Sample records for acid breath test

  1. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    PubMed

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids.

  2. Effect of DA-9701 on gastric emptying in a mouse model: assessment by ¹³C-octanoic acid breath test.

    PubMed

    Lim, Chul-Hyun; Choi, Myung-Gyu; Park, Hyeyeon; Baeg, Myong Ki; Park, Jae Myung

    2013-07-21

    To evaluate the effects of DA-9701 on the gastric emptying of a solid meal using the ¹³C-octanoic acid breath test in a mouse model. Male C57BL/6 mice aged > 8 wk and with body weights of 20-25 g were used in this study. The solid test meal consisted of 200 mg of egg yolk labeled with 1.5 L/g ¹³C-octanoic acid. The mice were placed in a 130 mL chamber flushed with air at a flow speed of 200 mL/min. Breath samples were collected for 6 h. The half-emptying time and lag phase were calculated using a modified power exponential model. To assess the reproducibility of the ¹³C-octanoic acid breath test, the breath test was performed two times at intervals of one week in ten mice without drug treatment. To assess the gastrokinetic effects of DA-9701, the breath test was performed three times in another twelve mice, with a randomized crossover sequence of three drug treatments: DA-9701 3 mg/kg, erythromycin 6 mg/kg, or saline. Each breath test was performed at an interval of one week. Repeatedly measured half gastric emptying time of ten mice without drug treatment showed 0.856 of the intraclass correlation coefficient for the half gastric emptying time (P = 0.004). The mean cumulative excretion curve for the ¹³C-octanoic acid breath test showed accelerated gastric emptying after DA-9701 treatment compared with the saline control (P = 0.028). The median half gastric emptying time after the DA-9701 treatment was significantly shorter than after the saline treatment [122.4 min (109.0-137.9 min) vs 134.5 min (128.4-167.0 min), respectively; P = 0.028] and similar to that after the erythromycin treatment [123.3 min (112.9-138.2 min)]. The lag phase, which was defined as the period taken to empty 15% of a meal, was significantly shorter after the DA-9701 treatment than after the saline treatment [48.1 min (44.6-57.1 min) vs 52.6 min (49.45-57.4 min), respectively; P = 0.049]. The novel prokinetic agent DA-9701 accelerated gastric emptying, assessed with repeated

  3. Validation of 13C-acetic acid breath test by measuring effects of loperamide, morphine, mosapride, and itopride on gastric emptying in mice.

    PubMed

    Matsumoto, Kenjiro; Kimura, Hiroshi; Tashima, Kimihito; Uchida, Masayuki; Horie, Syunji

    2008-10-01

    Several methods are used to evaluate gastric motility in rodents, but they all have technical limitations. Recent technical developments enable a convenient method to evaluate gastric motility. The (13)C-acetic acid breath test in rodents is a non-invasive and repeatable method that can be used without physical restraints. The present study aimed to validate the (13)C-acetic acid breath test by measuring the effects of loperamide, morphine, mosapride, and itopride on gastric emptying in mice. Loperamide (1-10 mg/kg) and morphine (1.25-10 mg/kg) slowed gastric emptying and decreased the maximum concentration (C(max)) and area under the curve (AUC(90 min)) value in a dose-dependent manner. Mosapride (0.2-5 mg/kg) accelerated gastric emptying and increased C(max) value. Mosapride (20 mg/kg) did not accelerate gastric emptying on the (13)C-breath test. Itopride (30 mg/kg, per os) significantly accelerated gastric emptying compared with the vehicle group. In a comparison with the conventional phenol red test, there was a correlation between the C(max) value of breath test and gastric emptying (%) of phenol red tests in treatment with loperamide or mosapride. These results indicate that the (13)C-acetic acid breath test is an accurate, noninvasive, and simple method for monitoring gastric emptying in mice. This method is useful to assess the effect of drugs and gut function pharmacologically.

  4. Measurement of hepatic functional mass by means of 13C-methacetin and 13C-phenylalanine breath tests in chronic liver disease: Comparison with Child-Pugh score and serum bile acid levels

    PubMed Central

    Festi, D.; Capodicasa, S.; Sandri, L.; Colaiocco-Ferrante, L.; Staniscia, T.; Vitacolonna, E.; Vestito, A.; Simoni, P.; Mazzella, G.; Portincasa, P.; Roda, E.; Colecchia, A.

    2005-01-01

    AIM: To evaluate and compare the clinical usefulness of 13C-phenylalanine and 13C-methacetin breath tests in quantitating functional hepatic mass in patients with chronic liver disease and to further compare these results with those of conventional tests, Child-Pugh score and serum bile acid levels. METHODS: One hundred and forty patients (50 HCV- related chronic hepatitis, 90 liver cirrhosis patients) and 40 matched healthy controls were studied. Both breath test and routine liver test, serum levels of cholic and chenodeoxycholic acid conjugates were evaluated. RESULTS: Methacetin breath test, expressed as 60 min cumulative percent of oxidation, discriminated the hepatic functional capacity not only between controls and liver disease patients, but also between different categories of chronic liver disease patients. Methacetin breath test was correlated with liver function tests and serum bile acids. Furthermore, methacetin breath test, as well as serum bile acids, were highly predictive of Child-Pugh scores. The diagnostic power of phenylalanine breath test was always less than that of methacetin breath test. CONCLUSION: Methacetin breath test represents a safe and accurate diagnostic tool in the evaluation of hepatic functional mass in chronic liver disease patients. PMID:15609414

  5. Hydrogen breath test in schoolchildren.

    PubMed Central

    Douwes, A C; Schaap, C; van der Klei-van Moorsel, J M

    1985-01-01

    The frequency of negative hydrogen breath tests due to colonic bacterial flora which are unable to produce hydrogen was determined after oral lactulose challenge in 98 healthy Dutch schoolchildren. There was a negative result in 9.2%. The probability of a false normal lactose breath test (1:77) was calculated from these results together with those from a separate group of children with lactose malabsorption (also determined by hydrogen breath test). A study of siblings and mothers of subjects with a negative breath test did not show familial clustering of this condition. Faecal incubation tests with various sugars showed an increase in breath hydrogen greater than 100 parts per million in those with a positive breath test while subjects with a negative breath test also had a negative faecal incubation test. The frequency of a false negative hydrogen breath test was higher than previously reported, but this does not affect the superiority of this method of testing over the conventional blood glucose determination. PMID:4004310

  6. [Examination of gastric emptying rate by means of 13C-octanoic acid breath test. Methods of the test for adults and results of the investigation of healthy volunteers].

    PubMed

    Bures, J; Kopácová, M; Vorísek, V; Bukac, J; Neumann, D; Rejchrt, S; Pozler, O; Douda, T; Zivný, P; Palicka, V

    2005-01-01

    13C-octanoic acid breath test (13C-OABT) is a simple, safe and non-invasive technique for measuring gastric emptying. However, the method has not been standardized yet. Aim of the study was to work up, introduce and evaluate our own method of the 13C-OABT for adults. Ten healthy volunteers entered the study (5 men, 5 women, mean age 32 years, 50 % Helicobacter pylori positive). Standard test meals (with 100 mg 13C-sodium octanoate) were used three times within 3 weeks. The same solid meal (1,178 kJ) for Tests 1 and 2 contained scrambled egg (+ 3 g oil), white bread (40 g), butter (10 g) and distilled water (200 ml). Semi-solid meal (1,020 kJ) for Test 3 contained milk pudding (200 g) and distilled water (200 ml). Duplicate breath samples were obtained before and every 15 minutes after eating the test meal during 255 minutes. Altogether 1,080 breath samples were analysed twice (isotope ratio mass spectrometry, AP2003 Analytical Precision, UK). To assess the half-life of elimination (t1/2 E), we modelled the process of elimination with the incomplete gamma-function, which has a convenient form for the empiric plotting of breath test data. Mean t1/2E was 136+/-10 minutes (Test 1), 134+/-14 (Test 2) and 123+/-16 minutes (Test 3). Clinical reproducibility of 13C-OABT in particular persons was 98.2% (18 breath samples series), 90.8 % (15 samples) and 87.1% (9 breath samples series). There was a significant correlation between Test 1 and Test 2 results (r=0.887, p<0.0001). Mean difference of duplicate breath sample analysis was 1.460 % (in 540 pairs), mean baseline one-day analysis difference was 0.0982 (99.9274% accuracy). In healthy volunteers, normal range of t1/2E is 110-160 minutes for solids and 91-155 minutes for semisolid test meal. Using our own computed mean time of intermediate metabolism of 13C-octanoic acid (76.5+/-7.5 minutes), gastric emptying half-time is 33.5-83.5 minutes for solids and 14.5-78.5 minutes for semisolid test meal in healthy volunteers. The

  7. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  8. The effect of breath freshener strips on two types of breath alcohol testing instruments.

    PubMed

    Moore, Ronald L; Guillen, Jennifer

    2004-07-01

    The potential for breath freshener strips to interfere with the accuracy of a breath alcohol test was studied. Twelve varieties of breath freshener strips from five manufacturers were examined. Breath tests were conducted using the infrared based BAC DataMaster or the fuel cell based Alco-Sensor IV-XL, 30 and 150 seconds after placing a breath strip on the tongue. No effect was observed using the Alco-Sensor system. Some of the strips gave a small reading at 30 seconds (less than or equal to 0.010 g/210 L apparent alcohol) using the DataMaster. Readings on the DataMaster returned to zero by the 150 second test. A proper pre-test observation and deprivation period should prevent any interference from breath freshener strips on breath alcohol testing.

  9. Clinical applications of breath testing

    PubMed Central

    Paschke, Kelly M; Mashir, Alquam

    2010-01-01

    Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863

  10. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  11. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  12. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated with... Institute upon request. (d) The air within the bag(s) shall not contain more than 100 parts per million of... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public...

  13. Laboratory testing of two prototype in-vehicle breath test devices

    DOT National Transportation Integrated Search

    1985-08-01

    This report presents the results of laboratory testing of two recently developed prototype in-vehicle breath test devices. These devices are designed to prevent persons with alcohol on their breath from driving a car. The devices tested were the SOBE...

  14. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  15. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving...

  16. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  17. Update on diagnostic value of breath test in gastrointestinal and liver diseases

    PubMed Central

    Siddiqui, Imran; Ahmed, Sibtain; Abid, Shahab

    2016-01-01

    In the field of gastroenterology, breath tests (BTs) are used intermittently as diagnostic tools that allow indirect, non-invasive and relatively less cumbersome evaluation of several disorders by simply quantifying the appearance in exhaled breath of a metabolite of a specific substrate administered. The aim of this review is to have an insight into the principles, methods of analysis and performance parameters of various hydrogen, methane and carbon BTs which are available for diagnosing gastrointestinal disorders such as Helicobacter pylori infection, small intestinal bacterial overgrowth, and carbohydrate malabsorption. Evaluation of gastric emptying is routinely performed by scintigraphy which is however, difficult to perform and not suitable for children and pregnant women, this review has abridged the 13C-octanoic acid test in comparison to scintigraphy and has emphasized on its working protocol and challenges. A new development such as electronic nose test is also highlighted. Moreover we have also explored the limitations and constraints restraining the wide use of these BT. We conclude that breath testing has an enormous potential to be used as a diagnostic modality. In addition it offers distinct advantages over the traditional invasive methods commonly employed. PMID:27574563

  18. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  19. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  20. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  1. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  2. 49 CFR 219.206 - FRA access to breath test results.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false FRA access to breath test results. 219.206 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Post-Accident Toxicological Testing § 219.206 FRA access to breath test results. Documentation of breath test results must be made available...

  3. The glucose breath test: a diagnostic test for small bowel stricture(s) in Crohn's disease.

    PubMed

    Mishkin, Daniel; Boston, Francis M; Blank, David; Yalovsky, Morty; Mishkin, Seymour

    2002-03-01

    The aim of this study was to determine whether an indirect noninvasive indicator of proximal bacterial overgrowth, the glucose breath test, was of diagnostic value in inflammatory bowel disease. Twenty four of 71 Crohn's disease patients tested had a positive glucose breath test. No statistical conclusions could be drawn between the Crohn's disease activity index and glucose breath test status. Of patients with radiologic evidence of small bowel stricture(s), 96.0% had a positive glucose breath test, while only one of 46 negative glucose breath test patients had a stricture. The positive and negative predictive values for a positive glucose breath test as an indicator of stricture formation were 96.0% and 97.8%, respectively. This correlation was not altered in Crohn's disease patients with fistulae or status postresection of the terminal ileum. The data in ulcerative colitis were nondiagnostic. In conclusion, the glucose breath test appears to be an accurate noninvasive inexpensive diagnostic test for small bowel stricture(s) and secondary bacterial overgrowth in Crohn's disease.

  4. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  5. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing.

    PubMed

    Rosner, Elisabeth; Voigt, Christian C

    2018-02-19

    Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats ( Nyctalus noctula ). Pre-hibernating noctule bats that were fed 13 C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared with conspecifics fed 13 C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on five subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13 C enrichment (excess atom percentage, APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13 C-enriched LA than in bats fed 13 C-enriched PA for both states (torpor and arousal), and also for both periods. Thus, hibernating bats selectively oxidized endogenous LA instead of PA, probably because of faster transportation rates of polyunsaturated fatty acids compared with saturated fatty acids. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality. © 2018. Published by The Company of Biologists Ltd.

  6. Breath tests and irritable bowel syndrome

    PubMed Central

    Rana, Satya Vati; Malik, Aastha

    2014-01-01

    Breath tests are non-invasive tests and can detect H2 and CH4 gases which are produced by bacterial fermentation of unabsorbed intestinal carbohydrate and are excreted in the breath. These tests are used in the diagnosis of carbohydrate malabsorption, small intestinal bacterial overgrowth, and for measuring the orocecal transit time. Malabsorption of carbohydrates is a key trigger of irritable bowel syndrome (IBS)-type symptoms such as diarrhea and/or constipation, bloating, excess flatulence, headaches and lack of energy. Abdominal bloating is a common nonspecific symptom which can negatively impact quality of life. It may reflect dietary imbalance, such as excess fiber intake, or may be a manifestation of IBS. However, bloating may also represent small intestinal bacterial overgrowth. Patients with persistent symptoms of abdominal bloating and distension despite dietary interventions should be referred for H2 breath testing to determine the presence or absence of bacterial overgrowth. If bacterial overgrowth is identified, patients are typically treated with antibiotics. Evaluation of IBS generally includes testing of other disorders that cause similar symptoms. Carbohydrate malabsorption (lactose, fructose, sorbitol) can cause abdominal fullness, bloating, nausea, abdominal pain, flatulence, and diarrhea, which are similar to the symptoms of IBS. However, it is unclear if these digestive disorders contribute to or cause the symptoms of IBS. Research studies show that a proper diagnosis and effective dietary intervention significantly reduces the severity and frequency of gastrointestinal symptoms in IBS. Thus, diagnosis of malabsorption of these carbohydrates in IBS using a breath test is very important to guide the clinician in the proper treatment of IBS patients. PMID:24976698

  7. Data Mining Techniques Applied to Hydrogen Lactose Breath Test.

    PubMed

    Rubio-Escudero, Cristina; Valverde-Fernández, Justo; Nepomuceno-Chamorro, Isabel; Pontes-Balanza, Beatriz; Hernández-Mendoza, Yoedusvany; Rodríguez-Herrera, Alfonso

    2017-01-01

    Analyze a set of data of hydrogen breath tests by use of data mining tools. Identify new patterns of H2 production. Hydrogen breath tests data sets as well as k-means clustering as the data mining technique to a dataset of 2571 patients. Six different patterns have been extracted upon analysis of the hydrogen breath test data. We have also shown the relevance of each of the samples taken throughout the test. Analysis of the hydrogen breath test data sets using data mining techniques has identified new patterns of hydrogen generation upon lactose absorption. We can see the potential of application of data mining techniques to clinical data sets. These results offer promising data for future research on the relations between gut microbiota produced hydrogen and its link to clinical symptoms.

  8. Outcome of breath tests in adult patients with suspected small intestinal bacterial overgrowth

    PubMed Central

    Mattsson, Johanna; Minaya, Maria Teresa; Monegro, Milka; Lebwohl, Benjamin; Lewis, Suzanne K.; Green, Peter HR; Stenberg, Reidun

    2017-01-01

    Aim: The aim was to investigate breath test outcomes in patients with suspected SIBO and indicative symptoms of SIBO, diagnosed by breath testing. Background: Breath testing is used to detect small intestinal bacterial overgrowth (SIBO) by measuring hydrogen and methane produced by intestinal bacteria. Methods: This retrospective cross sectional study included 311 patients with gastrointestinal symptoms who underwent the breath test for evaluation of SIBO at Celiac Disease Center at Columbia University, New York, in 2014-2015. The patients were divided into two groups based on the physician’s choice: lactulose breath test group (72%) and glucose breath test group (28%). Among them, 38% had a history of celiac disease or non-celiac gluten sensitivity. Results: In total, 46% had a positive breath test: 18% were positive for methane, 24 % positive for hydrogen and 4% positive for both gases (p=0.014). Also, 50% had a positive lactulose breath result and 37% had a positive glucose breath result (p=0.036). The most common symptom for performing the breath test was bloating and the only clinical symptom that significantly showed a positive glucose breath test was increased gas (p=0.028). Conclusion: Lactulose breath test was more often positive than glucose breath test. Positivity for hydrogen was more common than methane. Bloating was the most frequently perceived symptom of the patients undergoing the breath test but the only statistically significant clinical symptom for a positive glucose breath test was increased gas. Furthermore, the results showed that there was no significant association between positive breath test result and gender, age, non-celiac gluten sensitivity or celiac disease. PMID:29118931

  9. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  10. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  11. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  12. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  13. Performance of acidified 14C-urea capsule breath test during pantoprazole and ranitidine treatment.

    PubMed

    Oztürk, Emel; Yeşilova, Zeki; Ilgan, Seyfettin; Ozgüven, Mehmet; Dağalp, Kemal

    2009-07-01

    Urea breath test (UBT) results could be false negative in patients taking antisecretory drugs. This effect would be prevented by citric acid administration during UBT. We prospectively investigated whether acidified 14C-urea capsule prevents false negative UBT results in patients taking antisecretory drugs and show interference with the duration of medications. Sixty Helicobacter pylori positive patients were included. Pantoprazole (40 mg/day) was given to 27 patients for 28 days and ranitidine (300 mg. o.d.) to 33 patients for 60 days. Urea breath tests were repeated on days 14 and 28 in both groups and on day 60 in the ranitidine group. The baseline mean breath counts of two groups did not show any significant difference. Pantoprazole led to a significant decrease in mean breath counts on day 14 (P < 0.005). Six of 27 and 3 of 25 patients taking pantoprazole developed negative or equivocal UBT results on days 14 and 28, respectively. Two of 32, 2 of 32 and 3 of 21 patients taking ranitidine developed negative or equivocal UBT results on days 14, 28 and 60, respectively. The use of acidified 14C-urea capsule did not prevent false negative UBT results in patients taking pantoprazole and ranitidine, and the duration of medication does not affect the test results.

  14. Procedures in the 13C octanoic acid breath test for measurement of gastric emptying: analysis using Bland-Altman methods.

    PubMed

    Clegg, Miriam E; Shafat, Amir

    2010-08-01

    The (13)C octanoic acid breath test (OBT) was first developed as an alternative method of measuring gastric emptying (GE) to scintigraphy. There has been much debate about the test duration and how often measurements need to be taken. This study aims to address these issues. For 78 GE tests using the (13)C OBT, GE lag phase (T(lag)) was calculated while sampling more frequently than the recommended every 15 min. Comparisons between T(lag) were completed using Bland-Altman plots. Similarly, 4 or 6 h test durations were assessed to establish if they yield the same GE half time (T(half)). From one volunteer, samples were taken every 1 min for the first 30 min and then every 15 min until 6 h. GE times were then calculated using different combinations of sampling times. Evidence of a visible T(lag) was also explored from this data. Findings indicated that taking samples every 5 min for the first 30 min instead of every 15 min did not change the GE T(lag) based on Bland-Altman plots. The correlation between these two methods was also high (r(2) = 0.9957). The findings showed that the difference between the two sampling durations 4 and 6 h was large and the correlation between the methods was low (r(2) = 0.8335). Samples taken at a rate of one breath per min indicated lack of a visible T(lag). Sampling for the (13)C OBT should be completed every 15 min for 6 h.

  15. Breathing simulator of workers for respirator performance test

    PubMed Central

    YUASA, Hisashi; KUMITA, Mikio; HONDA, Takeshi; KIMURA, Kazushi; NOZAKI, Kosuke; EMI, Hitoshi; OTANI, Yoshio

    2014-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker’s respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns. PMID:25382381

  16. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  17. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  18. [Application of the breath hydrogen test in gastroenterology].

    PubMed

    Loranskaia, I D; Panina, N A; Zheltakova, O V

    2006-01-01

    The diagnostic capacities of the breath hydrogen test in gastroenterology are discussed in the article. The authors describe the results of their own research--determination of the intestinal bacterial contamination in patients with chronic biliary pancreatitis with the help of the Micro H2 breath hydrogen analyzer.

  19. Evaluation of 13CO2 breath tests for the detection of fructose malabsorption.

    PubMed

    Hoekstra, J H; van den Aker, J H; Kneepkens, C M; Stellaard, F; Geypens, B; Ghoos, Y F

    1996-03-01

    Breath hydrogen (H2) studies have made clear that small intestinal absorption of fructose is limited, especially in toddlers. Malabsorption of fructose may be a cause of recurrent abdominal pain and chronic nonspecific diarrhea (toddler's diarrhea). Fructose absorption is facilitated by equimolar doses of glucose and, as we have found, amino acids (especially L-alanine); the mechanism underlying this effect remains unclear. To study fructose absorption in a more direct way, we combined breath H2 studies with breath 13CO2 studies. Gastric emptying was studied by using L-glycine-1-13C in 4 children from 12.1 to 16.0 years of age. After 25 gm of fructose and 27.5 gm of glucose, when given together, gastric emptying was significantly (p<0.05) slower than with either sugar alone. In a second series of experiments, 5 children from 12.0 to 15.9 years of age were tested with 25 gm of fructose, alone and with equimolar doses of glucose and L-alanine, and 4 younger children from 3.1 to 6.1 years of age were tested with 2 gm/kg (max 37.5 gm) fructose, alone or with an equimolar dose of L-alanine. All fructose solutions were enriched with 15 mg of D-fructose-13C-6. In all 9 children, fructose was malabsorbed as judged by breath H2 increases > or = 20 ppm, and the addition of glucose or L-alanine resulted in significantly lower breath H2 increases (p < or = 0.005 for glucose, p < or = 0.001 for alanine). In contrast, the addition of alanine or glucose did not change the pattern of breath 13CO2 excretion in the 5 older children, whereas in the 4 younger children (with relatively higher doses), L-alanine addition resulted in significantly lower increases in breath 13CO2. In the latter group, for each time point, breath H2 and 13CO2 concentrations after fructose were compared with those after fructose plus L-alanine; in 20 out of 24 points, both H2 and 13CO2 were higher after fructose. These results suggest that 13CO2 not only originated from the oxidation of absorbed substrate

  20. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.

  1. Synthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.

    PubMed

    Mitome, Hidemichi; Sugiyama, Erika; Sato, Hitoshi; Akira, Kazuki

    2014-01-01

    (13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.

  2. sup 14 C-urea breath test for the detection of Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldhuyzen van Zanten, S.J.; Tytgat, K.M.; Hollingsworth, J.

    1990-04-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a {sup 14}C-urea breath test which uses 5 microCi {sup 14}C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared the outcome of the breath test to the results of histology and culture of endoscopically obtained gastric biopsies in 84 patients. The breath test discriminated well between the 50 positive patients and the 34 patients negative for Helicobacter pylori: the calculated sensitivity was 100%, specificity 88%, positivemore » predictive value 93%, and negative predictive value 100%. Treatment with bismuth subsalicylate and/or ampicillin resulted in lower counts of exhaled {sup 14}CO{sub 2} which correlated with histological improvement in gastritis. The {sup 14}C-urea breath test is a better gold standard for the detection of Helicobacter pylori than histology and/or culture.« less

  3. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult. © 2015. Published by The Company of Biologists Ltd.

  4. Operation and testing of Mark 10 Mod 3 underwater breathing apparatus

    NASA Technical Reports Server (NTRS)

    Milwee, W. I., Jr.

    1972-01-01

    Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.

  5. Effects of homeopathic mother tinctures on breath alcohol testing.

    PubMed

    Boatto, Gianpiero; Trignano, Claudia; Burrai, Lucia; Spanu, Andrea; Nieddu, Maria

    2015-01-01

    In some countries, it is illegal to drive with any detectable amount of alcohol in blood; in others, the legal limit is 0.5 g/L or lower. Recently, some defendants charged with driving under the influence of alcohol and have claimed that positive breath alcohol test results were due to the ingestion of homeopathic mother tinctures. These preparations are obtained by maceration, digestion, infusion, or decoction of herbal material in hydroalcoholic solvent. A series of tests were conducted to evaluate the alcoholic content of three homeopathic mother tinctures and their ability to produce inaccurate breath alcohol results. Nine of 30 subjects gave positive results (0.11-0.82 g/L) when tests were taken within 1 min after drinking mother tincture. All tests taken at least 15 min after the mother tincture consumption and resulted in alcohol-free readings. An observation period of 15-20 min prior to breath alcohol testing eliminates the possibility of false-positive results. © 2014 American Academy of Forensic Sciences.

  6. Clinical significance of the glucose breath test in patients with inflammatory bowel disease.

    PubMed

    Lee, Ji Min; Lee, Kang-Moon; Chung, Yoon Yung; Lee, Yang Woon; Kim, Dae Bum; Sung, Hea Jung; Chung, Woo Chul; Paik, Chang-Nyol

    2015-06-01

    Small intestinal bacterial overgrowth which has recently been diagnosed with the glucose breath test is characterized by excessive colonic bacteria in the small bowel, and results in gastrointestinal symptoms that mimic symptoms of inflammatory bowel disease. This study aimed to estimate the positivity of the glucose breath test and investigate its clinical role in inflammatory bowel disease. Patients aged > 18 years with inflammatory bowel disease were enrolled. All patients completed symptom questionnaires. Fecal calprotectin level was measured to evaluate the disease activity. Thirty historical healthy controls were used to determine normal glucose breath test values. A total of 107 patients, 64 with ulcerative colitis and 43 with Crohn's disease, were included. Twenty-two patients (20.6%) were positive for the glucose breath test (30.2%, Crohn's disease; 14.1%, ulcerative colitis). Positive rate of the glucose breath test was significantly higher in patients with Crohn's disease than in healthy controls (30.2% vs 6.7%, P=0.014). Bloating, flatus, and satiety were higher in glucose breath test-positive patients than glucose breath test-negative patients (P=0.021, 0.014, and 0.049, respectively). The positivity was not correlated with the fecal calprotectin level. The positive rate of the glucose breath test was higher in patients with inflammatory bowel disease, especially Crohn's disease than in healthy controls; gastrointestinal symptoms of patients with inflammatory bowel disease were correlated with this positivity. Glucose breath test can be used to manage intestinal symptoms of patients with inflammatory bowel disease. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  7. A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.

    PubMed

    Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael

    2014-11-01

    A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.

  8. Effects of Ergot Alkaloids on Liver Function of Piglets as Evaluated by the 13C-Methacetin and 13C-α-Ketoisocaproic Acid Breath Test

    PubMed Central

    Dänicke, Sven; Diers, Sonja

    2013-01-01

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the 13C-Methacetin (MC) and 13C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative 13CO2 percentage of the dose recovery (cPDR60) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids. PMID:23322130

  9. Effects of ergot alkaloids on liver function of piglets as evaluated by the (13)C-methacetin and (13)C-α-ketoisocaproic acid breath test.

    PubMed

    Dänicke, Sven; Diers, Sonja

    2013-01-15

    Ergot alkaloids (the sum of individual ergot alkaloids are termed as total alkaloids, TA) are produced by the fungus Claviceps purpurea, which infests cereal grains commonly used as feedstuffs. Ergot alkaloids potentially modulate microsomal and mitochondrial hepatic enzymes. Thus, the aim of the present experiment was to assess their effects on microsomal and mitochondrial liver function using the (13)C-Methacetin (MC) and (13)C-α-ketoisocaproic acid (KICA) breath test, respectively. Two ergot batches were mixed into piglet diets, resulting in 11 and 22 mg (Ergot 5-low and Ergot 5-high), 9 and 14 mg TA/kg (Ergot 15-low and Ergot 15-high) and compared to an ergot-free control group. Feed intake and live weight gain decreased significantly with the TA content (p < 0.001). Feeding the Ergot 5-high diet tended to decrease the 60-min-cumulative (13)CO(2) percentage of the dose recovery (cPDR(60)) by 26% and 28% in the MC and KICA breath test, respectively, compared to the control group (p = 0.065). Therefore, both microsomal and mitochondrial liver function was slightly affected by ergot alkaloids.

  10. Assessment of gastric emptying in non-obese diabetic mice using a [13C]-octanoic acid breath test.

    PubMed

    Creedon, Christopher T; Verhulst, Pieter-Jan; Choi, Kyoung M; Mason, Jessica E; Linden, David R; Szurszewski, Joseph H; Gibbons, Simon J; Farrugia, Gianrico

    2013-03-23

    Gastric emptying studies in mice have been limited by the inability to follow gastric emptying changes in the same animal since the most commonly used techniques require killing of the animals and postmortem recovery of the meal(1,2). This approach prevents longitudinal studies to determine changes in gastric emptying with age and progression of disease. The commonly used [(13)C]-octanoic acid breath test for humans(3) has been modified for use in mice(4-6) and rats(7) and we previously showed that this test is reliable and responsive to changes in gastric emptying in response to drugs and during diabetic disease progression(8). In this video presentation the principle and practical implementation of this modified test is explained. As in the previous study, NOD LtJ mice are used, a model of type 1 diabetes(9). A proportion of these mice develop the symptoms of gastroparesis, a complication of diabetes characterized by delayed gastric emptying without mechanical obstruction of the stomach(10). This paper demonstrates how to train the mice for testing, how to prepare the test meal and obtain 4 hr gastric emptying data and how to analyze the obtained data. The carbon isotope analyzer used in the present study is suitable for the automatic sampling of the air samples from up to 12 mice at the same time. This technique allows the longitudinal follow-up of gastric emptying from larger groups of mice with diabetes or other long-standing diseases.

  11. Does postprandial itopride intake affect the rate of gastric emptying? A crossover study using the continuous real time 13C breath test (BreathID system).

    PubMed

    Nonaka, Takashi; Kessoku, Takaomi; Ogawa, Yuji; Yanagisawa, Shogo; Shiba, Tadahiko; Sahaguchi, Takashi; Atsukawa, Kazuhiro; Takahashi, Hisao; Sekino, Yusuke; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Sakamoto, Yasunari; Koide, Tomoko; Takahashi, Hirokazu; Tokoro, Chikako; Abe, Yasunobu; Maeda, Shin; Nakajima, Atsushi; Inamori, Masahiko

    2011-01-01

    The aim of this study was to determine whether oral Itopride hydrochloride (itopride) intake might have any effect on the rate of gastric emptying, using a novel non-invasive technique for measuring the rate of gastric emptying, namely, the continuous real time 13C breath test (BreathID system: Exalenz Bioscience Ltd., Israel). Eight healthy male volunteers participated in this randomized, two-way crossover study. The subjects fasted overnight and were randomly assigned to receive 50mg itopride following a test meal (200 kcal per 200mL, containing 100mg 13C acetate), or the test meal alone. Under both conditions, gastric emptying was monitored for 4 hours after administration of the test meal by the 13C-acetic acid breath test performed continually using the BreathID system. Using Oridion Research Software (beta version), the time required for emptying of 50% of the labeled meal (T 1/2), the analog to the scintigraphy lag time for 10% emptying of the labeled meal (T lag), the gastric emptying coefficient (GEC), and the regression-estimated constants (beta and kappa) were calculated. The parameters measured under the two conditions were compared using the Wilcoxon's signed-rank test. No significant differences in the calculated parameters, namely, the T 1/2, T lag, GEC, beta or kappa, were observed between the two test conditions, namely, administration of a test meal+itopride and administration of the test meal alone. The present study revealed that postprandial itopride intake had no significant influence on the rate of gastric emptying. Recently, several studies have shown that itopride may be effective in the treatment of patients with functional dyspepsia. Our results suggest that the efficacy of itopride in patients with functional dyspepsia may be based on its effect of improving functions other than the rate of gastric emptying, such as the activities at neuronal sites, brain-gut correlation, visceral hypersensitivity, gastric accommodation and distension

  12. Limited electromagnetic interference testing of evidential breath testers

    DOT National Transportation Integrated Search

    1983-05-06

    This report summarizes a limited test program conducted to determine the susceptibility of evidential breath testers (EBTs) to radio frequency interference (RFI). Several comprehensive test protocols were prepared based on procedures developed by the...

  13. 49 CFR 40.277 - Are alcohol tests other than saliva or breath permitted under these regulations?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Are alcohol tests other than saliva or breath... Testing § 40.277 Are alcohol tests other than saliva or breath permitted under these regulations? No.... Only saliva or breath for screening tests and breath for confirmation tests using approved devices are...

  14. 49 CFR 40.277 - Are alcohol tests other than saliva or breath permitted under these regulations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Are alcohol tests other than saliva or breath... Testing § 40.277 Are alcohol tests other than saliva or breath permitted under these regulations? No.... Only saliva or breath for screening tests and breath for confirmation tests using approved devices are...

  15. Results of the first semi-annual qualification testing of devices to measure breath alcohol

    DOT National Transportation Integrated Search

    1975-01-01

    Eight evidential breath testers were performance tested according to the Standard for Devices to Measure Breath Alcohol Federal Register, Vol 38, No. 212, November 5, 1973. In addition, a prototype breath tester not commercially available was tested....

  16. Follow-up of coeliac disease with the novel one-hour 13C-sorbitol breath test versus the H2-sorbitol breath test.

    PubMed

    Tveito, Kari; Hetta, Anne Kristine; Askedal, Mia; Brunborg, Cathrine; Sandvik, Leiv; Løberg, Else Marit; Skar, Viggo

    2011-07-01

    We recently developed a (13)C-sorbitol breath test ((13)C-SBT) as an alternative to the H(2)-sorbitol breath test (H(2)-SBT) for coeliac disease. In this study we compared the diagnostic properties of the H(2)-SBT and the (13)C-SBT in follow-up of coeliac disease. Twenty-seven coeliac patients on a gluten-free diet (GFD) performed the breath tests. All had been tested before treatment in the initial study of the (13)C-SBT, in which 39 untreated coeliac patients, 40 patient controls, and 26 healthy volunteers participated. Five gram sorbitol and 100 mg (13)C-sorbitol were dissolved in 250 ml tap water and given orally. H(2), CH(4) and (13)CO(2) were measured in end-expiratory breath samples every 30 min for 4 h. Increased H(2) concentration ≥20 ppm from basal values was used as cut-off for the H(2)-SBT. Sixty minutes values were used as diagnostic index in the (13)C-SBT. (13)CO(2) levels at 60 min increased in 20/26 treated coeliac patients (77%) after GFD, but were significantly lower than in control groups. Out of 20 patients who had a positive H(2)-SBT before GFD, 12 had a negative H(2)-SBT after GFD. Peak H(2) concentrations were not correlated with (13)C-SBT results. The study confirms the sensitivity of a one-hour (13)C-SBT for small intestinal malabsorption. The (13)C-SBT has superior diagnostic properties compared with the H(2)-SBT in follow-up of coeliac disease.

  17. Significance of hydrogen breath tests in children with suspected carbohydrate malabsorption

    PubMed Central

    2014-01-01

    Background Hydrogen breath tests are noninvasive procedures frequently applied in the diagnostic workup of functional gastrointestinal disorders. Here, we review hydrogen breath test results and the occurrence of lactose, fructose and sorbitol malabsorption in pediatric patients; and determine the significance of the findings and the outcome of patients with carbohydrate malabsorption. Methods We included 206 children (88 male, 118 female, median age 10.7 years, range 3–18 years) with a total of 449 hydrogen breath tests (lactose, n = 161; fructose, n = 142; sorbitol, n = 146) into a retrospective analysis. Apart from test results, we documented symptoms, the therapeutic consequences of the test, the outcome and the overall satisfaction of the patients and families. Results In total, 204 (46%) of all breath tests were positive. Long-term follow-up data could be collected from 118 patients. Of 79 patients (67%) who were put on a diet reduced in lactose, fructose and/or sorbitol, the majority (92%, n = 73) reported the diet to be strict and only 13% (n = 10) had no response to diet. Most families (96%, n = 113) were satisfied by the test and the therapy. There were only 21 tests (5%) with a borderline result because the criteria for a positive result were only partially met. Conclusions Hydrogen breath tests can be helpful in the evaluation of children with gastrointestinal symptoms including functional intestinal disorders. If applied for a variety of carbohydrates but only where indicated, around two-third of all children have positive results. The therapeutic consequences are successfully relieving symptoms in the vast majority of patients. PMID:24575947

  18. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to

  19. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia.

    PubMed

    Vanini, Giancarlo; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2008-12-01

    Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.

  20. Prediction of heart transplant rejection with a breath test for markers of oxidative stress.

    PubMed

    Phillips, Michael; Boehmer, John P; Cataneo, Renee N; Cheema, Taseer; Eisen, Howard J; Fallon, John T; Fisher, Peter E; Gass, Alan; Greenberg, Joel; Kobashigawa, Jon; Mancini, Donna; Rayburn, Barry; Zucker, Mark J

    2004-12-15

    The Heart Allograft Rejection: Detection with Breath Alkanes in Low Levels study evaluated a breath test for oxidative stress in heart transplant recipients, and we report here a mathematical model predicting the probability of grade 3 rejection. The breath test divided the heart transplant recipients into 3 groups: positive for grade 3 rejection, negative for grade 3 rejection, and intermediate. The test was 100% sensitive for grade 3 heart transplant rejection when the p value was >/=0.98, and 100% specific when the p value was breath test determined the probability of grade 3 rejection and the predictive value of the result.

  1. [Breath tests in children with suspected lactose intolerance].

    PubMed

    Parra, P Ángela; Furió, C Simone; Arancibia, A Gabriel

    2015-01-01

    Up to 70% of the world population is lactose intolerance. However, there are no epidemiological studies among Chilean pediatric population affected by this condition. Clinical characterization of a series of children who underwent the lactose intolerance breath test for lactose intolerance study, establishing intolerance and malabsorption frequencies, the most frequent symptoms, and test performance depending on the origin. Patients under 18 years old who took the lactose intolerance breath test in the Gastroenterology Laboratory of the Catholic University of Chile, and who were admitted due to clinically suspected lactose intolerance. Malabsorption was considered when there was as an increase of ≥20ppm above the baseline (H2) or ≥34ppm of H2 and methane (CH4) combined. Intolerance was considered when the above was associated with a symptom intensity score ≥7 during registration. The analysis included194 patients aged 1 to17 years of age. Of these, 102 (53%) presented with malabsorption, and 53 (27%) were intolerant. The frequency of lactose intolerance varied from 7.1 to 45.4%, and it occurred more frequently at older ages. The most common reported symptoms were abdominal pain, bloating and rumbling. Lactose malabsorption and intolerance can be investigated from the first years of life using the lactose breath test plus a symptom questionnaire. An increase in the frequency of intolerance with age, and a greater number of positive tests, if they were requested by a gastroenterologist, were observed. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  3. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  4. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  5. Prevalence of abnormal lactose breath hydrogen tests in children with functional abdominal pain.

    PubMed

    Garg, Neha; Basu, Srikanta; Singh, Preeti; Kumar, Ruchika; Sharma, Lokesh; Kumar, Praveen

    2017-05-01

    The study was undertaken to determine the prevalence of abnormal lactose breath hydrogen test in children with non-organic chronic abdominal pain. Children with chronic abdominal pain were examined and investigated for organic causes. All children without a known organic cause underwent lactose and glucose breath hydrogen test. After a standard dose of 2 g/kg of lactose to a maximum of 50 g, hydrogen in breath was measured at 15 min intervals for 3 h. A rise of 20 ppm above baseline was considered suggestive of lactose malabsorption. Of 108 children screened, organic causes were found in 46 children. Sixty-two patients without any organic cause underwent hydrogen breath test. Lactose hydrogen breath test (HBT) was positive in 36 of 62 (58%), while 11 (17%) had positive HBT with glucose suggestive of small intestinal bacterial overgrowth (SIBO). Twenty out of 34 (59%) improved on lactose free diet while 8 out of 11 (72%) children of SIBO improved on antibiotics. Lactose malabsorption was seen in 58% of children with non-organic chronic abdominal pain.

  6. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  7. Gastric emptying of solids in children: reference values for the (13) C-octanoic acid breath test.

