Sample records for acid formation potential

  1. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    PubMed

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  2. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  3. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    USGS Publications Warehouse

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  4. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  5. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  6. Impact of butyric acid on butanol formation by Clostridium pasteurianum.

    PubMed

    Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars

    2015-11-01

    The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Safety Assessment of Formic Acid and Sodium Formate as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    Formic acid functions as a fragrance ingredient, preservative, and pH adjuster in cosmetic products, whereas sodium formate functions as a preservative. Because of its acidic properties, formic acid is a dermal and ocular irritant. However, when used as a pH adjuster in cosmetic formulations, formic acid will be neutralized to yield formate salts, for example, sodium formate, thus minimizing safety concerns. Formic acid and sodium formate have been used at concentrations up to 0.2% and 0.34%, respectively, with hair care products accounting for the highest use concentrations of both ingredients. The low use concentrations of these ingredients in leave-on products and uses in rinse-off products minimize concerns relating to skin/ocular irritation or respiratory irritation potential. The Cosmetic Ingredient Review Expert Panel concluded that formic acid and sodium formate are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating. © The Author(s) 2016.

  8. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-09-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.

  9. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  10. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  12. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.

  13. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  14. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  15. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  16. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  17. New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Jen, Coty N.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-07-01

    Amines are bases that originate from both anthropogenic and natural sources, and they are recognized as candidates to participate in atmospheric aerosol particle formation together with sulfuric acid. Monomethylamine, dimethylamine, and trimethylamine (MMA, DMA, and TMA, respectively) have been shown to enhance sulfuric acid-driven particle formation more efficiently than ammonia, but both theory and laboratory experiments suggest that there are differences in their enhancing potentials. However, as quantitative concentrations and thermochemical properties of different amines remain relatively uncertain, and also for computational reasons, the compounds have been treated as a single surrogate amine species in large-scale modeling studies. In this work, the differences and similarities of MMA, DMA, and TMA are studied by simulations of molecular cluster formation from sulfuric acid, water, and each of the three amines. Quantum chemistry-based cluster evaporation rate constants are applied in a cluster population dynamics model to yield cluster concentrations and formation rates at boundary layer conditions. While there are differences, for instance, in the clustering mechanisms and cluster hygroscopicity for the three amines, DMA and TMA can be approximated as a lumped species. Formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar for these two: both efficiently form clusters with sulfuric acid, and cluster formation is rather insensitive to changes in temperature and relative humidity. Particle formation from sulfuric acid and MMA is weaker and significantly more sensitive to ambient conditions. Therefore, merging MMA together with DMA and TMA introduces inaccuracies in sulfuric acid-amine particle formation schemes.

  18. Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott; Byl, Tom

    2015-01-01

    Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown

  19. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2018-01-01

    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model

  20. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  1. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    NASA Astrophysics Data System (ADS)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  2. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].

    PubMed

    Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua

    2009-04-15

    Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.

  3. [Lactic acid inhibits the formation of semen-derived amyloid fibrils].

    PubMed

    Li, Jin-Qing; Song, Ya-Li; Xun, Tian-Rong; Tan, Sui-Yi; Liu, Shu-Wen

    2017-07-20

    To investigate the inhibitory effect of lactic acid on semen-derived amyloid (SEVI) fibril formation. PAP248-286 (2 mg/mL) was incubated with 4.0, 2.0, 1.0, 0.5, 0.25, and 0.125 mg/mL of lactic acid. After incubation for different times, aliquots were drawn from each sample for Thioflavin T (ThT) and Congo red staining to monitor semen-derived amyloid fibril formation. The β sheet structure formation of PAP248-286 was measured by circular dichroism spectrum, and the morphology of amyloid fibrils incubated with or without lactic acid was observed with transmission electron microscopy (TEM). The enhancing effect of amyloid fibril incubated with lactic acid at different time points was determined using virus infection assay. PAP248-286 (2 mg/mL) was incubated with dilutions of vaginal secretion from healthy women, and amyloid fibril formation was detected with ThT and Congo red staining. Lactic acid inhibited SEVI fibril formation in a dose-dependent manner in vitro. Lactic acid at 0.5 mg/mL completely inhibited 2 mg/mL SEVI fibril formation within 48 h. After incubation for 48 h, lactic acid at 1 mg/mL inhibited the formation of β-sheet structure of SEVI (2 mg/mL) and completely inhibited 2 mg/mL PAP248-286 aggregation as observed with TEM. In the presence of lactic acid, PAP248-286 lost the ability to enhance virus infection. Vaginal secretion inhibited SEVI fibril formation in a dose-dependent manner, and virtually no SEVI fibril occurred after incubation of 2 mg/mL PAP248-286 with 67% vaginal secretion. Lactic acid inhibits SEVI fibril formation in vitro.

  4. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    PubMed

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  5. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  6. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  7. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Cooper, G. W.; Pizzarello, S.

    1995-01-01

    Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.

  8. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  9. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-16

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  10. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-01-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869

  11. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    NASA Astrophysics Data System (ADS)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  12. Formation of nitric acid hydrates - A chemical equilibrium approach

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  13. Smectite Formation in Acid Sulfate Environments on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  14. Pseudo-lignin Formation during Dilute Acid Pretreatment for Cellulosic Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Ragauskas, Arthur J.

