonging included perceived overprotection of father, high school pregnancy, family financial problems while growing up, incest, and homosexuality. Knowledge of these factors should influence interventions with families regarding child-rearing and parenting practices, mediating the effects of crises during childhood such as divorce and teen pregnancy, and the interpersonal growth needs of teenagers. Copyright 2002 Wiley Periodicals, Inc.

  18. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. B. Johnson; N. Okibe; F. F. Roberto

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstonemore » strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.« less

  19. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing.

    PubMed

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-10-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.

  20. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands.

    PubMed

    Valera, Maria José; Laich, Federico; González, Sara S; Torija, Maria Jesús; Mateo, Estibaliz; Mas, Albert

    2011-11-15

    The identification of acetic acid bacteria (AAB) from sound grapes from the Canary Islands is reported in the present study. No direct recovery of bacteria was possible in the most commonly used medium, so microvinifications were performed on grapes from Tenerife, La Palma and Lanzarote islands. Up to 396 AAB were isolated from those microvinifications and identified by 16S rRNA gene sequencing and phylogenetic analysis. With this method, Acetobacter pasteurianus, Acetobacter tropicalis, Gluconobacter japonicus and Gluconacetobacter saccharivorans were identified. However, no discrimination between the closely related species Acetobacter malorum and Acetobacter cerevisiae was possible. As previously described, 16S-23S rRNA gene internal transcribed spacer (ITS) region phylogenetic analysis was required to classify isolates as one of those species. These two species were the most frequently occurring, accounting for more than 60% of the isolates. For typing the AAB isolates, both the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and (GTG)5-PCR techniques gave similar resolution. A total of 60 profiles were identified. Thirteen of these profiles were found in more than one vineyard, and only one profile was found on two different islands (Tenerife and La Palma). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone.

    PubMed

    Jroundi, Fadwa; Gómez-Suaga, Patricia; Jimenez-Lopez, Concepción; González-Muñoz, Maria Teresa; Fernandez-Vivas, Maria Antonia

    2012-05-15

    Stone consolidation treatments that use bacterial biomineralization are mainly based on two strategies: (1) the inoculation of a bacterial culture with proven carbonatogenic ability and/or (2) the application of a culture medium capable of activating those bacteria able to induce the formation of calcium carbonate, from amongst the bacterial community of the stone. While the second strategy has been demonstrated to be effective and, unlike first strategy, it does not introduce any exogenous microorganism into the stone, problems may arise when the bacterial community of the stone is altered, for instance by the use of biocides in the cleaning process. In this study we isolate bacteria that belong to the natural microbial community of the stone and which have proven biomineralization capabilities, with the aim of preparing an inoculum that may be used in stone consolidation treatments wherein the natural community of those stones is altered. With this aim, outdoor experiments were undertaken to activate and isolate bacteria that display high biomineralization capacity from altered calcarenite stone. Most of the bacteria precipitated calcium carbonate in the form of calcite. The selected bacteria were phylogenetically affiliated with members of Actinobacteria, Gamma-proteobacteria and Firmicutes. Furthermore, the capability of these selected carbonatogenic bacteria to consolidate altered calcarenite stone slabs was studied in in vitro experiments, both in the presence and the absence of Myxococcus xanthus, as a potential reinforcement for the bacterial biomineralization. Herein, Acinetobacter species, belonging to the microbial community of the stone, are proposed as powerful carbonatogenic bacteria that, inoculated under appropriate conditions, may be used as inoculum for calcareous stone conservation/consolidation in restoration interventions where the microbial community of the stone is altered. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Can anaerobes be acid fast? A novel, clinically relevant acid fast anaerobe.

    PubMed

    Navas, Maria E; Jump, Robin; Canaday, David H; Wnek, Maria D; SenGupta, Dhruba J; McQuiston, John R; Bell, Melissa

    2016-08-01

    Anaerobic acid fast bacilli (AFB) have not been previously reported in clinical microbiology. This is the second case report of a novel anaerobic AFB causing disease in humans. An anaerobic AFB was isolated from an abdominal wall abscess in a 64-year-old Caucasian diabetic male, who underwent distal pancreatectomy and splenectomy for resection of a pancreatic neuroendocrine tumour. The isolated bacteria were gram-variable and acid-fast, consisting of small irregular rods. The 16S rRNA gene sequence analysis showed that the isolate is a novel organism described in the literature only once before. The organism was studied at the CDC (Centers for Disease Control and Prevention) by the same group that worked with the isolates from the previous report; their findings suggest that the strain belongs to the suborder Corynebacterineae. This is the fifth reported case of an anaerobic AFB involved in clinical disease; its microbiological features and 16S RNA sequence are identical to previously reported cases. Clinical disease with this organism seems to be associated with recent history of surgery and abscess formation in deep soft tissues. Acquisition from surgical material is uncertain but seems unlikely.