    PubMed

    Hauser, B; Roelants, M; De Schepper, J; Veereman, G; Caveliers, V; Devreker, T; De Greef, E; Vandenplas, Y

    2016-10-01

    (99m) Technetium scintigraphy ((99m) TS) is the 'gold standard' for measuring gastric emptying (GE), but it is associated with a radiation exposure. For this reason, the (13) C-octanoic acid breath test ((13) C-OBT) was developed for measuring GE of solids. The objective of this study was to determine normal values for gastric half-emptying time (t1/2 GE) of solids in healthy children. Gastric emptying of a standardized solid test meal consisting of a pancake evaluated with (99m) TS and (13) C-OBT was compared in 22 children aged between 1 and 15 years with upper gastrointestinal symptoms. Subsequently, the (13) C-OBT was used to determine normal values for GE of the same solid test meal in 120 healthy children aged between 1 and 17 years. The results showed a significant correlation (r = 0.748, p = 0.0001) between t1/2 GE measured with both techniques in the group of children with upper gastrointestinal symptoms. In the group of healthy children, mean t1/2 GE was 157.7 ± 54.0 min (range 71-415 min), but t1/2 GE decreased with age between 1 and 10 years and remained stable afterward. There was no influence of gender, weight, height, body mass index, and body surface area on t1/2 GE. Normal values for GE of solids measured with the (13) C-OBT using a standardized methodology were determined in healthy children. We propose to use this method and corresponding reference ranges to study GE of solids in children with gastrointestinal problems. © 2016 John Wiley & Sons Ltd.

  8. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study.

    PubMed

    van Oort, Pouline M P; Nijsen, Tamara; Weda, Hans; Knobel, Hugo; Dark, Paul; Felton, Timothy; Rattray, Nicholas J W; Lawal, Oluwasola; Ahmed, Waqar; Portsmouth, Craig; Sterk, Peter J; Schultz, Marcus J; Zakharkina, Tetyana; Artigas, Antonio; Povoa, Pedro; Martin-Loeches, Ignacio; Fowler, Stephen J; Bos, Lieuwe D J

    2017-01-03

    The diagnosis of ventilator-associated pneumonia (VAP) remains time-consuming and costly, the clinical tools lack specificity and a bedside test to exclude infection in suspected patients is unavailable. Breath contains hundreds to thousands of volatile organic compounds (VOCs) that result from host and microbial metabolism as well as the environment. The present study aims to use breath VOC analysis to develop a model that can discriminate between patients who have positive cultures and who have negative cultures with a high sensitivity. The Molecular Analysis of Exhaled Breath as Diagnostic Test for Ventilator-Associated Pneumonia (BreathDx) study is a multicentre observational study. Breath and bronchial lavage samples will be collected from 100 and 53 intubated and ventilated patients suspected of VAP. Breath will be analysed using Thermal Desorption - Gas Chromatography - Mass Spectrometry (TD-GC-MS). The primary endpoint is the accuracy of cross-validated prediction for positive respiratory cultures in patients that are suspected of VAP, with a sensitivity of at least 99% (high negative predictive value). To our knowledge, BreathDx is the first study powered to investigate whether molecular analysis of breath can be used to classify suspected VAP patients with and without positive microbiological cultures with 99% sensitivity. UKCRN ID number 19086, registered May 2015; as well as registration at www.trialregister.nl under the acronym 'BreathDx' with trial ID number NTR 6114 (retrospectively registered on 28 October 2016).

  9. Application of drug testing using exhaled breath for compliance monitoring of drug addicts in treatment.

    PubMed

    Carlsson, Sten; Olsson, Robert; Lindkvist, Irene; Beck, Olof

    2015-04-01

    Exhaled breath has recently been identified as a possible matrix for drug testing. This study explored the potential of this new method for compliance monitoring of patients being treated for dependence disorders. Outpatients in treatment programs were recruited for this study. Urine was collected as part of clinical routine and a breath sample was collected in parallel together with a questionnaire about their views of the testing procedure. Urine was analyzed for amphetamines, benzodiazepines, cannabis, cocaine, buprenorphine, methadone and opiates using CEDIA immunochemical screening and mass spectrometry confirmation. The exhaled breath was collected using the SensAbues device and analyzed by mass spectrometry for amphetamine, methamphetamine, diazepam, oxazepam, tetrahydrocannabinol, cocaine, benzoylecgonine, buprenorphine, methadone, morphine, codeine and 6-acetylmorphine. A total of 122 cases with parallel urine and breath samples were collected; 34 of these were negative both in urine and breath. Out of 88 cases with positive urine samples 51 (58%) were also positive in breath. Among the patients on methadone treatment, all were positive for methadone in urine and 83% were positive in breath. Among patients in treatment with buprenorphine, 92% were positive in urine and among those 80% were also positive in breath. The questionnaire response documented that in general, patients accepted drug testing well and that the breath sampling procedure was preferred. Compliance testing for the intake of prescribed and unprescribed drugs among patients in treatment for dependence disorders using the exhaled breath sampling technique is a viable method and deserves future attention.

  10. 13C-Mixed Triglyceride Breath Test and Fecal Elastase as an Indirect Pancreatic Function Test in Cystic Fibrosis Infants.

    PubMed

    Kent, Dorothea Stark; Remer, Thomas; Blumenthal, Caron; Hunt, Sharon; Simonds, Sharon; Egert, Sarah; Gaskin, Kevin J

    2018-05-01

    The 'gold standard' test for the indirect determination of pancreatic function status in infants with cystic fibrosis (CF), the 72-hour fecal fat excretion test, is likely to become obsolete in the near future. Alternative indirect pancreatic function tests with sufficient sensitivity and specificity to determine pancreatic phenotype need further evaluation in CF infants. Evaluation of the clinical utility of both the noninvasive, nonradioactive C-mixed triglyceride (MTG) breath test and fecal elastase-1 (FE1) in comparison with the 72-hour fecal fat assessment in infants with CF. C-MTG breath test and the monoclonal and polyclonal FE1 assessment in stool was compared with the 72-hour fecal fat assessment in 24 infants with CF. Oral pancreatic enzyme substitution (PERT; if already commenced) was stopped before the tests. Sensitivity rates between 82% and 100% for CF patients with pancreatic insufficiency assessed by both the C-MTG breath test and the FE1 tests proved to be high and promising. The C-MTG breath test (31%-38%) as well as both FE1 tests assessed by the monoclonal (46%-54%) and the polyclonal (45%) ELISA kits, however, showed unacceptably low-sensitivity rates for the detection of pancreatic-sufficient CF patients in the present study. The C-MTG breath test with nondispersive infrared spectroscopy (NDIRS) technique, as well as both FE1 tests, are not alternatives to the fecal fat balance test for the evaluation of pancreatic function in CF infants during the first year of life.

  11. [Analysis of breath hydrogen (H2) in diagnosis of gastrointestinal function: validation of a pocket breath H2 test analyzer].

    PubMed

    Braden, B; Braden, C P; Klutz, M; Lembcke, B

    1993-04-01

    Breath hydrogen (H2) analysis, as used in gastroenterologic function tests, requires a stationary analysis system equipped with a gaschromatograph or an electrochemical sensor cell. Now a portable breath H2-analyzer has been miniaturized to pocket size (104 mm x 62 mm x 29 mm). The application of this device in clinical practice has been assessed in comparison to the standard GMI-exhaled monitor. The pocket analyzer showed a linear response to standards with H2-concentrations ranging from 0-100 ppm (n = 7), which was not different from the GMI-apparatus. The correlation of both methods during clinical application (lactose tolerance tests, mouth-to-coecum transit time determined with lactulose) was excellent (Y = 1.08 X + 0.96; r = 0.959). Using the new device, both, analysis (3 s vs. 90 s) and the reset-time (43 s vs. 140 s) were shorter whereas calibration was more feasible with the GMI-apparatus. It is concluded, that the considerably cheaper pocket-sized breath H2-analyzer is as precise and sensitive as the GMI-exhaled monitor, and thus presents a valid alternative for H2-breath tests.

  12. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine

  13. Breath test refusals

    DOT National Transportation Integrated Search

    2007-11-01

    The National Highway Traffic Safety Administration has found that the percentage of people who refuse to provide breath samples when arrested for Driving While Intoxicated (DWI) varies considerably across States, and this creates a concern in the cri...

  14. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  15. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  16. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  17. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath nitric oxide test system. 862.3080 Section 862.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test...

  18. Detection of Δ9-tetrahydrocannabinol in exhaled breath collected from cannabis users.

    PubMed

    Beck, Olof; Sandqvist, Sören; Dubbelboer, Ilse; Franck, Johan

    2011-10-01

    Exhaled breath has recently been proposed as a new possible matrix for drugs of abuse testing. A key drug is cannabis, and the present study was aimed at investigating the possibility of detecting tetrahydrocannabinol and tetrahydrocannabinol carboxylic acid in exhaled breath after cannabis smoking. Exhaled breath was sampled from 10 regular cannabis users and 8 controls by directing the exhaled breath by suction through an Empore C(18) disk. The disk was extracted with hexane/ethyl acetate, and the resulting extract was evaporated to dryness and redissolved in 100 μL hexane/ethyl acetate. A 3-μL aliquot was injected onto the LC-MS-MS system and analyzed using positive electrospray ionization and selected reaction monitoring. In samples collected 1-12 h after cannabis smoking, tetrahydrocannabinol was detected in all 10 subjects. The rate of excretion was between 9.0 and 77.3 pg/min. Identification of tetrahydrocannabinol was based on correct retention time relative to tetrahydrocannabinol-d(3) and correct product ion ratio. In three samples, peaks were observed for tetrahydrocannabinol carboxylic acid, but these did not fulfill identification criteria. Neither tetrahydrocannabinol or tetrahydrocannabinol carboxylic acid was detected in the controls. These results confirm older reports that tetrahydrocannabinol is present in exhaled breath following cannabis smoking and extend the detection time from minutes to hours. The results further support the idea that exhaled breath is a promising matrix for drugs-of-abuse testing.

  19. Photoacoustic sensor for VOCs: first step towards a lung cancer breath test

    NASA Astrophysics Data System (ADS)

    Wolff, Marcus; Groninga, Hinrich G.; Dressler, Matthias; Harde, Hermann

    2005-08-01

    Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Specifically, the optical analysis of breath is an extraordinarily promising technique. Spectroscopic sensors for the non-invasive 13C-breath tests (the Urea Breath Test for detection of Helicobacter pylori is most prominent) are meanwhile well established. However, recent research and development go beyond gastroenterological applications. Sensitive and selective detection of certain volatile organic compounds (VOCs) in a patient's breath, could enable the diagnosis of diseases that are very difficult to diagnose with contemporary techniques. For instance, an appropriate VOC biomarker for early-stage bronchial carcinoma (lung cancer) is n-butane (C4H10). We present a new optical detection scheme for VOCs that employs an especially compact and simple set-up based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. Employing a wavelength-modulated distributed feedback (DFB) diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive and selective measurements on butane. A detection limit for butane in air in the ppb range was achieved. In subsequent research the sensitivity will be successively improved to match the requirements of the medical application. Upon optimization, our photoacoustic sensor has the potential to enable future breath tests for early-stage lung cancer diagnostics.

  20. Breath test refusals and DWI prosecution : traffic tech.

    DOT National Transportation Integrated Search

    2012-08-01

    There are typically about 1.4 million DWI (driving while : impaired) arrests each year in the United States. An officers : request to a driver for a breath (or blood, or urine) test is an : important part of the arrest process. The percentage of d...

  1. 10 CFR 26.95 - Conducting an initial test for alcohol using a breath specimen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Conducting an initial test for alcohol using a breath specimen. 26.95 Section 26.95 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.95 Conducting an initial test for alcohol using a breath specimen. (a) The...

  2. 10 CFR 26.95 - Conducting an initial test for alcohol using a breath specimen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Conducting an initial test for alcohol using a breath specimen. 26.95 Section 26.95 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.95 Conducting an initial test for alcohol using a breath specimen. (a) The...

  3. 10 CFR 26.95 - Conducting an initial test for alcohol using a breath specimen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Conducting an initial test for alcohol using a breath specimen. 26.95 Section 26.95 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.95 Conducting an initial test for alcohol using a breath specimen. (a) The...

  4. 10 CFR 26.95 - Conducting an initial test for alcohol using a breath specimen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Conducting an initial test for alcohol using a breath specimen. 26.95 Section 26.95 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.95 Conducting an initial test for alcohol using a breath specimen. (a) The...

  5. 10 CFR 26.95 - Conducting an initial test for alcohol using a breath specimen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Conducting an initial test for alcohol using a breath specimen. 26.95 Section 26.95 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.95 Conducting an initial test for alcohol using a breath specimen. (a) The...

  6. [Detection of Helicobacter pylori by culture and the 13C-urea breath test using an automated breath 13C analyzer].

    PubMed

    Yamamoto, Y; Kouda, M; Abe, K; Sakurabayashi, S; Sezai, S; Hirano, M; Oka, H

    1995-11-01

    Up to now, the diagnosis of H. pylori infection has been made by the breath test using 13C-urea. In this study, 13C-urea breath samples were tested in 34 patients (peptic ulcer scar 17, chronic gastritis 17 cases) with an automated breath 13C analyzer (ABCA. Europa Scientific, Crewe, UK) and compared with the results of endoscopical diagnosis for H. pylori infection. Endoscopic and 13C-urea breath test (13C-UBT) were performed before eradicative medication. We described a modified protocol for the growth grade of H. pylori colonies in microbiology (H. pylori score), and for the delta 13C area under curve (AUC; permil*hr) obtained from each sample of expired breath. There was a significant correlation between delta 13C-AUC and the delta 13C level of each sample, but the correlation coefficient obtained at 10min (R2 = 0.582) was lower than that obtained at the other four time points (20min; 0.891, 30min; 0.949, 40min; 0.946, 50min; 0.946, 60min; 0.820). The delta 13C-AUC well correlated with H. pylori score (p < 0.01), none of 26 H. pylori positive patients detected by culture was 13C-UBT negative (delta 13C-AUC < 8.2 permil*hr in mean + 2SD of H. pylori negative group). In conclusion, 13C-UBT using ABCA has high sensitivity and specificity, and it provides a non-invasive method for the detection of H. pylori urease activity.

  7. Mosapride Accelerates the Delayed Gastric Emptying of High-Viscosity Liquids: A Crossover Study Using Continuous Real-Time 13C Breath Test (BreathID System)

    PubMed Central

    Sakamoto, Yasunari; Sekino, Yusuke; Yamada, Eiji; Ohkubo, Hidenori; Higurashi, Takuma; Sakai, Eiji; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Nonaka, Takashi; Ikeda, Tamon; Fujita, Koji; Yoneda, Masato; Koide, Tomoko; Takahashi, Hirokazu; Goto, Ayumu; Abe, Yasunobu; Gotoh, Eiji; Maeda, Shin; Nakajima, Atsushi

    2011-01-01

    Background/Aims The administration of liquid nutrients to patients is often accompanied by complications such as gastroesophageal reflux. To prevent gastroesophageal reflux, high-viscosity liquid meals are used widely, however, it still remains controversial whether high-viscosity liquid meals have any effect on the rate of gastric emptying. The present study was conducted with the aim of determining whether high-viscosity liquid meals had any effect on the rate of gastric emptying and mosapride might accelerate the rate of gastric emptying of high-viscosity liquid meals. Methods Six healthy male volunteers underwent 3 tests at intervals of > 1 week. After fasting for > 8 hours, each subject received one of three test meals (liquid meal only, high-viscosity liquid meal [liquid meal plus pectin] only, or high-viscosity liquid meal 30 minutes after intake of mosapride). A 13C-acetic acid breath test was performed, which monitored the rate of gastric emptying for 4 hours. Using the Oridion Research Software (β version), breath test parameters were calculated. The study parameters were examined for all the 3 test conditions and compared using the Freidman test. Results Gastric emptying was significantly delayed following intake of a high-viscosity liquid meal alone as compared with a liquid meal alone; however, intake of mosapride prior to a high-viscosity liquid meal was associated with a significantly accelerated rate of gastric emptying as compared with a high-viscosity liquid meal alone. Conclusions This study showed that high-viscosity liquid meals delayed gastric emptying: however, mosapride recovered the delayed rate of gastric emptying by high-viscosity liquid meals. PMID:22148109

  8. Can handling E85 motor fuel cause positive breath alcohol test results?

    PubMed

    Ran, Ran; Mullins, Michael E

    2013-09-01

    Hand-held breath alcohol analyzers are widely used by police in traffic stops of drivers suspected of driving while intoxicated (DWI). E85 is a motor fuel consisting of 85% ethanol and 15% gasoline or other hydrocarbons, and is available at nearly 2,600 stations in the USA. We sought to determine whether handling E85 fuel could produce measurable breath alcohol results using a hand-held analyzer and to see if this would be a plausible explanation for a positive breath alcohol test. Five healthy adult subjects dispensed or transferred 8 US gallons of E85 fuel in each of four scenarios. We measured breath alcohol concentration in g/210 L of exhaled breath using the BACTrack S50 at 0, 2, 4, 6, 8, 10, 15 and 20 min after each fuel-handling scenario. Most of the subjects had no detectable breath alcohol after handling E85 motor fuel. Transient elevations (0.02-0.04 g/210 L) in breath alcohol measurement occurred up to 6 min after handling E85 in a minority of subjects. We conclude that it is unlikely that handling E85 motor fuel would result in erroneous prosecution for DWI.

  9. (13)C breath tests in personalized medicine: fiction or reality?

    PubMed

    Modak, Anil S

    2009-11-01

    The concept of personalized medicine is gathering momentum as various biomarkers are being discovered and developed to lead to genotype and phenotype diagnostic tests, which will enable physicians to individualize therapy. Noninvasive, rapid (13)C breath tests have the potential to serve as clinically significant diagnostic tools, especially for evaluating the enzyme activity of polymorphic enzymes. This would enable physicians to rapidly identify responders/nonresponders to various drugs primarily metabolized by these enzymes prior to initiation of therapy. With the information on enzyme activity, the physician can prescribe the right drug, at the right dose, at the right time, to the right individual, for the right clinical outcome. However, the promise of the era of personalized medicine, including the novel (13)C breath tests, will have to overcome several regulatory, business and financial hurdles for diagnostic tests to become part of routine mainstream clinical practice over the next decade.

  10. Does low dose (13)C-urea breath test maintain a satisfactory accuracy in diagnosing Helicobacter pylori infection?

    PubMed

    Coelho, Luiz Gonzaga Vaz; Silva, Arilto Eleutério da; Coelho, Maria Clara de Freitas; Penna, Francisco Guilherme Cancela e; Ferreira, Rafael Otto Antunes; Santa-Cecilia, Elisa Viana

    2011-01-01

    The standard doses of (13)C-urea in (13)C-urea breath test is 75 mg. To assess the diagnostic accuracy of (13)C-urea breath test containing 25 mg of (13)C-urea comparing with the standard doses of 75 mg in the diagnosis of Helicobacter pylori infection. Two hundred seventy adult patients (96 males, 174 females, median age 41 years) performed the standard (13)C-urea breath test (75 mg (13)C-urea) and repeated the (13)C-urea breath test using only 25 mg of (13)C-urea within a 2 week interval. The test was performed using an infrared isotope analyzer. Patients were considered positive if delta over baseline was >4.0‰ at the gold standard test. One hundred sixty-one (59.6%) patients were H. pylori negative and 109 (40.4%) were positive by the gold standard test. Using receiver operating characteristic analysis we established a cut-off value of 3.4% as the best value of 25 mg (13)C-urea breath test to discriminate positive and negative patients, considering the H. pylori prevalence (95% CI: 23.9-37.3) at our setting. Therefore, we obtained to 25 mg (13)C-urea breath test a diagnostic accuracy of 92.9% (95% CI: 88.1-97.9), sensitivity 83.5% (95% CI: 75.4-89.3), specificity 99.4% (95% CI: 96.6-99.9), positive predictive value 98.3% (95% CI: 92.4-99.4), and negative predictive value 93.0% (95% CI: 88.6-96.1). Low-dose (13)C-urea breath test (25 mg (13)C-urea) does not reach accuracy sufficient to be recommended in clinical setting where a 30% prevalence of H. pylori infection is observed. Further studies should be done to determine the diagnostic accuracy of low doses of (13)C-urea in the urea breath test.

  11. Can Handling E85 Motor Fuel Cause Positive Breath Alcohol Test Results?

    PubMed Central

    Ran, Ran; Mullins, Michael E.

    2013-01-01

    Hand-held breath alcohol analyzers are widely used by police in traffic stops of drivers suspected of driving while intoxicated (DWI). E85 is a motor fuel consisting of 85% ethanol and 15% gasoline or other hydrocarbons, and is available at nearly 2,600 stations in the USA. We sought to determine whether handling E85 fuel could produce measurable breath alcohol results using a hand-held analyzer and to see if this would be a plausible explanation for a positive breath alcohol test. Five healthy adult subjects dispensed or transferred 8 US gallons of E85 fuel in each of four scenarios. We measured breath alcohol concentration in g/210 L of exhaled breath using the BACTrack S50 at 0, 2, 4, 6, 8, 10, 15 and 20 min after each fuel-handling scenario. Most of the subjects had no detectable breath alcohol after handling E85 motor fuel. Transient elevations (0.02–0.04 g/210 L) in breath alcohol measurement occurred up to 6 min after handling E85 in a minority of subjects. We conclude that it is unlikely that handling E85 motor fuel would result in erroneous prosecution for DWI. PMID:23843422

  12. Breath Test Refusals and Their Effect on DWI Prosecution

    DOT National Transportation Integrated Search

    2012-07-01

    This report describes the design and results of a project aimed at estimating the rate that drivers : refuse to submit to a legally-requested breath alcohol concentration test, and the effect of such : refusals on the prosecution of DWI cases. The st...

  13. A better state-of-mind: deep breathing reduces state anxiety and enhances test performance through regulating test cognitions in children.

    PubMed

    Khng, Kiat Hui

    2017-11-01

    A pre-test/post-test, intervention-versus-control experimental design was used to examine the effects, mechanisms and moderators of deep breathing on state anxiety and test performance in 122 Primary 5 students. Taking deep breaths before a timed math test significantly reduced self-reported feelings of anxiety and improved test performance. There was a statistical trend towards greater effectiveness in reducing state anxiety for boys compared to girls, and in enhancing test performance for students with higher autonomic reactivity in test-like situations. The latter moderation was significant when comparing high-versus-low autonomic reactivity groups. Mediation analyses suggest that deep breathing reduces state anxiety in test-like situations, creating a better state-of-mind by enhancing the regulation of adaptive-maladaptive thoughts during the test, allowing for better performance. The quick and simple technique can be easily learnt and effectively applied by most children to immediately alleviate some of the adverse effects of test anxiety on psychological well-being and academic performance.

  14. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  15. The effect of acidity on gill variations in the aquatic air-breathing fish, Trichogaster lalius.

    PubMed

    Huang, Chun-Yen; Lin, Hui-Chen

    2011-01-01

    Climate change affects organisms that inhabit not only in aerial but also in aquatic environments by making water more hypoxic and acidic. In the past, we evaluated morphological and functional variations in the gills of 12 species of aquatic air-breathing fishes. The aim of the present study is to examine the degree of gill modification in the aquatic air-breathing fish, Trichogaster lalius, in response to acidic stress. This provides a link between the ecological and physiological studies. We evaluated the changes in morphology and function of the gills, labyrinth organ, and kidney when the fish were subjected to acidic water and deionized water (DW). In the first experiment, fish were sampled at 1, 2, 4, and 7 days after acidic treatment. Apparent morphological modification was observed on day 4 and recovery was noted on day 7. Protein expression and enzyme activity of vacuolar-type H+-ATPase (VHA) and the protein expression of the proliferating cell nuclear antigen (PCNA) of the 1st and 4th gill arches both increased in the 4-day and 7-day acidic groups while the enzyme activity of Na+/K+-ATPase (NKA) decreased. In the second experiment, fish were tested for changes in the 1st and 4th gill arches and kidney after exposure to DW and acidic water for 4days. The gill structure of the fish in the DW was not different from that of the control group (fresh water). The protein expression and enzyme activity of the VHA of the 1st and 4th gill arches increased in both the DW and acidic groups for 4 days. We found a decrease in the protein expression of NKA in the kidney and in the enzyme activity of NKA in the 1st and 4th gill arches in the DW and acidic groups. From these results, we suggest that T. lalius exhibited significantly different ionic regulation and acid-base regulatory abilities in the DW and acidic groups in the 1st and 4th gill arches and kidney. The responses of the gills in T. lalius were different from those fish that show apparent morphological

  16. Rapid Point-Of-Care Breath Test for Biomarkers of Breast Cancer and Abnormal Mammograms

    PubMed Central

    Phillips, Michael; Beatty, J. David; Cataneo, Renee N.; Huston, Jan; Kaplan, Peter D.; Lalisang, Roy I.; Lambin, Philippe; Lobbes, Marc B. I.; Mundada, Mayur; Pappas, Nadine; Patel, Urvish

    2014-01-01

    Background Previous studies have reported volatile organic compounds (VOCs) in breath as biomarkers of breast cancer and abnormal mammograms, apparently resulting from increased oxidative stress and cytochrome p450 induction. We evaluated a six-minute point-of-care breath test for VOC biomarkers in women screened for breast cancer at centers in the USA and the Netherlands. Methods 244 women had a screening mammogram (93/37 normal/abnormal) or a breast biopsy (cancer/no cancer 35/79). A mobile point-of-care system collected and concentrated breath and air VOCs for analysis with gas chromatography and surface acoustic wave detection. Chromatograms were segmented into a time series of alveolar gradients (breath minus room air). Segmental alveolar gradients were ranked as candidate biomarkers by C-statistic value (area under curve [AUC] of receiver operating characteristic [ROC] curve). Multivariate predictive algorithms were constructed employing significant biomarkers identified with multiple Monte Carlo simulations and cross validated with a leave-one-out (LOO) procedure. Results Performance of breath biomarker algorithms was determined in three groups: breast cancer on biopsy versus normal screening mammograms (81.8% sensitivity, 70.0% specificity, accuracy 79% (73% on LOO) [C-statistic value], negative predictive value 99.9%); normal versus abnormal screening mammograms (86.5% sensitivity, 66.7% specificity, accuracy 83%, 62% on LOO); and cancer versus no cancer on breast biopsy (75.8% sensitivity, 74.0% specificity, accuracy 78%, 67% on LOO). Conclusions A pilot study of a six-minute point-of-care breath test for volatile biomarkers accurately identified women with breast cancer and with abnormal mammograms. Breath testing could potentially reduce the number of needless mammograms without loss of diagnostic sensitivity. PMID:24599224

  17. Reliability of breath by breath spirometry and relative flow-time indices for pulmonary function testing in horses.

    PubMed

    Burnheim, K; Hughes, K J; Evans, D L; Raidal, S L

    2016-11-28

    Respiratory problems are common in horses, and are often diagnosed as a cause of poor athletic performance. Reliable, accurate and sensitive spirometric tests of airway function in resting horses would assist with the diagnosis of limitations to breathing and facilitate investigations of the effects of various treatments on breathing capacity. The evaluation of respiratory function in horses is challenging and suitable procedures are not widely available to equine practitioners. The determination of relative flow or flow-time measures is used in paediatric patients where compliance may limit conventional pulmonary function techniques. The aim of the current study was to characterise absolute and relative indices of respiratory function in healthy horses during eupnoea (tidal breathing) and carbon dioxide (CO 2 )-induced hyperpnoea (rebreathing) using a modified mask pneumotrachographic technique well suited to equine practice, and to evaluate the reliability of this technique over three consecutive days. Coefficients of variation, intra-class correlations, mean differences and 95% confidence intervals across all days of testing were established for each parameter. The technique provided absolute measures of respiratory function (respiratory rate, tidal volume, peak inspiratory and expiratory flows, time to peak flow) consistent with previous studies and there was no significant effect of day on any measure of respiratory function. Variability of measurements was decreased during hyperpnea caused by rebreathing CO 2 , but a number of relative flow-time variables demonstrated good agreement during eupnoeic respiration. The technique was well tolerated by horses and study findings suggest the technique is suitable for evaluation of respiratory function in horses. The use of relative flow-time variables provided reproducible (consistent) results, suggesting the technique may be of use for repeated measures studies in horses during tidal breathing or rebreathing.

  18. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Surampudi, Anand B.

    2008-10-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring.

  19. A novel 13C-urea breath test device for the diagnosis of Helicobacter pylori infection: continuous online measurements allow for faster test results with high accuracy.

    PubMed

    Israeli, Eran; Ilan, Yaron; Meir, Shimon Bar; Buenavida, Claudia; Goldin, Eran

    2003-08-01

    The aim of this study is to determine the accuracy of a novel laptop sized 13C-Urea breath test analyzer that continuously measures expired breath and to use its advantages to decrease testing time. One hundred and eighty-six subjects (mean age of 47.8 years) were tested simultaneously by the BreathID system (Oridion, Israel), and by the traditional IRMS. BreathID continuously measured the expired breath for a ratio of 13CO(2):12CO(2.) This value was expressed as delta over baseline (DOB) and displayed graphically on a screen in real time. One hundred and one subjects were positive and 85 were negative for H. pylori by isotope ratio mass spectrometry (IRMS). The correlation for the BreathID system at 30 minutes was 100% for positive cases and 98% for negative cases. Analysis of the continuous curves generated by the BreathID for all patients permitted definition of different DOB thresholds for a positive or negative result at shorter time intervals. Thus, after 6 minutes a conclusive test result could be obtained for 64% of subjects, and after 10 minutes for 92% of subjects. The 13C-Urea breath test utilizing the technology of molecular correlation spectrometry is an accurate method for determining infection by H. pylori. The advantage of continuous measurements can shorten testing time without compromising accuracy.

  20. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (i) Be employed on Type C supplied-air respirators of the demand and pressure-demand class; and (ii... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air...

  1. Hepatobiliary MRI: Signal intensity based assessment of liver function correlated to 13C-Methacetin breath test.

    PubMed

    Haimerl, Michael; Probst, Ute; Poelsterl, Stefanie; Beyer, Lukas; Fellner, Claudia; Selgrad, Michael; Hornung, Matthias; Stroszczynski, Christian; Wiggermann, Philipp

    2018-06-13

    Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13 C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13 C-methacetin breath test ( 13 C-MBT). SI values from before (SI pre ) and 20 min after (SI post ) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13 C-MBT values to SI post and RE to obtain a SI-based estimation of 13 C-MBT values. The simple regression model showed a log-linear correlation of 13 C-MBT values with SI post and RE (p < 0.001). Stratified by 3 different categories of 13 C-MBT readouts, there was a constant significant decrease in both SI post (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13 C-MBT. Liver function as determined using real-time 13 C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.

  2. Stability of (13) C-Urea Breath Test Samples Over Time in the Diagnosis of Helicobacter pylori.

    PubMed

    Perets, Tsachi Tsadok; Shporn, Einav; Boltin, Doron; Dickman, Ram; Niv, Yaron

    2016-05-01

    The accuracy and repeatability of breath test in the diagnosis of Helicobacter pylori infection have not been adequately investigated. Although it has been shown that storage for long periods does not affect the analysis results, no data are available on the effect of repetitive testing. In this study, our aim was to evaluate the repeatability of the analyses of breath samples at room temperature. A total of 202 positive breath samples were collected in duplicates, before and after administration of 75 mg (13) C- urea dissolved in 100 ml of orange juice. Breath test results were expressed as delta (13) CO2 . The cut-off value was 3.5 parts per thousand. Each sample was analyzed in a mass spectrometer 7, 14, 21, and 28 days after collection. The accuracy calculation was based on the comparison of the delta (13) CO2 obtained in the three consecutive weeks following the first test run to the delta (13) CO2 obtained in the first test run. Two hundred (99%), 197 (97.52%), and 196 (97%) of the 202 samples tested positive in the second, third, and fourth test runs, respectively. The accuracy of the delta (13) CO2 was 98.6%, 99.2%, and 96.7% in the three consecutive runs, respectively. Short-term storage of 1 month does not affect sample stability or the results of (13) C-urea breath tests in up to three consecutive repeats. © 2015 Wiley Periodicals, Inc.

  3. When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans.

    PubMed

    Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan

    2016-01-01

    Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by "timed up-and-go" test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here.

  4. The Effect of Alcohol-Based Hand Sanitizer Vapors on Evidential Breath Alcohol Test Results.

    PubMed

    Strawsine, Ellen; Lutmer, Brian

    2017-11-16

    This study was undertaken to determine if the application of alcohol-based hand sanitizers (ABHSs) to the hands of a breath test operator will affect the results obtained on evidential breath alcohol instruments (EBTs). This study obtained breath samples on three different EBTs immediately after application of either gel or foam ABHS to the operator's hands. A small, but significant, number of initial analyses (13 of 130, 10%) resulted in positive breath alcohol concentrations, while 41 samples (31.5%) resulted in a status code. These status codes were caused by ethanol vapors either in the room air or their inhalation by the subject, thereby causing a mouth alcohol effect. Replicate subject samples did not yield any consecutive positive numeric results. As ABHS application can cause a transitory mouth alcohol effect via inhalation of ABHS vapors, EBT operators should forego the use of ABHS in the 15 min preceding subject testing. © 2017 American Academy of Forensic Sciences.

  5. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    PubMed Central

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  6. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... taken at the connection point to the distribution system— (1) Every 6 months; and (2) After every repair or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked before... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for the...

  7. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    PubMed Central

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-01-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  8. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  9. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    PubMed

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  10. 13C-methacetin and 13C-galactose breath tests can assess restricted liver function even in early stages of primary biliary cirrhosis.

    PubMed

    Holtmeier, Julia; Leuschner, Maria; Schneider, Arne; Leuschner, Ulrich; Caspary, Wolfgang F; Braden, Barbara

    2006-11-01

    The 13C-methacetin breath test quantitatively evaluates cytochrome P450-dependent liver function. The 13C-galactose breath test non-invasively measures the galactose oxidation capacity of the liver. The aim of this study was to find out whether these breath tests are sensitive parameters also in non-cirrhotic patients with primary biliary cirrhosis. Nineteen patients with early-stage primary biliary cirrhosis (no cirrhotic alterations in the liver biopsy, Ludwig stage I-III) and 20 healthy controls underwent the 13C-methacetin and 13C-galactose breath tests. Patients with primary biliary cirrhosis metabolized less 13C-methacetin than controls (cumulative recovery within 30 min 7.5+/-2.4% versus 14.0+/-2.6%; p < 0.001). When a cut-off > 9.8% was used for the cumulative recovery after 30 min, the methacetin breath test reached 84.2% sensitivity and 95.0 specificity. In the 13C-galactose breath test, the percentage recovery at 60 min in patients was 3.1+/-1.3%/h, and 6.3+/-1.1%/h in controls (p < 0.001). Using a cut-off > 4.7%/h, the galactose breath test reached 89.5% sensitivity and 95.0 specificity. In non-cirrhotic, early-stage, primary biliary cirrhosis the 13C-methacetin breath test and the 13C-galactose breath test reliably indicate decreased liver function. The 13C-galactose breath test can also predict the histological score.

  11. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... measure and monitor the person's vital signs, including temperature, pulse, breathing rate, and blood pressure. Tests that ...

  12. Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models.

    PubMed

    Shalev, Tamar; Aeed, Hussein; Sorin, Vladimir; Shahmurov, Mark; Didkovsky, Elena; Ilan, Yaron; Avni, Yona; Shirin, Haim

    2010-06-01

    Octanoate (also known as sodium octanoate), a medium-chain fatty acid metabolized in the liver, is a potential substrate for non-invasive breath testing of hepatic mitochondrial beta-oxidation. We evaluated the 13C-octanoate breath test (OBT) for assessing injury in acute hepatitis and two rat models of liver cirrhosis, first testing octanoate absorption (per os or intraperitoneally (i.p.)) in normal rats. We then induced acute hepatitis with thioacetamide (300 mg/kg/i.p., 24-h intervals). Liver injury end points were serum aminotransferase levels and 13C-OBT (24 and 48 h following initial injection). Thioacetamide (200 mg/kg/i.p., twice per week, 12 weeks) was used to induce liver cirrhosis. OBT and liver histological assessment were performed every 4 weeks. Bile duct ligation (BDL) was used to induce cholestatic liver injury. We completed breath tests with 13C-OBT and 13C-methacetin (MBID), liver biochemistry, and liver histology in BDL and sham-operated rats (baseline, 6, 14, 20 days post-BDL). Octanoate absorbs well by either route. Peak amplitudes and cumulative percentage dose recovered at 30 and 60 min (CPDR30/60), but not peak time, correlated with acute hepatitis. Fibrosis stage 3 at week 8 significantly correlated with each OBT parameter. Cholestatic liver injury (serum bilirubin, ALP, gamma-GT, liver histology) was associated with significant suppression of the maximal peak values and CPDR30/60, respectively (P<0.05),using MBID but not 13C-octanoate. OBT is sensitive for potentially evaluating liver function in rat models of acute hepatitis and thioacetamide-induced liver cirrhosis but not in cholestatic liver injury. The MBID test may be better for evaluation of cholestatic liver disease in this model.

  13. Aspiration tests in aqueous foam using a breathing simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion inmore » an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.« less

  14. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  15. 13C-methacetin-breath test compared to also noninvasive biochemical blood tests in predicting hepatic fibrosis and cirrhosis in chronic hepatitis C.

    PubMed

    Dinesen, L; Caspary, W F; Chapman, R W; Dietrich, C F; Sarrazin, C; Braden, B

    2008-09-01

    The (13)C-methacetin-breath test and also several noninvasive blood tests comprising routine laboratory parameters have been proposed to predict fibrosis and cirrhosis in chronic hepatitis C. The aim of the study was to compare the diagnostic accuracy between these tests referring to hepatic histology as gold standard. 96 patients with chronic hepatitis C virus infection underwent percutaneous liver biopsy and the (13)C-methacetin-breath test. The Fibroindex, the aspartate aminotransferase to platelet ratio index , and the aspartate aminotransferase to alanine aminotransferase ratio were used as parameters for the staging of fibrosis. The main endpoint was the area under the characteristic curves for the diagnosis of advanced fibrosis (F3-F4) and cirrhosis (F4) according to the Batts Ludwig criteria. ROC analysis revealed a cut-off <14.6 per thousand best with 92.6% sensitivity and 84.1% specificity for the (13)C-methacetin-breath test, for the Fibroindex >1.82 70.4% sensitivity and 91.3% specificity, for the aspartate aminotransferase to platelet ratio >1.0 a 66.7% sensitivity and 75.4% specificity, and for the aspartate aminotransferase to alanine aminotransferase ratio >1.0 63.0% sensitivity and 59.4% specificity in predicting liver cirrhosis. The areas under the curve for the breath test, the Fibroindex, aspartate aminotransferase to platelet ratio and the aspartate aminotransferase to alanine aminotransferase ratio were 0.958, 0.845, 0.799, and 0.688, respectively, when predicting cirrhosis. For identifying patients with advanced fibrosis, the areas under the curve were 0.827, 0.804, 0.779, and 0.561, respectively. Discordances between Fibroindex (21%), aspartate aminotransferase to platelet ratio (29%) or aspartate aminotransferase to alanine aminotransferase ratio (37.6%) and liver biopsy were significantly more frequent than between (13)C-breath test (11.6%) and liver biopsy (P<0.05). The (13)C-methacetin-breath test is more reliable in predicting advanced

  16. Use of the single-breath method of estimating cardiac output during exercise-stress testing.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Rummel, J. A.; Sawin, C. F.; Mauldin, D. G.

    1973-01-01

    The single-breath cardiac output measurement technique of Kim et al. (1966) has been modified for use in obtaining cardiac output measurements during exercise-stress tests on Apollo astronauts. The modifications involve the use of a respiratory mass spectrometer for data acquisition and a digital computer program for data analysis. The variation of the modified method for triplicate steady-state cardiac output measurements was plus or minus 1 liter/min. The combined physiological and methodological variation seen during a set of three exercise tests on a series of subjects was 1 to 2.5 liter/min. Comparison of the modified method with the direct Fick technique showed that although the single-breath values were consistently low, the scatter of data was small and the correlation between the two methods was high. Possible reasons for the low single-breath cardiac output values are discussed.

  17. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    NASA Astrophysics Data System (ADS)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  18. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    PubMed Central

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  19. Breath tests sustainability in hospital settings: cost analysis and reimbursement in the Italian National Health System.

    PubMed

    Volpe, M; Scaldaferri, F; Ojetti, V; Poscia, A

    2013-01-01

    The high demand of Breath Tests (BT) in many gastroenterological conditions in time of limited resources for health care systems, generates increased interest in cost analysis from the point of view of the delivery of services to better understand how use the money to generate value. This study aims to measure the cost of C13 Urea and other most utilized breath tests in order to describe key aspects of costs and reimbursements looking at the economic sustainability for the hospital. A hospital based cost-analysis of the main breath tests commonly delivery in an ambulatory setting is performed. Mean salary for professional nurses and gastroenterologists, drugs/preparation used and disposable materials, purchase and depreciation of the instrument and the testing time was used to estimate the cost, while reimbursements are based on the 2013 Italian National Health System ambulatory pricelist. Variables that could influence the model are considered in the sensitivity analyses. The mean cost for C13--Urea, Lactulose and Lactose BT are, respectively, Euros 30,59; 45,20 and 30,29. National reimbursement often doesn't cover the cost of the analysis, especially considering the scenario with lower number of exam. On the contrary, in high performance scenario all the reimbursement could cover the cost, except for the C13 Urea BT that is high influenced by the drugs cost. However, consideration about the difference between Italian Regional Health System ambulatory pricelist are done. Our analysis shows that while national reimbursement rates cover the costs of H2 breath testing, they do not cover sufficiently C13 BT, particularly urea breath test. The real economic strength of these non invasive tests should be considered in the overall organization of inpatient and outpatient clinic, accounting for complete diagnostic pathway for each gastrointestinal disease.