    Dilute acid-based pretreatment represents one of the most important pretreatment technologies to reduce biomass recalcitrance and it has been successfully applied to a wide range of feedstocks. During this type of pretreatment, the relative lignin content usually increases partially due to the loss of carbohydrates. More importantly, it has been reported that the increase of lignin content after dilute acid pretreatment is mainly due to the formation of pseudo-lignin. Furthermore, the exact reaction mechanisms leading to the formation of pseudo-lignin is still under investigation. However, it has been proposed that rearrangement of hydroxymethylfurfural (HMF) or furfural can produce aromatic typemore » of compounds which can further undergo polymerization reactions to from a lignin-like polyphenolic structures termed as pseudo-lignin. Likewise, this mini-review mainly covers recent advances in understanding the fundamentals of pseudo-lignin formation during dilute acid pretreatment, the impact of its formation on enzymatic hydrolysis, and how to suppress its formation during dilute acid pretreatment.« less

  15. Pseudo-lignin Formation during Dilute Acid Pretreatment for Cellulosic Ethanol

    DOE PAGES

    Meng, Xianzhi; Ragauskas, Arthur J.

    2017-04-17

    Dilute acid-based pretreatment represents one of the most important pretreatment technologies to reduce biomass recalcitrance and it has been successfully applied to a wide range of feedstocks. During this type of pretreatment, the relative lignin content usually increases partially due to the loss of carbohydrates. More importantly, it has been reported that the increase of lignin content after dilute acid pretreatment is mainly due to the formation of pseudo-lignin. Furthermore, the exact reaction mechanisms leading to the formation of pseudo-lignin is still under investigation. However, it has been proposed that rearrangement of hydroxymethylfurfural (HMF) or furfural can produce aromatic typemore » of compounds which can further undergo polymerization reactions to from a lignin-like polyphenolic structures termed as pseudo-lignin. Likewise, this mini-review mainly covers recent advances in understanding the fundamentals of pseudo-lignin formation during dilute acid pretreatment, the impact of its formation on enzymatic hydrolysis, and how to suppress its formation during dilute acid pretreatment.« less

  16. Effect of Permanganate Preoxidation to Natural Organic Matter and Disinfection by-Products Formation Potential Removal

    NASA Astrophysics Data System (ADS)

    Hidayah, E. N.; Yeh, H. H.

    2018-01-01

    Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.

  17. Single-stranded nucleic acids promote SAMHD1 complex formation.

    PubMed

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  18. Fe/Mg smectite formation under acidic conditions on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2016-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.

  19. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    PubMed

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  20. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Figueiras, Marta; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Gomes, Paula

    2012-08-01

    A series of cinnamic acid/4-aminoquinoline conjugates conceived to link, through a proper retro-enantio dipeptide, a heterocyclic core known to prevent hemozoin formation, to a trans-cinnamic acid motif capable of inhibiting enzyme catalytic Cys residues, were synthesized as potential dual-action antimalarials. The effect of amino acid configuration and the absence of the dipeptide spacer were also assessed. The replacement of the D-amino acids by their natural L counterparts led to a decrease in both anti-plasmodial and falcipain-inhibitory activity, suggesting that the former are preferable. Molecules with such spacer were active against blood-stage Plasmodium falciparum, in vitro, and hemozoin formation, implying that the dipeptide has a key role in mediating these two activities. In turn, compounds without spacer were better falcipain-2 inhibitors, likely because these compounds are smaller and have their vinyl bonds in closer vicinity to the catalytic Cys, as suggested by molecular modeling calculations. These novel conjugates constitute promising leads for the development of new antiplasmodials targeted at blood-stage malaria parasites. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis.

    PubMed

    Xu, Zhongwei; Chen, Tingmei; Luo, Jiao; Ding, Shijia; Gao, Sichuan; Zhang, Jian

    2017-04-07

    Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.

  3. New particle formation from sulfuric acid and amines: Similarities and differences between mono-, di-, and trimethylamines

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-04-01

    Amines are organic base species that are emitted to the atmosphere from both anthropogenic and natural sources. Both theoretical and laboratory studies suggest that mono-, di-, and trimethylamines (MMA, DMA, and TMA, respectively) are capable of enhancing the initial steps of sulfuric acid-driven aerosol particle formation much more strongly than ammonia (Kurtén et al., 2008; Jen et al., 2014). Despite the potential importance for atmospheric new particle formation, quantitative estimates on the emissions and thermochemical properties of amines remain relatively uncertain. Because of this and also due to computational reasons, recent large-scale modeling studies have treated sulfuric acid-amine nucleation by introducing a single surrogate amine species, the total emissions of which combine together MMA, DMA and TMA but which resembles DMA or TMA in its various properties (e.g. Bergman et al., 2015). On the other hand, there are likely to be differences in the potentials of the three amines to enhance particle formation, causing uncertainties to the lumping approach. Systematic comparisons are needed to evaluate how to treat these species in atmospheric models and to assess what level of simplification is justifiable. In this work, we study the differences and similarities of MMA, DMA and TMA by modeling nanoparticle formation from sulfuric acid, water, and each of the three amines. We simulate molecular cluster concentrations and formation rates at boundary layer conditions with a dynamic cluster population model using quantum chemistry-based cluster evaporation rates, and study the dependence of particle formation rate on precursor vapor concentrations, temperature and relative humidity. The results suggest that for the three amines, there are differences in the nucleation mechanism and hygroscopicity of molecular clusters. However, for DMA and TMA, formation of nanometer-sized particles and its dependence on ambient conditions is roughly similar: both

  4. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  5. Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH+·C Wobble Formation in Double-Stranded DNA

    PubMed Central

    2017-01-01

    The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at

  6. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  7. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato

    PubMed Central

    Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG

    2014-01-01

    Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460

  8. An experimental flow-through assessment of acidic Fe/Mg smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Garcia, A. H.; Ming, D. W.