  3. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species. © 2014 The Society for Applied Microbiology.

  4. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  5. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  6. Consequences of bile salt biotransformations by intestinal bacteria

    PubMed Central

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  7. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad

  8. Detection of Mannitol Formation by Bacteria

    PubMed Central

    Chalfan, Y.; Levy, R.; Mateles, R. I.

    1975-01-01

    A test is described by means of which formation of mannitol from fructose by lactic acid bacteria can be readily detected. The test is based on removal of interference of residual fructose by dehydration with hydrochloric acid followed by thin-layer chromatography. PMID:1101827

  9. Endosymbiotic calcifying bacteria across sponge species and oceans

    NASA Astrophysics Data System (ADS)

    Garate, Leire; Sureda, Jan; Agell, Gemma; Uriz, Maria J.

    2017-03-01

    From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance.

  10. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria.

    PubMed

    Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka

    2015-08-01

    Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p < 0.05). The gas treatments at 4.7 mmol/L were more effective in inactivating the pathogens than the treatment at 0.3 mmol/L. An approximately 5.0 log reduction was obtained after 3 h of treatment with 4.7 mmol/L acetic acid. No significant reductions in the population of B. subtilis spores inoculated on fenugreek seeds and black pepper were obtained after the gas treatments at 0.3 mmol/L or 0.6 mmol/L (p > 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p < 0.05), and 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of Feeding of Two Potentially Probiotic Preparations from Lactic Acid Bacteria on the Performance and Faecal Microflora of Broiler Chickens

    PubMed Central

    Fajardo, Paula; Pastrana, Lorenzo; Méndez, Jesús; Rodríguez, Isabel; Fuciños, Clara; Guerra, Nelson P.

    2012-01-01

    The aim of this study was to evaluate the potential of two probiotic preparations, containing live lactic acid bacteria (Lactococcus lactis CECT 539 and Lactobacillus casei CECT 4043) and their products of fermentation (organic acids and bacteriocins), as a replacement for antibiotics in stimulating health and growth of broiler chickens. The effects of the supplementation of both preparations (with proven probiotic effect in weaned piglets) and an antibiotic (avilamycin) on body weight gain (BWG), feed intake (FI), feed consumption efficiency (FCE), relative intestinal weight, and intestinal microbiota counts were studied in 1-day posthatch chickens. The experiments were conducted with medium-growth Sasso X44 chickens housed in cages and with nutritional stressed Ross 308 broiler distributed in pens. Consumption of the different diets did not affect significantly the final coliform counts in Sasso X44 chickens. However, counts of lactic acid bacteria and mesophilic microorganisms were higher in the animals receiving the two probiotic preparations (P < 0.05). In the second experiment, although no differences in BWG were observed between treatments, Ross 308 broilers receiving the probiotic Lactobacillus preparation exhibited the lowest FCE values and were considered the most efficient at converting feed into live weight. PMID:22666137

  12. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    PubMed

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  13. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Comparison of methods for determining the numbers and species distribution of coliform bacteria in well water samples.

    PubMed

    Niemi, R M; Heikkilä, M P; Lahti, K; Kalso, S; Niemelä, S I

    2001-06-01

    Enumeration of coliform bacteria and Escherichia coli is the most widely used method in the estimation of hygienic quality of drinking water. The yield of target bacteria and the species composition of different populations of coliform bacteria may depend on the method.Three methods were compared. Three membrane filtration methods were used for the enumeration of coliform bacteria in shallow well waters. The yield of confirmed coliform bacteria was highest on Differential Coliform agar, followed by LES Endo agar. Differential Coliform agar had the highest proportion of typical colonies, of which 74% were confirmed as belonging to the Enterobacteriaceae. Of the typical colonies on Lactose Tergitol 7 TTC agar, 75% were confirmed as Enterobacteriaceae, whereas 92% of typical colonies on LES Endo agar belonged to the Enterobacteriaceae. LES Endo agar yielded many Serratia strains, Lactose Tergitol 7 TTC agar yielded numerous strains of Rahnella aquatilis and Enterobacter, whereas Differential Coliform agar yielded the widest range of species. The yield of coliform bacteria varied between methods. Each method compared had a characteristic species distribution of target bacteria and a typical level of interference of non-target bacteria. Identification with routine physiological tests to distinct species was hampered by the slight differences between species. High yield and sufficient selectivity are difficult to achieve simultaneously, especially if the target group is diverse. The results showed that several aspects of method performance should be considered, and that the target group must be distinctly defined to enable method comparisons.