  20. Nondispersive infrared spectrometry for 13CO2/12CO2-measurements: a clinically feasible analyzer for stable isotope breath tests in gastroenterology.

    PubMed

    Braden, B; Caspary, W F; Lembcke, B

    1999-06-01

    13C-urea breath tests have become clinical routine for the diagnosis of Helicobacter pylori infection and other isotope breath tests have been invented e.g. for gastric emptying or quantitative liver function testing. Recently, isotope-selective nondispersive infrared spectrometers (NDIRS) have been developed for the analysis of the 13CO2/12CO2-enrichment in breath. In this study, we prospectively tested the validity of a newly developed NDIRS in comparison to isotope ratio mass spectrometry (IRMS). 142 patients with dyspeptic symptoms were tested for Helicobacter pylori infection using the 13C-urea breath test. The isotope ratio analysis of the breath samples was performed in duplicate both using IRMS and NDIRS. The results of the baseline-corrected 13CO2-exhalation values between IRMS and NDIRS were in excellent agreement. The mean difference between both methods was 0.28 +/- 1.93 delta/1000. Evaluating the qualitative urea breath test results in reference to IRMS as the reference the NDIRS had a sensitivity of 97.8% and a specificity of 98.9%. The isotope-selective nondispersive infrared spectroscopy is going to become a reliable, but low-cost and easy-to-operate alternative to expensive isotope ratio mass spectrometry in the analysis of 13C-breath tests.

  1. Effect of air breathing on acid-base and ion regulation after exhaustive exercise and during low pH exposure in the bowfin, Amia calva.

    PubMed

    Gonzalez, R J; Milligan, L; Pagnotta, A; McDonald, D G

    2001-01-01

    To explore a potential conflict between air breathing and acid-base regulation in the bowfin (Amia calva), we examined how individuals with access to air differed from fish without air access in their response to acidosis. After exhaustive exercise, bowfin with access to air recovered significantly more slowly from the acidosis than fish without air access. While arterial blood pH (pH(a)) of fish without air access recovered to resting levels by 8 h, pH(a) was still significantly depressed in fish having access to air. In addition, Pco(2) was slightly more elevated in fish having air access than those without it. Fish with access to air still had a significant metabolic acid load after 8-h recovery, while those without air access completely cleared the load within 4 h. These results suggest that bowfin with access to air were breathing air and, consequently, were less able to excrete CO(2) and H(+) and experienced a delayed recovery. In contrast, during exposure to low pH, air breathing seemed to have a protective effect on acid-base status in bowfin. During exposure to low pH water, bowfin with access to air developed a much milder acidosis than bowfin without air access. The more severe acidosis in fish without air access was caused by an increased rate of lactic acid production. It appears that enhanced O(2) delivery allowed air-breathing bowfin to avoid acidosis-induced anaerobic metabolism and lactic acid production. In addition, during low pH exposure, plasma Na(+) and Cl(-) concentrations of fish without air access fell slightly more rapidly than those in fish with air access, indicating that the branchial ventilatory changes associated with air breathing limited, to some degree, ion losses associated with low pH exposure.

  2. Comparison of Accuracy Between 13C- and 14C-Urea Breath Testing: Is an Indeterminate-Results Category Still Needed?

    PubMed

    Charest, Mathieu; Bélair, Marc-André

    2017-06-01

    Helicobacter pylori infection is the leading cause of peptic ulcer disease. The purpose of this study was, first, to assess the difference in the distribution of negative versus positive results between the older 14 C-urea breath test and the newer 13 C-urea breath test and, second, to determine whether use of an indeterminate-results category is still meaningful and what type of results should trigger repeated testing. Methods: A retrospective survey was performed of all consecutive patients referred to our service for urea breath testing. We analyzed 562 patients who had undergone testing with 14 C-urea and 454 patients who had undergone testing with 13 C-urea. Results: In comparison with the wide distribution of negative 14 C results, negative 13 C results were distributed farther from the cutoff and were grouped more tightly around the mean negative value. Distribution analysis of the negative results for 13 C testing, compared with those for 14 C testing, revealed a statistically significant difference between the two. Within the 13 C group, only 1 patient could have been classified as having indeterminate results using the same indeterminate zone as was used for the 14 C group. This is significantly less frequent than what was found for the 14 C group. Discussion: Borderline-negative results do occur with 13 C-urea breath testing, although less frequently than with 14 C-urea breath testing, and we will be carefully monitoring differences falling between 3.0 and 3.5 %Δ. 13 C-urea breath testing is safe and simple for the patient and, in most cases, provides clearer positive or negative results for the clinician. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  4. The cholesteryl octanoate breath test: a new procedure for detection of pancreatic insufficiency in the rat.

    PubMed

    Mundlos, S; Rhodes, J B; Hofmann, A F

    1987-09-01

    A breath test for the detection of pancreatic insufficiency was developed and tested in rats. The test features the hydrophobic molecule cholesteryl-1-14C-octanoate, which liberates 14C-octanoic acid when hydrolyzed by carboxyl ester lipase (cholesterol esterase). The 14C-octanoate is absorbed passively and rapidly metabolized to 14CO2, which is excreted in expired air. The compound was administered as an emulsion of cholesteryl octanoate, triglyceride, and lecithin to rats with mild pancreatic insufficiency induced by injecting the pancreatic duct with zein. The animals had exocrine pancreatic hypofunction based on the enzyme content of pancreas at autopsy. Amylase was reduced by 97.1 +/- 1.4%, whereas chymotrypsin was reduced by 73 +/- 14%. The p-aminobenzoic acid test was abnormal at 1 wk (21.68 +/- 8.4%), but become normal at 3 months (72.08 +/- 5.8%) after zein injection. Despite this, the animals gained weight and absorbed fat normally. The 14CO2 excretion rate in the 110-min interval after feeding was significantly reduced to 60% of sham-operated animals. Peak 14CO2 collections 20 min after feeding were reduced by 75 +/- 11%. 14CO2 output was completely normalized by administration of pancreatin prior to the test meal. The results suggest that a sensitive, noninvasive method for detecting deficiency of pancreatic carboxyl ester lipase (cholesterol esterase) secretion in the rat has been developed.

  5. Updating prognosis of cirrhosis by Cox's regression model using Child-Pugh score and aminopyrine breath test as time-dependent covariates.

    PubMed

    Merkel, C; Morabito, A; Sacerdoti, D; Bolognesi, M; Angeli, P; Gatta, A

    1998-06-01

    The determination of aminopyrine breath test on entry into the study was recently shown to improve the accuracy of prediction of death based on the Child-Pugh classification, but the possible usefulness of serial determinations of both parameters has not been assessed. In the present study, we aimed at evaluating whether serial determinations of aminopyrine breath test and Child-Pugh score improve prognostic accuracy in patients with cirrhosis, compared with determinations obtained only on admission. In 74 patients with liver cirrhosis aminopyrine breath test and Child-Pugh score were obtained upon entry into the study. Patients were followed with sequential aminopyrine breath tests and assessments of the Child-Pugh score every 4-6 months. A total number of 232 determinations were obtained. During follow-up 45 patients died, on average after 12 months of follow-up. Child-Pugh score improved in the beginning of follow-up, and then remained fairly constant; aminopyrine breath test showed no improvement in the beginning of follow-up, but rather a slowly progressive decline. In patients who died, both the Child-Pugh score and the metabolism of aminopyrine were significantly more impaired in the last year preceding death (p < 0.05). Applying Cox's regression model with time-dependent covariates, Child-Pugh score and aminopyrine breath test were independent significant predictors of survival. The model with time-dependent covariates explained the observed survival much better than the model with time-fixed covariates (chi-sq. explained by regression = 31.45 vs 11.97; d.f. = 2; p = 0.0000001 vs 0.003). These data suggest that serial determinations of Child-Pugh score and aminopyrine breath test can be used to efficiently update prognosis of cirrhosis.

  6. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    PubMed

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  7. Comparison between hyperventilation and breath-holding in panic disorder: patients responsive and non-responsive to both tests.

    PubMed

    Nardi, Antonio E; Valença, Alexandre M; Mezzasalma, Marco A; Levy, Sandra P; Lopes, Fabiana L; Nascimento, Isabella; Freire, Rafael C; Veras, Andre B; Zin, Walter A

    2006-06-15

    Our aim was to compare the demographic and psychopathological features of panic disorder (PD) patients who underwent hyperventilation and breath-holding challenge tests, and to describe the features of patients who had a panic attack after both tests versus those patients who did not experience panic after either test. Eighty-five PD patients were induced to hyperventilate (30 breaths/min) for 4 min, and a week later to hold their breath for as long as possible four times with a 2-min interval in between. Anxiety scales were applied before and after the tests. Patients who responded with a panic attack to both tests (BPA, n = 25) were compared with patients who experienced spontaneous panic attacks but did not panic in response to the two tests (NPA, n = 16). The BPA group had a significantly higher presence of respiratory symptoms during a panic attack. The criteria for the respiratory PD subtype were fulfilled in 18 (72.0%) BPA patients and in 6 (37.5%) NPA patients. The BPA patients had a later onset of panic disorder and a higher familial prevalence of PD. Our data suggest that there is a distinction between PD patients who were sensitive to both hyperventilation and breath-holding tests and PD patients who were not affected by the challenge tests. The panic attack may be a final common pathway for different types of stimuli, and respiratory tests may characterize different PD subgroups.

  8. News from the Breath Analysis Summit 2011.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  9. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  10. Spontaneous breathing test in the prediction of extubation failure in the pediatric population.

    PubMed

    Nascimento, Milena Siciliano; Rebello, Celso Moura; Vale, Luciana Assis Pires Andrade; Santos, Érica; Prado, Cristiane do

    2017-01-01

    To assess whether the spontaneous breathing test can predict the extubation failure in pediatric population. A prospective and observational study that evaluated data of inpatients at the Pediatric Intensive Care Unit between May 2011 and August 2013, receiving mechanical ventilation for at least 24 hours followed by extubation. The patients were classified in two groups: Test Group, with patients extubated after spontaneous breathing test, and Control Group, with patients extubated without spontaneous breathing test. A total of 95 children were enrolled in the study, 71 in the Test Group and 24 in the Control Group. A direct comparison was made between the two groups regarding sex, age, mechanical ventilation time, indication to start mechanical ventilation and respiratory parameters before extubation in the Control Group, and before the spontaneous breathing test in the Test Group. There was no difference between the parameters evaluated. According to the analysis of probability of extubation failure between the two groups, the likelihood of extubation failure in the Control Group was 1,412 higher than in the Test Group, nevertheless, this range did not reach significance (p=0.706). This model was considered well-adjusted according to the Hosmer-Lemeshow test (p=0.758). The spontaneous breathing test was not able to predict the extubation failure in pediatric population. Avaliar se o teste de respiração espontânea pode ser utilizado para predizer falha da extubação na população pediátrica. Estudo prospectivo, observacional, no qual foram avaliados todos os pacientes internados no Centro de Terapia Intensiva Pediátrica, no período de maio de 2011 a agosto de 2013, que utilizaram ventilação mecânica por mais de 24 horas e que foram extubados. Os pacientes foram classificados em dois grupos: Grupo Teste, que incluiu os pacientes extubados depois do teste de respiração espontânea; e Grupo Controle, pacientes foram sem teste de respiração espont

  11. Measurement of breath acetone in patients referred for an oral glucose tolerance test.

    PubMed

    Andrews, Brian Terence; Denzer, Wolfgang; Hancock, Gus; Lunn, Dan; Peverall, Robert; Ritchie, Grant; Williams, Karen

    2018-04-12

    Breath acetone concentrations were measured in 141 subjects (aged 19-91 yrs, mean=59.11yrs standard deviation=12.99yrs), male and female, undergoing an oral glucose tolerance test (OGTT), having been referred to clinic on suspicion of type 2 diabetes. Breath samples were measured using an ion-molecule-reaction mass spectrometer, at the commencement of the OGTT, and after 1 and 2hrs. Subjects were asked to observe the normal routine before and during the OGTT, which includes an overnight fast and ingestion of 75g glucose at the beginning of the routine. Several groups of diagnosis were identified: type 2 Diabetes Mellitus positive (T2DM), n=22; impaired glucose intolerance (IGT), n=33; impaired fasting glucose (IFG), n=14; and reactive hypoglycaemia (RHG), n=5. The subjects with no diagnosis (i.e. normoglycaemia) were used as a control group, n=67. Distributions of breath acetone are presented for the different groups. There was no evidence of a direct relationship between blood glucose and acetone measurements at any time during the study (0hr: p=0.4482; 1hr: p=0.6854; and 2hr: p=0.1858). Nor were there significant differences between the measurements of breath acetone for the control group and the T2DM group (0hr: p=0.1759; 1hr: p=0.4521; and 2hr: p=0.7343). However, the ratio of breath acetone at 1hr to the initial breath acetone was found to be significantly different for the T2DM group compared to both the control and IGT groups (p=0.0189 and 0.011, respectively). The T2DM group was also found to be different in terms of ratio of breath acetone after 1hr to that at 2hrs during the OGTT. And was distinctive in that it showed a significant dependence upon the level of blood glucose at 2hrs (p=0.0146). We conclude that single measurements of the concentrations of breath acetone cannot be used as a potential screening diagnostic for T2DM diabetes in this cohort, but monitoring the evolution of breath acetone could open a non-invasive window to aid in the diagnosis

  12. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  13. Small intestinal malabsorption in chronic alcoholism: a retrospective study of alcoholic patients by the ¹⁴C-D-xylose breath test.

    PubMed

    Hope, Håvar; Skar, Viggo; Sandstad, Olav; Husebye, Einar; Medhus, Asle W

    2012-04-01

    The ¹⁴C-D-xylose breath test was used at Ullevål University Hospital in the period from 1986 TO 1995 for malabsorption testing. The objective of this retrospective study was to reveal whether patients with chronic alcoholism may have intestinal malabsorption. The consecutive ¹⁴C-D-xylose breath test database was reviewed and patients with the diagnosis of chronic alcoholism were identified. ¹⁴C-D-xylose breath test results of the alcoholic patients were compared with the results of untreated celiac patients and patient and healthy controls. In the ¹⁴C-D-xylose breath test, ¹⁴C-D-xylose was dissolved in water and given orally after overnight fast. Breath samples were taken at 30-min intervals for 210 min, and ¹⁴CO₂ : ¹²CO₂ ratios were calculated for each time point, presenting a time curve for ¹⁴C-D-xylose absorption. Urine was collected after 210 min and the fraction of the total d-xylose passed was calculated (U%). ¹⁴CO₂ in breath and ¹⁴C-D-xylose in urine were analyzed using liquid scintillation. Both breath and urine analysis revealed a pattern of malabsorption in alcoholics comparable with untreated celiac patients, with significantly reduced absorption of d-xylose compared with patient and healthy controls. Alcoholic patients have a significantly reduced ¹⁴C-D-xylose absorption, comparable with untreated celiac patients. This indicates a reduced intestinal function in chronic alcoholism.

  14. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  15. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.

  16. Carbon-14 urea breath test: does it work in patients with partial gastric resection?

    PubMed

    Dede, Fuat; Civen, Hüseyin; Dane, Faysal; Aliustaoglu, Mehmet; Turhal, Serdar; Turoglu, Halil Turgut; Inanir, Sabahat

    2015-11-01

    The diagnostic value of Carbon-14 urea breath test (C-14 UBT) in the detection of Helicobacter pylori (H. pylori) infection in non-operated patients has been proved. However, the efficacy of C-14 UBT in patients with partial gastric resection (PGR) has not been evaluated yet. Herein, the results of the C-14 UBT and H. pylori stool antigen test (HpSAT) in this patient group were compared with the endoscopic findings. Multi-breath samples C-14 UBT and HpSAT were performed in all patients on the same day. Histology was used as a gold standard for testing C-14 UBT and HpSAT diagnostic efficacies. 30 patients (mean age: 54.6 ± 11 year) with PGR were included. The sensitivity and specificity of standard C-14 UBT were 29 and 100 %, respectively. When breath samples were collected at 20th min, and >35 CPM was selected as radioactivity threshold, the sensitivity raised to 86 % without any loss of specificity. The specificity and sensitivity of the HpSAT were 71 and 96 %, respectively. The sensitivity of the standard C-14 UBT was very poor for patients with PGR, and results of HpSAT were superior in this population. Certain modifications are needed if C-14 UBT is to be used in PGR patients.

  17. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Konieczna, Lucyna; Pyszka, Magdalena; Okońska, Magdalena; Niedźwiecki, Maciej; Bączek, Tomasz

    2018-03-23

    Exhaled breath condensate (EBC) is receiving increased attention as a novel, entirely non-invasive technique for collecting biomarker samples. This increased attention is due to the fact that EBC is simple, effort independent, rapid, can be repeated frequently, and can be performed on young children and patients suffering from a variety of diseases. By having a subject breathe tidally through a cooling system for 15-20 min, a sufficient amount of condensate is collected for analysis of biomarkers in clinical studies. However, bioanalysis of EBC involves an unavoidable sample preparation step due to the low concentration of its components. Thus, there is a need for a new and more sensitive analytical method of assessing EBC samples. While researchers have considered analyses of single and small quantities of amino acids - for example, those connected with leukemia - no one has previously attempted to simultaneously analyze a panel of 23 amino acids. Moreover, the present study is well-justified, as prior studies focusing on single amino acids and leukemia at the moment of diagnosis and during chemotherapy (33 days of treatment) are inconsistent. In the present study, amino acids were separated using an XBridge Amide column (3 mm × 100 mm, 3.5 μm). The mobile phase consisted of 10 mM of ammonium buffer in water with a pH of 3 (Phase A) and 10 mM ammonium buffer in acetonitrile (Phase B) under gradient program elution. The analytes were detected in electrospray positive ionization mode. Under optimal conditions, the proposed method exhibited limits of quantification (LOQ) in the range of 0.05-0.5 ng/mL, and good linearity, with the determination coefficient (R 2 ) falling between 0.9904 and 0.9998. The accuracy in human exhaled breath condensate samples ranged between 93.3-113.3% for the 23 studied amino acids, with intra- and inter-day coefficient of variation (CVs) of 0.13-9.92% and 0.17-10.53%, respectively. To demonstrate the liquid

  18. Inward contaminant leakage tests of the S-Tron Corporation emergency escape breathing device.

    DOT National Transportation Integrated Search

    1992-04-01

    At the request of S-Tron Corporation, to support their contract with the U.S. Navy, performance tests of the Emergency Escape Breathing Device (EEBD) were conducted in the Environmental Physiology Research Section contaminant leakage chamber. Sulfur ...

  19. Establishment of a Quick and Highly Accurate Breath Test for ALDH2 Genotyping

    PubMed Central

    Aoyama, Ikuo; Ohashi, Shinya; Amanuma, Yusuke; Hirohashi, Kenshiro; Mizumoto, Ayaka; Funakoshi, Makiko; Tsurumaki, Mihoko; Nakai, Yukie; Tanaka, Katsuyuki; Hanada, Mariko; Uesaka, Aki; Chiba, Tsutomu; Muto, Manabu

    2017-01-01

    Objectives: Acetaldehyde, the first metabolite of ethanol, is a definite carcinogen for the esophagus, head, and neck; and aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that catalyzes the metabolism of acetaldehyde. The ALDH2 genotype exists as ALDH2*1/*1 (active ALDH2), ALDH2*1/*2 (heterozygous inactive ALDH2), and ALDH2*2/*2 (homozygous inactive ALDH2). Many epidemiological studies have reported that ALDH2*2 carriers are at high risk for esophageal or head and neck squamous cell carcinomas by habitual drinking. Therefore, identification of ALDH2*2 carriers would be helpful for the prevention of those cancers, but there have been no methods suitable for mass screening to identify these individuals. Methods: One hundred and eleven healthy volunteers (ALDH2*1/*1 carriers: 53; ALDH2*1/*2 carriers: 48; and ALDH2*2/*2 carriers: 10) were recruited. Breath samples were collected after drinking 100 ml of 0.5% ethanol using specially designed gas bags, and breath ethanol and acetaldehyde levels were measured by semiconductor gas chromatography. Results: The median (range) breath acetaldehyde levels at 1 min after alcohol ingestion were 96.1 (18.1–399.0) parts per billion (p.p.b.) for the ALDH2*1/*1 genotype, 333.5 (78.4–1218.4) p.p.b. for the ALDH2*1/*2 genotype, and 537.1 (213.2–1353.8) p.p.b. for the ALDH2*2/*2 genotype. The breath acetaldehyde levels in ALDH2*2 carriers were significantly higher than for the ALDH2*1/*1 genotype. Notably, the ratio of breath acetaldehyde level-to-breath ethanol level could identify carriers of the ALDH2*2 allele very accurately (whole accuracy; 96.4%). Conclusions: Our novel breath test is a useful tool for identifying ALDH2*2 carriers, who are at high risk for esophageal and head and neck cancers. PMID:28594397

  20. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  1. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    PubMed

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  2. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  3. Breath biomarkers in toxicology.

    PubMed

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  4. On the importance of developing a new generation of breath tests for Helicobacter pylori detection.

    PubMed

    Kushch, Ievgeniia; Korenev, Nikolai; Kamarchuk, Lyudmila; Pospelov, Alexander; Kravchenko, Andrey; Bajenov, Leonid; Kabulov, Mels; Amann, Anton; Kamarchuk, Gennadii

    2015-12-15

    State-of-the-art methods for non-invasive detection of the Helicobacter pylori (H. pylori) infection have been considered. A reported global tendency towards a non-decreasing prevalence of H. pylori worldwide could be co-influenced by the functional limitations of urea breath tests (UBTs), currently preferred for the non-invasive recognition of H. pylori in a clinical setting. Namely, the UBTs can demonstrate false-positive or false-negative results. Within this context, limitations of conventional clinically exploited H. pylori tests have been discussed to justify the existing need for the development of a new generation of breath tests for the detection of H. pylori and the differentiation of pathogenic and non-pathogenic strains of the bacterium. This paper presents the results of a pilot clinical study aimed at evaluating the development and diagnostic potential of a new method based on the detection of the non-urease products of H. pylori vital activity in exhaled gas. The characteristics of breath of adolescents with H. pylori-positive and H. pylori-negative functional dyspepsia, together with a consideration of the cytotoxin-associated gene A (CagA) status of H. pylori-positive subjects, have been determined for the first time using innovative point-contact nanosensor devices based on salts of the organic conductor tetracyanoquinodimethane (TCNQ). The clinical and diagnostic relevance of the response curves of the point-contact sensors was assessed. It was found that the recovery time of the point-contact sensors has a diagnostic value for differentiation of the H. pylori-associated peptic ulcer disease. The diagnostically significant elongation of the recovery time was even more pronounced in patients infected with CagA-positive H. pylori strains compared to the CagA-negative patients. Taking into account the operation of the point-contact sensors in the real-time mode, the obtained results are essential prerequisites for the development of a fast and

  5. Walk test and school performance in mouth-breathing children.

    PubMed

    Boas, Ana Paula Dias Vilas; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; Sakano, Eulália; Conti, Patricia Blau Margosian; Toro, Adyléia Dalbo Contrera; Ribeiro, José Dirceu

    2013-01-01

    In recent decades, many studies on mouth breathing (MB) have been published; however, little is known about many aspects of this syndrome, including severity, impact on physical and academic performances. Compare the physical performance in a six minutes walk test (6MWT) and the academic performance of MB and nasal-breathing (NB) children and adolescents. This is a descriptive, cross-sectional, and prospective study with MB and NB children submitted to the 6MWT and scholar performance assessment. We included 156 children, 87 girls (60 NB and 27 MB) and 69 boys (44 NB and 25 MB). Variables were analyzed during the 6MWT: heart rate (HR), respiratory rate, oxygen saturation, distance walked in six minutes and modified Borg scale. All the variables studied were statistically different between groups NB and MB, with the exception of school performance and HR in 6MWT. MB affects physical performance and not the academic performance, we noticed a changed pattern in the 6MWT in the MB group. Since the MBs in our study were classified as non-severe, other studies comparing the academic performance variables and 6MWT are needed to better understand the process of physical and academic performances in MB children.

  6. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    PubMed

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI < 25 kg/m(2)) were included as a control group. The breath test was performed by the oral administration of the tracer measuring (13)CO(2) enrichment in breath before and after ingestion using isotope ratio mass spectrometry. Body composition, resting energy expenditure, and plasma levels of insulin and leptin were measured. There were no relationships observed between the 2-keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  7. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers.

    PubMed

    Do, Ron; Bartlett, Karen H; Dimich-Ward, Helen; Chu, Winnie; Kennedy, Susan M

    2008-11-15

    Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.

  8. Assessment of ileal function by abdominal counting of the retention of a gamma emitting bile acid analogue.

    PubMed Central

    Thaysen, E H; Orholm, M; Arnfred, T; Carl, J; Rødbro, P

    1982-01-01

    In eight patients without gastrointestinal complaints and 30 patients with various gastrointestinal disorders ileal bile acid conservation was assessed by oral administration of 75Se 23-selena-25-homocholic acid (SeHCAT) followed by abdominal gamma counting (SeHCAT-test). The results of the test correlated fairly well with the clinical features and with the [1-14C]-cholylglycine breath test including faecal 14C measurements (breath test). Of the two bile acid absorption tests the new is perhaps the more sensitive and is the one most easily performed. PMID:7117906

  9. Breath holding spell

    MedlinePlus

    ... such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells ( ... tests may be done to check for an iron deficiency. Other tests that may be done include: EKG ...

  10. 49 CFR 40.245 - What is the procedure for an alcohol screening test using a saliva ASD or a breath tube ASD?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test using a saliva ASD or a breath tube ASD? 40.245 Section 40.245 Transportation Office of the... Alcohol Screening Tests § 40.245 What is the procedure for an alcohol screening test using a saliva ASD or a breath tube ASD? (a) As the STT or BAT, you must take the following steps when using the saliva...

  11. A rapid non invasive L-DOPA-¹³C breath test for optimally suppressing extracerebral AADC enzyme activity - toward individualizing carbidopa therapy in Parkinson’s disease.

    PubMed

    Modak, Anil; Durso, Raymon; Josephs, Ephraim; Rosen, David

    2012-01-01

    Peripheral carbidopa (CD) levels directly impact on central dopamine (DA) production in Parkinson disease (PD) through extracerebral inhibition of dopa decarboxylase (AADC) resulting in an increase in levodopa (LD) bioavailability. Recent data suggests that higher CD doses than those presently used in PD treatment may result in improved clinical response. Optimizing CD doses in individual patients may, therefore, result in ideal individualized treatment. A single center, randomized, double-blind study was carried out recruiting 5 Parkinson’s disease (PD) patients already on LD/CD and 1 treatment näve PD patient using stable isotope labeled LD-1-¹³C as a substrate for a noninvasive breath test to evaluate individual AADC enzyme activity. Each patient was studied five times, receiving 200 mg LD-¹³C at each visit along with one of five randomized CD doses (0, 25, 50, 100 and 200 mg). The metabolite ¹³CO₂ in breath was measured for evaluating AADC enzyme activity and plasma metabolite levels for LD-¹³C and homovanillic acid (HVA) were measured for 4 hours. HVA in plasma and ¹³CO₂ in breath are metabolic products of LD. We found a significant positive correlation of ¹³CO₂ DOB AUC0-240 with serum HVA AUC0-240 following the oral dose of LD-1-¹³C for all 5 doses of CD (r² = 0.9378). With increasing inhibition of AADC enzyme activity with CD, we observed an increase in the plasma concentration of LD.We found an inverse correlation of the 13CO2 DOB AUC with serum LD-¹³C AUC. Our studies indicate the optimal dose of CD for maximal suppression of AADC enzyme activity can be determined for each individual from ¹³CO₂ generation in breath. The LD-breath test can be a useful noninvasive diagnostic tool for evaluation of AADC enzyme activity using the biomarker ¹³CO₂ in breath, a first step in personalizing CD doses for PD patients.

  12. Training in multiple breath washout testing for respiratory physiotherapists.

    PubMed

    O'Neill, Katherine; Elborn, J Stuart; Tunney, Michael M; O'Neill, Philip; Rowan, Stephen; Martin, Susan; Bradley, Judy M

    2018-03-01

    The development of multiple breath washout (MBW) testing in respiratory disease highlights the need for increased awareness amongst respiratory physiotherapists and a potential opportunity for professional development in the use of an important outcome measure for clinical trials. To rationalise how MBW may be a useful assessment tool for respiratory physiotherapists and to describe a local MBW training and certification programme for physiotherapists. The respiratory Multidisciplinary Team in the Belfast Health and Social Care Trust (BHSCT) identified a need for MBW testing to be available to facilitate clinical research and assessment. A 2day training programme consisting of prereading preparation, self-directed learning, theory presentations, practical demonstrations and hands-on practice was developed and delivered. All participants underwent a certification process. We have demonstrated the successful training and certification of clinical and research physiotherapists and encourage other respiratory physiotherapists to consider MBW test training. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  13. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-15

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers.

  14. 13C Methacetin Breath Test for Assessment of Microsomal Liver Function: Methodology and Clinical Application.

    PubMed

    Gorowska-Kowolik, Katarzyna; Chobot, Agata; Kwiecien, Jaroslaw

    2017-01-01

    Assessment of the liver function, and the need of constant monitoring of the organ's capacity, concerns not only patients with primary liver diseases, but also those at risk of hepatopathies secondary to other chronic diseases. Most commonly, the diagnostics is based on measurements of static biochemical parameters, which allow us to draw conclusions only indirectly about the function and the degree of damage of the organ. On the other hand, liver biopsy is an invasive procedure and therefore it is associated with a considerable risk of complications. Dynamic tests enable us to assess quantitatively the organ's functional reserve by analyzing the kinetics of the metabolization of the substrate by the liver. In practice applied are breath tests using substances such as aminopyrine, caffeine, methacetin, erythromycin (for assessment of the microsomal function); phenylalanine, galactose (for assessment of the cytosolic function); methionine, octanoate, ketoisocaproic acid (for assessment of the mitochondrial function). The test with 13 C methacetin belongs to the best described and most widely applied methods in noninvasive liver function assessment. Due to the rising availability of this method, knowledge concerning its limitations and controversies regarding the methodology, as well as its usefulness in chosen groups of patients, seems to be vital.

  15. Diagnostic accuracy of the 14C-urea breath test in Helicobacter pylori infections: a meta-analysis.

    PubMed

    Zhou, Qiaohui; Li, Ling; Ai, Yaowei; Pan, Zhihong; Guo, Mingwen; Han, Jingbo

    2017-01-01

    To summarize and appraise the available literature regarding the use of the 14 C-urea breath test in the diagnosis of Helicobacter pylori infections in adult patients with dyspepsia and to calculate pooled diagnostic accuracy measures. We systematically searched the PubMed, EMBASE, Cochrane Library, Chinese Journals Full-text (CNKI) and CBMDisc databases to identify published data regarding the sensitivity, specificity, and other measures of diagnostic accuracy of the 14 C-urea breath test in the diagnosis of Helicobacter pylori infections in adult patients with dyspeptic symptoms. Risk of bias was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies)-2 tool. Statistical analyses were performed using Meta-Disc 1.4 software and STATA. Eighteen studies met the inclusion criteria. Pooled results indicated that the  14 C-urea breath test showed a diagnostic sensitivity of 0.96 (95% CI 0.95 to 0.96) and specificity of 0.93 (95% CI 0.91 to 0.94). The positive like ratio (PLR) was 12.27 (95% CI 8.17 to 18.44), the negative like ratio (NLR) was 0.05 (95% CI 0.04 to 0.07), and the area under the curve was 0.985. The DOR was 294.95 (95% CI 178.37 to 487.70). The 14 C-urea breath test showed sufficient sensitivity and specificity for diagnosing Helicobacter pylori infection, but unexplained heterogeneity after meta-regression and several subgroup analyses remained. The UBT has high accuracy for diagnosing H. pylori infections in adult patients with dyspepsia. However, the reliability of these diagnostic meta-analytic estimates is limited by significant heterogeneity due to unknown factors.

  16. A study of characteristics of a reliable and practical breath alcohol screening test. Part A

    DOT National Transportation Integrated Search

    1975-08-01

    The objectives of this study were (1) to investigate several commercially available breath-alcohol screening test devices of the length-of-stain type, under standardized laboratory conditions, with respect to their ability satisfactorily to detect an...

  17. Comparison of the analytical capabilities of the BAC Datamaster and Datamaster DMT forensic breath testing devices.

    PubMed

    Glinn, Michele; Adatsi, Felix; Curtis, Perry

    2011-11-01

    The State of Michigan uses the Datamaster as an evidential breath testing device. The newest version, the DMT, will replace current instruments in the field as they are retired from service. The Michigan State Police conducted comparison studies to test the analytical properties of the new instrument and to evaluate its response to conditions commonly cited in court defenses. The effects of mouth alcohol, objects in the mouth, and radiofrequency interference on paired samples from drinking subjects were assessed on the DMT. The effects of sample duration and chemical interferents were assessed on both instruments, using drinking subjects and wet-bath simulators, respectively. Our testing shows that Datamaster and DMT results are essentially identical; the DMT gave accurate readings as compared with measurements made using simulators containing standard ethanol solutions and that the DMT did not give falsely elevated breath alcohol results from any of the influences tested. © 2011 American Academy of Forensic Sciences.

  18. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  19. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  20. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability.

    PubMed

    Cummings, Kevin J; Frappell, Peter B

    2009-07-01

    The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability

  1. Deodorization of garlic breath volatiles by food and food components.

    PubMed

    Munch, Ryan; Barringer, Sheryl A

    2014-04-01

    The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®

  2. Cost-effectiveness of the Carbon-13 Urea Breath Test for the Detection of Helicobacter Pylori

    PubMed Central

    Masucci, L; Blackhouse, G; Goeree, R

    2013-01-01

    Objectives This analysis aimed to evaluate the cost-effectiveness of various testing strategies for Helicobacter pylori in patients with uninvestigated dyspepsia and to calculate the budgetary impact of these tests for the province of Ontario. Data Sources Data on the sensitivity and specificity were obtained from the clinical evidence-based analysis. Resource items were obtained from expert opinion, and costs were applied on the basis of published sources as well as expert opinion. Review Methods A decision analytic model was constructed to compare the costs and outcomes (false-positive results, false-negative results, and misdiagnoses avoided) of the carbon-13 (13C) urea breath test (UBT), enzyme-linked immunosorbent assay (ELISA) serology test, and a 2-step strategy of an ELISA serology test and a confirmatory 13C UBT based on the sensitivity and specificity of the tests and prevalence estimates. Results The 2-step strategy is more costly and more effective than the ELISA serology test and results in $210 per misdiagnosis case avoided. The 13C UBT is dominated by the 2-step strategy, i.e., it is more costly and less effective. The budget impact analysis indicates that it will cost $7.9 million more to test a volume of 129,307 patients with the 13C UBT than with ELISA serology, and $4.7 million more to test these patients with the 2-step strategy. Limitations The clinical studies that were pooled varied in the technique used to perform the breath test and in reference standards used to make comparisons with the breath test. However, these parameters were varied in a sensitivity analysis. The economic model was designed to consider intermediate outcomes only (i.e., misdiagnosed cases) and was not a complete model with final patient outcomes (e.g., quality-adjusted life years). Conclusions Results indicate that the 2-step strategy could be economically attractive for the testing of H. pylori. However, testing with the 2-step strategy will cost the Ministry of

  3. Citric acid urine test

    MedlinePlus

    Urine - citric acid test; Renal tubular acidosis - citric acid test; Kidney stones - citric acid test; Urolithiasis - citric acid test ... No special preparation is necessary for this test. But the results ... test is usually done while you are on a normal diet. Ask your ...

  4. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy.

    PubMed

    Muniz, Cinara Knychala; dos Santos, José Sebastião; Pfrimer, Karina; Ferrioli, Eduardo; Kemp, Rafael; Marchini, Júlio Sérgio; Cunha, Selma Freire

    2014-04-01

    This study aimed to compare the body composition, dietary intake and serum levels of vitamins and minerals, and exocrine pancreatic function in patients late after pancreaticoduodenectomy (PD) and healthy subjects. Fifteen patients (PD group) who had undergone PD over 1 year before the study and 15 health volunteers (control group) were included in the study. All volunteers underwent dietary intake evaluation, body composition, laboratory data, exocrine pancreatic function by elastase-1, and carbon (C )-labeled triglycerides in breath tests. The PD group subjects also underwent upper gastrointestinal endoscopy and small intestinal bacterial overgrowth analysis. Nutrient intake was adequate, and there were no differences in body mass index and mineral serum levels between the groups. The PD group showed lower serum levels of retinol, α-tocopherol, and ascorbic acid. Small intestinal bacterial overgrowth occurred in 39% of the patients. Fecal elastase-1 was lower in the PD group. The PD group had a higher C peak time; the cumulative label C recovery in 7 hours was similar in both groups. Fecal elastase-1 decreased, and the excretion of C in breath was similar to healthy controls. Although the data point toward an adaptation in the absorptive capacity of fats, A, C, and E hypovitaminosis indicate that some absorptive insufficiency persists late after PD.

  5. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.

    PubMed

    Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L

    2004-04-01

    The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.

  6. Does smoking abstinence influence distress tolerance? An experimental study comparing the response to a breath-holding test of smokers under tobacco withdrawal and under nicotine replacement therapy.

    PubMed

    Cosci, Fiammetta; Anna Aldi, Giulia; Nardi, Antonio Egidio

    2015-09-30

    Distress tolerance has been operationalized as task persistence in stressful behavioral laboratory tasks. According to the distress tolerance perspective, how an individual responds to discomfort/distress predicts early smoking lapses. This theory seems weakly supported by experimental studies since they are limited in number, show inconsistent results, do not include control conditions. We tested the response to a stressful task in smokers under abstinence and under no abstinence to verify if tobacco abstinence reduces task persistence, thus distress tolerance. A placebo-controlled, double-blind, randomized, cross-over design was used. Twenty smokers underwent a breath holding test after the administration of nicotine on one test day and a placebo on another test day. Physiological and psychological variables were assessed at baseline and directly before and after each challenge. Abstinence induced a statistically significant shorter breath holding duration relative to the nicotine condition. No different response to the breath holding test was observed when nicotine and placebo conditions were compared. No response to the breath holding test was found when pre- and post-test values of heart rate, blood pressure, Visual Analogue Scale for fear or discomfort were compared. In brief, tobacco abstinence reduces breath holding duration but breath holding test does not influence discomfort. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions.

    PubMed

    Xu, Z-q; Broza, Y Y; Ionsecu, R; Tisch, U; Ding, L; Liu, H; Song, Q; Pan, Y-y; Xiong, F-x; Gu, K-s; Sun, G-p; Chen, Z-d; Leja, M; Haick, H

    2013-03-05

    Upper digestive endoscopy with biopsy and histopathological evaluation of the biopsy material is the standard method for diagnosing gastric cancer (GC). However, this procedure may not be widely available for screening in the developing world, whereas in developed countries endoscopy is frequently used without major clinical gain. There is a high demand for a simple and non-invasive test for selecting the individuals at increased risk that should undergo the endoscopic examination. Here, we studied the feasibility of a nanomaterial-based breath test for identifying GC among patients with gastric complaints. Alveolar exhaled breath samples from 130 patients with gastric complaints (37 GC/32 ulcers / 61 less severe conditions) that underwent endoscopy/biopsy were analyzed using nanomaterial-based sensors. Predictive models were built employing discriminant factor analysis (DFA) pattern recognition, and their stability against possible confounding factors (alcohol/tobacco consumption; Helicobacter pylori) was tested. Classification success was determined (i) using leave-one-out cross-validation and (ii) by randomly blinding 25% of the samples as a validation set. Complementary chemical analysis of the breath samples was performed using gas chromatography coupled with mass spectrometry. Three DFA models were developed that achieved excellent discrimination between the subpopulations: (i) GC vs benign gastric conditions, among all the patients (89% sensitivity; 90% specificity); (ii) early stage GC (I and II) vs late stage (III and IV), among GC patients (89% sensitivity; 94% specificity); and (iii) ulcer vs less severe, among benign conditions (84% sensitivity; 87% specificity). The models were insensitive against the tested confounding factors. Chemical analysis found that five volatile organic compounds (2-propenenitrile, 2-butoxy-ethanol, furfural, 6-methyl-5-hepten-2-one and isoprene) were significantly elevated in patients with GC and/or peptic ulcer, as compared

  8. 32 CFR 634.37 - Voluntary breath and bodily fluid testing based on implied consent.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.37 Voluntary breath and bodily fluid testing based on implied consent... the person was driving under the influence of alcohol or drugs. (3) A request was made to the person...

  9. 32 CFR 634.37 - Voluntary breath and bodily fluid testing based on implied consent.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.37 Voluntary breath and bodily fluid testing based on implied consent... the person was driving under the influence of alcohol or drugs. (3) A request was made to the person...