    2017-12-01

    Orbital observations have detected the phyllosilicate smectite in layered material hundreds of meters thick, intracrater depositional fans, and plains sediments on Mars; however, the detection of carbonate deposits is limited. Instead of neutral/alkaline conditions during the Noachian, early Mars may have experienced mildly acidic conditions derived from volcanic acid-sulfate solutions that allowed Fe/Mg smectite formation but prevented widespread carbonate formation. The detection of acid sulfates (e.g., jarosite) associated with smectite in Mawrth Vallis supports this hypothesis. Previous work demonstrated smectite (saponite) formation in closed hydrologic systems (batch reactor) from basaltic glass at pH 4 and 200°C (Peretyazhko et al., 2016 GCA). This work presents results from alteration of basaltic glass from alkaline to acidic conditions in open hydrologic systems (flow-through reactor). Preliminary experiments exposed basaltic glass to deionized water at 190°C at 0.25 ml/min where solution pH equilibrated to 9.5. These initial high pH experiments were conducted to evaluate the flow-through reactor system before working with lower pHs. Smectite at this pH was not produced and instead X-ray diffraction results consistent with serpentine was detected. Experiments are in progress exposing basaltic glass from pH 8 down to pH 3 to determine what range of pHs could allow for smectite formation in this experimental open-system. The production of smectite under an experimental open-system at low pHs if successful, would support a significant paradigm shift regarding the geochemical evolution of early Mars: Early Mars geochemical solutions were mildly acidic, not neutral/alkaline. This could have profound implications regarding early martain microbiology where acid conditions instead of neutral/alkaline conditions will require further research in terrestrial analogs to address the potential for biosignature preservation on Mars (Johnson et al., 2016, LPSC).

  9. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  10. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing

    PubMed Central

    Chanda, Warren; Joseph, Thomson Patrick; Padhiar, Arshad Ahmed; Guo, Xuefang; Min, Liu; Wang, Wendong; Lolokote, Sainyugu; Ning, Anhong; Cao, Jing; Huang, Min; Zhong, Mintao

    2017-01-01

    Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects. PMID:29104645

  11. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    .9. Fe hydrolysis reactions on Mars is another source of protons that would have contributed to acidity. The presence of SO2 from volcanic processes could also have contributed to geochemical acidification. These sources of acidity competed with base-forming cations that resulted in mildly acidic solutions that were not favorable for carbonate formation but may have allowed for Fe/Mg smectite formation. Noachian to early Hesperian Mars could have been mildly acidic, allowing Fe/Mg smectite formation but preventing widespread carbonate deposition. This paradigm shift from an early Mars that was neutral-alkaline to mildly acidic may possibly explain why there is a disparity between the occurrence of carbonate and Fe/Mg smectites. Potential microbiological activity would not be eliminated under a mildly acidic Mars; however, there could be tighter constraints as to the type and species of microbiology that could exist.

  12. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  14. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    PubMed

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-05

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  15. γ-Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model.

    PubMed

    Storer, Kingsley P; Reeke, George N

    2018-04-17

    Propofol produces memory impairment at concentrations well below those abolishing consciousness. Episodic memory, mediated by the hippocampus, is most sensitive. Two potentially overlapping scenarios may explain how γ-aminobutyric acid receptor type A (GABAA) potentiation by propofol disrupts episodic memory-the first mediated by shifting the balance from excitation to inhibition while the second involves disruption of rhythmic oscillations. We use a hippocampal network model to explore these scenarios. The basis for these experiments is the proposal that the brain represents memories as groups of anatomically dispersed strongly connected neurons. A neuronal network with connections modified by synaptic plasticity was exposed to patterned stimuli, after which spiking output demonstrated evidence of stimulus-related neuronal group development analogous to memory formation. The effect of GABAA potentiation on this memory model was studied in 100 unique networks. GABAA potentiation consistent with moderate propofol effects reduced neuronal group size formed in response to a patterned stimulus by around 70%. Concurrently, accuracy of a Bayesian classifier in identifying learned patterns in the network output was reduced. Greater potentiation led to near total failure of group formation. Theta rhythm variations had no effect on group size or classifier accuracy. Memory formation is widely thought to depend on changes in neuronal connection strengths during learning that enable neuronal groups to respond with greater facility to familiar stimuli. This experiment suggests the ability to form such groups is sensitive to alteration in the balance between excitation and inhibition such as that resulting from administration of a γ-aminobutyric acid-mediated anesthetic agent.