  15. Megasphaera indica sp. nov., an obligate anaerobic bacteria isolated from human faeces.

    PubMed

    Lanjekar, V B; Marathe, N P; Ramana, V Venkata; Shouche, Y S; Ranade, D R

    2014-07-01

    Two coccoid, non-motile, obligately anaerobic, Gram-stain-negative bacteria, occurring singly or in pairs, or as short chains, with a mean size of 1.4-2.5 µm were isolated from the faeces of two healthy human volunteers, aged 26 and 56 years, and were designated NMBHI-10(T) and BLPYG-7, respectively. Both the strains were affiliated to the sub-branch Sporomusa of the class Clostridia as revealed by 16S rRNA gene sequence analysis. The isolates NMBHI-10(T) and BLPYG-7 showed 99.1 and 99.2% 16S rRNA gene sequence similarity, respectively, with Megasphaera elsdenii JCM 1772(T). DNA-DNA hybridization and phenotypic analysis showed that both the strains were distinct from their closest relative, M. elsdenii JCM 1772(T) (42 and 53% DNA-DNA relatedness with NMBHI-10(T) and BLPYG-7, respectively), but belong to the same species (DNA-DNA relatedness of 80.9 % between the isolates). According to DNA-DNA hybridization results, the coccoid strains belong to the same genospecies, and neither is related to any of the recognized species of the genus Megasphaera. Strains NMBHI-10(T) and BLPYG-7 grew in PYG broth at temperatures of between 15 and 40 °C (optimum 37 °C), but not at 45 °C. The strains utilized a range of carbohydrates as sources of carbon and energy including glucose, lactose, cellobiose, rhamnose, galactose and sucrose. Glucose fermentation resulted in the formation of volatile fatty acids, mainly caproic acid and organic acids such as succinic acid. Phylogenetic analysis, specific phenotypic characteristics and/or DNA G+C content also differentiated the strains from each other and from their closest relatives. The DNA G+C contents of strains NMBHI-10(T) and BLPYG-7 are 57.7 and 54.9 mol%, respectively. The major fatty acids were 12 : 0 FAME and 17 : 0 CYC FAME. On the basis of these data, we conclude that strains NMBHI-10(T) and BLPYG-7 should be classified as representing a novel species of the genus Megasphaera, for which the name Megsphaera indica sp. nov

  16. Nucleic Acid Homologies Among Oxidase-Negative Moraxella Species

    PubMed Central

    Johnson, John L.; Anderson, Robert S.; Ordal, Erling J.

    1970-01-01

    The deoxyribonucleic acid (DNA) base composition and DNA homologies of more than 40 strains of oxidase-negative Moraxella species were determined. These bacteria have also been identified as belonging to the Mima-Herellea-Acinetobacter group and the Bacterium anitratum group, as well as to several other genera including Achromobacter and Alcaligenes. The DNA base content of these strains ranged from 40 to 46% guanine plus cytosine. DNA–DNA competition experiments distinguished five groups whose members were determined by showing 50% or more homology to one of the reference strains: B. anitratum type B5W, Achromobacter haemolyticus var. haemolyticus, Alcaligenes haemolysans, Achromobacter metalcaligenes, and Moraxella lwoffi. A sixth group comprised those strains showing less than 50% homology to any of the reference strains. Negligible homology was found between strains of oxidase-negative and oxidase-positive Moraxella species in DNA–DNA competition experiments. However, evidence of a distant relationship between the two groups was obtained in competition experiments by using ribosomal ribonucleic acid. PMID:5413826

  17. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods.

    PubMed

    Linares, Daniel M; Gómez, Carolina; Renes, Erica; Fresno, José M; Tornadijo, María E; Ross, R P; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  18. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.

    PubMed

    Gaspar, Paula; Carvalho, Ana L; Vinga, Susana; Santos, Helena; Neves, Ana Rute

    2013-11-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods

    PubMed Central

    Linares, Daniel M.; Gómez, Carolina; Renes, Erica; Fresno, José M.; Tornadijo, María E.; Ross, R. P.; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value. PMID:28572792

  20. Race and Belonging in School: How Anticipated and Experienced Belonging Affect Choice, Persistence, and Performance

    ERIC Educational Resources Information Center

    Murphy, Mary; Zirkel, Sabrina

    2015-01-01

    Background/Context: A sense of belonging in school is a complex construct that relies heavily on students' perceptions of the educational environment, especially their relationships with other students. Some research suggests that a sense of belonging in school is important to all students. However, we argue that the nature and meaning of…