  10. Sensing the effects of mouth breathing by using 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  11. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  12. Random breath testing in Australia: getting it to work according to specifications.

    PubMed

    Homel, R

    1993-01-01

    After reading the deterrence literature, particularly the work of H. Laurence Ross, I concluded in the late 1970's that many road accidents could be prevented through the wholehearted implementation of random breath testing (RBT). RBT is a system of drink-drive law enforcement which aims to increase the perceived likelihood of apprehension through the use of mass breath testing techniques at roadblocks which are highly visible, are unpredictable in their locations and give the impression of ubiquity. As the result of public pressure, RBT was introduced in NSW in December 1982, with spectacular results. The law was intensively enforced and extensively advertised, partly due to the advocacy of researchers such as myself, but also because ther was an acute political need for instant results. Since RBT is a difficult enforcement technique for police to sustain in effective form, researchers must strive to improve their understanding of what works, and remain in close contact with police, policy makers and politicians. Although this process is costly in terms of time and, possibly, academic 'pay-off', it is essential if the fragile understanding of deterrence principles amongst these groups is not to lead to superficially attractive, but probably ineffective techniques such as low visibility mobile RBT.

  13. Breath measurement instrumentation as alcohol safety interlock systems

    DOT National Transportation Integrated Search

    1974-09-01

    This report describes the results of field tests of in-car instruments which measure alcohol on the driver's breath and prevent him from operating his vehicle if intoxicated. Two types of breath alcohol sensors were used for these tests; a fuel-cell ...

  14. NASA firefighters breathing system program report

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  15. A comparison of blood alcohol levels as determined by breath and blood tests taken in actual field operations.

    DOT National Transportation Integrated Search

    1972-01-01

    During its 1972 session, the General Assembly of Virginia enacted Senate Bill 104, which authorizes the breath test, as well as the blood test used previously, as a proper chemical test to determine the alcoholic content of the blood. Any person arre...

  16. A breath test for malignant mesothelioma using an electronic nose.

    PubMed

    Chapman, Eleanor A; Thomas, Paul S; Stone, Emily; Lewis, Craig; Yates, Deborah H

    2012-08-01

    Malignant mesothelioma (MM) is a rare tumour which is difficult to diagnose in its early stages. Earlier detection of MM could potentially improve survival. Exhaled breath sampling of volatile organic compounds (VOCs) using a carbon polymer array (CPA) electronic nose recognises specific breath profiles characteristic of different diseases, and can distinguish between patients with lung cancer and controls. With MM, the potential confounding effect of other asbestos-related diseases (ARDs) needs to be considered. We hypothesised that as CPA electronic nose would distinguish patients with MM, patients with benign ARDs, and controls with high sensitivity and specificity. 20 MM, 18 ARD and 42 control subjects participated in a cross-sectional, case-control study. Breath samples were analysed using the Cyranose 320 (Smiths Detection, Pasadena, CA, USA), using canonical discriminant analysis and principal component reduction. 10 MM subjects created the training set. Smell prints from 10 new MM patients were distinguished from control subjects with an accuracy of 95%. Patients with MM, ARDs and control subjects were correctly identified in 88% of cases. Exhaled breath VOC profiling can accurately distinguish between patients with MM, ARDs and controls using a CPA electronic nose. This could eventually translate into a screening tool for high-risk populations.

  17. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Astrophysics Data System (ADS)

    Mehta, U.

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  18. An optimized 13C-urea breath test for the diagnosis of H pylori infection

    PubMed Central

    Campuzano-Maya, Germán

    2007-01-01

    AIM: To validate an optimized 13C-urea breath test (13C-UBT) protocol for the diagnosis of H pylori infection that is cost-efficient and maintains excellent diagnostic accuracy. METHODS: 70 healthy volunteers were tested with two simplified 13C-UBT protocols, with test meal (Protocol 2) and without test meal (Protocol 1). Breath samples were collected at 10, 20 and 30 min after ingestion of 50 mg 13C-urea dissolved in 10 mL of water, taken as a single swallow, followed by 200 mL of water (pH 6.0) and a circular motion around the waistline to homogenize the urea solution. Performance of both protocols was analyzed at various cut-off values. Results were validated against the European protocol. RESULTS: According to the reference protocol, 65.7% individuals were positive for H pylori infection and 34.3% were negative. There were no significant differences in the ability of both protocols to correctly identify positive and negative H pylori individuals. However, only Protocol 1 with no test meal achieved accuracy, sensitivity, specificity, positive and negative predictive values of 100%. The highest values achieved by Protocol 2 were 98.57%, 97.83%, 100%, 100% and 100%, respectively. CONCLUSION: A 10 min, 50 mg 13C-UBT with no test meal using a cut-off value of 2-2.5 is a highly accurate test for the diagnosis of H pylori infection at a reduced cost. PMID:17907288

  19. Exhaled breath analysis for lung cancer

    PubMed Central

    Sutedja, Tom G.; Zimmerman, Paul V.

    2013-01-01

    Early diagnosis of lung cancer results in improved survival compared to diagnosis with more advanced disease. Early disease is not reliably indicated by symptoms. Because investigations such as bronchoscopy and needle biopsy have associated risks and substantial costs, they are not suitable for population screening. Hence new easily applicable tests, which can be used to screen individuals at risk, are required. Biomarker testing in exhaled breath samples is a simple, relatively inexpensive, non-invasive approach. Exhaled breath contains volatile and non-volatile organic compounds produced as end-products of metabolic processes and the composition of such compounds varies between healthy subjects and subjects with lung cancer. Many studies have analysed the patterns of these compounds in exhaled breath. In addition studies have also reported that the exhaled breath condensate (EBC) can reveal gene mutations or DNA abnormalities in patients with lung cancer. This review has summarised the scientific evidence demonstrating that lung cancer has distinct chemical profiles in exhaled breath and characteristic genetic changes in EBC. It is not yet possible to accurately identify individuals with lung cancer in at risk populations by any of these techniques. However, analysis of both volatile organic compounds in exhaled breath and of EBC have great potential to become clinically useful diagnostic and screening tools for early stage lung cancer detection. PMID:24163746

  20. 13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.

    PubMed

    Robayo-Torres, Claudia C; Diaz-Sotomayor, Marisela; Hamaker, Bruce R; Baker, Susan S; Chumpitazi, Bruno P; Opekun, Antone R; Nichols, Buford L

    2018-06-01

    Human starch digestion is a multienzyme process involving 6 different enzymes: salivary and pancreatic α-amylase; sucrase and isomaltase (from sucrose-isomaltase [SI]), and maltase and glucoamylase (from maltase-glucoamylase [MGAM]). Together these enzymes cleave starch to smaller molecules ultimately resulting in the absorbable monosaccharide glucose. Approximately 80% of all mucosal maltase activity is accounted for by SI and the reminder by MGAM. Clinical studies suggest that starch may be poorly digested in those with congenital sucrase-isomaltase deficiency (CSID). Poor starch digestion occurs in individuals with CSID and can be documented using a noninvasive C-breath test (BT). C-Labled starch was used as a test BT substrate in children with CSID. Sucrase deficiency was previously documented in study subjects by both duodenal biopsy enzyme assays and C-sucrose BT. Breath CO2 was quantitated at intervals before and after serial C-substrate loads (glucose followed 75 minutes later by starch). Variations in metabolism were normalized against C-glucose BT (coefficient of glucose absorption). Control subjects consisted of healthy family members and a group of children with functional abdominal pain with biopsy-proven sucrase sufficiency. Children with CSID had a significant reduction of C-starch digestion mirroring that of their duodenal sucrase and maltase activity and C-sucrase BT. In children with CSID, starch digestion may be impaired. In children with CSID, starch digestion correlates well with measures of sucrase activity.

  1. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults.

    PubMed

    Jones, Mandy; Harvey, Alex; Marston, Louise; O'Connell, Neil E

    2013-05-31

    Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tremor and paraesthesia. DB/HVS has an estimated prevalence of 9.5% in the general adult population, however, there is little consensus regarding the most effective management of this patient group. (1) To determine whether breathing exercises in patients with DB/HVS have beneficial effects as measured by quality of life indices (2) To determine whether there are any adverse effects of breathing exercises in patients with DB/HVS SEARCH METHODS: We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE, EMBASE, and four other databases. The latest search was in February 2013. We planned to include randomised, quasi-randomised or cluster randomised controlled trials (RCTs) in which breathing exercises, or a combined intervention including breathing exercises as a key component, were compared with either no treatment or another therapy that did not include breathing exercises in patients with DB/HVS. Observational studies, case studies and studies utilising a cross-over design were not eligible for inclusion.We considered any type of breathing exercise for inclusion in this review, such as breathing control, diaphragmatic breathing, yoga breathing, Buteyko breathing, biofeedback-guided breathing modification, yawn/sigh suppression. Programs where exercises were either supervised or unsupervised were eligible as were relaxation techniques and acute-episode management, as long as it was clear that breathing exercises were a key component of the intervention.We excluded any intervention without breathing exercises or

  2. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests

    PubMed Central

    Kijima, Sho; Tanaka, Hideki

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats. PMID:27483133

  3. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests.

    PubMed

    Kawagoe, Naoyuki; Kano, Osamu; Kijima, Sho; Tanaka, Hideki; Takayanagi, Masaaki; Urita, Yoshihisa

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6-12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22-25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats.

  4. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment.

    PubMed

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1 st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari ; on the 2 nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days ( P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA ( P < 0.05), but the increase in the score after Bhramari was not significant. Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.

  5. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment

    PubMed Central

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Context: Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). Aim: This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. Methods: This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari; on the 2nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. Results: The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days (P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA (P < 0.05), but the increase in the score after Bhramari was not significant. Conclusions: Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied. PMID:29755219

  6. Gravitational independence of single-breath washout tests in recumbent dogs

    NASA Technical Reports Server (NTRS)

    Tomioka, Shinichi; Kubo, Susumu; Guy, Harold J. B.; Prisk, G. K.

    1988-01-01

    The effect of gravitational orientation in the mechanism of lung filling and emptying in dogs was examined by conducting simultaneously Ar-bolus and N2 single-breath washout tests (SBWTs) in 10 anesthetized dogs (prone and supine), with three of the dogs subjected to body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve. Combined resident gas and bolus SBWTs in recumbent dogs were found to be different from such tests in humans; in dogs, the regional distribution of ventilation was not primarily determined by gravity. The measurements did not make it possible to discern exact mechanisms of filling and emptying, but both processes appear to be related to lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.

  7. Quiet breathing in hindlimb casted mice.

    PubMed

    Receno, Candace N; Roffo, Katelynn E; Mickey, Marisa C; DeRuisseau, Keith C; DeRuisseau, Lara R

    2018-06-07

    The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Evaluation of innovative state and community alcohol projects : breath alcohol testing program effectiveness, impact and transferability

    DOT National Transportation Integrated Search

    1987-03-01

    Breath Alcohol Testing (BAT) programs in Albuquerque and Santa Fe, New Mexico are evaluated in regard to effectiveness, impact, and transferability of the special DWI enforcement squads and their use of BAT Mobiles. Squad activity effectiveness is me...

  9. Analysis of Exhaled Breath for Disease Detection

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  10. The Wagner-Nelson method can generate an accurate gastric emptying flow curve from CO2 data obtained by a 13C-labeled substrate breath test.

    PubMed

    Sanaka, Masaki; Yamamoto, Takatsugu; Ishii, Tarou; Kuyama, Yasushi

    2004-01-01

    In pharmacokinetics, the Wagner-Nelson (W-N) method can accurately estimate the rate of drug absorption from its urinary elimination rate. A stable isotope (13C) breath test attempts to estimate the rate of absorption of 13C, as an index of gastric emptying rate, from the rate of pulmonary elimination of 13CO2. The time-gastric emptying curve determined by the breath test is quite different from that determined by scintigraphy or ultrasonography. In this report, we have shown that the W-N method can adjust the difference. The W-N equation to estimate gastric emptying from breath data is as follows: the fractional cumulative amount of gastric contents emptied by time t = Abreath (t)/Abreath (infinity) + (1/0.65).d[Abreath (t)/Abreath (infinity) ]/dt, where Abreath (t) = the cumulative recovery of 13CO2 in breath by time t and Abreath ( infinity ) = the ultimate cumulative 13CO2 recovery. The emptying flow curve generated by ultrasonography was compared with that generated by the W-N method-adjusted breath test in 6 volunteers. The emptying curves by the W-N method were almost identical to those by ultrasound. The W-N method can generate an accurate emptying flow curve from 13CO2 data, and it can adjust the difference between ultrasonography and the breath test. Copyright 2004 S. Karger AG, Basel

  11. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  12. Comparison of an increased waist circumference with a positive hydrogen breath test as a clinical predictor of lactose intolerance.

    PubMed

    Zapata-Castilleja, Carlos A; Montes-Tapia, Fernando F; Treviño-Garza, Consuelo; Martínez-Cobos, María C; García-Cantú, Jesús; Arenas-Fabbri, Vincenzo; de la O-Escamilla, Norma; de la O-Cavazos, Manuel

    2017-04-01

    Lactose intolerance is a common disease in pediatrics, and its wrong diagnosis will lead to morbidity. The primary objective of this study was to assess the usefulness of an increased waist circumference during the hydrogen breath test as a predictor of lactose intolerance. The secondary objective was to analyze the impact of body mass index, waist circumference measurement, and age on the abdominal distension of patients with lactose intolerance. A total of 138 subjects aged 3 to 15 years were included. They underwent serial measurements of the waist circumference and hydrogen levels in the breath every 30 minutes over 3 hours during the hydrogen breath test. Out of the entire sample, 35 (25.4%) patients had lactose intolerance. An increase of 0.85 cm in waist circumference compared to the baseline waist circumference results in a sensitivity of 88% and a specificity of 85% to predict lactose intolerance (odds ratio: 42.14, 95% confidence interval: 13.08-135.75, p ≤ 0.001). The body mass index and waist circumference measurement did not affect abdominal distension (p= not significant); however, age modified the time of distension. A 0.85 cm increase in waist circumference compared to the baseline waist circumference during the hydrogen breath test is a useful parameter for the diagnosis of lactose intolerance in pediatrics. Variations in relation to body mass index and waist circumference did not affect the usefulness of an increased waist circumference, unlike age.

  13. GABAergic Neurotransmission in the Pontine Reticular Formation Modulates Hypnosis, Immobility, and Breathing during Isoflurane Anesthesia

    PubMed Central

    Vanini, Giancarlo; Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2009-01-01

    Background Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that: 1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and 2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. Methods To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer’s (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Results Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane co-varied with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Conclusion Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate. PMID:19034094

  14. Simplified 13C-urea breath test with a new infrared spectrometer for diagnosis of Helicobacter pylori infection.

    PubMed

    Chen, Tseng-Shing; Chang, Full-Young; Chen, Pang-Chi; Huang, Thomas W; Ou, Jonathan T; Tsai, Ming-Hung; Wu, Ming-Shiang; Lin, Jaw-Town

    2003-11-01

    Infrared spectrometry has correlated excellently with mass spectrometry in detecting the ratio of 13CO(2) to 12CO(2) in breath samples. The present study aimed to evaluate the accuracy of the 13C-urea breath test (13C-UBT) using a new model of infrared analyzer. A total of 600 patients who were undergoing upper endoscopy without receiving eradication therapy were entered into the study. Culture, histology, and rapid urease test on biopsies from the antrum and corpus of the stomach were used for the determination of Helicobacter pylori infection. Breath samples were collected before and 20 min after drinking 100 mg 13C-urea in 100 mL water. The optimal cutoff value was determined by the receiver operating characteristic curve. Of the 586 patients who were eligible for analysis, 369 were positive for H. pylori infection, 185 were negative for H. pylori infection, and 32 were indeterminate. When the appropriate cutoff value was set at 3.5 per thousand, a sensitivity of 97.8%, a specificity of 96.8% and an accuracy of 97.5% were obtained using the 13C-UBT. The accuracy of the 13C-UBT decreased when CO(2) concentration in the breath sample was <2%, as compared with > or = 2% (93.6%vs 97.7%), mainly because of a decrease in specificity (81.8%vs 97.7%). There were 2.7% of patients with Delta13CO(2) values that fell between 3.0-4.5 per thousand, in whom the risk of error was 47%. The 13C-UBT performed with infrared spectrometry is a highly sensitive, specific, and non-invasive method for the detection of H. pylori infection. The immediate availability of the test result and technical simplicity make it particularly effective in routine clinical practice.

  15. 13C-breath tests for sucrose digestion in congenital sucrase isomaltase-deficient and sacrosidase-supplemented patients

    USDA-ARS?s Scientific Manuscript database

    Congenital sucrase-isomaltase deficiency (CSID) is characterized by absence or deficiency of the mucosal sucrase-isomaltase enzyme. Specific diagnosis requires upper gastrointestinal biopsy with evidence of low to absent sucrase enzyme activity and normal histology. The hydrogen breath test (BT) is ...

  16. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    PubMed

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Tidal volume single breath washout of two tracer gases--a practical and promising lung function test.

    PubMed

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-03-10

    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.

  18. Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    PubMed Central

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-01-01

    Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739

  19. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow the...

  20. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow the...

  1. Breath-collection device for delayed breath-alcohol analysis

    DOT National Transportation Integrated Search

    1980-12-01

    The report includes the details of a study to develop, evaluate, and validate a breath collection device (BCD) for delayed breath-alcohol analysis. Primary applications of the BCD include collection of breath-alcohol samples for field surveys or for ...

  2. Clinical research on liver reserve function by 13C-phenylalanine breath test in aged patients with chronic liver diseases

    PubMed Central

    2010-01-01

    Background The objective of this study was to investigate whether the 13C-phenylalanine breath test could be useful for the evaluation of hepatic function in elderly volunteers and patients with chronic hepatitis B and liver cirrhosis. Methods L-[1-13C] phenylalanine was administered orally at a dose of 100 mg to 55 elderly patients with liver cirrhosis, 30 patients with chronic hepatitis B and 38 elderly healthy subjects. The breath test was performed at 8 different time points (0, 10, 20, 30, 45, 60, 90, 120 min) to obtain the values of Delta over baseline, percentage 13CO2 exhalation rate and cumulative excretion (Cum). The relationships of the cumulative excretion with the 13C-%dose/h and blood biochemical parameters were investigated. Results The 13C-%dose/h at 20 min and 30 min combined with the cumulative excretion at 60 min and 120 min correlated with hepatic function tests, serum albumin, hemoglobin, platelet and Child-Pugh score. Prothrombin time, total and direct bilirubin were significantly increased, while serum albumin, hemoglobin and platelet, the cumulative excretion at 60 min and 120 min values decreased by degrees of intensity of the disease in Child-Pugh A, B, and C patients (P < 0.01). Conclusions The 13C-phenylalanine breath test can be used as a non-invasive assay to evaluate hepatic function in elderly patients with liver cirrhosis. The 13C-%dose/h at 20 min, at 30 min and cumulative excretion at 60 min may be the key value for determination at a single time-point. 13C-phenylalanine breath test is safe and helpful in distinguishing different stages of hepatic dysfunction for elderly cirrhosis patients. PMID:20459849

  3. A comparison between lactose breath test and quick test on duodenal biopsies for diagnosing lactase deficiency in patients with self-reported lactose intolerance.

    PubMed

    Furnari, Manuele; Bonfanti, Daria; Parodi, Andrea; Franzè, Jolanda; Savarino, Edoardo; Bruzzone, Luca; Moscatelli, Alessandro; Di Mario, Francesco; Dulbecco, Pietro; Savarino, Vincenzo

    2013-02-01

    A lactose breath test (LBT) is usually used to diagnose lactase deficiency, and a lactose quick test (LQT) has been proposed as a new test on duodenal biopsies to detect this disorder. We aimed to assess the diagnostic accuracy of LBT and LQT and their ability to predict the clinical response to a lactose-free diet in patients with self-reported lactose intolerance. Fifty-five patients (age 47 ± 14 y; M/F 15/36) underwent upper gastrointestinal endoscopy and 25g-LBT. Two duodenal biopsies were taken to determine lactase deficiency (normal, mild, or severe) by LQT and to rule out other causes of secondary lactose malabsorption. Patients with a positive LBT and normal LQT also underwent a glucose breath test to exclude small intestinal bacterial overgrowth as a cause of the former result. The severity of gastrointestinal symptoms was measured with a GSS questionnaire, under basal condition and 1 month after a lactose-free diet. Lactose malabsorption was detected in 31/51 patients with LBT and in 37/51 patients with LQT (P = NS). Celiac disease was found in 2 patients. Two LBT+ patients showed a positive glucose breath test for small intestinal bacterial overgrowth. Eight patients had a mild hypolactasia by LQT and a negative LBT, but they had a significant improvement of symptoms after diet. LQT and LBT were concordant in 83% of cases and predicted the response to a lactose-free diet in 98% and 81% of the cases, respectively (P = 0.03). LQT is as sensitive as LBT in detecting lactase deficiency; however, it seems to be more accurate than LBT in predicting the clinical response to a lactose-free diet.

  4. Performance of the 13C-urea breath test for the diagnosis of H. pylori infection using a substrate synthesized in Brazil: A preliminary study.

    PubMed

    Coelho, Luiz Gonzaga; Sant'Ana, Carlos Roberto; Oliveira, Ricardo Brandt de; Cezar, Raíra César E; Araujo, Aline Cordeiro Campos de; Silva, Raisa Cristina Teodoro da; Trindade, Osmar Reni; Coelho, Maria Clara; Ferrioli, Eduardo; Bendassolli, José Albertino

    2018-06-07

    The 13C-urea breath test is the main non-invasive test for the diagnosis of Helicobacter pylori infection. The availability of this test throughout the country is limited, mainly due to the difficulty in obtaining the labeled isotope from abroad. Recently, researchers from the Nuclear Energy Center in Agriculture at the University of São Paulo (CENA/USP) succeeded in synthesizing 13C-enriched urea for Helicobacter pylori diagnosis. The aim of the study was to compare the performance of the 13C-urea breath test using 13C-urea acquired abroad with that of a test using 13C-urea synthesized in Brazil. Sixty-four dyspeptic patients participated in the study (24 men and 40 women). Initially, the patients performed the 13C-urea breath test using the imported substrate (Euriso-Top, France). Seven to fourteen days later, all the patients repeated the test using the Brazilian substrate. The samples from both examinations were processed in an infrared isotope analyzer (IRIS, Wagner Analisen Technik, Germany), and all delta over baseline (DOB) [%] values above four were considered positive results. Twenty-seven patients (42%) exhibited negative results for Helicobacter pylori infection, and thirty-seven patients (58%) exhibited positive results when tested using the foreign substrate (gold standard). There was a 100% concordance regarding the presence or absence of infection when the gold standard results were compared with those obtained using the Brazilian substrate. Similar performance in the diagnosis of Helicobacter pylori infection was demonstrated when using the 13C-urea breath test with the Brazilian 13C-urea substrate and the test with the substrate produced abroad. This validation represents an important step toward increasing the availability of the 13C-urea breath test throughout the country, which will have a positive influence on the management of Helicobacter pylori infection.

  5. Gastric emptying and related symptoms in patients treated with buspirone, amitriptyline or clebopride: a "real world" study by 13C-octanoic Acid Breath Test.

    PubMed

    Caviglia, Gian P; Sguazzini, Carlo; Cisarò, Fabio; Ribaldone, Davide G; Rosso, Chiara; Fagoonee, Sharmila; Smedile, Antonina; Saracco, Giorgio M; Astegiano, Marco; Pellicano, Rinaldo

    2017-12-01

    Gastric motility is a key-factor in the pathogenesis of functional dyspepsia (FD). 13C-octanoic Acid Breath Test (OBT) is a tool used for measuring gastric emptying time in clinical setting. We aimed to investigate the variation in FD symptoms and OBT parameters after treatment with buspirone, amitriptyline or clebopride. Between Jan-2007 and Dec-2014, we enrolled 59 patients with FD unresponsive to first-line therapy with proton pump inhibitors and/or domperidone that underwent OBT before and after 3 months of buspirone (N.=32), amitriptyline (N.=16) or clebopride (N.=11) treatment. Early satiation severity was positively correlated with gastric half emptying time (t1/2) (r=0.3789, P=0.003) and gastric lag phase (r=0.3371, P=0.011), and negatively correlated with gastric emptying coefficient (r=-0.3231, P=0.015). A reduction in t1/2 measurement in association to postprandial fullness, and early satiation severity improvement was observed (P=0.009, P=0.005 and P<0.001, respectively). Patients treated with buspirone obtained both a decrease in t1/2 (P=0.005) and an amelioration in early satiation (P=0.001). Patients under amitriptyline treatment experienced an improvement in postprandial fullness (P=0.046), whereas no variation was reported in patients treated with clebopride. Patients with FD, non-responders to first-line therapy and reporting meal-related discomfort, may benefit from buspirone or amitriptyline-based therapies.

  6. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of asthma...

  7. 13C-Breath Tests for Sucrose Digestion in Congenital Sucrase Isomaltase Deficient and Sacrosidase Supplemented Patients

    PubMed Central

    Robayo-Torres, Claudia C.; Opekun, Antone R.; Quezada-Calvillo, Roberto; Xavier, Villa; Smith, E. O’Brian; Navarrete, Marilyn; Baker, S. Susan; Nichols, Buford L

    2008-01-01

    Congenital sucrase-isomaltase deficiency (CSID) is characterized by absence or deficiency of the mucosal sucrase-isomaltase enzyme. Specific diagnosis requires upper gastrointestinal biopsy with evidence of low to absent sucrase enzyme activity and normal histology. The hydrogen breath test (BT) is useful but is not specific for confirmation of CSID. We investigated a more specific 13C-sucrose labeled BT. Objectives were to determine if CSID can be detected with the 13C-sucrose BT without duodenal biopsy sucrase assay and if the 13C-sucrose BT can document restoration of sucrose digestion by CSID patients after oral supplementation with sacrosidase (Sucraid®). Methods Ten CSID patients were diagnosed by low biopsy sucrase activity. Ten controls were children who underwent endoscopy and biopsy because of dyspepsia or chronic diarrhea with normal mucosal enzymes activity and histology. Uniformly-labeled 13C-glucose and 13C-sucrose loads were orally administered. 13CO2 breath enrichments were assayed using an infrared spectrophotometer. In CSID patients the 13C-sucrose load was repeated adding Sucraid®. Sucrose digestion and oxidation were calculated as a mean % coefficient of glucose oxidation (% CGO) averaged between 30 and 90 minutes. Results Classification of patients by 13C-sucrose BT % CGO agreed with biopsy sucrase activity. The breath test also documented the return to normal of sucrose digestion and oxidation after supplementation of CSID patients with Sucraid®. Conclusion 13C-sucrose BT is an accurate and specific non-invasive confirmatory test for CSID and for enzyme replacement management. PMID:19330928

  8. How to breathe when you are short of breath

    MedlinePlus

    ... pursed lip breathing; Hypoxia - pursed lip breathing; Chronic respiratory failure - pursed lip breathing ... et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  9. Fourier-transformed infrared breath testing after ingestion of technical alcohol.

    PubMed

    Laakso, Olli; Haapala, Matti; Pennanen, Teemu; Kuitunen, Tapio; Himberg, Jaakko-Juhani

    2007-07-01

    The study aim was to evaluate the feasibility of a Fourier-transformed infrared (FT-IR) analyzer for out-of-laboratory use by screening the exhalations of inebriated individuals, and to determine analysis quality using common breath components and solvents. Each of the 35 inebriated participants gave an acceptable sample. Because of the metabolism of 2-propanol, the subjects exhaled high concentrations of acetone in addition to ethanol. Other volatile ingredients of technical ethanol products (methyl ethyl ketone, methyl isobutyl ketone, and 2-propanol) were also detected. The lower limits of quantification for the analyzed components ranged from 1.7 to 12 microg/L in simulated breath samples. The bias was +/-2% for ethanol and -11% for methanol. Within-day and between-day coefficients of variation were <1% for ethanol and <4% for methanol. The bias of ethanol and methanol analyses due to coexisting solvents ranged from -0.8 to +2.2% and from -5.6 to +2.9%, respectively. The FT-IR method proved suitable for use outside the laboratory and fulfilled the quality criteria for analysis of solvents in breath.

  10. [13C]Glucose Breath Testing Provides a Noninvasive Measure of Insulin Resistance: Calibration Analyses Against Clamp Studies

    PubMed Central

    Hussain, Maysa; Jangorbhani, Morteza; Schuette, Sally; Considine, Robert V.; Chisholm, Robin L.

    2014-01-01

    Abstract Background: Exhaled 13CO2 following ingestion of [13C]glucose with a standard oral glucose tolerance load correlates with blood glucose values but is determined by tissue glucose uptake. Therefore exhaled 13CO2 may also be a surrogate measure of the whole-body glucose disposal rate (GDR) measured by the gold standard hyperinsulinemic euglycemic clamp. Subjects and Methods: Subjects from across the glycemia range were studied on 2 consecutive days under fasting conditions. On Day 1, a 75-g oral glucose load spiked with [13C]glucose was administered. On Day 2, a hyperinsulinemic euglycemic clamp was performed. Correlations between breath parameters and clamp-derived GDR were evaluated, and calibration analyses were performed to evaluate the precision of breath parameter predictions of clamp measures. Results: Correlations of breath parameters with GDR and GDR per kilogram of fat-free mass (GDRffm) ranged from 0.54 to 0.61 and 0.54 to 0.66, respectively (all P<0.001). In calibration analyses the root mean square error for breath parameters predicting GDR and GDRffm ranged from 2.32 to 2.46 and from 3.23 to 3.51, respectively. Cross-validation prediction error (CVPE) estimates were 2.35–2.51 (GDR) and 3.29–3.57 (GDRffm). Prediction precision of breath enrichment at 180 min predicting GDR (CVPE=2.35) was superior to that for inverse insulin (2.68) and the Matsuda Index (2.51) but inferior to that for the log of homeostasis model assessment (2.21) and Quantitative Insulin Sensitivity Check Index (2.29) (all P<10−5). Similar patterns were seen for predictions of GDRffm. Conclusions: 13CO2 appearance in exhaled breath following a standard oral glucose load with added [13C]glucose provides a valid surrogate index of clamp-derived measures of whole-body insulin resistance, with good accuracy and precision. This noninvasive breath test-based approach can provide a useful measure of whole-body insulin resistance in physiologic and epidemiologic studies. PMID

  11. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  12. Afternoon serum-melatonin in sleep disordered breathing.

    PubMed

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  13. Exercise training improves breathing strategy and performance during the six-minute walk test in obese adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2014-08-15

    We aimed to examine ventilatory responses during the six-minute walk test in healthy-weight and obese adolescents before and after exercise training. Twenty obese adolescents (OB) (age: 14.5±1.7 years; BMI: 34.0±4.7kg·m(-2)) and 20 age and gender-matched healthy-weight adolescents (HW) (age: 15.5±1.5 years; BMI: 19.9±1.4kg·m(-2)) completed six-minute walk test during which breath-by-breath gas analysis and expiratory flow limitation (expFL) were measured. OB participated in a 12-week exercise-training program. Comparison between HW and OB participants showed lower distance achieved during the 6MWT in OB (-111.0m, 95%CI: -160.1 to 62.0, p<0.05) and exertional breathlessness was greater (+0.78 a.u., 95%CI: 0.091-3.27, p=0.039) when compared with HW. Obese adolescents breathed at lower lung volumes, as evidenced by lower end expiratory and end inspiratory lung volumes during exercise (p<0.05). Prevalence of expFL (8 OB vs 2 HW, p=0.028) and mean expFL (14.9±21.9 vs 5.32±14.6% VT, p=0.043, in OB and HW) were greater in OB. After exercise training, mean increase in the distance achieved during the 6MWT was 64.5 meters (95%CI: 28.1-100.9, p=0.014) and mean decrease in exertional breathlessness was 1.62 (95%CI: 0.47-2.71, p=0.05). Obese adolescents breathed at higher lung volumes, as evidenced by the increase in end inspiratory lung volume from rest to 6-min exercise (9.9±13.4 vs 20.0±13.6%TLC, p<0.05). Improved performance was associated with improved change in end inspiratory lung volume from rest to 6-min exercise (r=0.65, p=0.025). Our results suggest that exercise training can improve breathing strategy during submaximal exercise in obese adolescents and that this increase is associated with greater exercise performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Breath analysis in disease diagnosis: methodological considerations and applications.

    PubMed

    Lourenço, Célia; Turner, Claire

    2014-06-20

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  15. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    PubMed

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  16. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    PubMed Central

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P < 0.01) after fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs 0%, P = 0.002) and patients (40% vs 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P ≤ 0.01) to peak breath hydrogen excretion after fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life. PMID:18221251

  17. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    PubMed

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P < 0.01) after fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P < or = 0.01) to peak breath hydrogen excretion after fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  18. Normalizing CO2 in chronic hyperventilation by means of a novel breathing mask: a pilot study.

    PubMed

    Johansen, Troels; Jack, Sandy; Dahl, Ronald

    2013-10-01

    Chronic idiopathic hyperventilation (CIH) is a form of dysfunctional breathing that has proven hard to treat effectively. To perform a preliminary test of the hypothesis that by periodically inducing normocapnia over several weeks, it would be possible to raise the normal resting level of CO2 and achieve a reduction of symptoms. Six CIH patients were treated 2 h a day for 4 weeks with a novel breathing mask. The mask was used to induce normocapnia in these chronically hypocapnic patients. Capillary blood gases and acid/base parameters [capillary CO2 tension (PcapCO2 ), pH, and standard base excess (SBE)] were measured at baseline and once each week at least 3 h after mask use, as well as spirometric values, breath-holding tolerance and hyperventilation symptoms as per the Nijmegen Questionnaire (NQ). The mask treatment resulted in a significant increase of resting PcapCO2 (+0.45 kPa, P = 0.028), a moderate increase in SBE (+1.4 mEq/L, P = 0.035) and a small reduction in daily symptoms (-3.8 NQ units, P = 0.046). The effect was most pronounced in the first 2 weeks of treatment. By inducing normocapnia with the breathing mask 2 h a day for 4 weeks, the normal resting CO2 and acid/base levels in chronically hyperventilating patients were partially corrected, and symptoms were reduced. © 2013 John Wiley & Sons Ltd.

  19. Variability in the blood/breath alcohol ratio and implications for evidentiary purposes.

    PubMed

    Jaffe, Dena H; Siman-Tov, Maya; Gopher, Asher; Peleg, Kobi

    2013-09-01

    The breath analyzer is an indispensable tool for identifying alcohol levels among drivers. While numerous studies have shown high correlations between blood and breath alcohol concentrations, most are limited by the study design. This study seeks to assess this relationship by minimizing potential measurement bias, document time from alcohol consumption to testing, and adjusting for potential confounders. A blinded study was performed using conditions closely resembling those in the field. The Draeger 7110 MKIII IL breath analyzer was used to assess breath alcohol concentrations (BrAC). Participants were 61 healthy volunteers aged 21-37 years with body mass index ≤30 and no history of alcoholism. A total of 242 valid blood/breath tests were performed in four test sets. The study results showed a high correlation coefficient between BrAC and blood alcohol concentration (BAC) levels (r = 0.983) with high sensitivity (97%) and specificity (93%). This strong association between the breath analyzer and BAC persisted even after adjustment for various stages of alcohol absorption. These results illustrate the high diagnostic sensitivity of the breath analyzer in field-tested conditions. © 2013 American Academy of Forensic Sciences.

  20. Evaluation of portable breath test devices for screening suspected drunken drivers by police in Hennepin County, Minnesota

    DOT National Transportation Integrated Search

    1974-06-01

    This evaluation report examines use in the field of portable breath test (PBT) devices by police in Hennepin County, Minnesota. Thirteen Brog-Warner J2 and J2A-200 "ALERT" devices were deployed by seven enforcement agencies. This report is presented ...

  1. Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: a systematic review and meta-analysis

    PubMed Central

    El Shayeb, Mohamed; Topfer, Leigh-Ann; Stafinski, Tania; Pawluk, Lawrence; Menon, Devidas

    2014-01-01

    Background: Greater awareness of sleep-disordered breathing and rising obesity rates have fueled demand for sleep studies. Sleep testing using level 3 portable devices may expedite diagnosis and reduce the costs associated with level 1 in-laboratory polysomnography. We sought to assess the diagnostic accuracy of level 3 testing compared with level 1 testing and to identify the appropriate patient population for each test. Methods: We conducted a systematic review and meta-analysis of comparative studies of level 3 versus level 1 sleep tests in adults with suspected sleep-disordered breathing. We searched 3 research databases and grey literature sources for studies that reported on diagnostic accuracy parameters or disease management after diagnosis. Two reviewers screened the search results, selected potentially relevant studies and extracted data. We used a bivariate mixed-effects binary regression model to estimate summary diagnostic accuracy parameters. Results: We included 59 studies involving a total of 5026 evaluable patients (mostly patients suspected of having obstructive sleep apnea). Of these, 19 studies were included in the meta-analysis. The estimated area under the receiver operating characteristics curve was high, ranging between 0.85 and 0.99 across different levels of disease severity. Summary sensitivity ranged between 0.79 and 0.97, and summary specificity ranged between 0.60 and 0.93 across different apnea–hypopnea cut-offs. We saw no significant difference in the clinical management parameters between patients who underwent either test to receive their diagnosis. Interpretation: Level 3 portable devices showed good diagnostic performance compared with level 1 sleep tests in adult patients with a high pretest probability of moderate to severe obstructive sleep apnea and no unstable comorbidities. For patients suspected of having other types of sleep-disordered breathing or sleep disorders not related to breathing, level 1 testing remains the

  2. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing

    PubMed Central

    2015-01-01

    Background The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Methods Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. Results The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. Conclusion The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates. PMID:26192188

  3. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    PubMed Central

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline starch, containing 74% amylopectin. The effect of the extent of gelatinisation was studied by comparing extruded starch and crystalline starch. Finally, the possible inhibitory effect of adding wheat fibre to extruded starch on the hydrolysis rate was studied. The 13CO2 excretion from two to four hours after intake of crystalline starch was significantly lower than that of extruded starch. Waxy starch was hydrolysed much faster than high amylose starch, but there was no significant difference between waxy starch and normal crystalline starch. Addition of wheat fibre did not influence the hydrolysis rate. The 13CO2 starch breath test is an attractive test for the study of factors affecting carbohydrate assimilation. PMID:2107133

  4. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction.

    PubMed

    Delso, Gaspar; Khalighi, Mohammed; Ter Voert, Edwin; Barbosa, Felipe; Sekine, Tetsuro; Hüllner, Martin; Veit-Haibach, Patrick

    2017-01-01

    Purpose To evaluate the magnitude and anatomic extent of the artifacts introduced on positron emission tomographic (PET)/magnetic resonance (MR) images by respiratory state mismatch in the attenuation map. Materials and Methods The method was tested on 14 patients referred for an oncologic examination who underwent PET/MR imaging. The acquisition included standard PET and MR series for each patient, and an additional attenuation correction series was acquired by using breath hold. PET data were reconstructed with and without time-of-flight (TOF) information, first by using the standard free-breathing attenuation map and then again by using the additional breath-hold map. Two-tailed paired t testing and linear regression with 0 intercept was performed on TOF versus non-TOF and free-breathing versus breath-hold data for all detected lesions. Results Fluorodeoxyglucose-avid lesions were found in eight of the 14 patients included in the study. The uptake differences (maximum standardized uptake values) between PET reconstructions with free-breathing versus breath-hold attenuation ranged, for non-TOF reconstructions, from -18% to 26%. The corresponding TOF reconstructions yielded differences from -15% to 18%. Conclusion TOF information was shown to reduce the artifacts caused at PET/MR by respiratory mismatch between emission and attenuation data. © RSNA, 2016 Online supplemental material is available for this article.

  5. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    PubMed Central

    Lourenço, Célia; Turner, Claire

    2014-01-01

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037

  6. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... for testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  7. Use of warrants for breath test refusal : case studies

    DOT National Transportation Integrated Search

    2007-10-01

    This study investigated the use of warrants to obtain blood samples from drivers arrested for alcohol-impaired driving and who refuse to provide breath samples when requested to do so by law enforcement officers. Case studies were conducted in four S...

  8. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.

    PubMed

    Brauner, Colin J; Rombough, Peter J

    2012-12-01

    There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  10. The likelihood of acetone interference in breath alcohol measurement

    DOT National Transportation Integrated Search

    1985-09-01

    This report discusses the significance of possible interference of acetone in breath alcohol testing. The following dimensions were considered: 1) what levels of acetone concentration may appear on the breath; 2) what levels of acetone concentration ...