  16. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (p<0.001). Its main phenolics, caffeic acid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (p<0.001). Our results suggest that AGE adducts form between fructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Laskin, Alexander

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e.more » NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.« less

  18. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    PubMed

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  19. Analysis of the Cytotoxic Potential of Anisomelic Acid Isolated from Anisomeles malabarica

    PubMed Central

    Preethy, Christo Paul; Alshatwi, Ali Abdullah; Gunasekaran, Muthukumaran; Akbarsha, Mohammad Abdulkadher

    2013-01-01

    Anisomelic acid (AA), one of the major compounds in Anisomeles malabarica, was tested for its cytotoxicity and apoptosis-inducing potential in breast and cervical cancer cells. The MTT assay for cell viability indicated that AA is cytotoxic to all of the four cell lines tested in a dose- and duration-dependent manner. Acridine Orange & Ethidium Bromide (AO & EB) and Hoechst 33258 staining of AA-treated cells revealed typical apoptotic morphology such as condensed chromatin and formation of apoptotic bodies. The comet assay revealed DNA strand break(s), indicating that AA induces DNA damage which culminates in apoptosis. Thus, the study revealed the anti-proliferative and apoptosis-inducing properties of AA in both breast and cervical cancer cells. Therefore, anisomelic acid offers potential for application in breast and cervical cancer therapy. PMID:23833721

  20. Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential.

    PubMed

    Li, Angzhen; Zhao, Xu; Mao, Ran; Liu, Huijuan; Qu, Jiuhui

    2014-04-30

    In this study, the disinfection byproduct formation potential (DBPFP) of three surface waters with the dissolved organic carbon (DOC) content of 2.5, 5.2, and 7.9mg/L was investigated. The formation and distribution of trihalomethanes and haloacetic acids were evaluated. Samples collected from three surface waters in China were fractionated based on molecular weight and hydrophobicity. The raw water containing more hydrophobic (Ho) fraction exhibited higher formation potentials of haloacetic acid and trihalomethane. The DBPFP of the surface waters did not correlate with the DOC value. The values of DBPFP per DOC were correlated with the specific ultraviolet absorbance (SUVA) for Ho and Hi fractions. The obtained results suggested that SUVA cannot reveal the ability of reactive sites to form disinfection byproducts for waters with few aromatic structures. Combined with the analysis of FTIR and nuclear magnetic resonance spectra of the raw waters and the corresponding fractions, it was concluded that the Ho fraction with phenolic hydroxyl and conjugated double bonds was responsible for the production of trichloromethanes and trichloroacetic acids. The Hi fraction with amino and carboxyl groups had the potential to form dichloroacetic acids and chlorinated trihalomethanes. Copyright © 2014. Published by Elsevier B.V.

  1. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    PubMed

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    PubMed

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  3. The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium

    PubMed Central

    Pando, Jasmine M.; Karlinsey, Joyce E.; Lara, Jimmie C.; Libby, Stephen J.

    2017-01-01

    ABSTRACT The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. PMID:28588134

  4. Coordination of FocA and Pyruvate Formate-Lyase Synthesis in Escherichia coli Demonstrates Preferential Translocation of Formate over Other Mixed-Acid Fermentation Products

    PubMed Central

    Beyer, Lydia; Doberenz, Claudia; Falke, Dörte; Hunger, Doreen; Suppmann, Bernhard

    2013-01-01

    Enterobacteria such as Escherichia coli generate formate, lactate, acetate, and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential, and therefore they must be either metabolized rapidly or exported from the cell. E. coli has three membrane-localized formate dehydrogenases (FDHs) that oxidize formate. Two of these have their respective active sites facing the periplasm, and the other is in the cytoplasm. The bidirectional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study, we analyze the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the focA translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an ∼3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate, and succinate were exported, but only formate was reimported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate in vivo and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH. PMID:23335413

  5. Quantifying Functional Group Interactions that Determine Urea Effects on Nucleic Acid Helix Formation

    PubMed Central

    Guinn, Emily J.; Schwinefus, Jeffrey J.; Cha, Hyo Keun; McDevitt, Joseph L.; Merker, Wolf E.; Ritzer, Ryan; Muth, Gregory W.; Engelsgjerd, Samuel W.; Mangold, Kathryn E.; Thompson, Perry J.; Kerins, Michael J.; Record, Thomas

    2013-01-01

    Urea destabilizes helical and folded conformations of nucleic acids and proteins, as well as protein-nucleic acid complexes. To understand these effects, extend previous characterizations of interactions of urea with protein functional groups, and thereby develop urea as a probe of conformational changes in protein and nucleic acid processes, we obtain chemical potential derivatives (μ23 = dμ2/dm3) quantifying interactions of urea (component 3) with nucleic acid bases, base analogs, nucleosides and nucleotide monophosphates (component 2) using osmometry and hexanol-water distribution assays. Dissection of these μ23 yields interaction potentials quantifying interactions of urea with unit surface areas of nucleic acid functional groups (heterocyclic aromatic ring, ring methyl, carbonyl and phosphate O, amino N, sugar (C,O)); urea interacts favorably with all these groups, relative to interactions with water. Interactions of urea with heterocyclic aromatic rings and attached methyl groups (as on thymine) are particularly favorable, as previously observed for urea-homocyclic aromatic ring interactions. Urea m-values determined for double helix formation by DNA dodecamers near 25°C are in the range 0.72 to 0.85 kcal mol−1 m−1 and exhibit little systematic dependence on nucleobase composition (17–42% GC). Interpretation of these results using the urea interaction potentials indicates that extensive (60–90%) stacking of nucleobases in the separated strands in the transition region is required to explain the m-value. Results for RNA and DNA dodecamers obtained at higher temperatures, and literature data, are consistent with this conclusion. This demonstrates the utility of urea as a quantitative probe of changes in surface area (ΔASA) in nucleic acid processes. PMID:23510511

  6. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  7. Mixed micelles of 7,12-dioxolithocholic acid and selected hydrophobic bile acids: interaction parameter, partition coefficient of nitrazepam and mixed micelles haemolytic potential.

    PubMed

    Poša, Mihalj; Tepavčević, Vesna

    2011-09-01

    The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    PubMed

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids.

    PubMed

    Çevik, Kübra; Ulusoy, Seyhan

    2015-08-01

    The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  10. Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo.

    PubMed

    Lee, Su-Ui; Park, Sang-Joon; Kwak, Han Bok; Oh, Jaemin; Min, Yong Ki; Kim, Seong Hwan

    2008-01-01

    In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone mass and improve bone architecture. In this study, we demonstrated that the ubiquitous plant triterpenoid, ursolic acid, enhances differentiation and mineralization of osteoblasts in vitro. We found that ursolic acid induced the expression of osteoblast-specific genes with the activation of mitogen-activated protein kinases, nuclear factor-kappaB, and activator protein-1. Additionally, noggin, an antagonist of bone morphogenetic proteins (BMPs), inhibited ursolic acid-induced osteoblast differentiation. Noggin also inhibited the activation of Smad and the induction of BMP-2 mRNA expression by ursolic acid in the late stage of osteoblast differentiation. Importantly, ursolic acid was shown to have bone-forming activity in vivo in a mouse calvarial bone formation model. A high proportion of positive immunostaining of BMP-2 was found in the nuclear region of woven bone formed by ursolic acid. These results suggested that ursolic acid has the anabolic potential to stimulate osteoblast differentiation and enhance new bone formation.

  11. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  12. [Spectral Analysis about the Pharmaceutical Cocrystal Formation of Piracetam and 3-Hydroxybenzoic Acid].

    PubMed

    Zhang, Hui-li; Xia, Yi; Hong, Zhi; Du, Yong

    2015-07-01

    Pharmaceutical cocrystal can improve physical and chemical properties of active pharmaceutical ingredient (API), meanwhile this feature has shown great potential in improving the pharmaceutical's properties and characteristics. In this study, cocrystal formation between piracetam and 3-hydroxybenzoic acid (3HBA) using grinding method has been characterized by Fourier transform infrared (FTIR), Raman and terahertz (THz) spectroscopical techniques. The vibrational modes of different motions are obtained by the assignment of the peaks in the spectra of the starting materials and the cocrystal components. FTIR, Raman and THz spectroscopical results show that the vibrational modes of the cocrystal are different from those of the starting materials. In addition, the dynamic process of the above cocrystal formation is investigated in-depth with Raman and THz spec- tra. Piracetam-3HBA cocrystal is formed pretty fast in first several minutes, and then the formation rate becomes slow. After 35 minutes, such formation process has been completed. The results offer the theoretical benchmark and unique means for real-time monitoring pharmaceutical cocrystal formation and also the corresponding quantitative analysis in the pharmaceutical field.

  13. Preferential amino acid sequences in alumina-catalyzed peptide bond formation.

    PubMed

    Bujdák, J; Rode, B M

    2002-05-21

    The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.

  14. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  15. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  16. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    PubMed

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  17. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. [Significance of hydrocyanic acid formation during fires].

    PubMed

    von Meyer, L; Drasch, G; Kauert, G

    1979-01-01

    Cyanide concentrations of blood samples from fire victims autopsied in the Institute of Legal Medicine, Munich, have been determined. In 25% of 48 analyzed cases cyanide concentrations from 0.52 microgram to 6.24 microgram Cyanide/ml blood have been detected. These results are compared to former studies and the higher mean level in our collective is emphasized. The importance of hydrocyanid acid in the toxicity of fire gases is evidently greater, than assumed. Hydrocyanic acid may be produced from nitrogen continaing polymers during combustion. The quote of these polymers in clothing, furniture, and also in equipment of cars is increasing. Therefore, it is necessary to take more notice of the formation of hydrocyanic acid during combustion, even though carbon monoxide is in general the main toxic agent in fire gases.

  19. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α -amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förstel, Marko; Bergantini, Alexandre; Maksyutenko, Pavlo

    The –CH–NH{sub 2} moiety represents the fundamental building block of all proteinogenic amino acids, with the cyclic amino acid proline being a special case (–CH–NH– in proline). Exploiting a chemical retrosynthesis, we reveal that methylamine (CH{sub 3}NH{sub 2}) and/or ethylamine (CH{sub 3}CH{sub 2}NH{sub 2}) are essential precursors in the formation of each proteinogenic amino acid. In the present study we elucidate the abiotic formation of methylamine and ethylamine from ammonia (NH{sub 3}) and methane (CH{sub 4}) ices exposed to secondary electrons generated by energetic cosmic radiation in cometary and interstellar model ices. Our experiments show that methylamine and ethylamine aremore » crucial reaction products in irradiated ices composed of ammonia and methane. Using isotopic substitution studies we further obtain valuable information on the specific reaction pathways toward methylamine. The very recent identification of methylamine and ethylamine together with glycine in the coma of 67P/Churyumov–Gerasimenko underlines their potential to the extraterrestrial formation of amino acids.« less

  20. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  1. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  2. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  3. Kinetics of beta-haematin formation from suspensions of haematin in aqueous benzoic acid.