  11. Four-sample lactose hydrogen breath test for diagnosis of lactose malabsorption in irritable bowel syndrome patients with diarrhea

    PubMed Central

    Yang, Jian-Feng; Fox, Mark; Chu, Hua; Zheng, Xia; Long, Yan-Qin; Pohl, Daniel; Fried, Michael; Dai, Ning

    2015-01-01

    AIM: To validate 4-sample lactose hydrogen breath testing (4SLHBT) compared to standard 13-sample LHBT in the clinical setting. METHODS: Irritable bowel syndrome patients with diarrhea (IBS-D) and healthy volunteers (HVs) were enrolled and received a 10 g, 20 g, or 40 g dose lactose hydrogen breath test (LHBT) in a randomized, double-blinded, controlled trial. The lactase gene promoter region was sequenced. Breath samples and symptoms were acquired at baseline and every 15 min for 3 h (13 measurements). The detection rates of lactose malabsorption (LM) and lactose intolerance (LI) for a 4SLHBT that acquired four measurements at 0, 90, 120, and 180 min from the same data set were compared with the results of standard LHBT. RESULTS: Sixty IBS-D patients and 60 HVs were studied. The genotype in all participants was C/C-13910. LM and LI detection rates increased with lactose dose from 10 g, 20 g to 40 g in both groups (P < 0.001). 4SLHBT showed excellent diagnostic concordance with standard LHBT (97%-100%, Kappa​​ 0.815-0.942) with high sensitivity (90%-100%) and specificity (100%) at all three lactose doses in both groups. CONCLUSION: Reducing the number of measurements from 13 to 4 samples did not significantly impact on the accuracy of LHBT in health and IBS-D. 4SLHBT is a valid test for assessment of LM and LI in clinical practice. PMID:26140004

  12. Four-sample lactose hydrogen breath test for diagnosis of lactose malabsorption in irritable bowel syndrome patients with diarrhea.

    PubMed

    Yang, Jian-Feng; Fox, Mark; Chu, Hua; Zheng, Xia; Long, Yan-Qin; Pohl, Daniel; Fried, Michael; Dai, Ning

    2015-06-28

    To validate 4-sample lactose hydrogen breath testing (4SLHBT) compared to standard 13-sample LHBT in the clinical setting. Irritable bowel syndrome patients with diarrhea (IBS-D) and healthy volunteers (HVs) were enrolled and received a 10 g, 20 g, or 40 g dose lactose hydrogen breath test (LHBT) in a randomized, double-blinded, controlled trial. The lactase gene promoter region was sequenced. Breath samples and symptoms were acquired at baseline and every 15 min for 3 h (13 measurements). The detection rates of lactose malabsorption (LM) and lactose intolerance (LI) for a 4SLHBT that acquired four measurements at 0, 90, 120, and 180 min from the same data set were compared with the results of standard LHBT. Sixty IBS-D patients and 60 HVs were studied. The genotype in all participants was C/C-13910. LM and LI detection rates increased with lactose dose from 10 g, 20 g to 40 g in both groups (P < 0.001). 4SLHBT showed excellent diagnostic concordance with standard LHBT (97%-100%, Kappa​​ 0.815-0.942) with high sensitivity (90%-100%) and specificity (100%) at all three lactose doses in both groups. Reducing the number of measurements from 13 to 4 samples did not significantly impact on the accuracy of LHBT in health and IBS-D. 4SLHBT is a valid test for assessment of LM and LI in clinical practice.

  13. A chlorate candle/lithium hydroxide personal breathing apparatus

    NASA Technical Reports Server (NTRS)

    Martin, F. E.

    1972-01-01

    A portable coal mine rescue and survival equipment is reported that consists of a chlorate candle with a lithium hydroxide carbon-dioxide absorbent for oxygen generation, a breathing bag and tubing to conduct breathing to and from the man. A plastic hood incorporating a mouth piece for communication provides also eye protection and prevents inhalation through the nose. Manned testing of a prototype system demonstrated the feasibility of this closed circuit no-maintenance breathing apparatus that provides for good voice communication.

  14. [Breath alcohol test in construction sites in the Province of Belluno: a campaign in favour of health promotion and surveillance and against drinking].

    PubMed

    Marcolina, Daniela; De Marzo, Nicoletta; Riccio, Maria Teresa

    2011-01-01

    Health impairment due to alcohol use and abuse is well known, in terms of relationship with traffic accidents and work accidents. In Italy almost 10 per cent of accidents at work involve intoxicated people injuring themselves and innocent victims. Alcohol abuse is a factor involved in determining severe accidents in the construction industry and epidemiological studies demonstrated a relationship between an elevated alcohol use and severity of accidents. Since in the Province of Belluno alcohol consumption may be elevated also at work, the two Occupational Health Units (SPISAL) in the province organized a campaign of information and surveillance against alcohol consumption at work in the construction industry. This report shows the campaign results, mainly in terms of breath alcohol tests performed in construction workers. After an extensive information campaign we inspected 50 sites, where 105 construction companies were at work, and tested 294 workers by breath alcohol test. No-one refused the test. Only 2.7% construction workers were positive for the breath alcohol test, and the levels were not elevated. This study shows that the construction workers in Belluno Province are responsible drinkers and are well aware of the policy of prohibition of alcohol consumption at work.

  15. Positive or negative fructose breath test results do not predict response to fructose restricted diet in children with recurrent abdominal pain: results from a prospective randomized trial.

    PubMed

    Wirth, S; Klodt, C; Wintermeyer, P; Berrang, J; Hensel, K; Langer, T; Heusch, A

    2014-09-01

    To perform a prospective, blinded, randomized interventional trial in patients with recurrent abdominal pain. The primary endpoint was to determine the abdominal pain intensity after 2 weeks of fructose restricted diet. Secondary endpoints were changes of pain frequency and a secondary symptom score (SSS). 103 individuals with recurrent abdominal pain for more than 3 months were randomized. 51 patients were allocated to group A (diet) and 52 to group B (no diet). 2 weeks later the patients underwent hydrogen breath test and were assigned to the test positive or negative group to identify patients with fructose malabsorption. 2 weeks after intervention the pain score decreased significantly from a median 5.5 in group A to 4 and did not change significantly in group B (5.3 to 5). In group A both patients with positive and negative breath tests had a significant lower pain score (-2 and -1.75, respectively). Frequency of abdominal pain decreased in both groups but without significant difference, SSS improved only in group A from median 6 to 3.5. Positive breath test was no predicting factor, neither was abdominal pain during the test. Fructose restricted diet in children and adolescents with recurrent abdominal pain may be of benefit to improve both abdominal pain symptoms and other secondary symptoms. Since a negative breath test result does not exclude a positive response to fructose restriction, the hydrogen breath test does not seem to be the appropriate diagnostic mean to predict the response to the diet. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  17. Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler

    PubMed Central

    Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.

    2017-01-01

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639

  18. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume

  19. Estimation of gastric pH in cynomolgus monkeys, rats, and dogs using [(13)C]-calcium carbonate breath test.

    PubMed

    Tobita, Kazuki; Inada, Makoto; Sato, Asuka; Sudoh, Kimiyoshi; Sato, Hitoshi

    2016-09-01

    The determination of gastric pH is important for the confirmation of efficacy of anti-secretory drugs. However, current methods for measurement of gastric pH provide significant stress to animals and humans. The objective of this study is to establish an easy and reliable gastric pH measurement method by determining (13)CO2 concentration in expired air of monkeys, dogs, and rats after oral administration of Ca(13)CO3. A correlation of (13)CO2 concentration determined by a Ca(13)CO3 breath test with gastric pH just before Ca(13)CO3 administration was analyzed in the 3 animal species. The equations and contribution ratios of regression line were calculated from logarithmic (13)CO2 concentrations at 15min after administration of Ca(13)CO3 using the linear regression analysis. The (13)CO2 concentration in the Ca(13)CO3 breath test was well correlated with the gastric pH just before Ca(13)CO3 administration in the 3 animal species (r=-0.977 to -0.952). The equations of regression line between the (13)CO2 concentration and the gastric pH in each animal species showed good contribution ratios (R(2)≥0.89). The Ca(13)CO3 breath test is an informative tool to estimate gastric pH in animals and will be applicable as a new noninvasive tool for patients with GERD/PPI-resistant symptoms. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. Portable Breathing Assembly

    NASA Image and Video Library

    2017-06-12

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Jacobs Test and Operations Support Contract, or TOSC, technicians fill portable breathing apparatuses, or PBAS. The PBAs are to be use on board the International Space Staton to provide astronauts with breathable air in the event of a fire or other emergency situation.

  1. Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds.

    PubMed

    Mirondo, Rita; Barringer, Sheryl

    2016-10-01

    Garlic causes a strong garlic breath that may persist for almost a day. Therefore, it is important to study deodorization techniques for garlic breath. The volatiles responsible for garlic breath include diallyl disulfide, allyl mercaptan, allyl methyl disulfide, and allyl methyl sulfide. After eating garlic, water (control), raw, juiced or heated apple, raw or heated lettuce, raw or juiced mint leaves, or green tea were consumed immediately. The levels of the garlic volatiles on the breath were analyzed from 1 to 60 min by selected ion flow tube mass spectrometry (SIFT-MS). Garlic was also blended with water (control), polyphenol oxidase (PPO), rosemarinic acid, quercetin or catechin, and the volatiles in the headspace analyzed from 3 to 40 min by SIFT-MS. Raw apple, raw lettuce, and mint leaves significantly decreased all of the garlic breath volatiles in vivo. The proposed mechanism is enzymatic deodorization where volatiles react with phenolic compounds. Apple juice and mint juice also had a deodorizing effect on most of the garlic volatiles but were generally not as effective as the raw food, probably because the juice had enzymatic activity but the phenolic compounds had already polymerized. Both heated apple and heated lettuce produced a significant reduction of diallyl disulfide and allyl mercaptan. The presence of phenolic compounds that react with the volatile compounds even in the absence of enzymes is the most likely mechanism. Green tea had no deodorizing effect on the garlic volatile compounds. Rosmarinic acid, catechin, quercetin, and PPO significantly decreased all garlic breath volatiles in vitro. Rosmarinic acid was the most effective at deodorization. © 2016 Institute of Food Technologists®.

  2. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  3. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  4. Chemoresponsiveness and breath physiology in anosmia.

    PubMed

    Mazzatenta, Andrea; Pokorski, Mieczyslaw; Montinaro, Danilo; Di Giulio, Camillo

    2015-01-01

    Anosmia is a model to study the interaction among chemoreception systems. In the head injury, the traumatic irreversible anosmia caused by damage to olfactory nerve fibers and brain regions is of enviable research interest. In this study, psychophysiological tests for a comprehensive assessment of olfactory function were utilized to investigate anosmia, together with a new technique based on the breath real-time monitoring of volatile organic compounds (VOCs). We applied the breath and VOCs analysis to investigate chemoresponsiveness in the long-term irreversible post-traumatic anosmia.

  5. Bayesian modelling of lung function data from multiple-breath washout tests.

    PubMed

    Mahar, Robert K; Carlin, John B; Ranganathan, Sarath; Ponsonby, Anne-Louise; Vuillermin, Peter; Vukcevic, Damjan

    2018-05-30

    Paediatric respiratory researchers have widely adopted the multiple-breath washout (MBW) test because it allows assessment of lung function in unsedated infants and is well suited to longitudinal studies of lung development and disease. However, a substantial proportion of MBW tests in infants fail current acceptability criteria. We hypothesised that a model-based approach to analysing the data, in place of traditional simple empirical summaries, would enable more efficient use of these tests. We therefore developed a novel statistical model for infant MBW data and applied it to 1197 tests from 432 individuals from a large birth cohort study. We focus on Bayesian estimation of the lung clearance index, the most commonly used summary of lung function from MBW tests. Our results show that the model provides an excellent fit to the data and shed further light on statistical properties of the standard empirical approach. Furthermore, the modelling approach enables the lung clearance index to be estimated by using tests with different degrees of completeness, something not possible with the standard approach. Our model therefore allows previously unused data to be used rather than discarded, as well as routine use of shorter tests without significant loss of precision. Beyond our specific application, our work illustrates a number of important aspects of Bayesian modelling in practice, such as the importance of hierarchical specifications to account for repeated measurements and the value of model checking via posterior predictive distributions. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Exhaled breath temperature in children: reproducibility and influencing factors.

    PubMed

    Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P

    2014-09-01

    This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.

  7. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    PubMed

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  8. Breath stacking in children with neuromuscular disorders.

    PubMed

    Jenkins, H M; Stocki, A; Kriellaars, D; Pasterkamp, H

    2014-06-01

    Respiratory muscle weakness in neuromuscular disorders (NMD) can lead to shallow breathing and respiratory insufficiency over time. Children with NMD often cannot perform maneuvers to recruit lung volume. In adults, breath stacking with a mask and one-way valve can achieve significantly increased lung volumes. To evaluate involuntary breath stacking (IBS) in NMD, we studied 23 children of whom 15 were cognitively aware and able to communicate verbally. For IBS, a one-way valve and pneumotachograph were attached to a face mask. Tidal volumes (Vt) and minute ventilation (VE ) were calculated from airflow over 30 sec before and after 15 sec of expiratory valve closure. Six cooperative male subjects with Duchenne muscular dystrophy (DMD) participated in a subsequent comparison of IBS with voluntary breath stacking (VBS) and supported breath stacking (SBS). The average Vt in those studied with IBS was 277 ml (range 29-598 ml). The average increase in volume by stacking was 599 ml (range -140 to 2,916 ml) above Vt . The average number of stacked breaths was 4.5 (range 0-17). VE increased on average by 18% after stacking (P < 0.05, paired t-test). Oxygen saturation did not change after stacking. Four of the 23 children did not breath stack. Compared to IBS, VBS achieved similar volumes in the six subjects with DMD but SBS was more successful in those with greatest muscle weakness. IBS may achieve breath volumes of approximately three times Vt and may be particularly useful in non-cooperative subjects with milder degrees of respiratory muscle weakness. © 2013 Wiley Periodicals, Inc.

  9. Studies regarding the mechanism of false negative urea breath tests with proton pump inhibitors.

    PubMed

    Graham, David Y; Opekun, Antone R; Hammoud, Fadi; Yamaoka, Yoshio; Reddy, Rita; Osato, Michael S; El-Zimaity, Hala M T

    2003-05-01

    The mechanism of false negative urea breath tests (UBTs) results among proton pump inhibitor (PPI) users is unknown. We studied the time course of PPI-associated negative UBT, the relation to Helicobacter pylori density, and whether gastric acidification would prevent false negative UBT results. In the UBT experiment, H. pylori-infected volunteers received omeprazole 20 mg b.i.d. for 13.5 days. UBTs with citric acid were done before, after 6.5 days of PPI, and 1, 2, 4, 7, and 14 days after therapy. In the culture and histology experiment, after a wash-out of >5 months, nine of the original subjects were rechallenged with omeprazole for 6.5 days. Antral and corpus biopsies for histology and culture were done before and 1 day after PPI administration. Thirty subjects (mean age 42 yr) were enrolled. UBTs were significantly reduced on day 6.5 (p = 0.031); 10 subjects (33%) developed transient negative UBTs. The UBT recovered in all but one subject by the fourth day post-PPI and in all subjects by day 14. In the culture and histology experiment, upon PPI rechallenge, three of nine subjects (33%) had negative UBTs. H. pylori density, whether measured by culture or histology, decreased with PPI therapy; antral biopsies became histologically negative in five subjects and corpus biopsies in three subjects. PPI-induced negative UBT results were related to the anti-H. pylori effect of the PPI. Acidification of the stomach did not prevent false negative UBT results. Three days is likely the minimum delay from stopping PPI until one should perform a test for active infection. A delay of 14 days is preferred.

  10. Right recumbent position on gastric emptying of water evidenced by 13C breath testing

    PubMed Central

    Sanaka, Masaki; Urita, Yoshihisa; Yamamoto, Takatsugu; Shirai, Tsuguru; Kimura, Satoshi; Aoyagi, Hitoshi; Kuyama, Yasushi

    2013-01-01

    AIM: To compare the impact of the right recumbent position with the sitting position on gastric emptying of water. METHODS: In eight healthy male volunteers, the 13C acetate breath test was performed twice to assess gastric emptying of 100 mL tap water. Subjects were seated in one test and lying on their right side in the other. In both positions, pulmonary 13CO2 exhalation curves were obtained by plotting breath data against time. Percent gastric retention curves were created by analyzing data using the Wagner-Nelson protocol. RESULTS: No significant posture effect was found in pulmonary 13CO2 output curves (P = 0.2150), whereas a significant effect was seen in gastric retention curves (P = 0.0315). The percent retention values at 10 min and 15 min were significantly smaller when subjects were in the right recumbent position compared with the seated position (P < 0.05). Our results verified the accelerating effect of the right recumbent position on gastric emptying of non-nutritive solutions. Concerning clinical implications, this study suggests that placing patients with acute pain on their right side after oral administration of analgesic drugs in solution is justified as an effective practice for rapid pain relief. For patients with gastrointestinal reflux symptoms, sleeping in the right recumbent position may reduce nocturnal symptoms, as delayed gastric emptying can cause reflux symptoms. CONCLUSION: Gastric emptying of water occurs more quickly when a subject lies on the right side compared with sitting. PMID:23372358

  11. Can Blood Gas and Acid-Base Parameters at Maximal 200 Meters Front Crawl Swimming be Different Between Former Competitive and Recreational Swimmers?

    PubMed Central

    Kapus, Jernej; Usaj, Anton; Strumbelj, Boro; Kapus, Venceslav

    2008-01-01

    The aim of the present study was to ascertain whether maximal 200 m front crawl swimming strategies and breathing patterns influenced blood gas and acid-base parameters in a manner which gives advantage to former competitive swimmers in comparison with their recreational colleagues. Twelve former competitive male swimmers (the CS group) and nine recreational male swimmers (the RS group) performed a maximal 200 m front crawl swimming with self- selected breathing pattern. Stroke rate (SR) and breathing frequency (BF) were measured during the swimming test. Measures also included blood lactate concentration ([LA]) and parameters of blood acid-base status before and during the first minute after the swimming test. The CS group swam faster then the RS group. Both groups have similar and steady SR throughout the swimming test. This was not matched by similar BF in the CS group but matched it very well in the RS group (r = 0.89). At the beginning of swimming test the CS group had low BF, but they increased it throughout the swimming test. The BF at the RS group remained constant with only mirror variations throughout the swimming test. Such difference in velocity and breathing resulted in maintaining of blood Po2 from hypoxia and Pco2 from hypercapnia. This was similar in both groups. [LA] increased faster in the CS group than in the RS group. On the contrary, the rate of pH decrease remained similar in both groups. The former competitive swimmers showed three possible advantages in comparison to recreational swimmers during maximal 200 m front crawl swimming: a more dynamic and precise regulation of breathing, more powerful bicarbonate buffering system and better synchronization between breathing needs and breathing response during swimming. Key pointsTraining programs for competitive swimmers should promote adaptations to maximal efforts.Those adaptations should include high and maximal intensity swims with controlled breathing frequency (taking breath every fourth

  12. Automatic Recognition of Breathing Route During Sleep Using Snoring Sounds

    NASA Astrophysics Data System (ADS)

    Mikami, Tsuyoshi; Kojima, Yohichiro

    This letter classifies snoring sounds into three breathing routes (oral, nasal, and oronasal) with discriminant analysis of the power spectra and k-nearest neighbor method. It is necessary to recognize breathing route during snoring, because oral snoring is a typical symptom of sleep apnea but we cannot know our own breathing and snoring condition during sleep. As a result, about 98.8% classification rate is obtained by using leave-one-out test for performance evaluation.

  13. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    PubMed

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    , interviewed 16 people about their experiences in a trial that tested breathing retraining exercises delivered by DVD or face-to-face sessions with a respiratory physiotherapist. Overwhelmingly, trial participants reported that breathing retraining sessions gave them greater control over their symptoms, helped them relax, improved their quality of life and reduced the need for medications. Some participants who received DVD instruction said they had trouble mastering the techniques, and many in both groups found it hard to find time to practice the exercises. Overall, however, patients were positive about the experience. The authors conclude that breathing exercises are likely to be a well-received method of asthma management.

  14. Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging.

    PubMed

    Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kiefer, Berthold; Son, Yohan

    2018-01-01

    The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). Transient motion developed in 40% (23/59) of patients shortly after

  15. Extracorporeal Carbon Dioxide Removal Enhanced by Lactic Acid Infusion in Spontaneously Breathing Conscious Sheep.

    PubMed

    Scaravilli, Vittorio; Kreyer, Stefan; Belenkiy, Slava; Linden, Katharina; Zanella, Alberto; Li, Yansong; Dubick, Michael A; Cancio, Leopoldo C; Pesenti, Antonio; Batchinsky, Andriy I

    2016-03-01

    The authors studied the effects on membrane lung carbon dioxide extraction (VCO2ML), spontaneous ventilation, and energy expenditure (EE) of an innovative extracorporeal carbon dioxide removal (ECCO2R) technique enhanced by acidification (acid load carbon dioxide removal [ALCO2R]) via lactic acid. Six spontaneously breathing healthy ewes were connected to an extracorporeal circuit with blood flow 250 ml/min and gas flow 10 l/min. Sheep underwent two randomly ordered experimental sequences, each consisting of two 12-h alternating phases of ALCO2R and ECCO2R. During ALCO2R, lactic acid (1.5 mEq/min) was infused before the membrane lung. Caloric intake was not controlled, and animals were freely fed. VCO2ML, natural lung carbon dioxide extraction, total carbon dioxide production, and minute ventilation were recorded. Oxygen consumption and EE were calculated. ALCO2R enhanced VCO2ML by 48% relative to ECCO2R (55.3 ± 3.1 vs. 37.2 ± 3.2 ml/min; P less than 0.001). During ALCO2R, minute ventilation and natural lung carbon dioxide extraction were not affected (7.88 ± 2.00 vs. 7.51 ± 1.89 l/min, P = 0.146; 167.9 ± 41.6 vs. 159.6 ± 51.8 ml/min, P = 0.063), whereas total carbon dioxide production, oxygen consumption, and EE rose by 12% each (223.53 ± 42.68 vs. 196.64 ± 50.92 ml/min, 215.3 ± 96.9 vs. 189.1 ± 89.0 ml/min, 67.5 ± 24.0 vs. 60.3 ± 20.1 kcal/h; P less than 0.001). ALCO2R was effective in enhancing VCO2ML. However, lactic acid caused a rise in EE that made ALCO2R no different from standard ECCO2R with respect to ventilation. The authors suggest coupling lactic acid-enhanced ALCO2R with active measures to control metabolism.

  16. Prediction of breast cancer risk with volatile biomarkers in breath.

    PubMed

    Phillips, Michael; Cataneo, Renee N; Cruz-Ramos, Jose Alfonso; Huston, Jan; Ornelas, Omar; Pappas, Nadine; Pathak, Sonali

    2018-03-23

    Human breath contains volatile organic compounds (VOCs) that are biomarkers of breast cancer. We investigated the positive and negative predictive values (PPV and NPV) of breath VOC biomarkers as indicators of breast cancer risk. We employed ultra-clean breath collection balloons to collect breath samples from 54 women with biopsy-proven breast cancer and 124 cancer-free controls. Breath VOCs were analyzed with gas chromatography (GC) combined with either mass spectrometry (GC MS) or surface acoustic wave detection (GC SAW). Chromatograms were randomly assigned to a training set or a validation set. Monte Carlo analysis identified significant breath VOC biomarkers of breast cancer in the training set, and these biomarkers were incorporated into a multivariate algorithm to predict disease in the validation set. In the unsplit dataset, the predictive algorithms generated discriminant function (DF) values that varied with sensitivity, specificity, PPV and NPV. Using GC MS, test accuracy = 90% (area under curve of receiver operating characteristic in unsplit dataset) and cross-validated accuracy = 77%. Using GC SAW, test accuracy = 86% and cross-validated accuracy = 74%. With both assays, a low DF value was associated with a low risk of breast cancer (NPV > 99.9%). A high DF value was associated with a high risk of breast cancer and PPV rising to 100%. Analysis of breath VOC samples collected with ultra-clean balloons detected biomarkers that accurately predicted risk of breast cancer.

  17. Variables that Impact on the Results of Breath-Alcohol Tests

    ERIC Educational Resources Information Center

    Labianca, Dominick A.

    2004-01-01

    In a 2003 issue of the "Journal of Chemical Education," Kniesel and Bellamy describe a timely and pedagogically effective experiment involving breath-alcohol analysis using an FTIR (Fourier Transform Infrared Spectroscopy) spectrometer. The present article clarifies some of the information presented in the 2003 article.

  18. A simple test of one minute heart rate variability during deep breathing for evaluation of sympatovagal imbalance in hyperthyroidism.

    PubMed

    Shuvy, Mony; Arbelle, Jonathan E; Grosbard, Aviva; Katz, Amos

    2008-01-01

    Heart rate variability is a sensitive marker of cardiac sympathetic activity. To determine whether long-term hyperthyroidism induced by thyroxine suppressive therapy affects HRV. Nineteen patients treated with suppressive doses of thyroxin for thyroid cancer and 19 age-matched controls were enrolled. Thyroid function tests and 1 minute HRV were performed on all subjects and the results were compared between the groups. The 1 minute HRV was analyzed during deep breathing and defined as the difference in beats/minute between the shortest and the longest heart rate interval measured by eletrocardiographic recording during six cycles of deep breathing. One minute HRV during deep breathing was significantly lower among thyroxine-treated patients compared to healthy controls (25.6 +/- 10.5 vs. 34.3 +/- 12.6 beats/min, P < 0.05). There were no significant differences in mean, maximal and minimal heart rate between the groups. Thyroxine therapy administered for epithelial thyroid cancer resulted in subclinical hyperthyroidism and significantly decreased HRV due to autonomic dysfunction rather than basic elevated heart rate.

  19. Test plan 241-C-103 natural breathing characteristics evaluation using the ultra sensitive flowmeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertelendy, N.A.

    1995-02-13

    To facilitate the reduction of worker exposure to hazardous fumes and vapors, it is imperative to characterize and measure flows out of waste tanks that breathe due to atmospheric pressure changes. These measurements will lead to a better understanding of how these tanks breathe and thus will aid in better worker exposure control at lower cost.

  20. Breathing pattern and head posture: changes in craniocervical angles.

    PubMed

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  1. Guidelines proposal for clinical recognition of mouth breathing children.

    PubMed

    Pacheco, Maria Christina Thomé; Casagrande, Camila Ferreira; Teixeira, Lícia Pacheco; Finck, Nathalia Silveira; de Araújo, Maria Teresa Martins

    2015-01-01

    Mouth breathing (MB) is an etiological factor for sleep-disordered breathing (SDB) during childhood. The habit of breathing through the mouth may be perpetuated even after airway clearance. Both habit and obstruction may cause facial muscle imbalance and craniofacial changes. The aim of this paper is to propose and test guidelines for clinical recognition of MB and some predisposing factors for SDB in children. Semi-structured interviews were conducted with 110 orthodontists regarding their procedures for clinical evaluation of MB and their knowledge about SDB during childhood. Thereafter, based on their answers, guidelines were developed and tested in 687 children aged between 6 and 12 years old and attending elementary schools. There was no standardization for clinical recognition of MB among orthodontists. The most common procedures performed were inefficient to recognize differences between MB by habit or obstruction. The guidelines proposed herein facilitate clinical recognition of MB, help clinicians to differentiate between habit and obstruction, suggest the most appropriate treatment for each case, and avoid maintenance of mouth breathing patterns during adulthood.

  2. Comparative transcriptome analysis between aquatic and aerial breathing organs of Channa argus to reveal the genetic basis underlying bimodal respiration.

    PubMed

    Jiang, Yanliang; Feng, Shuaisheng; Xu, Jian; Zhang, Songhao; Li, Shangqi; Sun, Xiaoqing; Xu, Peng

    2016-10-01

    Aerial breathing in fish was an important adaption for successful survival in hypoxic water. All aerial breathing fish are bimodal breathers. It is intriguing that they can obtain oxygen from both air and water. However, the genetic basis underlying bimodal breathing has not been extensively studied. In this study, we performed next-generation sequencing on a bimodal breathing fish, the Northern snakehead, Channa argus, and generated a transcriptome profiling of C. argus. A total of 53,591 microsatellites and 26,378 SNPs were identified and classified. A Ka/Ks analysis of the unigenes indicated that 63 genes were under strong positive selection. Furthermore, the transcriptomes from the aquatic breathing organ (gill) and the aerial breathing organ (suprabranchial chamber) were sequenced and compared, and the results showed 1,966 genes up-regulated in the gill and 2,727 genes up-regulated in the suprabranchial chamber. A gene pathway analysis concluded that four functional categories were significant, of which angiogenesis and elastic fibre formation were up-regulated in the suprabranchial chamber, indicating that the aerial breathing organ may be more efficient for gas exchange due to its highly vascularized and elastic structure. In contrast, ion uptake and transport and acid-base balance were up-regulated in the gill, indicating that the aquatic breathing organ functions in ion homeostasis and acid-base balance, in addition to breathing. Understanding the genetic mechanism underlying bimodal breathing will shed light on the initiation and importance of aerial breathing in the evolution of vertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  4. Detection of bronchial breathing caused by pneumonia.

    PubMed

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  5. Deep breathing after surgery

    MedlinePlus

    ... and taking big breaths can be uncomfortable. A device called an incentive spirometer can help you take deep breaths correctly. If you do not have this device, you can still practice deep breathing on your ...

  6. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    PubMed

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  7. Effect of influenza vaccination on oxidative stress products in breath.

    PubMed

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  8. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

  9. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    PubMed

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  10. 13C-sodium acetate breath test for evaluation of gastric emptying times in dogs with gastric dilatation-volvulus.

    PubMed

    Schmitz, S; Jansen, N; Failing, K; Neiger, R

    2013-01-01

    The aim of the study was to assess solid phase gastric emptying via non-invasive 13C-sodium acetate breath test in large breed dogs with or without gastric dilatation-volvulus (GDV). Dogs were recruited into one of the following groups: group 1 = healthy large breed dogs with no history of GDV, group 2 = dogs that underwent elective abdominal surgery for reasons unrelated to the gastrointestinal tract, and group 3 = dogs that underwent laparotomy and gastropexy to correct GDV. The dogs were fed a test meal containing 100 mg 13C-sodium acetate (for group 2 and 3, this was < 48 hours post-operatively). Breath samples were obtained at baseline and every 30 minutes for 3 hours, then every hour for a total of 7 hours. 12CO2/13CO2 ratio was measured for each breath sample via non-dispersive infrared spectroscopy and 25%, 50% and 75% gastric emptying times were calculated and compared between groups. Gastric emptying times were significantly prolonged in dogs undergoing surgery (group 2) compared to group 1 and 3. Also, gastric emptying times of dogs with GDV were significantly prolonged compared to controls, but not to the same extent as dogs in group 2. There was a significant effect of abdominal surgery on gastric emptying times. Surprisingly, dogs after GDV surgery and gastropexy had shorter gastric emptying times than dogs undergoing laparotomy for reasons other than GDV, but still prolonged compared to healthy controls. The reason for these differences requires further study.

  11. Carbon-14 urea breath test for the diagnosis of Campylobacter pylori associated gastritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, B.J.; Surveyor, I.

    1988-01-01

    Urease in the human gastric mucosa is a marker for infection with Campylobacter pylori (CP), an organism suspected of causing chronic gastritis and peptic ulceration. To detect gastric urease, we examined 32 patients who were being evaluated for possible peptic ulcer disease. Fasting patients were given 10 microCi (370 kBq) of /sup 14/C-labeled urea. Breath samples were collected in hyamine at intervals between 1 and 30 min. The amount of /sup 14/C collected at these times was expressed as: body weight X (% of administered dose of /sup 14/C in sample)/(mmol of CO/sub 2/ collected). The presence of C. pylorimore » colonization was also determined by examination of multiple endoscopic gastric biopsy specimens. On average, patients who were proven to have C. pylori infection exhaled 20 times more labeled CO/sub 2/ than patients who were not infected. The difference between infected patients and C. pylori negative control patients was highly significant at all time points between 2 and 30 min after ingestion of the radionuclide (p less than 0.0001). The noninvasive urea breath is less expensive than endoscopic biopsy of the stomach and more accurate than serology as a means of detecting Campylobacter pylori infection. Because the test detects actual viable CP organisms, it can be used to confirm eradication of the bacterium after antibacterial therapy.« less

  12. Testing of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Bush, D. M.; Sealey, J. D.; Miller, D. W.

    1984-02-01

    Sealed lead acid batteries under development were tested. The goal was to develop a totally maintenance free sealed lead acid battery capable of deep discharge operation in a photovoltaic power system. Sealed lead acid batteries and a group of conventional, flooded lead acid batteries were exposed to a matrix test plan, with some approaching 1000 cycles. This performance was achieved with the standard National Electrical Manufacturers' Association cycle test, and the partial state of charge cycle test. Modes of failure are investigated.

  13. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    PubMed

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (<3) on the late arterial phase, respiratory motion-resolved (extradimension [XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (<3) on the late arterial phase, motion-resolved reconstructed T1WI (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P < 0.002-0.021) and improved image quality (P < 0.0001-0.002). In comparison with previous BH-T1WI, CS-VIBE with hard gating or XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T

  14. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis

    PubMed Central

    2018-01-01

    The acute respiratory distress syndrome (ARDS) is a complication of critical illness that is characterized by acute onset, protein rich, pulmonary edema. There is no treatment for ARDS, other than the reduction of additional ventilator induced lung injury. Prediction or earlier recognition of ARDS could result in preventive measurements and might decrease mortality and morbidity. Exhaled breath contains volatile organic compounds (VOCs), a collection of hundreds of small molecules linked to several physiological and pathophysiological processes. Analysis of exhaled breath through gas-chromatography and mass-spectrometry (GC-MS) has resulted in an accurate diagnosis of ARDS in several studies. Most identified markers are linked to lipid peroxidation. Octane is one of the few markers that was validated as a marker of ARDS and is pathophysiologically likely to be increased in ARDS. None of the currently studied breath analysis methods is directly applicable in clinical practice. Two steps have to be taken before any breath test can be allowed into the intensive care unit. External validation in a multi-center study is a prerequisite for any of the candidate breath markers and the breath test should outperform clinical prediction scores. Second, the technology for breath analysis should be adapted so that it is available at a decentralized lab inside the intensive care unit and can be operated by trained nurses, in order to reduce the analysis time. In conclusion, exhaled analysis might be used for the early diagnosis and prediction of ARDS in the near future but several obstacles have to be taken in the coming years. Most of the candidate markers can be linked to lipid peroxidation. Only octane has been validated in a temporal external validation cohort and is, at this moment, the top-ranking breath biomarker for ARDS. PMID:29430450

  15. [Effects of breathing exercises on breathing pattern and thoracoabdominal motion after gastroplasty].

    PubMed

    Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco

    2010-01-01

    To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.

  16. A simple, remote, video based breathing monitor.

    PubMed

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  17. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.

  18. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    EPA Science Inventory

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  19. Breath Tests in Respiratory and Critical Care Medicine: From Research to Practice in Current Perspectives

    PubMed Central

    Cheepsattayakorn, Attapon; Cheepsattayakorn, Ruangrong

    2013-01-01

    Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future. PMID:24151617

  20. Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing.

    PubMed

    Lim, Sangwook; Park, Sung Ho; Ahn, Seung Do; Suh, Yelin; Shin, Seong Soo; Lee, Sang-wook; Kim, Jong Hoon; Choi, Eun Kyoung; Yi, Byong Yong; Kwon, Soo Il; Kim, Sookil; Jeung, Tae Sig

    2007-11-01

    Adapting radiation fields to a moving target requires information continuously on the location of internal target by detecting it directly or indirectly. The aim of this study is to make the breathing regular effectively with minimizing stress to the patient. A system for regulating patient's breath consists of a respiratory monitoring mask (ReMM), a thermocouple module, a screen, inner earphones, and a personal computer. A ReMM with thermocouple was developed previously to measure the patient's respiration. A software was written in LabView 7.0 (National Instruments, TX), which acquires respiration signal and displays its pattern. Two curves are displayed on the screen: One is a curve indicating the patient's current breathing pattern; the other is a guiding curve, which is iterated with one period of the patient's normal breathing curve. The guiding curves were acquired for each volunteer before they breathed with guidance. Ten volunteers participated in this study to evaluate this system. A cycle of the representative guiding curve was acquired by monitoring each volunteer's free breathing with ReMM and was then generated iteratively. The regularity was compared between a free breath curve and a guided breath curve by measuring standard deviations of amplitudes and periods of two groups of breathing. When the breathing was guided, the standard deviation of amplitudes and periods on average were reduced from 0.0029 to 0.00139 (arbitrary units) and from 0.359 s to 0.202 s, respectively. And the correlation coefficients between breathing curves and guiding curves were greater than 0.99 for all volunteers. The regularity was improved statistically when the guiding curve was used.

  1. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  2. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  3. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  4. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  5. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  6. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  7. Acid loading test (pH)

    MedlinePlus

    ... medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the kidneys to send ...

  8. Effects of breathing exercises on breathing patterns in obese and non-obese subjects.

    PubMed

    Olsén, M F; Lönroth, H; Bake, B

    1999-05-01

    Chest physiotherapy in connection with abdominal surgery includes different deep-breathing exercises to prevent post-operative pulmonary complications. The therapy is effective in preventing pulmonary complications, especially in high-risk patients such as obese persons. The mechanisms behind the effect is unclear, but part of the effect may be explained by the changes in breathing patterns. The aim of this study was therefore to describe and to analyse the breathing patterns in obese and non-obese subjects during three different breathing techniques frequently used in the treatment of post-operative patients. Twenty-one severely obese [body mass index (BMI) > 40] and 21 non-obese (BMI 19-25) subjects were studied. All persons denied having any lung disease and were non-smokers. The breathing techniques investigated were: deep breaths without any resistance (DB), positive expiratory pressure (PEP) with an airway resistance of approximately +15 cmH2O (1.5 kPa) during expiration, inspiratory resistance positive expiratory pressure (IR-PEP) with a pressure of approximately -10 cmH2O (-1.0 kPa) during inspiration. Expiratory resistance as for PEP. Volume against time was monitored while the subjects were sitting in a body plethysmograph. Variables for volume and flow during the breathing cycle were determined. Tidal volume and alveolar ventilation were highest during DB, and peak inspiratory volume was significantly higher than during PEP and IR-PEP in the group of obese subjects. The breathing cycles were prolonged in all techniques but were most prolonged in PEP and IR-PEP. The functional residual capacity (FRC) was significantly lower during DB than during PEP and IR-PEP in the group of obese subjects. FRC as determined within 2 min of finishing each breathing technique was identical to before the breathing manoeuvres.

  9. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  10. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  11. Individuality of breathing during volitional moderate hyperventilation.

    PubMed

    Besleaga, Tudor; Blum, Michaël; Briot, Raphaël; Vovc, Victor; Moldovanu, Ion; Calabrese, Pascale

    2016-01-01

    The aim of this study is to investigate the individuality of airflow shapes during volitional hyperventilation. Ventilation was recorded on 18 healthy subjects following two protocols: (1) spontaneous breathing (SP1) followed by a volitional hyperventilation at each subject's spontaneous (HVSP) breathing rate, (2) spontaneous breathing (SP2) followed by hyperventilation at 20/min (HV20). HVSP and HV20 were performed at the same level of hypocapnia: end tidal CO2 (FETCO2) was maintained at 1% below the spontaneous level. At each breath, the tidal volume (VT), the breath (TTOT), the inspiratory (TI) and expiratory durations, the minute ventilation, VT/TI, TI/TTOT and the airflow shape were quantified by harmonic analysis. Under different conditions of breathing, we test if the airflow profiles of the same individual are more similar than airflow profiles between individuals. Minute ventilation was not significantly different between SP1 (6.71 ± 1.64 l·min(-1)) and SP2 (6.57 ± 1.31 l·min(-1)) nor between HVSP (15.88 ± 4.92 l·min(-1)) and HV20 (15.87 ± 4.16 l·min(-1)). Similar results were obtained for FETCO2 between SP1 (5.06 ± 0.54 %) and SP2 (5.00 ± 0.51%), and HVSP (4.07 ± 0.51%) and HV20 (3.88 ± 0.42%). Only TI/TTOT remained unchanged in all four conditions. Airflow shapes were similar when comparing SP1-SP2, HVSP-HV20, and SP1-HVSP but not similar when comparing SP2-HV20. These results suggest the existence of an individuality of airflow shape during volitional hyperventilation. We conclude that volitional ventilation alike automatic breathing follows inherent properties of the ventilatory system. Registered by Pascale Calabrese on ClinicalTrials.gov, # NCT01881945.

  12. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Kraft M. Approach to the patient with respiratory disease. In: ... Elsevier Saunders; 2016:chap 83. McGee S. Respiratory rate and ...

  13. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.

    PubMed

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-14

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics

  14. Breath in the technoscientific imaginary

    PubMed Central

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. PMID:27542677

  15. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults.

    PubMed

    Ma, Xiao; Yue, Zi-Qi; Gong, Zhu-Qing; Zhang, Hong; Duan, Nai-Yue; Shi, Yu-Tong; Wei, Gao-Xia; Li, You-Fa

    2017-01-01

    A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG) or a control group (CG). The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  16. Breathing efficiency during inspiratory threshold loading in patients with chronic obstructive pulmonary disease.