    PubMed

    Egan, Timothy J; Tshivhase, Mmboneni G

    2006-11-14

    Kinetics of beta-haematin (synthetic malaria pigment) formation from haematin have been studied in the presence of aqueous benzoic acid and derivatives of benzoic acid. Formation of the beta-haematin product is demonstrated by X-ray diffraction and IR spectroscopy. Reactions were followed by determining the fraction of unreacted haematin at various time points during the process via reaction of extracted aliquots with pyridine. The kinetics can be fitted to the Avrami equation, indicating that the process involves nucleation and growth. Reaction kinetics in stirred benzoic acid are similar to those previously observed in acetic acid, except that benzoic acid is far more active in promoting the reaction than acetic acid. The reaction reaches completion within 2 h in the presence of 0.050 M benzoic acid (pH 4.5, 60 degrees C). This compares with 1 h in the presence of 4.5 M acetic acid and 4 h in the presence of 2 M acetic acid. The reaction rate in benzoic acid is not affected if the stirring rate is decreased to zero, but very vigorous stirring appears to disrupt nucleation. The rate constant for beta-haematin formation in benzoic acid has a linear dependence on benzoic acid concentration and follows Arrhenius behaviour with temperature. There is a bell-shaped dependence on pH. This suggests that the haematin species in which one propionate group is protonated and the other is deprotonated is optimal for beta-haematin formation. When the reaction is conducted in para-substituted benzoic acid derivatives, the log of the rate constant increases linearly with the Hammett constant. These findings suggest that the role of the carboxylic acid may be to disrupt hydrogen bonding and pi-stacking in haematin, facilitating conversion to beta-haematin. The large activation energy for conversion of precipitated haematin to beta-haematin suggests that the reaction in vivo most likely involves direct nucleation from solution and probably does not occur in aqueous medium.

  4. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and inmore » ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.« less

  5. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    PubMed

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  6. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    PubMed

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.

  7. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  8. Pectin-Lipid Self-Assembly: Influence on the Formation of Polyhydroxy Fatty Acids Nanoparticles

    PubMed Central

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin. PMID:25915490

  9. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    PubMed

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. New particle formation and growth from methanesulfonic acid, trimethylamine and water.

    PubMed

    Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-05-28

    New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

  11. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids.

    PubMed

    Okumus, Bahar Nur; Tacer-Caba, Zeynep; Kahraman, Kevser; Nilufer-Erdil, Dilara

    2018-02-01

    This study aimed to characterize the brown lentil (Lens culinaris Medikus) starch and investigate the formation of amylose-lipid complexes (Resistant Starch Type V) by the addition of different lipids/fatty acids (10%, w/w) to both raw and cooked starch samples. Resistant starch content (measured by the official method of AACCI (Method 32-40), using the resistant starch assay kit) of raw brown lentil starch (BLS) increased significantly by the additions of lipids/fatty acids, starch sample complexed with HSO (hydrogenated sunflower oil) (14.1±0.4%) being the highest. For the cooked starch/lipid complexes, more profound effect was evident (22.2-67.7%). Peak, breakdown and trough viscosity values of the amylose-lipid complexed starches were significantly lower than that of BLS (p<0.05), while significant decreases in the setback and final viscosities were only detected in oil samples, but not in fatty acids. Each lipid in concern exerted different effects on the digestibility of starch and amylose-lipid complex formation while having no substantial differential effects on the thermal properties of starch depicted by differential scanning calorimetry (DSC). Amylose-lipid complex formation with suitable fatty acids/lipids seems a promising way of increasing resistant starch content of food formulations. Although the applications being quite uncommon yet, brown lentil seems to have potential both as a starch and also as a resistant starch source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potentiation of substance p by lysergic acid diethylamide in vivo

    PubMed Central

    Krivoy, W. A.

    1961-01-01

    In doses of 10 μg/kg or more, lysergic acid diethylamide enhanced the fourth potential (DR IV) of the dorsal root potential complex in the cat. Smaller doses of lysergic acid diethylamide did not in themselves alter the DR IV, but revealed an enhancement of the potential by substance P, which by itself had no effect. 2-Bromolysergic acid diethylamide had no action on the dorsal root potentials, but prevented the actions of lysergic acid diethylamide. PMID:13754427

  13. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus.

    PubMed

    Ali Mirani, Zulfiqar; Khan, Muhammad Naseem; Siddiqui, Anila; Khan, Fouzia; Aziz, Mubashir; Naz, Shagufta; Ahmed, Ayaz; Khan, Seema Ismat

    2018-02-01

    Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance and versatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascorbic acid on biofilm formation and colony spreading processes of S. aureus and MRSA. The isolates of methicillin-resistant S. aureus (MRSA) used in present study, were recovered from different food samples. Various selective and differential media were used for identification and confirmation of S. aureus . Agar dilution method was used for determination of oxacillin and ascorbic acid resistance level. MRSA isolates were re-confirmed by E-test and by amplification of mecA gene. Tube methods and Congo-Red agar were used to study biofilm formation processes. Gene expression studies were carried on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results revealed the presence of mecA gene belonging to SCC mecA type IV along with agr type II in the isolates. In vitro studies showed the sub-inhibitory concentration of oxacillin induced biofilm production. However, addition of sub-inhibitory dose of ascorbic acid was found to inhibit EPS production, biofilm formation and augment colony spreading on soft agar plates. The inhibition of biofilm formation and augmentation of colony spreading observed with ascorbic acid alone or in combination with oxacillin. Moreover, gene expression studies showed that ascorbic acid increases agr expression and decreases icaA gene expression. The present study concluded that ascorbic acid inhibits biofilm formation, promotes colony spreading and increases agr gene expression in MRSA.