    PubMed

    Baarends, E M; Schols, A M; Nusmeier, C M; van der Grinten, C P; Wouters, E F

    1998-05-01

    Patients with chronic obstructive pulmonary disease (COPD) demonstrate an increased oxygen cost of breathing. It is as yet unclear whether this is related to a decreased breathing efficiency. The aim of the present study was to compare breathing efficiency in 16 patients with COPD (11 men, five women) and 16 healthy elderly subjects (seven men, nine women), and to investigate a possible relationship between breathing efficiency and resting energy expenditure (REE). REE was measured using a ventilated hood system. Breathing efficiency was assessed by measuring oxygen consumption (V'O2), mean inspiratory mouth pressure (MIP) and flow during breathing at rest and subsequently during breathing against an inspiratory threshold (40% of maximal inspiratory pressure). During loaded breathing there was a significant increase in V'O2, MIP, and external work of breathing compared with unloaded breathing in both groups. As intended, ventilation did not increase significantly during the breathing efficiency test in the patients with COPD. The breathing efficiency (median, range) of the patients with COPD was similar (3.7%, 1.4-8.7%) to that of the healthy elderly subjects (3.2%, 1.7-8.3%). Breathing efficiency was not correlated with REE in either group. In the present study, in which dynamic hyperinflation was probably prevented, no difference in breathing efficiency was found between healthy elderly subjects and COPD patients when breathing against an external inspiratory threshold. Furthermore, breathing efficiency was not related to REE in both groups.

  17. Recovery of Percent Vital Capacity by Breathing Training in Patients With Panic Disorder and Impaired Diaphragmatic Breathing.

    PubMed

    Yamada, Tatsuji; Inoue, Akiomi; Mafune, Kosuke; Hiro, Hisanori; Nagata, Shoji

    2017-09-01

    Slow diaphragmatic breathing is one of the therapeutic methods used in behavioral therapy for panic disorder. In practice, we have noticed that some of these patients could not perform diaphragmatic breathing and their percent vital capacity was initially reduced but could be recovered through breathing training. We conducted a comparative study with healthy controls to investigate the relationship between diaphragmatic breathing ability and percent vital capacity in patients with panic disorder. Our findings suggest that percent vital capacity in patients with impaired diaphragmatic breathing was significantly reduced compared with those with normal diaphragmatic breathing and that diaphragmatic breathing could be restored by breathing training. Percent vital capacity of the healthy controls was equivalent to that of the patients who had completed breathing training. This article provides preliminary findings regarding reduced vital capacity in relation to abnormal respiratory movements found in patients with panic disorder, potentially offering alternative perspectives for verifying the significance of breathing training for panic disorder.

  18. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography - Time of flight mass spectrometry and machine learning.

    PubMed

    Beccaria, Marco; Mellors, Theodore R; Petion, Jacky S; Rees, Christiaan A; Nasir, Mavra; Systrom, Hannah K; Sairistil, Jean W; Jean-Juste, Marc-Antoine; Rivera, Vanessa; Lavoile, Kerline; Severe, Patrice; Pape, Jean W; Wright, Peter F; Hill, Jane E

    2018-02-01

    Tuberculosis (TB) remains a global public health malady that claims almost 1.8 million lives annually. Diagnosis of TB represents perhaps one of the most challenging aspects of tuberculosis control. Gold standards for diagnosis of active TB (culture and nucleic acid amplification) are sputum-dependent, however, in up to a third of TB cases, an adequate biological sputum sample is not readily available. The analysis of exhaled breath, as an alternative to sputum-dependent tests, has the potential to provide a simple, fast, and non-invasive, and ready-available diagnostic service that could positively change TB detection. Human breath has been evaluated in the setting of active tuberculosis using thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry methodology. From the entire spectrum of volatile metabolites in breath, three random forest machine learning models were applied leading to the generation of a panel of 46 breath features. The twenty-two common features within each random forest model used were selected as a set that could distinguish subjects with confirmed pulmonary M. tuberculosis infection and people with other pathologies than TB. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. DEVELOPMENT OF A SCREENING PROTOCOL TO IDENTIFY INDIVIDUALS WITH DYSFUNCTIONAL BREATHING

    PubMed Central

    Kiesel, Kyle; Rhodes, Tonya; Mueller, Jacob; Waninger, Alyssa; Butler, Robert

    2017-01-01

    Introduction Dysfunctional breathing (DB) has been linked to health conditions including low back pain and neck pain and adversely effects the musculoskeletal system. Individuals with DB often have decreased pain thresholds and impaired motor control, balance, and movement. No single test or screen identifies DB, which is multi-dimensional, and includes biochemical, biomechanical, and psychophysiological components. Several tools assess and test for DB, but no screen exists to determine whether additional testing and assessment are indicated. Purpose/Background The purpose of this study was to develop a breathing screening procedure that could be utilized by fitness and healthcare providers to screen for the presence of disordered breathing. A diagnostic test study approach was utilized to establish the diagnostic accuracy of the newly developed screen for DB. Methods A convenience sample of 51 subjects (27 females, 27.0 years, BMI 23.3) were included. To test for DB related to the biochemical dimension, end-tidal CO2 (ETCO2) was measured with a capnography unit. To test for DB related to biomechanical dimension, the Hi-Lo test was utilized. To test for DB related to the psychophysiological dimension, the Self Evaluation of Breathing Symptoms Questionnaire (SEBQ) and Nijmegen questionnaires were utilized. Potential screening items that have been shown to be related to DB in previous research and that could be performed by non-health care personnel were utilized to create the index test including activity level, breath hold time (BHT), respiration rate, and the Functional Movement Screen (FMS™). Results There were no strong correlations between the three measures of DB. Five subjects had normal breathing, 14 failed at least one measure, 20 failed at least two, and 12 failed all three. To develop screening items for each dimension, data were examined for association with failure. BHT and a four-item mini-questionnaire were identified as the most closely associated

  20. Correlation Between Gastric Emptying and Gastric Adaptive Relaxation Influenced by Amino Acids

    PubMed Central

    Uchida, Masayuki; Kobayashi, Orie; Saito, Chizuru

    2017-01-01

    Background/Aims Amino acids have many physiological activities. We report the correlation between gastric emptying and gastric adaptive relaxation using tryptophan and amino acids with a straight alkyl chain, hydroxylated chain, and branched chain. Here we sought to further clarify the correlation between gastric emptying and gastric adaptive relaxation by using other amino acids. Methods In Sprague-Dawley rats, gastric emptying was evaluated by a breath test using [1-13C] acetic acid. The expired 13CO2 pattern, Tmax, Cmax, and AUC120min values were used as evaluation items. Gastric adaptive relaxation was evaluated in a barostat experiment. Individual amino acids (1 g/kg) were administered orally 30 minutes before each breath test or barostat test. Results L-phenylalanine and L-tyrosine did not influence gastric emptying. All other amino acids, ie, L-proline, L-histidine, L-cysteine, L-methionine, L-aspartic acid, L-glutamic acid, L-asparagine, L-arginine, L-glutamine, and L-lysine significantly delayed and inhibited gastric emptying. L-Cysteine and L-aspartic acid significantly enhanced and L-methionine and L-glutamine significantly inhibited gastric adaptive relaxation. L-Phenylalanine moved the balloon toward the antrum, suggesting strong contraction of the fundus. Tmax showed a significant positive correlation (r = 0.709), and Cmax and AUC120min each showed negative correlations (r = 0.613 and 0.667, respectively) with gastric adaptive relaxation. Conclusion From the above findings, it was found that a close correlation exists between gastric emptying and adaptive relaxation, suggesting that enhanced gastric adaptive relaxation inhibits gastric emptying. PMID:28335103

  1. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  2. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    PubMed

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20

  3. Tenth anniversary special issue of the Journal of Breath Research: looking forward

    EPA Science Inventory

    The Journal of Breath Research has now reached its 10th anniversary of publication. From the general public’s perspective, breath analysis had always revolved around drinking and driving, and to some lesser extent pulmonary function testing of athletes. However, at the ince...

  4. Detection of nitric oxide in exhaled human breath: exercise and resting determinations.

    PubMed

    Mantione, Kirk J; Esch, Tobias; Stefano, George B

    2007-03-01

    Nitric oxide has become a vital indicator of health since many cells produce it constitutively. It is present in exhaled breath and can be measured. A Kiernan NO Breath analyzer (KNB) was used in the present study to determine nitric oxide (NO) levels in exhaled human breath. The KNB was calibrated via measuring NO gas in O2-free N2 obtained from Scott Specialty Gases. Human subjects aged 21 to 45 were instructed to place the KNB over their nose and mouth and to breathe normally before and after mild exercise (n=24) and relaxation (n=20). Mean exhaled NO measurements were compared before and after the protocols using paired t-tests. Regardless of the test, all subjects exhibited NO in their exhaled breath. Exhaled NO decreased significantly after exercise compared to the first reading just prior to the exercise protocol. The mean +/-SE of exhaled NO was 22.8+/-4 before and 13.0+/-2 ppb after exercise (n=24, P=0.003). In the resting experiment, exhaled NO was demonstrated to increase significantly after 10 min compared to the reading taken right after the individuals sat down. The present study demonstrates NO in exhaled human breath can vary, reflecting the activity state of the individual. Additionally, the study demonstrates that NO in exhaled human breath can be measured rapidly, with high sensitivity, and in real time via the KNB, representing an affordable means to achieve this determination.

  5. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  6. How to deal with morning bad breath: A randomized, crossover clinical trial.

    PubMed

    Oliveira-Neto, Jeronimo M; Sato, Sandra; Pedrazzi, Vinícius

    2013-11-01

    The absence of a protocol for the treatment of halitosis has led us to compare mouthrinses with mechanical oral hygiene procedures for treating morning breath by employing a hand-held sulfide monitor. To compare the efficacy of five modalities of treatment for controlling morning halitosis in subjects with no dental or periodontal disease. This is a five-period, randomized, crossover clinical trial. Twenty volunteers were randomly assigned to the trial. Testing involved the use of a conventional tongue scraper, a tongue scraper joined to the back of a toothbrush's head, two mouthrinses (0.05% cetylpyridinium chloride and 0.12% chlorhexidine digluconate) and a soft-bristled toothbrush and fluoride toothpaste for practicing oral hygiene. Data analysis was performed using SPSS version 17 for Windows and NCSS 2007 software (P < 0.05). The products and the periods were compared with each other using the Friedman's test. When significant differences (P < 0.05) were determined, the products and periods were compared in pairs by using the Wilcoxon's test and by adjusting the original significance level (0.05) for multiple comparisons by using the Bonferroni's method. The toothbrush's tongue scraper was able to significantly reduce bad breath for up to 2 h. Chlorhexidine reduced bad breath only at the end of the second hour, an effect that lasted for 3 h. Mechanical tongue cleaning was able to immediately reduce bad breath for a short period, whereas chlorhexidine and mechanical oral hygiene reduced bad breath for longer periods, achieving the best results against morning breath.

  7. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  8. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  9. Mathematical and statistical approaches for interpreting biomarker compounds in exhaled human breath

    EPA Science Inventory

    The various instrumental techniques, human studies, and diagnostic tests that produce data from samples of exhaled breath have one thing in common: they all need to be put into a context wherein a posed question can actually be answered. Exhaled breath contains numerous compoun...

  10. Breath in the technoscientific imaginary.

    PubMed

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Breathing and sense of self: visuo-respiratory conflicts alter body self-consciousness.

    PubMed

    Adler, Dan; Herbelin, Bruno; Similowski, Thomas; Blanke, Olaf

    2014-11-01

    Bodily self-consciousness depends on the processing of interoceptive and exteroceptive signals. It can be disrupted by inducing signal conflicts. Breathing, at the crossroad between interoception and exteroception, should contribute to bodily self-consciousness. We induced visuo-respiratory conflicts in 17 subjects presented with a virtual body or a parallelepidedal object flashing synchronously or asynchronously with their breathing. A questionnaire detected illusory changes in bodily self-consciousness and breathing agency (the feeling of sensing one's breathing command). Changes in self-location were tested by measuring reaction time during mental ball drop (MBD). Synchronous illumination changed the perceived location of breathing (body: p=0.008 vs. asynchronous; object: p=0.013). It resulted in a significant change in breathing agency, but no changes in self-identification. This was corroborated by prolonged MBD reaction time (body: +0.045s, 95%CI [0.013; 0.08], p=0.007). We conclude that breathing modulates bodily self-consciousness. We also conclude that one can induce the irruption of unattended breathing into consciousness without modifying respiratory mechanics or gas exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  13. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  14. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  15. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  16. Practice It: Deep Conscious Breathing Exercise

    Cancer.gov

    No time to sit and breathe? No problem; take your breathing practice with you! Deep conscious breathing can also be done with the eyes open wherever you happen to be—simply pause and take two to three full deep breaths (inhale deeply and exhale completely).

  17. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume

  18. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    PubMed

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  19. Social relations and breath odour.

    PubMed

    McKeown, L

    2003-11-01

    In this retrospective qualitative study, the researcher reviewed 55 client records of The Breath Odour Clinic. The purpose was to determine if individuals attended a clinic specialised in treating oral malodour for medical or social reasons. The study focused on the psychosocial and breath odour history. Clients had agreed to the use of information for research purposes. Society uses odour as a means to define and interact with the world. The olfactory, smelling experience is intimate, emotionally charged and connects us with the world. It follows that the smell from mouth breath odour can connect or disconnect a person from their social environment and intimate relationships. How one experiences one's own body is very personal and private but also very public. Breath odour is public as it occurs within a social and cultural context and personal as it affects one's body image and self-confidence. Body image, self-image and social relations mesh, interact and impact upon each other. Breath odour is a dynamic and interactive aspect of the self-image. In addition, breath odour may be value-coded as 'bad'. In 75% of the cases reviewed, decreased self-confidence and insecurity in social and intimate relations led clients to seek treatment at the specialised breath odour clinic. Their doctor, dental hygienist or dentist had treated medical and oral conditions but not resolved their breath odour problem. When a person perceives a constant bad breath problem, she/he uses defence techniques, and may avoid social situations and social relations. This affects a person's well-being.

  20. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  1. The effect of radioactive iodine treatment on 14C urea breath test results in patients with hyperthyroidism.

    PubMed

    Arduc, Ayse; Dogan, Bercem Aycicek; Ozuguz, Ufuk; Tuna, Mazhar Muslim; Gokay, Ferhat; Tutuncu, Yasemin Ates; Isik, Serhat; Aydin, Yusuf; Peksoy, Irfan; Berker, Dilek; Guler, Serdar

    2014-12-01

    Radioactive Iodine therapy (RAIT) plays a major role in the treatment of hyperthyroidism. In addition to the thyroid gland, significant amounts of radioactive iodine are maintained in the stomach. The aim of this study was to determine if RAIT has any effect on Helicobacter pylori infection, based on the C urea breath test (UBT). The study included 85 patients with hyperthyroidism scheduled to undergo RAIT and 69 hyperthyroid subjects in whom methimazole treatment was planned. All subjects had pretreatment-positive UBT results, and the test was repeated on the first and third months after RAIT and methimazole treatment. After a mean RAIT dose of 15 mCi (range, 10-20 mCi), UBT became negative in 13 (15.3%) of 85 patients on the first month and 18 (21.2%) of 85 patients on the third month. All subjects treated with methimazole remained UBT positive on the first and third months of methimazole treatment (100%). Reduction in the number of UBT-positive patients on both the first and the third months after RAIT was statistically significant (P < 0.001). Distribution of hyperthyroidism etiologies and thyroid autoantibody levels in subjects with UBT that became negative and in subjects with UBT that remained positive were similar in the RAIT group (P > 0.05). Urea breath test negativity rates did not differ according to the radioiodine dose. Our findings indirectly showed that RAIT might have an antimicrobial effect on H. pylori. Clinical applications of this beneficial effect of RAIT on H. pylori should be further evaluated.

  2. How to deal with morning bad breath: A randomized, crossover clinical trial

    PubMed Central

    Oliveira-Neto, Jeronimo M.; Sato, Sandra; Pedrazzi, Vinícius

    2013-01-01

    Context: The absence of a protocol for the treatment of halitosis has led us to compare mouthrinses with mechanical oral hygiene procedures for treating morning breath by employing a hand-held sulfide monitor. Aims: To compare the efficacy of five modalities of treatment for controlling morning halitosis in subjects with no dental or periodontal disease. Settings and Design: This is a five-period, randomized, crossover clinical trial. Materials and Methods: Twenty volunteers were randomly assigned to the trial. Testing involved the use of a conventional tongue scraper, a tongue scraper joined to the back of a toothbrush's head, two mouthrinses (0.05% cetylpyridinium chloride and 0.12% chlorhexidine digluconate) and a soft-bristled toothbrush and fluoride toothpaste for practicing oral hygiene. Statistical Analysis Used: Data analysis was performed using SPSS version 17 for Windows and NCSS 2007 software (P < 0.05). The products and the periods were compared with each other using the Friedman's test. When significant differences (P < 0.05) were determined, the products and periods were compared in pairs by using the Wilcoxon's test and by adjusting the original significance level (0.05) for multiple comparisons by using the Bonferroni's method. Results: The toothbrush's tongue scraper was able to significantly reduce bad breath for up to 2 h. Chlorhexidine reduced bad breath only at the end of the second hour, an effect that lasted for 3 h. Conclusions: Mechanical tongue cleaning was able to immediately reduce bad breath for a short period, whereas chlorhexidine and mechanical oral hygiene reduced bad breath for longer periods, achieving the best results against morning breath. PMID:24554886

  3. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  4. Lack of inhibitory effect of cimetidine on caffeine metabolism in children using the caffeine breath test

    PubMed Central

    Parker, A.C.; Pritchard, P.; Preston, T.; Dalzell, A.M.; Choonara, I.

    1997-01-01

    Aims To study the potential drug interaction between cimetidine and caffeine in a group of children who received cimetidine for gastritis. Methods The caffeine breath test was carried out prior to the administration of cimetidine and after 2–3 weeks therapy. The children (n=1) received 300–800 mg cimetidine daily (11–36 mg kg−1 day−1 ). Results There was no significant change in the 2 h cumulative labelled CO2 following the administration of cimetidine (mean values 5.61% before and 4.87% during cimetidine; Student’s t-test P >0.2). Conclusions Cimetidine did not have an inhibitory effect on the metabolism of caffeine in this group of children studied. PMID:9159560

  5. Minimizing Shortness of Breath

    MedlinePlus

    ... and hyperventilation as well as factors like emotional stress, overexertion, habitual postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach pursed-lip breathing. This ...

  6. Levels of cytokines in broncho-alveolar lavage fluid, but not in plasma, are associated with levels of markers of lipid peroxidation in breath of ventilated ICU patients.

    PubMed

    Boshuizen, Margit; Leopold, Jan Hendrik; Zakharkina, Tetyana; Knobel, Hugo H; Weda, Hans; Nijsen, Tamara M E; Vink, Teunis J; Sterk, Peter J; Schultz, Marcus J; Bos, Lieuwe D J

    2015-09-03

    Alkanes and alkenes in the breath are produced through fatty acid peroxidation, which is initialized by reactive oxygen species. Inflammation is an important cause and effect of reactive oxygen species. We aimed to evaluate the association between fatty acid peroxidation products and inflammation of the alveolar and systemic compartment in ventilated intensive care unit (ICU) patients.Volatile organic compounds were measured by gas chromatography and mass spectrometry in the breath of newly ventilated ICU patients within 24 h after ICU admission. Cytokines were measured in non-directed bronchial lavage fluid (NBL) and plasma by cytometric bead array. Correlation coefficients were calculated and presented in heatmaps.93 patients were included. Peroxidation products in exhaled breath were not associated with markers of inflammation in plasma, but were correlated with those in NBL. IL-6, IL-8, IL-1β and TNF-α concentration in NBL showed inverse correlation coefficients with the peroxidation products of fatty acids. Furthermore, NBL IL-10, IL-13, GM-CSF and IFNγ demonstrated positive associations with breath alkanes and alkenes. Correlation coefficients for NBL cytokines were high regarding peroxidation products of n-6, n-7 and particularly in n-9 fatty acids.Levels of lipid peroxidation products in the breath of ventilated ICU patients are associated with levels of inflammatory markers in NBL, but not in plasma. Alkanes and alkenes in breath seems to be associated with an anti-inflammatory, rather than a pro-inflammatory state in the alveoli.

  7. Influence of different proton pump inhibitors on activity of cytochrome P450 assessed by [(13)C]-aminopyrine breath test.

    PubMed

    Kodaira, Chise; Uchida, Shinya; Yamade, Mihoko; Nishino, Masafumi; Ikuma, Mutsuhiro; Namiki, Noriyuki; Sugimoto, Mitsushige; Watanabe, Hiroshi; Hishida, Akira; Furuta, Takahisa

    2012-03-01

    Aminopyrine is metabolized by cytochrome P450 (CYP) in the liver. The investigators evaluated influences of different PPIs on CYP activity as assessed by the [(13)C]-aminopyrine breath test ([(13)C]-ABT). Subjects were 15 healthy volunteers with different CYP2C19 status (5 rapid metabolizers [RMs], 5 intermediate metabolizers [IMs], and 5 poor metabolizers [PMs]). Breath samples were collected before and every 15 to 30 minutes for 3 hours after oral ingestion of [(13)C]-aminopyrine 100 mg on day 8 of each of the following regimens: control; omeprazole 20 mg and 80 mg, lansoprazole 30 mg, and rabeprazole 20 mg. Changes in carbon isotope ratios in carbon dioxide ((13)CO(2)/(12)CO(2)) in breath samples were measured by infrared spectrometry and expressed as delta-over-baseline (DOB) ratios (‰). Mean areas under the curve of DOB from 0 to 3 h (AUC(0-3h) of DOB) were significantly decreased by omeprazole 20 mg and lansoprazole 30 mg but not by rabeprazole 20 mg. Conversely, higher PPI dose (ie, omeprazole 80 mg) seemed to further decrease AUC(0-3h) of DOB in RMs but increased it in PMs. Omeprazole and lansoprazole at the standard doses inhibit CYP activity but rabeprazole does not, whereas high-dose omeprazole seems to induce CYPs.

  8. Blinded Validation of Breath Biomarkers of Lung Cancer, a Potential Ancillary to Chest CT Screening

    PubMed Central

    Phillips, Michael; Bauer, Thomas L.; Cataneo, Renee N.; Lebauer, Cassie; Mundada, Mayur; Pass, Harvey I.; Ramakrishna, Naren; Rom, William N.; Vallières, Eric

    2015-01-01

    Background Breath volatile organic compounds (VOCs) have been reported as biomarkers of lung cancer, but it is not known if biomarkers identified in one group can identify disease in a separate independent cohort. Also, it is not known if combining breath biomarkers with chest CT has the potential to improve the sensitivity and specificity of lung cancer screening. Methods Model-building phase (unblinded): Breath VOCs were analyzed with gas chromatography mass spectrometry in 82 asymptomatic smokers having screening chest CT, 84 symptomatic high-risk subjects with a tissue diagnosis, 100 without a tissue diagnosis, and 35 healthy subjects. Multiple Monte Carlo simulations identified breath VOC mass ions with greater than random diagnostic accuracy for lung cancer, and these were combined in a multivariate predictive algorithm. Model-testing phase (blinded validation): We analyzed breath VOCs in an independent cohort of similar subjects (n = 70, 51, 75 and 19 respectively). The algorithm predicted discriminant function (DF) values in blinded replicate breath VOC samples analyzed independently at two laboratories (A and B). Outcome modeling: We modeled the expected effects of combining breath biomarkers with chest CT on the sensitivity and specificity of lung cancer screening. Results Unblinded model-building phase. The algorithm identified lung cancer with sensitivity 74.0%, specificity 70.7% and C-statistic 0.78. Blinded model-testing phase: The algorithm identified lung cancer at Laboratory A with sensitivity 68.0%, specificity 68.4%, C-statistic 0.71; and at Laboratory B with sensitivity 70.1%, specificity 68.0%, C-statistic 0.70, with linear correlation between replicates (r = 0.88). In a projected outcome model, breath biomarkers increased the sensitivity, specificity, and positive and negative predictive values of chest CT for lung cancer when the tests were combined in series or parallel. Conclusions Breath VOC mass ion biomarkers identified lung cancer in a

  9. Increased breath nitrous oxide after ingesting nitrate in patients with atrophic gastritis and partial gastrectomy.

    PubMed

    Mitsui, Takahiro; Kondo, Takaharu

    2004-07-01

    Toxic nitrite and N-nitroso compounds due to gastric bacterial growth are often detected in the stomach of patients with atrophic gastritis and partial gastrectomy. The aim of this study is to investigate whether breath N2O, a major metabolite of denitrification, detected after ingestion of nitrate is associated with atrophic gastritis and partial gastrectomy. Nine young, 16 normal older, nine atrophic gastritis and six partial gastrectomy subjects ingested 100 g lettuce, equal to 130 mg nitrate, and breath N2O was measured at 15-min intervals for 5 h. N2O was analyzed using an infrared-photoacoustic analyzer, and atrophic gastritis was diagnosed by pepsinogen test. The mean breath N2O concentrations were higher in the following order at all times: partial gastrectomy>atrophic gastritis>normal>young. The maximum N2O concentrations in the patients with partial gastrectomy and atrophic gastritis were 1655 +/- 296 and 1350 +/- 200 (mean +/- S.E.) ppb, respectively, which were higher than that of the normal subjects, 827 +/- 91 ppb (P < 0.05). The maximum N2O concentration in young people was 527 +/- 86 ppb, which was lower than that of the normal older people (P < 0.051). These higher N2O concentrations in gastric patients reflect bacterial growth in the stomach due to the reduction of gastric acid. Copyright 2004 Elsevier B.V.

  10. Respiratory mechanics and breathing pattern in the neonatal foal.

    PubMed

    Koterba, A M; Kosch, P C

    1987-01-01

    Breathing pattern, respiratory muscle activation pattern, lung volumes and volume-pressure characteristics of the respiratory system of normal, term, neonatal foals on Days 2 and 7 of age were determined to test the hypothesis that the foal actively maintains end-expiratory lung volume (EEV) greater than the relaxation volume of the respiratory system (Vrx) because of a highly compliant chest wall. Breathing pattern was measured in the awake, unsedated foal during quiet breathing in lateral and standing positions. The typical neonatal foal breathing pattern was characterized by a monophasic inspiratory and expiratory flow pattern. Both inspiration and expiration were active, with onset of Edi activity preceding onset of inspiratory flow, and phasic abdominal muscle activity detectable throughout most of expiration. No evidence was found to support the hypothesis that the normal, term neonatal foal actively maintains EEV greater than Vrx. In the neonatal foal, normalized lung volume and lung compliance values were similar to those reported for neonates of other species, while normalized chest wall compliance was considerably lower. We conclude that the chest wall of the term neonatal foal is sufficiently rigid to prevent a low Vrx. This characteristic probably prevents the foal from having to use a breathing strategy which maintains an EEV greater than Vrx.

  11. How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, David, E-mail: David.wiant@conehealth.com; Wentworth, Stacy; Liu, Han

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods and Materials: Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB-DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P-DIBH (a partial BH with themore » heart shifted midway between the FB and DIBH positions). The FB-DIBH plans give a “worst-case” scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB-DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P-DIBH plans were« less

  12. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects.

    PubMed

    Alfaro, Mario F; Walby, William F; Adams, William C; Schelegle, Edward S

    2007-01-01

    Ozone (O3) inhalation induces pulmonary function decrements and inflammation. The present study was designed to determine if a relationship exists between O3 induced pulmonary function changes and the presence of inflammatory markers as measured in exhaled breath condensates (EBCs) obtained from O3-sensitive and nonsensitive human subjects. Eight healthy adult volunteers (4 males/4 females, age 18 to 30 years) were studied, characterized as to their ozone sensitivity and placed into 2 groups (sensitive and nonsensitive) with each group having 2 males and 2 females. Subjects completed a 20-minute EBC collection and pulmonary function test (PFT) prior to a single 60-minute bout of cycle ergometer exercise (V(E) = 50-55 L/min) while breathing filtered air (FA) or 0.35 ppm O3. Subjective symptom scores (SSSs) were collected at 6, 20, 40, and 60 minutes during exposure. An immediate postexposure PFT was performed followed by an EBC collection. Subjective symptom scores, EBCs, and PFTs were collected at 1, 4 and 8 hours post exposure. EBCs were analyzed for prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 8-isoprostane, and total nitric oxide (NO) metabolites (nitrate + nitrite content). Sensitive subjects, breathing O3, had significantly greater functional decrements in PFTs, increased SSSs, and increased rapid shallow breathing as well as elevated levels of 8-isoprostane and LTB4 in EBCs compared to those breathing FA. In addition, there were significant increases in nitrate + nitrite content in both sensitive and nonsensitive subjects breathing O3 compared to FA. These results indicate that sensitive subjects have elevated arachidonic acid metabolites in EBCs compared to nonsensitive subjects after O3 inhalation.

  13. eAMI: A Qualitative Quantification of Periodic Breathing Based on Amplitude of Oscillations

    PubMed Central

    Fernandez Tellez, Helio; Pattyn, Nathalie; Mairesse, Olivier; Dolenc-Groselj, Leja; Eiken, Ola; Mekjavic, Igor B.; Migeotte, P. F.; Macdonald-Nethercott, Eoin; Meeusen, Romain; Neyt, Xavier

    2015-01-01

    Study Objectives: Periodic breathing is sleep disordered breathing characterized by instability in the respiratory pattern that exhibits an oscillatory behavior. Periodic breathing is associated with increased mortality, and it is observed in a variety of situations, such as acute hypoxia, chronic heart failure, and damage to respiratory centers. The standard quantification for the diagnosis of sleep related breathing disorders is the apnea-hypopnea index (AHI), which measures the proportion of apneic/hypopneic events during polysomnography. Determining the AHI is labor-intensive and requires the simultaneous recording of airflow and oxygen saturation. In this paper, we propose an automated, simple, and novel methodology for the detection and qualification of periodic breathing: the estimated amplitude modulation index (eAMI). Patients or Participants: Antarctic cohort (3,800 meters): 13 normal individuals. Clinical cohort: 39 different patients suffering from diverse sleep-related pathologies. Measurements and Results: When tested in a population with high levels of periodic breathing (Antarctic cohort), eAMI was closely correlated with AHI (r = 0.95, P < 0.001). When tested in the clinical setting, the proposed method was able to detect portions of the signal in which subclinical periodic breathing was validated by an expert (n = 93; accuracy = 0.85). Average eAMI was also correlated with the loop gain for the combined clinical and Antarctica cohorts (r = 0.58, P < 0.001). Conclusions: In terms of quantification and temporal resolution, the eAMI is able to estimate the strength of periodic breathing and the underlying loop gain at any given time within a record. The impaired prognosis associated with periodic breathing makes its automated detection and early diagnosis of clinical relevance. Citation: Fernandez Tellez H, Pattyn N, Mairesse O, Dolenc-Groselj L, Eiken O, Mekjavic IB, Migeotte PF, Macdonald-Nethercott E, Meeusen R, Neyt X. eAMI: a qualitative

  14. Endogenous CO dynamics monitoring in breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-04-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation as well as sport loading were studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  15. Do elite breath-hold divers suffer from mild short-term memory impairments?

    PubMed

    Billaut, François; Gueit, Patrice; Faure, Sylvane; Costalat, Guillaume; Lemaître, Frédéric

    2018-03-01

    Repeated apneas are associated with severe hypoxemia that may ultimately lead to loss of consciousness in some breath-hold divers. Despite increasing number of practitioners, the relationship between apnea-induced hypoxia and neurocognitive functions is still poorly understood in the sport of free diving. To shed light onto this phenomenon, we examined the impact of long-term breath-hold diving training on attentional processing, short-term memory, and long-term mnesic and executive functions. Thirty-six men matched for age, height, and weight were separated into the following 3 groups: (i) 12 elite breath-hold divers (EBHD), mean static apnea best time 371 s, 105 months mean apnea experience; (ii) 12 novice breath-hold divers, mean best time 243 s, 8.75 months mean apnea experience; and (iii) 12 physical education students with no breath-hold diving experience; all of these participants performed varied written and computerized neuropsychological tasks. Compared with the 2 other groups, the EBHD group was slower to complete the interference card during a Stroop test (F [1,33] = 4.70, p < 0.05), and presented more errors on the interference card (F [1,33] = 2.96, p < 0.05) and a lower total interference score (F [1,33] = 5.64, p < 0.05). The time to complete the interference card test was positively correlated with maximal static apnea duration (r = 0.73, p < 0.05) and the number of years of breath-hold diving training (r = 0.79, p < 0.001). These findings suggest that breath-hold diving training over several years may cause mild, but persistent, short-term memory impairments.

  16. Crew equipment applications - Firefighter's Breathing System.

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1973-01-01

    The Firefighter's Breathing System (FBS) represents a significant step in applying NASA's crew equipment technologists and technologies to civilian sector problems. This paper describes the problem, the utilization of user-design committees as a forum for development of design goals, the design of the FBS, and the field test program to be conducted.

  17. Traveling with breathing problems

    MedlinePlus

    ... obstructive lung disease - travel; Chronic bronchitis - travel; Emphysema - travel ... you: Are short of breath most of the time Get short of breath ... doctor if you plan to travel in a place at a high altitude (such ...

  18. High-pitched breath sounds indicate airflow limitation in asymptomatic asthmatic children.

    PubMed

    Habukawa, Chizu; Nagasaka, Yukio; Murakami, Katsumi; Takemura, Tsukasa

    2009-04-01

    Asthmatic children may have airway dysfunction even when asymptomatic, indicating that their long-term treatment is less than optimal. Although airway dysfunction can be identified on lung function testing, performing these tests can be difficult in infants. We studied whether breath sounds reflect subtle airway dysfunction in asthmatic children. The highest frequency of inspiratory breaths sounds (HFI) and the highest frequency of expiratory breath sounds (HFE) were measured in 131 asthmatic children while asymptomatic and with no wheezes for more than 2 weeks. No child was being treated with inhaled corticosteroids (ICS). Breath sounds were recorded and analysed by sound spectrography and compared with spirometric parameters. After initial evaluation, cases with more than step 2 (mild persistent) asthma were treated using inhaled fluticasone (100-200 microg/day) for 1 month, and then breath sound analysis and pulmonary function testing were repeated. On initial evaluation, HFI correlated with the percentage of predicted FEF(50) (%FEF(50)), (r = -0.45, P < 0.001), the percentage of predicted FEF(75) (%FEF(75)) (r = -0.456, P < 0.001), and FEV(1) as a percentage of FVC (FEV(1)/FVC (%)) (r = -0.32, P < 0.001). HFI did not correlate with the percentage of predicted PEF (%PEF). The 69 children with lower than normal %FEF(50) were then treated with ICS. The %FEF(50) and %FEF(75) improved after ICS treatment, and increases in %FEF(50) (P < 0.005) correlated with decreases in HFI (P < 0.001). Higher HFI in asymptomatic asthmatic children may indicate small airway obstruction. Additional ICS treatment may improve the pulmonary function indices representing small airway function with simultaneous HFI decreases in such patients.

  19. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  20. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    PubMed

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  1. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  2. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  3. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  4. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  5. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  6. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  7. Identification of risk factors for pancreatic exocrine insufficiency after pancreaticoduodenectomy using a 13C-labeled mixed triglyceride breath test.

    PubMed

    Hirono, Seiko; Murakami, Yoshiaki; Tani, Masaji; Kawai, Manabu; Okada, Ken-ichi; Uemura, Kenichiro; Sudo, Takeshi; Hashimoto, Yasushi; Nakagawa, Naoya; Kondo, Naru; Yamaue, Hiroki

    2015-02-01

    There are only a few reports concerning long-term exocrine function after pancreaticoduodenectomy (PD), although the number of long-term survivors has increased. We assessed pancreatic exocrine function after PD in 189 patients to identify risk factors for pancreatic exocrine insufficiency. We evaluated patients' exocrine function by using the (13)C-labeled mixed triglyceride breath test, a noninvasive test feasible in outpatient service units. The present study included 99 patients that underwent pancreaticojejunostomy (PJ) at Wakayama Medical University Hospital and 90 patients that underwent pancreaticogastrostomy (PG) at Hiroshima University Hospital, the standard reconstruction techniques during PD at the respective hospitals. We also analyzed long-term morphological changes of remnant pancreas by computed tomography (main pancreatic duct dilation and parenchymal atrophy), nutritional status, and endocrine function. Independent risk factors for exocrine insufficiency after PD include hard pancreas (P = 0.003, odds ratio; 3.157) and PG reconstruction (P = 0.040, odds ratio; 2.321). Breath test results correlated significantly with post-operative morphological changes, nutritional status, and endocrine function. Atrophic changes of the remnant pancreas in the PG group were more severe than those in the PJ group. Furthermore, for patients with a soft pancreas, postoperative body weight changes, prognostic nutritional index, serum total protein levels as well as exocrine test were worse in the PG group, compared with the PJ group. Our results showed that PJ reconstruction might be superior to PG during PD, from the viewpoint of long-term pancreatic exocrine function, although further prospective studies are needed.

  8. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  9. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  10. The Diagnostic Validity of Citric Acid-Free, High Dose (13)C-Urea Breath Test After Helicobacter pylori Eradication in Korea.

    PubMed

    Kwon, Yong Hwan; Kim, Nayoung; Lee, Ju Yup; Choi, Yoon Jin; Yoon, Kichul; Hwang, Jae Jin; Lee, Hyun Joo; Lee, AeRa; Jeong, Yeon Sang; Oh, Sooyeon; Yoon, Hyuk; Shin, Cheol Min; Park, Young Soo; Lee, Dong Ho

    2015-06-01

    The (13)C-urea breath test ((13)C-UBT) is a noninvasive method for diagnosing Helicobacter pylori (H. pylori) infection. The aims of this study were to evaluate the diagnostic validity of the (13)C-UBT cutoff value and to identify influencing clinical factors responsible for aberrant results. (13)C-UBT (UBiTkit; Otsuka Pharmaceutical, cutoff value: 2.5‰) results in the range 2.0‰ to 10.0‰ after H. pylori eradication therapy were compared with the results of endoscopic biopsy results of the antrum and body. Factors considered to affect test results adversely were analyzed. Among patients with a positive (13)C-UBT result (2.5‰ to 10.0‰, n = 223) or a negative (13)C-UBT result (2.0‰ to < 2.5‰, n = 66) after H. pylori eradication, 73 patients (34.0%) were false positive, and one (1.5%) was false negative as determined by endoscopic biopsy. The sensitivity, specificity, false-positive rate, and false-negative rate for a cutoff value of 2.5‰ were 99.3%, 47.1%, 52.9%, and 0.7%, respectively, and positive and negative predictive values of the (13)C-UBT were 67.3% and 98.5%, respectively. Multivariate analysis showed that a history of two or more previous H. pylori eradication therapies (OR = 2.455, 95%CI = 1.299-4.641) and moderate to severe gastric intestinal metaplasia (OR = 3.359, 95%CI = 1.572-7.178) were associated with a false-positive (13)C-UBT result. The (13)C-UBT cutoff value currently used has poor specificity for confirming H. pylori status after eradication, and this lack of specificity is exacerbated in patients that have undergone multiple prior eradication therapies and in patients with moderate to severe gastric intestinal metaplasia. In addition, the citric-free (13)C-UBT would increase a false-positive (13)C-UBT result. © 2015 John Wiley & Sons Ltd.

  11. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, Valsa S

    2013-01-15

    Nitric oxide (NO), a short-lived freely diffusible radical gas that acts as an important biological signal, regulates an impressive spectrum of physiological functions in vertebrates including fishes. The action of NO, however, on thyroid hormone status and its role in the integration of acid-base, osmotic and metabolic balances during stress are not yet delineated in fish. Sodium nitroprusside (SNP), a NO donor, was employed in the present study to investigate the role of NO in the stressed air-breathing fish Anabas testudineus. Short-term SNP treatment (1 mM; 30 min) interacted negatively with thyroid axis, as evident in the fall of plasma thyroxine in both stressed and non-stressed fish. In contrast, the cortisol responsiveness to NO was negligible. SNP challenge produced systemic alkalosis, hypocapnia and hyperglycemia in non-stressed fish. Remarkable acid-base compensation was found in fish kept for 60 min net confinement where a rise in blood pH and HCO(3) content occurred with a reduction in PCO(2) content. SNP challenge in these fish, on the contrary, produced a rise in oxygen load together with hypocapnia but without an effect on HCO(3) content, indicating a modulator role of NO in respiratory gas transport during stress response. SNP treatment reduced Na(+), K(+) ATPase activity in the gill, intestine and liver of both stressed and non-stressed fish, and this suggests that stress state has little effect on the NO-driven osmotic competence of these organs. On the other hand, a modulatory effect of NO was found in the kidney which showed a differential response to SNP, emphasizing a key role of NO in kidney ion transport and its sensitivity to stressful condition. H(+)-ATPase activity, an index of H(+) secretion, downregulated in all the organs of both non-stressed and stressed fish except in the gill of non-stressed fish and this supports a role for NO in promoting alkalosis. The data indicate that, (1) NO interacts antagonistically with T(4), (2) modifies

  12. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, G; Yin, Y

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group,more » 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.« less

  13. Pulmonary Function Testing in Children

    MedlinePlus

    ... breathing test. About 15 minutes after taking the medicine, your child will repeat the breathing test. The results from ... the first test to find out if the medicine has improved your child’s breathing. Why shouldn’t I give my child ...