  14. Formation of fatty acids in photochemical conversions of saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Telegina, T. A.; Pavlovskaya, T. Y.; Ladyzhenskaya, A. I.

    1977-01-01

    Abiogenic synthesis of fatty acids was studied in photochemical conversions of saturated hydrocarbons. It was shown that, in a hydrocarbon water CaCO3 suspension, the action of 254 nm UV rays caused the formation of fatty acids with a maximum number of carbon atoms in the chain not exceeding that in the initial hydrocarbon. Synthesis of acetic, propionic, butyric, valeric, caproic, enanthic and caprylic (in the case of octane) acids occurs in heptane water CaCO3 and octane water CaCO3 systems.

  15. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    NASA Astrophysics Data System (ADS)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  16. Furan formation from fatty acids as a result of storage, gamma irradiation, UV-C and heat treatments.

    PubMed

    Fan, Xuetong

    2015-05-15

    The effects of gamma and UV-C irradiation in comparison with thermal processing and storage at 25°C on formation of furan from different fatty acids were investigated. Results showed that furan was generated from polyunsaturated fatty acids such as linoleic and linolenic acid during thermal (120°C, 25 min) and UV-C (11.5 J/cm(2)) treatments. Gamma irradiation (up to 20 kGy) did not induce formation of significant amounts of furan from any of the fatty acids studied. Storage of unsaturated fatty acid emulsions at 25°C for 3 days led to the formation of furan (7-11 ng/mL) even without prior thermal or non-thermal treatments. pH significantly impacted furan formation with >3.5 times more furan formed at pH 9 than at pHs 3 or 6 during 3 days at 25°C. The addition of Trolox, BHA, and propyl gallate had no significant effect on furan formation from linolenic acid while α-tocopherol and FeSO4 promoted furan formation. Published by Elsevier Ltd.

  17. Comparing the effects of different dietary organic acids on the growth, intestinal short-chain fatty acids, and liver histopathology of red hybrid tilapia (Oreochromis sp.) and potential use of these as preservatives.

    PubMed

    Ebrahimi, Mahdi; Daeman, Nor Hafizah; Chong, Chou Min; Karami, Ali; Kumar, Vikas; Hoseinifar, Seyed Hossein; Romano, Nicholas

    2017-08-01

    Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.

  18. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    PubMed

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  19. Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.

  20. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  1. DECOMPOSITION OF TRIHALOACETIC ACIDS AND FORMATION OF THE CORRESPONDING TRIHALOMETHANES IN DRINKING WATER. (R826834)

    EPA Science Inventory

    The decomposition of trihaloacetic acids [bromodichloroacetic acid (BDCAA), dibromochloroacetic acid (DBCAA), tribromoacetic acid (TBAA)], and the formation of the corresponding trihalomethanes [bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM)] w...

  2. The Glutaredoxin Gene, grxB, Affects Acid Tolerance, Surface Hydrophobicity, Auto-Aggregation, and Biofilm Formation in Cronobacter sakazakii.

    PubMed

    Ling, Na; Zhang, Jumei; Li, Chengsi; Zeng, Haiyan; He, Wenjing; Ye, Yingwang; Wu, Qingping

    2018-01-01

    Cronobacter species are foodborne pathogens that can cause neonatal meningitis, necrotizing enterocolitis, and sepsis; they have unusual abilities to survive in environmental stresses such as acid stress. However, the factors involved in acid stress responses and biofilm formation in Cronobacter species are poorly understood. In this study, we investigated the role of grxB on cellular morphology, acid tolerance, surface hydrophobicity, auto-aggregation (AAg), motility, and biofilm formation in Cronobacter sakazakii . The deletion of grxB decreased resistance to acid stresses, and notably led to weaker surface hydrophobicity, AAg, and biofilm formation under normal and acid stress conditions, compared with those of the wild type strain; however, motility was unaffected. Therefore, grxB appears to contribute to the survival of C. sakazakii in acid stresses and biofilm formation. This is the first report to provide valuable evidence for the role of grxB in acid stress responses and biofilm formation in C. sakazakii.

  3. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    PubMed

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  4. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  5. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  6. Potential bronchoconstrictor stimuli in acid fog.

    PubMed Central

    Balmes, J R; Fine, J M; Gordon, T; Sheppard, D

    1989-01-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction. PMID:2539989

  7. Food acid content and erosive potential of sugar-free confections.

    PubMed

    Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C

    2017-06-01

    Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.

  8. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.

    PubMed

    Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd

    2017-12-01

    Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Formation and Survival of Amino Acids in Space

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2003-01-01

    The detection of deuterium enrichments in meteoritic hydroxy and amino acids demonstrates that there is a connection between organic material in the interstellar medium and in piimitive meteorites. It has generally been assumed that such molecules formed via reactions of small deuterium enriched insterstellar precursors in liquid water on a large asteroidal or cometary parent body. We have recently show that the W photolysis of interstellar/presolar ices can produce the amino acids alanine, serine, and glycine, as well as hydroxy acids, and glycerol, all of which have been extracted from the Murchison meteorite. Thus, some of the probiologically interesting organic compounds compounds found in meteorites may have formed in presolar ice and have not solely been a product of parent body liquid water chemistry. We will report on our isotopic labeling studies of the mechanism of formation of these inteiesting compounds, and on astrophysically relevant kinetic studies UV photo-decomposition of amino acid precursors in the solid state. This is our first year of exobiology funding on this project.