  14. Experimental and modeling study of thermal exposure of a self-contained breathing apparatus (SCBA).

    PubMed

    Donnelly, Michelle K; Yang, Jiann C

    2015-08-01

    An experimental apparatus designed to study firefighter safety equipment exposed to a thermal environment was developed. The apparatus consisted of an elevated temperature flow loop with the ability to heat the air stream up to 200°C. The thermal and flow conditions at the test section were characterized using thermocouples and bi-directional probes. The safety equipment examined in this study was a self-contained breathing apparatus (SCBA), including a facepiece and an air cylinder. The SCBA facepiece was placed on a mannequin headform and coupled to a breathing simulator that was programmed with a prescribed breathing pattern. The entire SCBA assembly was placed in the test section of the flow loop for these thermal exposure experiments. Three air stream temperatures, 100°C, 150°C, and 200°C, were used with the average air speed at the test section set at 1.4m/s and thermal exposure durations up to 1200 s. Measurements were made using type-K bare-bead thermocouples located in the mannequin's mouth and on the outer surface of the SCBA cylinder. The experimental results indicated that increasing the thermal exposure severity and duration increased the breathing air temperatures supplied by the SCBA. Temperatures of breathing air from the SCBA cylinder in excess of 60°C were observed over the course of the thermal exposure conditions used in most of the experiments. A mathematical model for transient heat transfer was developed to complement the thermal exposure experimental study. The model took into consideration forced convective heat transfer, quasi-steady heat conduction through the composite layers of the SCBA cylinder wall, the breathing pattern and action of the breathing simulator, and predicted air temperatures from the thermally exposed SCBA cylinder and temperatures at the outer surface of the SCBA cylinder. Model predictions agreed reasonably well with the experimental measurements. Published by Elsevier Ltd.

  15. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    PubMed

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  16. Electromyographic fatigue of orbicular oris muscles during exercises in mouth and nasal breathing children.

    PubMed

    Busanello-Stella, Angela Ruviaro; Blanco-Dutra, Ana Paula; Corrêa, Eliane Castilhos Rodrigues; Silva, Ana Maria Toniolo da

    2015-01-01

    To investigate the process of fatigue in orbicularis oris muscles by analyzing the median frequency of electromyographic signal and the referred fatigue time, according to the breathing mode and the facial pattern. The participants were 70 children, aged 6 to 12 years, who matched the established criteria. To be classified as 36 nasal-breathing and 34 mouth-breathing children, they underwent speech-language, otorhinolaryngologic, and cephalometric evaluation. For the electromyographic assessment, the children had to sustain lip dumbbells weighing 40, 60, and 100 g and a lip exerciser, until the feeling of fatigue. Median frequency was analyzed in 5, 10, 15, and 20 seconds of activity. The referred time of the feeling of fatigue was also recorded. Data were analyzed through the analysis of variance--repeated measures (post hoc Tukey's test), Kruskal-Wallis test, and Mann-Whitney U-test. A significant decrease in the median frequency from 5 seconds of activity was observed, independently from the comparison between the groups. On comparison, the muscles did not show significant decrease. The reported time for the feeling of fatigue was shorter for mouth-breathing individuals. This feeling occurred after the significant decrease in the median frequency. There were signals that indicated myoelectric fatigue for the orbicularis oris muscles, in both groups analyzed, from the first 5 seconds of activity. Myoelectric fatigue in the orbicularis oris muscles preceded the reported feeling of fatigue in all groups. The account for fatigue time was influenced by only the breathing pattern, occurring more precociously in mouth-breathing children.

  17. Application of cabin atmosphere monitors to rapid screening of breath samples for the early detection of disease states

    NASA Technical Reports Server (NTRS)

    Valentine, J. L.; Bryant, P. J.

    1975-01-01

    Analysis of human breath is a nonintrusive method to monitor both endogenous and exogenous chemicals found in the body. Several technologies were investigated and developed which are applicable to monitoring some organic molecules important in both physiological and pathological states. Two methods were developed for enriching the organic molecules exhaled in the breath of humans. One device is based on a respiratory face mask fitted with a polyethylene foam wafer; while the other device is a cryogenic trap utilizing an organic solvent. Using laboratory workers as controls, two organic molecules which occurred in the enriched breath of all subjects were tentatively identified as lactic acid and contisol. Both of these substances occurred in breath in sufficient amounts that the conventional method of gas-liquid chromatography was adequate for detection and quantification. To detect and quantitate trace amounts of chemicals in breath, another type of technology was developed in which analysis was conducted using high pressure liquid chromatography and mass spectrometry.

  18. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging.

    PubMed

    Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael

    2016-02-25

    Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion

  19. Breath alcohol analyzer mistakes methanol poisoning for alcohol intoxication.

    PubMed

    Caravati, E Martin; Anderson, Kathleen T

    2010-02-01

    Breath alcohol analyzers are used to detect ethanol in motorists and others suspected of public intoxication. One concern is their ability to detect interfering substances that may falsely increase the ethanol reading. A 47-year-old-man was found in a public park, acting intoxicated. A breath analyzer test (Intoxilyzer 5000EN) measured 0.288 g/210 L breath ethanol, without an interferent noted. In the emergency department, the patient admitted to drinking HEET Gas-Line antifreeze, which contains 99% methanol. Two to three hours after ingestion, serum and urine toxicology screen results were negative for ethanol and multiple other substances. His serum methanol concentration was 589 mg/dL, serum osmolality 503 mOsm/kg, osmolar gap 193 mOsm/kg, and anion gap 17 mmol/L. The patient was treated with intravenous ethanol, fomepizole, and hemodialysis without complication. This is a unique clinical case of a breath alcohol analyzer reporting methanol as ethanol. Intoxilyzer devices have been shown to indicate some substances (acetone) as interferents in humans but not methanol. Increased serum concentrations of methanol can be reported as ethanol by a commonly used breath alcohol analyzer, which can result in a delayed diagnosis or misdiagnosis and subsequent methanol toxicity if antidotal treatment is not administered in a timely manner. Copyright (c) 2009 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  20. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  1. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  2. Modified Helicobacter test using a new test meal and a 13C-urea breath test in Helicobacter pylori positive and negative dyspepsia patients on proton pump inhibitors.

    PubMed

    Tepeš, Bojan; Malfertheiner, Peter; Labenz, Joachim; Aygen, Sitke

    2017-08-28

    To determine the sensitivity and specificity of the 13 C-urea breath test (UBT) in patients taking proton pump inhibitors (PPIs), using a new test meal Refex. One hundred and fourteen consecutive patients with dyspepsia, 53 Helicobacter pylori ( H. pylori ) positive, 49 H. pylori negative, were included in the study. The patients were then given esomeprazole 40 mg for 29 consecutive days, and the 13 C-UBT with the new test meal was performed the next morning. The sensitivity of the 13 C-UBT with a cut off 2.5‰ was 92.45% (95%CI: 81.79%-97.91%) by per-protocol (PP) analysis and 78.13% (95%CI: 66.03%-87.49%) by intention-to-treat (ITT) analysis. The specificity of the 13 C-UBT test was 96.00% in the ITT population (95%CI: 86.29%-99.51%) and 97.96% in the PP population (95%CI: 89.15%-99.95%). The new test meal based 13 C-UBT is highly accurate in patients on PPIs and can be used in those unable to stop their PPI treatment.

  3. Effects of alcohol-based hand hygiene solutions on breath alcohol detection in the emergency department.

    PubMed

    Emerson, Beth L; Whitfill, Travis; Baum, Carl R; Garlin-Kane, Katherine; Santucci, Karen

    2016-12-01

    This study aimed to investigate the effects of alcohol-based hand hygiene solution (ABHS) use by care providers on point-of-care alcohol breath analyzer interpretation under different clinically relevant conditions. Among each test condition (foam vehicle with immediate testing, gel vehicle with immediate testing, allowing hands to dry after the use of ABHS, and donning gloves after the use of ABHS), alcohol was detected in breath at 1 minute after use of ABHS. Because the use of ABHS by individuals administering breath alcohol detection may result in false-positive detection of alcohol, staff using these devices should consider traditional hand hygiene with soap and water. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  5. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  6. Molecular hydrogen in human breath: a new strategy for selectively diagnosing peptic ulcer disease, non-ulcerous dyspepsia and Helicobacter pylori infection.

    PubMed

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Ghosh, Barnali; Chaudhuri, Sujit; Pradhan, Manik

    2016-07-22

    The gastric pathogen Helicobacter pylori utilizes molecular hydrogen (H2) as a respiratory substrate during colonization in the gastric mucosa. However, the link between molecular H2 and the pathogenesis of peptic-ulcer disease (PUD) and non-ulcerous dyspepsia (NUD) by the enzymatic activity of H. pylori still remains mostly unknown. Here we provide evidence that breath H2 excretion profiles are distinctly altered by the enzymatic activity of H. pylori for individuals with NUD and PUD. We subsequently unravelled the potential molecular mechanisms responsible for the alteration of H2 in exhaled breath in association with peptic ulcers, encompassing both gastric and duodenal ulcers, along with NUD. We also established that carbon-isotopic fractionations in the acid-mediated bacterial environment regulated by bacterial urease activity cannot discriminate the actual disease state i.e. whether it is peptic ulcer or NUD. However, our findings illuminate the unusual molecular H2 in breath that can track the precise evolution of PUD and NUD, even after the eradication of H. pylori infection. This deepens our understanding of the pathophysiology of PUD and NUD, reveals non-invasively the actual disease state in real-time and thus offers a novel and robust new-generation strategy for treating peptic-ulcer disease together with non-ulcer related complications even when the existing (13)C-urea breath test ((13)C-UBT) fails to diagnose.

  7. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and treatment of patients with peptic ulcer, Zollinger-Ellison syndrome (peptic ulcer due to gastrin... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastric acidity test system. 862.1320 Section 862....1320 Gastric acidity test system. (a) Identification. A gastric acidity test system is a device...

  8. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and treatment of patients with peptic ulcer, Zollinger-Ellison syndrome (peptic ulcer due to gastrin... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastric acidity test system. 862.1320 Section 862....1320 Gastric acidity test system. (a) Identification. A gastric acidity test system is a device...

  9. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  10. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  11. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  12. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  13. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  14. Sleep-disordered Breathing in Cardiac Rehabilitation: Prevalence, Predictors, and Influence on the Six-Minute Walk Test.

    PubMed

    Loo, Germaine; Chua, Ai-Ping; Tay, Hung-Yong; Poh, Ruth; Tai, Bee-Choo; Lee, Chi-Hang

    2016-06-01

    Identification of non-traditional risk factors is an important component of cardiac rehabilitation (CR). However, the prevalence and predictors of sleep-disordered breathing (SDB) and its influence on exercise performance in patients attending CR remain poorly described. Patients enrolled in a national CR centre were eligible for a comprehensive SDB screening program. Screening questionnaires for SDB, overnight sleep study, and the 6-minute walk test (6MWT) were conducted. We recruited 332 patients (mean age 62±10 years, 62.4% male) attending CR for primary (29.2%) or secondary (70.8%) prevention, of which 209 successfully completed the overnight sleep study. Sleep-disordered breathing group patients (n=68, 32.5%) were older and had a higher body mass index (BMI) and neck and waist circumferences than the non-SDB group patients. After adjusting for neck and waist circumference, age (OR=1.06; 95% CI 1.02-1.10; p=0.001) and BMI (OR=1.19; 95% CI 1.10-1.30; p<0.001) remained independent predictors of SDB. A high risk of SDB based on the Berlin Questionnaire (43.4% versus 35.5%, p=0.277) or STOP-BANG questionnaire (63.2% versus 53.2%, p=0.170) and excessive daytime sleepiness (Epworth Sleepiness Scale >10, 23.9% versus 17.7%, p=0.297) were similar between the groups. The 6MWT scores were significantly lower in the SDB than non-SDB group (mean difference -32 m; 95% CI -57-7; p=0.013). The relationship was no longer significant after adjusting for age, sex, and waist circumference. Sleep-disordered breathing is prevalent in CR patients and is independently predicted by ageing and obesity. The association between SDB and poorer exercise performance may be explained by age, sex, and waist circumference. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  15. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects.

    PubMed

    Cowan, J Mack; Burris, James M; Hughes, James R; Cunningham, Margaret P

    2010-06-01

    The relationship between normal body temperature, end-expired breath temperature, and blood alcohol concentration (BAC)/breath alcohol concentration (BrAC) ratio was studied in 98 subjects (84 men, 14 women). Subjects consumed alcohol sufficient to produce a BrAC of at least 0.06 g/210 L 45-75 min after drinking. Breath samples were analyzed using an Intoxilyzer 8000 specially equipped to measure breath temperature. Venous blood samples and body temperatures were then taken. The mean body temperature of the men (36.6 degrees C) was lower than the women (37.0 degrees C); however, their mean breath temperatures were virtually identical (men: 34.5 degrees C; women: 34.6 degrees C). The BAC exceeded the BrAC for every subject. BAC/BrAC ratios were calculated from the BAC and BrAC analytical results. There was no difference in the BAC/BrAC ratios for men (1:2379) and women (1:2385). The correlation between BAC and BrAC was high (r = 0.938, p < 0.0001), whereas the correlations between body temperature and end-expired breath temperature, body temperature and BAC/BrAC ratio, and breath temperature and BAC/BrAC ratio were much lower. Neither normal body temperature nor end-expired breath temperature was strongly associated with BAC/BrAC ratio.

  16. Optoacoustic Determination of Carbon Dioxide Concentration in Exhaled Breath in Various Human Diseases*

    NASA Astrophysics Data System (ADS)

    Ageev, V. G.; Nikiforova, O. Yu.

    2016-11-01

    We determined the carbon dioxide concentrations in exhaled breath from healthy donors and patients with various diseases from the absorption spectra of test samples, recorded on a laser optoacoustic gas analyzer based on a CO2 laser. We observed that the carbon dioxide concentrations in exhaled breath from healthy donors is higher than in patients with various diseases.

  17. 13C-tryptophan breath test detects increased catabolic turnover of tryptophan along the kynurenine pathway in patients with major depressive disorder

    PubMed Central

    Teraishi, Toshiya; Hori, Hiroaki; Sasayama, Daimei; Matsuo, Junko; Ogawa, Shintaro; Ota, Miho; Hattori, Kotaro; Kajiwara, Masahiro; Higuchi, Teruhiko; Kunugi, Hiroshi

    2015-01-01

    Altered tryptophan–kynurenine (KYN) metabolism has been implicated in major depressive disorder (MDD). The l-[1-13C]tryptophan breath test (13C-TBT) is a noninvasive, stable-isotope tracer method in which exhaled 13CO2 is attributable to tryptophan catabolism via the KYN pathway. We included 18 patients with MDD (DSM-IV) and 24 age- and sex-matched controls. 13C-tryptophan (150 mg) was orally administered and the 13CO2/12CO2 ratio in the breath was monitored for 180 min. The cumulative recovery rate during the 180-min test (CRR0–180; %), area under the Δ13CO2-time curve (AUC; %*min), and the maximal Δ13CO2 (Cmax; %) were significantly higher in patients with MDD than in the controls (p = 0.004, p = 0.008, and p = 0.002, respectively). Plasma tryptophan concentrations correlated negatively with Cmax in both the patients and controls (p = 0.020 and p = 0.034, respectively). Our results suggest that the 13C-TBT could be a novel biomarker for detecting a subgroup of MDD with increased tryptophan–KYN metabolism. PMID:26524975

  18. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    PubMed

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  19. Breath Methane Levels Are Increased Among Patients with Diverticulosis.

    PubMed

    Yazici, Cemal; Arslan, Deniz Cagil; Abraham, Rana; Cushing, Kelly; Keshavarzian, Ali; Mutlu, Ece A

    2016-09-01

    Diverticulosis and its complications are important healthcare problems in the USA and throughout the Western world. While mechanisms as to how diverticulosis occurs have partially been explored, few studies examined the relationship between colonic gases such as methane and diverticulosis in humans. This study aimed to demonstrate a significant relationship between methanogenic Archaea and development of diverticulosis. Subjects who consecutively underwent hydrogen breath test at Rush University Medical Center between 2003 and 2010 were identified retrospectively through a database. Medical records were reviewed for presence of a colonoscopy report. Two hundred and sixty-four subjects were identified who had both a breath methane level measurement and a colonoscopy result. Additional demographic and clinical data were obtained with chart review. Mean breath methane levels were higher in subjects with diverticulosis compared to those without diverticulosis (7.89 vs. 4.94 ppm, p = 0.04). Methane producers (defined as those with baseline fasting breath methane level >5 ppm) were more frequent among subjects with diverticulosis compared to those without diverticulosis (50.9 vs. 34 %, p = 0.0025). When adjusted for confounders, breath methane levels and age were the two independent predictors of diverticulosis on colonoscopy with logistic regression modeling. Methanogenesis is associated with the presence of diverticulosis. Further studies are needed to confirm our findings and prospectively evaluate a possible etiological role of methanogenesis and methanogenic archaea in diverticulosis.

  20. PERIODIC AIR-BREATHING BEHAVIOUR IN A PRIMITIVE FISH REVEALED BY SPECTRAL ANALYSIS

    PubMed

    Hedrick; Katz; Jones

    1994-12-01

    The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in birds and mammals. In this sense, periodism refers to behaviour that occurs with a definite, recurring interval (Bendat and Piersol, 1986). The characterisation of aerial ventilation patterns in fish as 'aperiodic' has been generally accepted on the basis of qualitative examination and it remains to be validated with rigorous testing. The bowfin, Amia calva (L.), is a primitive air-breathing fish that makes intermittent excursions to the air­water interface to gulp air, which is transferred to its well-vascularized gas bladder. Its phylogenetic position as the only extant member of the sister lineage of modern teleosts affords a unique opportunity to examine the evolution of aerial ventilation and provides a model for the examination of ventilatory patterns in primitive fishes. To establish whether Amia calva exhibit a particular pattern of air-breathing, we examined time series records of aerial ventilations from undisturbed fish over long periods (8 h). These records were the same as those used to calculate average ventilation intervals under a variety of experimental conditions (Hedrick and Jones, 1993). Their study also reported the occurrence of two distinct breath types. Type I breaths were characterised by an exhalation followed by an inhalation, whereas type II breaths were characterised by inhalation only. It was also hypothesized that the type I breaths were employed to meet oxygen demands, whereas the type II breaths were used to regulate gas bladder volume. However, they did not investigate the potential presence of a periodic ventilatory pattern. We now report

  1. A comparison of standard inhalers for asthma with and without alcohol as the propellant on the measurement of alcohol in breath.

    PubMed

    Ignacio-García, José M; Ignacio-García, Juan M; Almenara-Barrios, José; Chocrón-Giraldez, María J; Hita-Iglesias, Carmen

    2005-01-01

    Because most bronchodilator inhalers contain propellant gases or a small amount of ethanol as a co-solvent, the potential for these products to generate false readings on a evidential breath alcohol instrument was evaluated in 69 volunteers with clinically stable asthma. All subjects underwent a breath test on an infrared breath alcohol analyzer (Alcotest 7110, Dräger, Lübeck, Germany) before the use of the asthma inhaler and 1 and 5 min after inhalation. The effects of antiasthmatic medications delivered by metered dose inhalers (MDIs) with alcohol as a vehicle, alcohol-free MDIs, and dry powder inhalers were assessed in homogeneous groups of four to five patients. All subjects were alcohol-free on the preliminary breath test. One minute after inhalation, negative readings were only observed in 25 (36.2%) of subjects. In 62.3% of patients, apparent alcohol results were considered interferences or unstable readings by the breath-test instrument. One subject showed a final positive breath alcohol level (0.07 mg/L). After the use of dry powder inhalers, valid results without interferences were obtained. However, 89.6% of patients in which bronchodilators were delivered by MDIs (with propellant gases in the aerosol) showed altered partial readings and labeled the final output as "invalid," but tests performed 5 min after the use of inhalers were valid and correct in all cases. MDIs with propellants as a vehicle may cause false positive breath alcohol readings in some patients. These effects are transient and may be prevented by a 5-10-min interval between the use of MDIs and breath alcohol testing.

  2. Preschool Multiple-Breath Washout Testing. An Official American Thoracic Society Technical Statement.

    PubMed

    Robinson, Paul D; Latzin, Philipp; Ramsey, Kathryn A; Stanojevic, Sanja; Aurora, Paul; Davis, Stephanie D; Gappa, Monika; Hall, Graham L; Horsley, Alex; Jensen, Renee; Lum, Sooky; Milla, Carlos; Nielsen, Kim G; Pittman, Jessica E; Rosenfeld, Margaret; Singer, Florian; Subbarao, Padmaja; Gustafsson, Per M; Ratjen, Felix

    2018-03-01

    Obstructive airway disease is nonuniformly distributed throughout the bronchial tree, although the extent to which this occurs can vary among conditions. The multiple-breath washout (MBW) test offers important insights into pediatric lung disease, not available through spirometry or resistance measurements. The European Respiratory Society/American Thoracic Society inert gas washout consensus statement led to the emergence of validated commercial equipment for the age group 6 years and above; specific recommendations for preschool children were beyond the scope of the document. Subsequently, the focus has shifted to MBW applications within preschool subjects (aged 2-6 yr), where a "window of opportunity" exists for early diagnosis of obstructive lung disease and intervention. This preschool-specific technical standards document was developed by an international group of experts, with expertise in both custom-built and commercial MBW equipment. A comprehensive review of published evidence was performed. Recommendations were devised across areas that place specific age-related demands on MBW systems. Citing evidence where available in the literature, recommendations are made regarding procedures that should be used to achieve robust MBW results in the preschool age range. The present work also highlights the important unanswered questions that need to be addressed in future work. Consensus recommendations are outlined to direct interested groups of manufacturers, researchers, and clinicians in preschool device design, test performance, and data analysis for the MBW technique.

  3. Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography-mass spectrometry.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Okamoto, Mitsuyoshi; Sakamaki, Hiroyuki; Hosoe, Masahiko; Ishiguro, Motoyuki; Saito, Yoshihiro

    2014-03-20

    Isoprene in human breath is said to be related to cholesterol metabolism, and the possibility of the correlations with some clinical parameters has been studied. However, at this stage, no clear benefit of breath isoprene has been reported for clinical diagnosis. In this work, isoprene and acetone concentrations were measured in the breath of healthy and obese subjects using a needle-type extraction device for subsequent analysis in gas chromatography-mass spectrometry (GC-MS) to investigate the possibility of these compounds as an indicator of possible diseases. After measuring intraday and interday variations of isoprene and acetone concentrations in breath samples of healthy subjects, their concentrations were also determined in 80 healthy and 17 obese subjects. In addition, correlation between these breath concentrations and the blood tests result was studied for these healthy and obese subjects. The results indicated successful determination of breath isoprene and acetone in this work, however, no clear correlation was observed between these measured values and the blood test results. Breath isoprene concentration may not be a useful indicator for obesity or hypercholesterolemia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Comparison of 72-hour fecal fat quantification and the 13C-mixed triglyceride breath test in assessing pancreatic exocrine sufficiency in children with chronic pancreatitis.

    PubMed

    Wejnarska, Karolina; Kołodziejczyk, Elwira; Ryżko, Józef; Oracz, Grzegorz

    Chronic pancreatitis (CP) in children is still a rare, although increasingly recognized entity. Over the duration of the disease several complications can be observed, two of which are major ones: endo- and exocrine insufficiency. In the medical care of children with CP it is crucial to diagnose the decreased endo- and exocrine function of the pancreas, in order to preserve patients from malnutrition and the failure to thrive. The aim of the study was to compare the usefulness of two indirect methods of assessing the pancreas exocrine function in children with CP. Ninety one patients with CP were enrolled in the study (41 boys, 50 girls, aged 2-17.8 years). Only Patients who had had both the 72-hour fecal fat quantification and the 13C-mixed triglyceride breath test (13C -MTBT) performed were selected. We compared the results of both tests for sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) in detecting exocrine pancreatic insufficiency. Out of 91 patients, 12 were diagnosed with exocrine pancreatic insufficiency (EPI). The sensitivity of the fecal fat quantification was 50%, the specificity for the test was 100%. PPV and NPV were 100% and 93%, respectively. 13C-MTBT had the sensitivity of 42% and the specificity of 99%. PPV and NPV for the breath test were of 83% and 92%, respectively. No statistically significant discrepancy between the values obtained was found. Although the 72-hour fecal fat quantification remains the gold standard in detecting EPI, both of the methods that had been investigated were shown to be comparable regarding sensitivity, specificity, PPV and NPV in assessing pancreas exocrine sufficiency in children with CP. Due to the easier execution of the breath test, both for the patient and for medical personnel, its importance may increase.

  5. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  6. 'Breath figure' PLGA films as implant coatings for controlled drug release

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  7. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  8. BREATHE to Understand©

    ERIC Educational Resources Information Center

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  9. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  10. [Reliability study on the infrared spectrometry for measuring the delta over baseline for breath 13C].

    PubMed

    Wang, Min; Wang, Zhiling; Gou, Lingyan; Zhang, Yuhui; Yang, Xiaoguang; Sha, Lei; Li, Min

    2013-03-01

    To assess the validity and reliability of the infrared spectrometry for measuring the delta over baseline for breath 13C. Twenty-four healthy adults were selected, including twelve males and twelve females. 13C-Leucine was used as tracer in stable isotope metabolic experiments. One baseline breath was collected before the tracer protocol began. Other breath samples were collected at 60, 120, 180, 195, 210, 225, 240, 255, 270 and 300 min post-tracer challenge. The delta over baseline for breath 13C was measured by the infrared spectrometry and Heliview 13C breath analyzer. No significant differences were found between the infrared spectrometry and Heliview 13C breath analyzer in measuring the delta over baseline for breath 13C. The F value and p value of two-way ANOVA were 0.29 and 0.5874 respectively. The t and p value of consistency test were 0.48 and 0.6346 respectively. The 13C infrared spectrometry can reliably measure the delta over baseline for breath 13C.

  11. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study.

    PubMed

    Sano, Masahiro; Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-12-04

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient's habitual breathing route than a patient interview.

  12. Increased oxygen load in the prefrontal cortex from mouth breathing: a vector-based near-infrared spectroscopy study

    PubMed Central

    Sano, Sayaka; Oka, Noriyuki; Yoshino, Kayoko; Kato, Toshinori

    2013-01-01

    Individuals who habitually breathe through the mouth are more likely than nasal breathers to have sleep disorders and attention deficit hyperactive disorder. We hypothesized that brain hemodynamic responses in the prefrontal cortex might be different for mouth and nasal breathing. To test this hypothesis, we measured changes in oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex during mouth breathing and nasal breathing in healthy adults (n=9) using vector-based near-infrared spectroscopy. The angle k, calculated from changes in oxyhemoglobin and deoxyhemoglobin and indicating the degree of oxygen exchange, was significantly higher during mouth breathing (P<0.05), indicating an increased oxygen load. Mouth breathing also caused a significant increase in deoxyhemoglobin, but oxyhemoglobin did not increase. This difference in oxygen load in the brain arising from different breathing routes can be evaluated quantitatively using vector-based near-infrared spectroscopy. Phase responses could help to provide an earlier and more reliable diagnosis of a patient’s habitual breathing route than a patient interview. PMID:24169579

  13. The effect of breathing an ambient low‐density, hyperoxic gas on the perceived effort of breathing and maximal performance of exercise in well‐trained athletes

    PubMed Central

    Ansley, L; Petersen, D; Thomas, A; Gibson, A St Clair; Robson‐Ansley, P; Noakes, T D

    2007-01-01

    Background The role of the perception of breathing effort in the regulation of performance of maximal exercise remains unclear. Aims To determine whether the perceived effort of ventilation is altered through substituting a less dense gas for normal ambient air and whether this substitution affects performance of maximal incremental exercise in trained athletes. Methods Eight highly trained cyclists (mean SD) maximal oxygen consumption (VO2max) = 69.9 (7.9) (mlO2/kg/min) performed two randomised maximal tests in a hyperbaric chamber breathing ambient air composed of either 35% O2/65% N2 (nitrox) or 35% O2/65% He (heliox). A ramp protocol was used in which power output was incremented at 0.5 W/s. The trials were separated by at least 48 h. The perceived effort of breathing was obtained via Borg Category Ratio Scales at 3‐min intervals and at fatigue. Oxygen consumption (VO2) and minute ventilation (VE) were monitored continuously. Results Breathing heliox did not change the sensation of dyspnoea: there were no differences between trials for the Borg scales at any time point. Exercise performance was not different between the nitrox and heliox trials (peak power output = 451 (58) and 453 (56) W), nor was VO2max (4.96 (0.61) and 4.88 (0.65) l/min) or maximal VE (157 (24) and 163 (22) l/min). Between‐trial variability in peak power output was less than either VO2max or maximal VE. Conclusion Breathing a less dense gas does not improve maximal performance of exercise or reduce the perception of breathing effort in highly trained athletes, although an attenuated submaximal tidal volume and VE with a concomitant reduction in VO2 suggests an improved gas exchange and reduced O2 cost of ventilation when breathing heliox. PMID:17062658

  14. Breath-based biomarkers for tuberculosis

    NASA Astrophysics Data System (ADS)

    Kolk, Arend H. J.; van Berkel, Joep J. B. N.; Claassens, Mareli M.; Walters, Elisabeth; Kuijper, Sjoukje; Dallinga, Jan W.; van Schooten, Fredrik-Jan

    2012-06-01

    We investigated the potential of breath analysis by gas chromatography - mass spectrometry (GC-MS) to discriminate between samples collected prospectively from patients with suspected tuberculosis (TB). Samples were obtained in a TB endemic setting in South Africa where 28% of the culture proven TB patients had a Ziehl-Neelsen (ZN) negative sputum smear. A training set of breath samples from 50 sputum culture proven TB patients and 50 culture negative non-TB patients was analyzed by GC-MS. A classification model with 7 compounds resulted in a training set with a sensitivity of 72%, specificity of 86% and accuracy of 79% compared with culture. The classification model was validated with an independent set of breath samples from 21 TB and 50 non-TB patients. A sensitivity of 62%, specificity of 84% and accuracy of 77% was found. We conclude that the 7 volatile organic compounds (VOCs) that discriminate breath samples from TB and non-TB patients in our study population are probably host-response related VOCs and are not derived from the VOCs secreted by M. tuberculosis. It is concluded that at present GC-MS breath analysis is able to differentiate between TB and non-TB breath samples even among patients with a negative ZN sputum smear but a positive culture for M. tuberculosis. Further research is required to improve the sensitivity and specificity before this method can be used in routine laboratories.

  15. Performance evaluation : balloon-type breath alcohol self tester for personal use

    DOT National Transportation Integrated Search

    1984-01-01

    The accuracy of the only breath alcohol balloon-type self test device being marketed for personal use (Luckey Laboratories DM-2) was assessed in the laboratory. Data regarding this self-test device's ability to accurately classify an individual as ha...

  16. Hydrochloric acid poisoning

    MedlinePlus

    ... measure and monitor the person's vital signs, including temperature, pulse, breathing rate, and blood pressure. The person ... into the stomach to suction (aspirate) any remaining acid if the victim is seen shortly after ingesting ...

  17. Tests for H. pylori

    MedlinePlus

    Peptic ulcer disease - H. pylori ; PUD - H. pylori ... There are several methods to test for H. pylori infection. Breath Test (Carbon Isotope-urea Breath Test, or UBT) Up to 2 weeks before the test, you need to stop taking ...

  18. Liver diffusivity in healthy volunteers and patients with chronic liver disease: Comparison of breath-hold and free-breathing techniques

    PubMed Central

    Eatesam, Mamak; Noworolski, Susan M; Tien, Phyllis C; Nystrom, Michelle; Dodge, Jennifer L.; Merriman, Raphael B.; Qayyum, Aliya

    2011-01-01

    Purpose To compare liver ADC obtained with breath-hold and free-breathing diffusion weighted imaging (DWI) in healthy volunteers and patients with liver disease. Materials and Methods Twenty-eight subjects, 12 healthy volunteers and 16 patients (9 NAFLD, 7 chronic active HCV), underwent breath-hold (BH) and free-breathing (FB) DWI MRI at 1.5T. Pearson’s correlation coefficient was used to determine correlation while paired t-tests assessed differences between BH and FB ADC. Estimated bias was calculated using the Bland-Altman method. Results Liver ADC (×10−3 mm2/sec) was lower on BH for all groups (mean difference 0.36±0.20; p<0.01). ADC was higher in healthy volunteers (BH 1.80±0.18; FB 2.24±0.20) compared to NAFLD patients (BH 1.43±0.27; FB 1.78±0.28) (p<0.001) and HCV patients (BH 1.63±0.191; FB 1.88±0.12). Overall correlation between BH and FB ADC was (r =0.75), greatest in NAFLD (r =0.90) compared to the correlation in HCV (r =0.24) and healthy subjects (r =0.34). Bland-Altman plots did not show agreement in mean absolute difference and estimated bias between subjects. Conclusion Correlation between BH and FB liver ADC is moderate indicating that BH and FB should not be used interchangeably. Additionally, the lower ADC values in BH versus FB should be accounted for when comparing different liver DWI studies. PMID:22034200

  19. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    NASA Astrophysics Data System (ADS)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  20. The accuracy of coin-operated breath analysers installed in licensed premises in the Perth metropolitan area.

    PubMed

    Hay, Greg; Cercarelli, L Rina

    2004-04-01

    To examine the accuracy of coin-operated breath analysers installed in licensed premises in the Perth metropolitan area. Two hundred licensed premises were contacted, which resulted in the location of 36 wall-mounted, coin-operated breath analysers. One instrument was removed prior to testing. These premises were then visited and the accuracy of the instruments was tested in situ using National Association of Testing Authorities Australia (NATA) certified 0.080% and 0.100% ethanol in nitrogen gas. The instruments were installed in the licensed premises as follows: 15 in the lounge bar, 10 in the main entrance, six in the public bar, two in the passageway to the toilets, and one in the male toilets. One licensed premise provided a handheld breath instrument. All instruments were accompanied by warning and operating instructions, but only five had any educational material. Only seven of the licensed premises had staff who had received any training in the operation of the wall-mounted instruments. Half of the licensees were unaware of the servicing requirements of the instruments. The testing found that only nine (25%) of the instruments provided acceptable results. The low level of accuracy of coin-operated breath analysers in the Perth metropolitan area is alarming and users should be informed of the potential inaccuracies. This paper, however, does not rule out that some wall-mounted breath analysing instruments may provide accurate results when properly maintained.

  1. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  2. Unloading work of breathing during high-frequency oscillatory ventilation: a bench study

    PubMed Central

    van Heerde, Marc; Roubik, Karel; Kopelent, Vitek; Plötz, Frans B; Markhorst, Dick G

    2006-01-01

    Introduction With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. Methods An external gas flow controller (demand-flow system) accommodates the ventilator fresh gas flow during spontaneous breathing simulation. A control algorithm detects breathing effort and regulates the demand-flow valve. The effectiveness of this system has been evaluated in a bench test. The Campbell diagram and pressure time product (PTP) are used to quantify the imposed workload. Results Using the demand-flow system, imposed WOB is considerably reduced. The demand-flow system reduces inspiratory imposed WOB by 30% to 56% and inspiratory imposed PTP by 38% to 59% compared to continuous fresh gas flow. Expiratory imposed WOB was decreased as well by 12% to 49%. In simulations of shallow to normal breathing for an adult, imposed WOB is 0.5 J l-1 at maximum. Fluctuations in mean airway pressure on account of spontaneous breathing are markedly reduced. Conclusion The use of the demand-flow system during HFOV results in a reduction of both imposed WOB and fluctuation in mean airway pressure. The level of imposed WOB was reduced to the physiological range of WOB. Potentially, this makes maintenance of spontaneous breathing during HFOV possible and easier in a clinical setting. Early initiation of HFOV seems more possible with this system and the possibility of weaning of patients directly on a high-frequency oscillatory ventilator is not excluded either. PMID:16848915

  3. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  4. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  5. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  6. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  7. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  8. Cardiorespiratory interactions during resistive load breathing.

    PubMed

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  9. No radiation protection reasons for restrictions on 14C urea breath tests in children.

    PubMed

    Gunnarsson, M; Leide-Svegborn, S; Stenström, K; Skog, G; Nilsson, L-E; Hellborg, R; Mattsson, S

    2002-12-01

    Traditional (14)C urea breath tests are normally not used for younger children because the radiation exposure is unknown. High sensitivity accelerator mass spectrometry and an ultra-low amount (440 Bq) of (14)C urea were therefore used both to diagnose Helicobacter pylori (HP) infection in seven children, aged 3-6 years, and to make radiation dose estimates. The activity used was 125 times lower than the amount normally used for older children and 250 times lower than that used for adults. Results were compared with previously reported biokinetic and dosimetric data for adults and older children aged 7-14 years. (14)C activity concentrations in urine and exhaled air per unit administered activity for younger children (3-6 years) correspond well with those for older children (7-14 years). For a child aged 3-6 years who is HP negative, the urinary bladder wall receives the highest absorbed dose, 0.3 mGy MBq(-1). The effective dose is 0.1 mSv MBq(-1) for the 3-year-old child and 0.07 mSv MBq(-1) for the 6-year-old child. For two children, the 10 min and 20 min post-(14)C administration samples of exhaled air showed a significantly higher amount of (14)C activity than for the rest of the children, that is 6% and 19% of administered activity exhaled per hour compared with 0.3-0.9% (mean 0.5%) of administered activity exhaled per hour indicating that these two children that is were HP positive. For a 3-year-old HP positive child, absorbed dose to the urinary bladder wall was 0.3 mGy MBq(-1) and effective dose per unit of administered activity was 0.4 mSv MBq(-1). Using 55 kBq, which is a normal amount for older children when liquid scintillation counters are used for measurement, the effective dose will be approximately 6 micro Sv to a 3-year-old HP negative child and 20 microSv to a HP positive child. Thus there is no reason for restrictions on performing a normal (14)C urea breath test, even on young children.

  10. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    PubMed Central

    Ferdinands, Jill M; Crawford, Carol A Gotway; Greenwald, Roby; Van Sickle, David; Hunter, Eric; Teague, W Gerald

    2008-01-01

    Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification. PMID:18328105

  11. Evaluation of a portable evidential breath alcohol analyzer.

    PubMed

    Razatos, Gerasimos; Luthi, Ruth; Kerrigan, Sarah

    2005-10-04

    The Scientific Laboratory Division (SLD) of the Department of Health acts by mandate as the regulatory agency for the Implied Consent Program for the State of New Mexico. The Laboratory is responsible for all blood and breath alcohol testing activities for law enforcement statewide. The geographical size and the nature of the state, characterized by a highly rural population, demands portable breath alcohol testing equipment. Moreover, future expansion and success of the breath-testing program has focused on instrument portability and data management as critical issues amongst law enforcement agencies and the courts. Thus, the Implied Consent Section of the SLD evaluated the performance of the Intoxilyzer 8000, a portable instrument, against the Intoxilyzer 5000, a stationary instrument, which is currently approved for use. Instrument performance was evaluated at various ethanol concentrations, ranging from 0.04 to 0.55 g/100mL in blood or g/210 L breath. Special attention was placed on instrument performance at the per se and aggravated DWI levels of 0.08 g/100mL and 0.16 g/dL, respectively, due to their legal significance. Precision and accuracy were evaluated using in-house ethanol controls in a wet bath simulator. Coefficients of variation using the Intoxilyzer 8000 ranged from 0.30 to 1.3% (n=102), while CVs for the Intoxilyzer 5000 were 0.7-2.1% (n=102). Calibration stability was assessed in addition to the distribution of data at concentrations between 0.04 and 0.55 g/210 L. Accuracy was 100-102% for the Intoxilyzer 5000 and 99-101% using the Intoxilyzer 8000. Linear regression analysis of more than 700 comparative measurements revealed an R(2) of 1.000 (y=1.005x-0.001), where the Intoxilyzer 5000 and the Intoxilyzer 8000 were plotted on the x- and y-axis respectively. Instrument response to mouth alcohol and volatile interferences was also investigated. Potential interferences were evaluated alone or in combination with ethanol using a wet bath simulator at

  12. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail; Turkmen, Aysenur; Akman, Hatice; Sezer, M. Tugrul; Kutluhan, Suleyman

    2016-08-01

    An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.

  13. A dual mode breath sampler for the collection of the end-tidal and dead space fractions.

    PubMed

    Salvo, P; Ferrari, C; Persia, R; Ghimenti, S; Lomonaco, T; Bellagambi, F; Di Francesco, F

    2015-06-01

    This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties. Copyright © 2015. Published by Elsevier Ltd.

  14. Influence of breathing resistance of heat and moisture exchangers on tracheal climate and breathing pattern in laryngectomized individuals.

    PubMed

    Scheenstra, Renske J; Muller, Sara H; Vincent, Andrew; Sinaasappel, Michiel; Hilgers, Frans J M

    2010-08-01

    The aim of this study was to determine the influence of breathing resistance of heat and moisture exchangers (HMEs) on endotracheal climate and breathing pattern. Endotracheal temperature and humidity and tidal volumes were measured in 11 laryngectomized patients with a regularly used HME with "standard" breathing resistance (Provox Normal HME; R-HME), a low breathing-resistance HME (Provox HiFlow HME; L-HME), and without HME. Both R-HME and L-HME increased end-inspiratory humidity (+5.8 and 4.7 mgH(2)O/L, respectively), decreased end-inspiratory temperature (-1.6 and -1.0 degrees C, respectively), and prolonged the exhalation breath length to approximately 0.5 seconds. The R-HME significantly enlarged tidal volumes (0.07 L; p < .05). Both HMEs significantly improve tracheal climate. The R-HME has better moistening properties and a small but significant positive effect on tidal volume. Therefore, if the higher resistance is tolerated, the R-HME is the preferred pulmonary rehabilitation device. The L-HME is indicated if lower breathing resistance is required. 2009 Wiley Periodicals, Inc. Head Neck, 2010.

  15. 49 CFR 40.245 - What is the procedure for an alcohol screening test using a saliva ASD or a breath tube ASD?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a breath tube ASD? (a) As the STT or BAT, you must take the following steps when using the saliva... ATF. (b) As the STT or BAT, you must take the following steps when using the breath tube ASD: (1... the manufacturer's directions. (11) You must note the fact that you used a breath tube device in Step...

  16. Comparative Analysis of VOCs in Exhaled Breath of Amyotrophic Lateral Sclerosis and Cervical Spondylotic Myelopathy Patients.

    PubMed

    Wang, Changsong; Li, Mingjuan; Jiang, Hongquan; Tong, Hongshuang; Feng, Yue; Wang, Yue; Pi, Xin; Guo, Lei; Nie, Maomao; Feng, Honglin; Li, Enyou

    2016-05-23

    Amyotrophic lateral sclerosis (ALS) is an incurable neurological degenerative disease. It can cause irreversible neurological damage to motor neurons; typical symptoms include muscle weakness and atrophy, bulbar paralysis and pyramidal tract signs. The ALS-mimicking disease cervical spondylotic myelopathy (CSM) presents similar symptoms, but analysis of breath volatile organic compounds (VOCs) can potentially be used to distinguish ALS from CSM. In this study, breath samples were collected from 28 ALS and 13 CSM patients. Subsequently, gas chromatography/mass spectrometry (GCMS) was used to analyze breath VOCs. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLSDA) were the statistical methods used to process the final data. We identified 4 compounds with significantly decreased levels in ALS patients compared with CSM controls: (1) carbamic acid, monoammonium salt; (2) 1-alanine ethylamide, (S)-; (3) guanidine, N,N-dimethyl-; and (4) phosphonic acid, (p-hydroxyphenyl)-. Currently, the metabolic origin of the VOCs remains unclear; however, several pathways might explain the decreasing trends observed. The results of this study demonstrate that there are specific VOC profiles associated with ALS and CSM patients that can be used to differentiate between the two. In addition, these metabolites could contribute to a better understanding of the underlying pathophysiological mechanisms of ALS.

  17. Quantification of Helicobacter pylori infection in gastritis and ulcer disease using a simple and rapid carbon-14-urea breath test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debongnie, J.C.; Pauwels, S.; Raat, A.

    1991-06-01

    Gastric urease was studied isotopically in 230 patients with biopsy-proven normal mucosa or chronic gastritis, including 59 patients with ulcer disease. Carbon-14-urea was given in 25 ml of water without substrate carrier or nutrient-dense meal, and breath samples were collected over a 60-min period. The amount of 14CO2 excreted at 10 min was independent of the rate of gastric emptying and was not quantitatively influenced by the buccal urease activity. The 10-min 14CO2 values discriminated well between Helicobacter pylori positive and negative patients (94% sensitivity, 89% specificity) and correlated with the number of organisms assessed by histology. The test wasmore » a good predictor of chronic gastritis (95% sensitivity and 96% specificity), and a quantitative relationship was observed between 14CO2 values and the severity and activity of the gastritis. In H. pylori positive patients, breath 14CO2 was found to be similar in patients with and without ulcer disease, suggesting that the number of bacteria is not a determining factor for the onset of ulceration.« less

  18. A Gaussian method to improve work-of-breathing calculations.

    PubMed

    Petrini, M F; Evans, J N; Wall, M A; Norman, J R

    1995-01-01

    The work of breathing is a calculated index of pulmonary function in ventilated patients that may be useful in deciding when to wean and when to extubate. However, the accuracy of the calculated work of breathing of the patient (WOBp) can suffer from artifacts introduced by coughing, swallowing, and other non-breathing maneuvers. The WOBp in this case will include not only the usual work of inspiration, but also the work of performing these non-breathing maneuvers. The authors developed a method to objectively eliminate the calculated work of these movements from the work of breathing, based on fitting to a Gaussian curve the variable P, which is obtained from the difference between the esophageal pressure change and the airway pressure change during each breath. In spontaneously breathing adults the normal breaths fit the Gaussian curve, while breaths that contain non-breathing maneuvers do not. In this Gaussian breath-elimination method (GM), breaths that are two standard deviations from that mean obtained by the fit are eliminated. For normally breathing control adult subjects, GM had little effect on WOBp, reducing it from 0.49 to 0.47 J/L (n = 8), while there was a 40% reduction in the coefficient of variation. Non-breathing maneuvers were simulated by coughing, which increased WOBp to 0.88 (n = 6); with the GM correction, WOBp was 0.50 J/L, a value not significantly different from that of normal breathing. Occlusion also increased WOBp to 0.60 J/L, but GM-corrected WOBp was 0.51 J/L, a normal value. As predicted, doubling the respiratory rate did not change the WOBp before or after the GM correction.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The accuracy of evidential breath testers at low BACs

    DOT National Transportation Integrated Search

    1989-05-01

    This Technical Note reports on the low blood alcohol concentration (BAC) laboratory testing of seven evidential breath testers widely used by law enforcement. The findings indicated that these devices are just as accurate at low BACs in the 0.020-0.0...

  20. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  1. Mefenamic Acid

    MedlinePlus

    Mefenamic acid comes as a capsule to take by mouth. It is usually taken with food every 6 hours as needed for up to 1 week. Follow ... pain vomit that is bloody or looks like coffee grounds black, tarry, or bloody stools slowed breathing ...

  2. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  3. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  4. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  5. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  6. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  7. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  8. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  9. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  10. Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs.

    PubMed

    Trefz, Phillip; Kamysek, Svend; Fuchs, Patricia; Sukul, Pritam; Schubert, Jochen K; Miekisch, Wolfram

    2017-03-20

    Breath analysis not only holds great potential for the development of new non-invasive diagnostic methods, but also for the identification and follow up of drug levels in breath. This is of interest for both, forensic and medical science. On the one hand, the detection of drugs of abuse in exhaled breath-similar to the well-known breath alcohol tests-would be highly desirable as an alternative to blood or urine analysis in situations such as police controls for drugged driving. The non-invasive detection of drugs and their metabolites is thus of great interest in forensic science, especially since marijuana is becoming legalized in certain parts of the US and the EU. The detection and monitoring of medical drugs in exhaled breath without the need of drawing blood samples on the other hand, is of high relevance in the clinical environment. This could facilitate a more precise medication and enable therapy control without any burden to the patient. Furthermore, it could be a step towards personalized medicine. This review gives an overview of the current state of drug detection in breath, including both volatile and non-volatile substances. The review is divided into two sections. The first section deals with qualitative detection of drugs (drugs of abuse), while the second is related to quantitative drug detection (medical drugs). Chances and limitations are discussed for both aspects. The detection of the intravenous anesthetic propofol is presented as a detailed example that demonstrates the potential, requirements, pitfalls and limitations of therapeutic drug monitoring by means of breath analysis.

  11. Acid-base and ion balance in fishes with bimodal respiration.

    PubMed

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates. © 2014 The Fisheries Society of the British Isles.

  12. Flute ``breath support'' perception and its acoustical correlates

    NASA Astrophysics Data System (ADS)

    Cossette, Isabelle A.; Sabourin, Patrick

    2004-05-01

    Music educators and performers commonly refer to ``breath support'' in flute playing, yet the term ``support'' is neither well-defined nor consistently used. Different breathing strategies used by professional flautists who were instructed to play with and without support were previously identified by the authors. In the current study, 14 musical excerpts with and without support were recorded by five professional flautists. Eleven professional flautists listened to the recordings in a random order and ranked (1 to 6) how much of the following sound qualities they judged to be in each example: support, intonation, control and musical expressiveness. Answers to the test showed that musical expressiveness was associated more closely with the supported excerpts than the answers about support itself. The ratings for each sound quality were highly intercorrelated. Acoustical parameters were analyzed (frequency and centroid variation within each note) and compared with the results of the perception test in order to better understand how the acoustical and psychological variables were related. The acoustical analysis of the central part of the notes did not show evident correlation with the answers of the perception test. [Work funded by the Social Sciences and Humanities Research Council of Canada.

  13. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantlymore » transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.« less

  14. ABA-Cloud: support for collaborative breath research

    PubMed Central

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2016-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  15. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  16. Optimal ventilatory patterns in periodic breathing.

    PubMed

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  17. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory)...

  18. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  19. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  20. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  1. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  2. Bad Breath

    MedlinePlus

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  3. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    PubMed

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P < .05), and shifted respiratory peak toward left (P < .05). Compared to 16 breaths/minute, traditional spectral analysis showed increased LF power and LF/HF ratio, decreased HF power of HRV at 8 breaths per minute (P < .05). As breathing rate decreased, corrected spectral analysis showed increased HF power, decreased LF power, LF/HF ratio of HRV (P < .05). Compared to controls, resting baroreflex sensitivity decreased in hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P < .05) and controls (from 88.49 ± 6.01 to 112.91 ± 7.29 ms/mm Hg, P < .05).Slow breathing can increase HF power and decrease LF power and LF/HF ratio in essential hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  4. The role of size in synchronous air breathing of Hoplosternum littorale.

    PubMed

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  5. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  6. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus

    PubMed Central

    Rezaie, Ali; Buresi, Michelle; Lembo, Anthony; Lin, Henry; McCallum, Richard; Rao, Satish; Schmulson, Max; Valdovinos, Miguel; Zakko, Salam; Pimentel, Mark

    2017-01-01

    Objectives: Breath tests (BTs) are important for the diagnosis of carbohydrate maldigestion syndromes and small intestinal bacterial overgrowth (SIBO). However, standardization is lacking regarding indications for testing, test methodology and interpretation of results. A consensus meeting of experts was convened to develop guidelines for clinicians and research. Methods: Pre-meeting survey questions encompassing five domains; indications, preparation, performance, interpretation of results, and knowledge gaps, were sent to 17 clinician-scientists, and 10 attended a live meeting. Using an evidence-based approach, 28 statements were finalized and voted on anonymously by a working group of specialists. Results: Consensus was reached on 26 statements encompassing all five domains. Consensus doses for lactulose, glucose, fructose and lactose BT were 10, 75, 25 and 25 g, respectively. Glucose and lactulose BTs remain the least invasive alternatives to diagnose SIBO. BT is useful in the diagnosis of carbohydrate maldigestion, methane-associated constipation, and evaluation of bloating/gas but not in the assessment of oro-cecal transit. A rise in hydrogen of ≥20 p.p.m. by 90 min during glucose or lactulose BT for SIBO was considered positive. Methane levels ≥10 p.p.m. was considered methane-positive. SIBO should be excluded prior to BT for carbohydrate malabsorption to avoid false positives. A rise in hydrogen of ≥20 p.p.m. from baseline during BT was considered positive for maldigestion. Conclusions: BT is a useful, inexpensive, simple and safe diagnostic test in the evaluation of common gastroenterology problems. These consensus statements should help to standardize the indications, preparation, performance and interpretation of BT in clinical practice and research. PMID:28323273

  7. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus.

    PubMed

    Rezaie, Ali; Buresi, Michelle; Lembo, Anthony; Lin, Henry; McCallum, Richard; Rao, Satish; Schmulson, Max; Valdovinos, Miguel; Zakko, Salam; Pimentel, Mark

    2017-05-01

    Breath tests (BTs) are important for the diagnosis of carbohydrate maldigestion syndromes and small intestinal bacterial overgrowth (SIBO). However, standardization is lacking regarding indications for testing, test methodology and interpretation of results. A consensus meeting of experts was convened to develop guidelines for clinicians and research. Pre-meeting survey questions encompassing five domains; indications, preparation, performance, interpretation of results, and knowledge gaps, were sent to 17 clinician-scientists, and 10 attended a live meeting. Using an evidence-based approach, 28 statements were finalized and voted on anonymously by a working group of specialists. Consensus was reached on 26 statements encompassing all five domains. Consensus doses for lactulose, glucose, fructose and lactose BT were 10, 75, 25 and 25 g, respectively. Glucose and lactulose BTs remain the least invasive alternatives to diagnose SIBO. BT is useful in the diagnosis of carbohydrate maldigestion, methane-associated constipation, and evaluation of bloating/gas but not in the assessment of oro-cecal transit. A rise in hydrogen of ≥20 p.p.m. by 90 min during glucose or lactulose BT for SIBO was considered positive. Methane levels ≥10 p.p.m. was considered methane-positive. SIBO should be excluded prior to BT for carbohydrate malabsorption to avoid false positives. A rise in hydrogen of ≥20 p.p.m. from baseline during BT was considered positive for maldigestion. BT is a useful, inexpensive, simple and safe diagnostic test in the evaluation of common gastroenterology problems. These consensus statements should help to standardize the indications, preparation, performance and interpretation of BT in clinical practice and research.

  8. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    PubMed

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  9. The effect of mouth breathing on chewing efficiency.

    PubMed

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P < .05) longer while breathing through the mouth. There was no significant difference in the glucide elution rate (%) for each chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P < .05) lower while breathing through the mouth. However, there was no significant difference in the glucide elution rate for 5-minute chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P < .05) lower during mouth breathing. It takes a longer amount of time to complete chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  10. Treatment of Chronic Breath-Holding in an Adult with Severe Mental Retardation: A Clinical Case Study

    ERIC Educational Resources Information Center

    Reed, Derek D.; Martens, Brian K.

    2008-01-01

    We describe a clinical case study surrounding the behavioral assessment and operant treatment of, an adult with severe mental retardation who engaged in chronic breath-holding. In this clinical case, previous neurological and medical testing had ruled out biological bases for the individual's breath-holding. A functional behavioral assessment…

  11. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    PubMed

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  12. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  13. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  14. Bad Breath

    MedlinePlus

    ... a lot, you may need to visit your dentist or doctor . What Causes Bad Breath? Here are ... particles wedged between your teeth. Also, visit your dentist twice a year for regular checkups and cleanings. ...

  15. Exercise changes volatiles in exhaled breath assessed by an electronic nose.

    PubMed

    Bikov, A; Lazar, Zs; Schandl, K; Antus, B M; Losonczy, G; Horvath, Ildiko

    2011-09-01

    Exercise-caused metabolic changes can be followed by monitoring exhaled volatiles; however it has not been previously reported if a spectrum of exhaled gases is modified after physical challenge. We have hypothesized that changes in volatile molecules assessed by an electronic nose may be the reason for the alkalization of the exhaled breath condensate (EBC) fluid following physical exercise.Ten healthy young subjects performed a 6-minute running test. Exhaled breath samples pre-exercise and post-exercise (0 min, 15 min, 30 min and 60 min) were collected for volatile pattern ("smellprint") determination and pH measurements (at 5.33 kPa CO2), respectively. Exhaled breath smellprints were analyzed using principal component analysis and were related to EBC pH.Smellprints (p=0.04) and EBC pH (p=0.01) were altered during exercise challenge. Compared to pre-exercise values, smellprints and pH differed at 15 min, 30 min and 60 min following exercise (p<0.05), while no difference was found at 0 min post-exercise. In addition, a significant correlation was found between volatile pattern of exhaled breath and EBC pH (p=0.01, r=-0.34).Physical exercise changes the pattern of exhaled volatiles together with an increase in pH of breath. Changes in volatiles may be responsible for increase in EBC pH.

  16. Design and Validation of a Breathing Detection System for Scuba Divers.

    PubMed

    Altepe, Corentin; Egi, S Murat; Ozyigit, Tamer; Sinoplu, D Ruzgar; Marroni, Alessandro; Pierleoni, Paola

    2017-06-09

    Drowning is the major cause of death in self-contained underwater breathing apparatus (SCUBA) diving. This study proposes an embedded system with a live and light-weight algorithm which detects the breathing of divers through the analysis of the intermediate pressure (IP) signal of the SCUBA regulator. A system composed mainly of two pressure sensors and a low-power microcontroller was designed and programmed to record the pressure sensors signals and provide alarms in absence of breathing. An algorithm was developed to analyze the signals and identify inhalation events of the diver. A waterproof case was built to accommodate the system and was tested up to a depth of 25 m in a pressure chamber. To validate the system in the real environment, a series of dives with two different types of workload requiring different ranges of breathing frequencies were planned. Eight professional SCUBA divers volunteered to dive with the system to collect their IP data in order to participate to validation trials. The subjects underwent two dives, each of 52 min on average and a maximum depth of 7 m. The algorithm was optimized for the collected dataset and proved a sensitivity of inhalation detection of 97.5% and a total number of 275 false positives (FP) over a total recording time of 13.9 h. The detection algorithm presents a maximum delay of 5.2 s and requires only 800 bytes of random-access memory (RAM). The results were compared against the analysis of video records of the dives by two blinded observers and proved a sensitivity of 97.6% on the data set. The design includes a buzzer to provide audible alarms to accompanying dive buddies which will be triggered in case of degraded health conditions such as near drowning (absence of breathing), hyperventilation (breathing frequency too high) and skip-breathing (breathing frequency too low) measured by the improper breathing frequency. The system also measures the IP at rest before the dive and indicates with flashing light

  17. Monitoring of endogenous carbon monoxide dynamics in human breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Daraselia, Mikhail V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-01-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Temporal variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation and sport loading were first studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  18. Breathing difficulty

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003075.htm Breathing difficulty To use the sharing features on this page, ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  19. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.

    PubMed

    Bright, Molly G; Murphy, Kevin

    2013-12-01

    Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC<0.4) in several regions analysed. In contrast, the end-tidal CO2 regressors resulted in "excellent" repeatability (ICC=0.82) in the average grey matter data, and resulted in acceptable repeatability in all smaller regions tested (ICC>0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable

  20. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  1. Controlled-frequency breath swimming improves swimming performance and running economy.

    PubMed

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P < 0.05) while maximum inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P < 0.05). Forced vital capacity increased by 4% (4) in SM (P < 0.05) and was unchanged in CFB. These findings suggest that limiting breath frequency during swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 2-Ethylhexanoic Acid; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule, under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of 2-ethylhexanoic acid (EHA, CAS No. 149-57-5) to conduct testing.

  3. Clinical comparison of a new manual toothbrush on breath volatile sulfur compounds.

    PubMed

    Williams, Malcolm I; Vazquez, Joe; Cummins, Diane

    2004-10-01

    The objective of this randomized, crossover study was to compare the effectiveness of a newly designed manual toothbrush (Colgate 360 degrees) to two commercially available manual toothbrushes (Oral-B Indicator and Oral-B CrossAction) and a battery-powered toothbrush (Crest SpinBrush PRO) for their ability to reduce overnight volatile sulfur compounds (VSC) associated with oral malodor. The study followed a four-period crossover design. Following a washout period, prospective subjects arrived at the testing facility without eating, drinking, or performing oral hygiene for baseline evaluation of breath VSC levels. For each phase of the study, subjects were given one of the test tooth-brushes and a tube of regular toothpaste to take home, and they were instructed to brush their teeth in their customary manner for 1 minute. When using the Colgate 360 degrees toothbrush, subjects were instructed to clean their tongue with the implement on the back of the brush head for 10 seconds. The following morning, subjects reported to the testing facility, again without performing oral hygiene, eating, or drinking, for the overnight evaluation. After a minimum 2-day washout period, subjects repeated the same regimen using the other toothbrushes. The levels of breath VSC were evaluated instrumentally using a gas chromatograph equipped with a flame photometric detector. Measurements were taken in duplicate and then averaged. The levels of VSC were expressed as parts per billion (ppb) in mouth air. Sixteen men and women completed the study. At baseline, the mean levels of VSC in mouth air for the 4 toothbrushes were 719.8 ppb+/-318.4 ppb, 592.8 ppb+/-264.6 ppb, 673.8 ppb+/-405.9 ppb, and 656.2 ppb+/-310.2 ppb for the Colgate 360 degrees, Oral-B Indicator, Crest SpinBrush PRO, and Oral-B CrossAction, respectively. Overnight, the mean breath VSC levels after using the four toothbrushes were lower than those observed at baseline. The respective mean levels of breath VSC were 266.5 ppb

  4. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  5. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  6. Effects of breathing frequency and flow rate on the total inward leakage of an elastomeric half-mask donned on an advanced manikin headform.

    PubMed

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; McKay, Roy; Bergman, Michael S; Zhuang, Ziqing

    2014-03-01

    The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. Particle size, MIF, and combustion material had significant (P < 0.001) effects on TIL regardless of breathing frequency. Increasing breathing flow decreased TIL. Testing with plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P < 0.05) for all MIFs challenged with wood and paper combustion aerosols, and for MIF = 30 l/min only when challenged with plastic combustion aerosol. The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and

  7. Monitoring of rapid blood pH variations by CO detection in breath with tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Diachenko, Alexander I.; Gurfinkel, Youri I.

    1997-06-01

    Detection of endogenous carbon monoxide content in breath with tunable diode lasers (TDL) was proposed for noninvasive monitoring of rapid blood pH variation. Applied approach is based on high sensitivity of the haemoglobin and myoglobin affinity for CO to blood pH value and an ability to detect rapidly small variations of CO content in expired air. Breath CO absorption in 4.7 micrometers spectral region was carefully measured using PbSSe tunable diode laser that can provide 1 ppb CO concentration sensitivity and 10 s time constant. Applied TDL gas analyzer was used to monitor expired air of studied persons in physiological tests including hyperventilation and physical load. Simultaneous blood tests were conducted to demonstrate correlation between blood and breath chemical parameters.

  8. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  9. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  10. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  11. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  12. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  13. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  14. Breathing Difficulties

    MedlinePlus

    ... frequently during the night (insomnia) Difficulty lying flat ALS and your lungs Breathing in and out is ... improve effective coughing. Techniques are explained in The ALS Association’s Living with ALS manual #6 “Adapting to ...

  15. Postural Change Alters Autonomic Responses to Breath-Holding

    PubMed Central

    Taneja, Indu; Medow, Marvin S.; Clarke, Debbie; Ocon, Anthony; Stewart, Julian M.

    2011-01-01

    We used breath-holding during inspiration as a model to study the effect of pulmonary stretch on sympathetic nerve activity. Twelve healthy subjects (7 females, 5 males; 19–27 yrs) were tested while they performed an inspiratory breath-hold, both supine and during a 60° head-up tilt (HUT 60). Heart rate (HR), mean arterial blood pressure (MAP), respiration, muscle sympathetic nerve activity (MSNA), oxygen saturation (SaO2) and end tidal carbon dioxide (ETCO2) were recorded. Cardiac output (CO) and total peripheral resistance (TPR) were calculated. While breath-holding, ETCO2 increased significantly from 41±2 to 60±2 Torr during supine (p<0.05) and 38±2 Torr to 58±2 during HUT60 (p<0.05); SaO2 decreased from 98±1.5% to 95±1.4% supine, and from 97±1.5% to 94±1.7% during HUT60 (p=NS). MSNA showed three distinctive phases - a quiescent phase due to pulmonary stretch associated with decreased MAP, HR, CO and TPR; a second phase of baroreflex-mediated elevated MSNA which was associated with recovery of MAP and HR only during HUT60; CO and peripheral resistance returned to baseline while supine and HUT60; a third phase of further increased MSNA activity related to hypercapnia and associated with increased TPR. Breath-holding results in initial reductions of MSNA, MAP and HR by the pulmonary stretch reflex followed by increased sympathetic activity related to the arterial baroreflex and chemoreflex. PMID:20012144

  16. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  17. Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors.

    PubMed

    Sivaramakrishnan, Shyam; Rajamani, Rajesh; Johnson, Bruce D

    2009-01-01

    Respiratory CO(2) measurement (capnography) is an important diagnosis tool that lacks inexpensive and wearable sensors. This paper develops techniques to enable use of inexpensive but slow CO(2) sensors for breath-by-breath tracking of CO(2) concentration. This is achieved by mathematically modeling the dynamic response and using model-inversion techniques to predict input CO(2) concentration from the slow-varying output. Experiments are designed to identify model-dynamics and extract relevant model-parameters for a solidstate room monitoring CO(2) sensor. A second-order model that accounts for flow through the sensor's filter and casing is found to be accurate in describing the sensor's slow response. The resulting estimate is compared with a standard-of-care respiratory CO(2) analyzer and shown to effectively track variation in breath-by-breath CO(2) concentration. This methodology is potentially useful for measuring fast-varying inputs to any slow sensor.

  18. Breathing pattern and breathlessness in idiopathic pulmonary fibrosis: An observational study.

    PubMed

    Olukogbon, Kasope L; Thomas, Paul; Colasanti, Ricardo; Hope-Gill, Ben; Williams, Edgar Mark

    2016-02-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive decline in lung function and increasing dyspnoea. The aim of this study was to investigate the relationship among IPF, pulmonary function, resting tidal breathing patterns and level of breathlessness. Thirty-one participants with IPF and 17 matched healthy controls underwent lung function testing, followed by a 2-min period of resting tidal breathing. The IPF cohort was stratified according to disease severity, based on their forced vital capacity and diffusion capacity for carbon monoxide. In comparison to the healthy controls, the IPF cohort showed a higher tidal volume, VT , of 0.22 L (P = 0.026) and a raised minute ventilation in the severest IPF group, while no differences in the timing of inspiration or expiration were observed. In the IPF cohort, the ratio of VT to forced vital capacity was around 15% higher. These changes corresponded with an increase in the self-reported sensation of breathlessness. Those with IPF increased their depth of breathing with worsening disease severity, with IPF-induced changes in pulmonary function and breathlessness associated with an altered tidal breathing pattern. © 2015 Asian Pacific Society of Respirology.

  19. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  20. Metabolic and ventilatory responses to submaximal and maximal exercise using different breathing assemblies.

    PubMed

    Evans, B W; Potteiger, J A

    1995-06-01

    This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.

  1. Breath detection by transcutaneous electromyography of the diaphragm and the Graseby capsule in preterm infants.

    PubMed

    de Waal, Cornelia G; Kraaijenga, Juliette V; Hutten, Gerard J; de Jongh, Frans H; van Kaam, Anton H

    2017-12-01

    To compare triggering, breath detection and delay time of the Graseby capsule (GC) and transcutaneous electromyography of the diaphragm (dEMG) in spontaneous breathing preterm infants. In this observational study, a 30 minutes respiration measurement was conducted by respiratory inductance plethysmography (RIP), the GC, and dEMG in stable preterm infants. Triggering was investigated with an in vitro set-up using the Infant Flow ® SiPAP TM system. The possibility to optimize breath detection was tested by developing new algorithms with the abdominal RIP band (RIP AB ) as gold standard. In a subset of breaths, the delay time was calculated between the inspiratory onset in the RIP AB signal and in the GC and dEMG signal. Fifteen preterm infants with a mean gestational age of 28 ± 2 weeks and a mean birth weight of 1086 ± 317 g were included. In total, 14 773 breaths were analyzed. Based on the GC and dEMG signal, the Infant Flow ® SiPAP™ system, respectively, triggered 67.8% and 62.6% of the breaths. Breath detection was improved to 99.9% for the GC and 113.4% for dEMG in new algorithms. In 1492 stable breaths, the median delay time of inspiratory onset detection was +154 ms (IQR +118 to +164) in the GC and -50 ms (IQR -90 to -22) in the dEMG signal. Breath detection using the GC can be improved by optimizing the algorithm. Transcutaneous dEMG provides similar breath detection but with the advantage of detecting the onset of inspiration earlier than the GC. © 2017 Wiley Periodicals, Inc.

  2. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.

    PubMed

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-10-29

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO₃ is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO₃ samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO₃-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods.

  3. Breath alcohol, multisensor arrays, and electronic noses

    NASA Astrophysics Data System (ADS)

    Paulsson, Nils; Winquist, Fredrik

    1997-01-01

    The concept behind a volatile compound mapper, or electronic nose, is to use the combination of multiple gas sensors and pattern recognition techniques to detect and quantify substances in gas mixtures. There are several different kinds of sensors which have been developed during recent years of which the base techniques are conducting polymers, piezo electrical crystals and solid state devices. In this work we have used a combination of gas sensitive field effect devices and semiconducting metal oxides. The most useful pattern recognition routine was found to be ANNs, which is a mathematical approximation of the human neural network. The aim of this work is to evaluate the possibility of using electronic noses in field instruments to detect drugs, arson residues, explosives etc. As a test application we have chosen breath alcohol measurements. There are several reasons for this. Breath samples are a quite complex mixture contains between 200 and 300 substances at trace levels. The alcohol level is low but still possible to handle. There are needs for replacing large and heavy mobile instruments with smaller devices. Current instrumentation is rather sensitive to interfering substances. The work so far has dealt with sampling, how to introduce ethanol and other substances in the breath, correlation measurements between the electronic nose and headspace GC, and how to evaluate the sensor signals.

  4. Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma

    PubMed Central

    Greenwald, Roby; Fitzpatrick, Anne M.; Gaston, Benjamin; Marozkina, Nadzeya V.; Erzurum, Serpil; Teague, W. Gerald

    2010-01-01

    Background Children with severe asthma have poor symptom control and elevated markers of airway oxidative and nitrosative stress. Paradoxically, they have decreased airway levels of S-nitrosothiols (SNOs), a class of endogenous airway smooth muscle relaxants. This deficiency results from increased activity of an enzyme that both reduces SNOs to ammonia and oxidizes formaldehyde to formic acid, a volatile carboxylic acid that is more easily detected in exhaled breath condensate (EBC) than SNOs. We therefore hypothesize that depletion of airway SNOs is related to asthma pathology, and breath formate concentration may be a proxy measure of SNO catabolism. Methods and Findings We collected EBC samples from children and adolescents, including 38 with severe asthma, 46 with mild-to-moderate asthma and 16 healthy adolescent controls, and the concentration of ionic constituents was quantified using ion chromatography. The concentrations of EBC components with volatile conjugates were log-normally distributed. Formate was the principal ion that displayed a significant difference between asthma status classifications. The mean EBC formate concentration was 40% higher in samples collected from all asthmatics than from healthy controls (mean = 5.7 µM, mean±standard deviation = 3.1−10.3 µM vs. 4.0, 2.8−5.8 µM, p = 0.05). EBC formate was higher in severe asthmatics than in mild-to-moderate asthmatics (6.8, 3.7−12.3 µM vs. 4.9, 2.8−8.7 µM, p = 0.012). In addition, formate concentration was negatively correlated with methacholine PC20 (r = −0.39, p = 0.002, asthmatics only), and positively correlated with the NO-derived ion nitrite (r = 0.46, p<0.0001) as well as with total serum IgE (r = 0.28, p = 0.016, asthmatics only). Furthermore, formate was not significantly correlated with other volatile organic acids nor with inhaled corticosteroid dose. Conclusions We conclude that EBC formate concentration is significantly higher in

  5. Study of 5 Volatile Organic Compounds in Exhaled Breath in Chronic Obstructive Pulmonary Disease.

    PubMed

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Gómez-Martín, Óscar; Utrilla-Trigo, Sergio; Gutiérrez-Ortega, Carlos; Aguilar-Ros, Antonio; Collado-Yurrita, Luis; Callol-Sánchez, Luis Miguel

    2017-05-01

    A major risk factor for chronic obstructive pulmonary disease (COPD) is tobacco smoke, which generates oxidative stress in airways, resulting in the production of volatile organic compounds (VOC). The purpose of this study was to identify VOCs in exhaled breath and to determine their possible use as disease biomarkers. Exhaled breath from 100 healthy volunteers, divided into 3groups (never smokers, former smokers and active smokers) and exhaled breath from 57 COPD patients were analyzed. Samples were collected using BioVOC ® devices and transferred to universal desorption tubes. Compounds were analyzed by thermal desorption, gas chromatography and mass spectrometry. VOCs analyzed were linear aldehydesand carboxylic acids. The COPD group and healthy controls (never smokers and former smokers) showed statistically significant differences in hexanal concentrations, and never smokers and the COPD group showed statistically significant differences in nonanal concentrations. Hexanal discriminates between COPD patients and healthy non-smoking controls. Nonanal discriminates between smokers and former smokers (with and without COPD) and never smokers. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  7. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  8. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  9. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  10. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  11. Effect of intermittent exposure to 3% CO2 on respiration, acid-base balance, and calcium-phosphorus metabolism.

    PubMed

    Schaefer, K E; Carey, C R; Dougherty, J H; Morgan, C; Messier, A A

    1979-01-01

    One subject was exposed for six days to increasing levels of CO2, rising at a constant rate from 0.03 to 3.0% CO2 within a 15-h period followed by 9 h of air breathing. To assess acid-base parameters, arterialized capillary blood was taken from a finger twice daily (at 8 a.m. and 11 p.m.) at times corresponding to the beginning and end of the intermittent exposure to CO2. Venous blood samples were obtained on alternate days at the same times. Urine specimens were collected twice daily. The subject was on a liquid diet. Resting respiratory minute volume (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), alveolar carbon dioxide and oxygen tension (PACO2) and PAO2) were measured twice daily. PACO2 and PAO2 were also determined at the end of breath-holding twice daily; CO2 tolerance tests and lung function tests were also carried out. In contrast to the effects of chronic exposure to 3% CO2, the CO2 tolerance tests showed an increased sensitivity (increase of slope) and breath-holding PACO2 did not change, indicating that acclimatization to CO2 did not develop. The ventilatory response to CO2 was not sufficient to prevent CO2 accumulation in the body; this accumulation was eliminated during the nightly air-breathing periods on the fourth and fifth days, indicated by higher values of PaCO2 and PACO2. The known renal response to hypercapnia, consisting of an increased excretion of titratable acidity, ammonia, and hydrogen ion excretion, occurred but was interrupted after the first day and was triggered again on the fourth and fith days when accumulated CO2 was released from body CO2 stores. The second renal response was associated with a marked calcium excretion, which suggests that bone CO2 stores were involved.

  12. Optimal technique for deep breathing exercises after cardiac surgery.

    PubMed

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  13. Usefulness of rectally administering [1-(13)C]-butyrate for breath test in patients with active and quiescent ulcerative colitis.

    PubMed

    Kato, Kimitoshi; Ishii, Yukimoto; Mizuno, Shigeaki; Sugitani, Masahiko; Asai, Satoshi; Kohno, Tadashi; Takahashi, Katsuyuki; Komuro, Sachiko; Iwamoto, Maho; Miyamoto, Shunpachi; Takayama, Tadatoshi; Arakawa, Yasuyuki

    2007-02-01

    Impaired butyrate metabolism plays a part in ulcerative colitis (UC). To assess the usefulness of measuring butyrate metabolism as an indication of inflammatory activity, we investigated the rate of butyrate metabolism by breath test after administering [1-(13)C]-butyrate rectally to patients with UC. Thirty-eight UC patients (22 active, 16 quiescent) and 15 healthy controls were given [1-(13)C]-butyrate enemas. The (13)CO2 production rate was measured by breath test using an infrared spectrometric analyzer. The quantity of expired (13)CO2 was significantly lower in the active than in the quiescent UC and control groups. Cumulative (13)CO2 production at 240 min showed significant negative correlations with the clinical activity index (r=-0.65, p<0.0001), endoscopic activity index (r=-0.63, p=0.0001) and histology (r=-0.71, p<0.0001) in the active UC group. The (13)CO2 production rate was significantly increased in the quiescent stage as compared with the active stage in six UC patients, in whom clinical remission was achieved, in accordance with improvements in the clinical activity index, the endoscopic activity index, histology and fecal butyrate concentrations. Significant inverse correlations between the cumulative (13)CO2 production rate and these three parameters were seen in these six UC patients assessed in both the active and quiescent stages. Measurement of expired (13)CO2 after rectally administering [1-(13)C]-butyrate in active and quiescent UC appears to be a promising and reliable method for evaluating disease activity and metabolic changes associated with amelioration of inflammation.

  14. Upper airway sleep-disordered breathing in women.

    PubMed

    Guilleminault, C; Stoohs, R; Kim, Y D; Chervin, R; Black, J; Clerk, A

    1995-04-01

    To investigate the various clinical presentations of sleep-disordered breathing in women. A retrospective case-control study. A sleep disorders clinic. 334 women, aged 18 years and older, seen between 1988 and 1993, who were diagnosed with upper airway sleep-disordered breathing. Controls were 60 women with insomnia and 100 men with sleep-disordered breathing. Clinical, anatomic, and polygraphic information. The mean lag time (+/- SD) in women between the appearance of symptoms and a positive diagnosis was 9.7 +/- 3.1 years; among participants 30 to 60 years of age, the duration of untreated symptoms differed (P < 0.001) between women and men. Sleep-disordered breathing was blamed for divorce or social isolation by 40% of the case patients. Abnormal maxillomandibular features were noted in 45% of the women with disordered breathing. Dysmenorrhea and amenorrhea (which disappeared after treatment with nasal continuous positive airway pressure) were reported in 43% of premenopausal women compared with 13% of persons in the control group of women with insomnia. Thirty-eight women (11.4%) with upper airway sleep-disordered breathing had a respiratory disturbance index of less than 5 and were significantly younger, had a smaller neck circumference, and had a lower body mass index than women with a respiratory disturbance index of 5 or more. Physicians should revise their understanding of upper airway sleep-disordered breathing so that they notice women with certain craniofacial features, a low body mass index, a small neck circumference, and a respiratory disturbance index of less than 5. These revisions may enable more rapid diagnosis and treatment of women with sleep-disordered breathing.

  15. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  16. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  17. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern.

    PubMed

    Loveridge, B; Badour, M; Dubo, H

    1989-10-01

    We examined the effects of ventilatory muscle endurance training on resting breathing pattern in 12 C6-C7 traumatic quadriplegics at least 1 year post-injury. All subjects had complete motor loss below the lesion level. Subjects were randomly assigned to a training (N = 6), or a control group (N = 6). Baseline tests included measurement of resting ventilation and breathing pattern using mercury in rubber strain gauges for 20 minutes in a seated position; maximum inspiratory mouth pressure (MIP) at FRC, and sustainable inspiratory mouth pressure for 10 minutes (SIP); lung volumes, and arterial blood gases (ABG's). The training protocol consisted of breathing through an inspiratory resistor equivalent to 85% SIP for 15 minutes twice daily, 5 days a week for 8 weeks. Both trainers and controls attended the lab every 2 weeks for reassessment of MIP and SIP and the inspiratory resistance was increased in the training group as SIP increased. At the end of 8 weeks, baseline tests were repeated. All subjects had normal ABG's. There was a significant increase in mean MIP and SIP in both the control group (30% +/- 19% and 31% +/- 18% respectively), and in the training group (42% +/- 24% and 78% +/- 49% respectively). Although the absolute values for both MIP and SIP were greater in the training group than in the control group, the differences were not significant. The alterations in resting breathing pattern were also the same in both groups. Mean frequency decreased significantly in the control group (20.2/minute to 16.9/minute) and, while insignificant, the change in frequency in the training group was the same, 19.4/minute to 16.4/minute. Mean tidal volume (Vt) increased 18.2% of baseline Vt in the control group and 17.0% baseline in the trainers, resulting in no change in minute ventilation. As MIP and SIP increased similarly in both groups, the data from the control and trainers was pooled and timing changes re-evaluated pre- and post-study. A significant decrease in

  18. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics.

    PubMed

    Egeghy, Peter P; Nylander-French, Leena; Gwin, Kristin K; Hertz-Picciotto, Irva; Rappaport, Stephen M

    2002-07-01

    Automobile mechanics are exposed to benzene through their contact with gasoline vapor and engine exhaust. This study investigated the benzene uptake associated with these exposures. We first evaluated the reliability of self-collected breath samples among a subset of subjects and found good agreement between these samples and those collected under expert supervision (intraclass correlation coefficient 0.79, n = 69). We then used self-monitoring together with a longitudinal sampling design (with up to three measurements per worker) to measure benzene in air and benzene in end-exhaled breath among 81 workers from 12 automobile repair garages in North Carolina. A statistically significant difference (P < 0.0001, Mann-Whitney rank sum test) was observed between non-smokers and smokers for post-exposure benzene concentration in breath (median values of 18.9 and 39.1 micro g/m(3), respectively). Comparing pre- and post-exposure breath concentrations within these two groups, the difference was significant among non-smokers (P < 0.0001) but not significant among smokers (P > 0.05). Mixed effects regression analysis using backwards elimination yielded five significant predictors of benzene concentration in breath, namely benzene exposure (P < 0.0001), pre-exposure benzene concentration in breath (P = 0.021), smoking status (P < 0.0001), fuel system work (P = 0.0043) and carburetor cleaner use (P < 0.0001). The between-person variance component comprised only 28% of the total variance in benzene levels in breath, indicating that differences among individuals related to physiological and metabolic characteristics had little influence on benzene uptake among these workers.

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...