  10. Formation and Survival of Amino Acids in Space

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2003-01-01

    The detection of deuterium enrichments in meteoritic hydroxy and amino acids demonstrates that there is a connection between organic material in the interstellar medium and in primitive meteorites. It has generally been assumed that such molecules formed via reactions of small deuterium enriched insterstellar precursors in liquid water on a large asteroidal or cometary parent body. We have recently show that the W photolysis of interstellar/presolar ices can produce the amino acids alanine, serine, and glycine, as well as hydroxy acids, and glycerol, all of which have been extracted from the Murchison meteorite. Thus, some of the probiologically interesting organic compounds, compounds found in meteorites may have formed in presolar ice and have not solely been a product of parent body liquid water chemistry. We will report on our isotopic labeling studies of the mechanism of formation of these interesting compounds, and on astrophysically relevant kinetic studies UV photodecomposition of amino acid precursors in the solid state. This is our first year of exobiology funding on this project.

  11. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  12. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid.

    PubMed

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-15

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  15. Evaluation of the effect of formic acid and sodium formate on hair reduction in rat

    PubMed Central

    Banihashemi, Mahnaz; Rad, Abolfazl Khajavi; Yazdi, Seyed Abbas Tabatabaee; Rakhshande, Hasan; Ghoyonlo, Vahid Mashayekhi; Zabihi, Zahra; Yousefzadeh, Hadis

    2011-01-01

    Hirsutism is a common problem in dermatology that imposes high socioeconomical costs on medical care. Consequently, researchers are actively searching for cheaper and safer methods for therapeutic treatment. The objective of the present study is to evaluate formic oil, enriched from formic acid, for the removal of unwanted hair. In this study, 32 female rats (150–200 g) were randomly divided into four groups and maintained with normal water and food availability. A patch of skin was shaved on each rat for application of test solutions. The control group was treated with local once-daily applications of normal saline. The formic acid, acetic acid, and sodium formate groups were treated with once-daily applications of formic acid (pH 5.5), acetic acid (pH 5.5), or sodium formate, respectively. After 2 weeks, horizontally cut sample biopsies were removed, and the numbers of hair follicles were counted under high field microscopy by a specialist blinded to the treatments. Kolmogorov–Smirnov test results indicated a nonparametric distribution for the rat groups. ANOVA analysis indicated no statistically significant differences between groups (P < 0.05). There weren’t any side effects or evidence for toxicity during the study period. However, hair follicle counts showed a descending order of control, acetic acid, formic acid, and sodium formate. Although the sodium formate group had the lowest hair follicle numbers, the difference was not statistically significant (P > 0.05). Formic acid was not effective in reducing hair follicle numbers in rats. PMID:21760741

  16. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data shall...

  17. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  18. The Potential Role of Formate for Synthesis and Life in Serpentinization Systems

    NASA Astrophysics Data System (ADS)

    Lang, S. Q.; Frueh-Green, G. L.; Bernasconi, S. M.; Brazelton, W. J.; McGonigle, J. M.

    2016-12-01

    The high hydrogen concentrations produced during water-rock serpentinization reactions provide abundant thermodynamic energy that can drive the synthesis of organic compounds both biotically and abiotically. We investigated the synthesis of abiotic carbon and the metabolic pathways of the microbial inhabitants of the high energy but low diversity serpentinite-hosted Lost City Hydrothermal Field. High concentrations of the organic acid formate can be attributed to two sources. In some locations formate lacks detectable 14C, demonstrating it was formed abiotically from mantle-derived CO2. In other locations there is an additional modern contribution to the formate pool, potentially indicating active cycling with modern seawater dissolved inorganic carbon by microorganisms. The presence of this carbon source is likely critical for the survival of the subsurface microbial communities that inhabit alkaline serpentinization environments, where inorganic carbon is severely limited. Archaeal lipids produced by the Lost City Methanosarcinales (LCMS) also largely lack 14C, requiring their carbon source to be similarly 14C-free. Metagenomic evidence suggests that the LCMS could use formate for methanogenesis and, altogether, the data suggests that these organisms cannot rely on inorganic carbon as their carbon source and substrate for methanogenesis. Considering the lack of dissolved inorganic carbon in this system, the ability to utilize formate may have been a key evolutionary adaptation for survival in serpentinite-hosted environments. In the Lost City system, the LCMS apparently rely upon an abiotically produced organic carbon source, which may enable the Lost City microbial ecosystem to survive in the absence of photosynthesis or its byproducts.

  19. Controlling Disulfide Bond Formation and Crystal Growth from 2-Mercaptobenzoic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, Clare E.; Cantos, P. M.; Toby, B. H.

    2011-03-02

    We report disulfide bond formation from 2-mercaptobenzoic acid (2-MBA) under hydrothermal conditions as a function of pH. Under acidic conditions, 2-MBA remains unchanged. Upon increasing pH, however, we observe 50% oxidation to 2,2'-disulfanediyldibenzoic acid (2,2'-DSBA), which is isolated as a cocrystal of both the thiol and disulfide molecules. At neutral pH, we observe complete oxidation and concurrent crystal growth. The pH sensitivity of this system allows targeting crystals of specific composition from simple building units through a straightforward pH manipulation.

  20. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing-Hsien; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Tsai, Chia-Wen

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foammore » cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.« less

  1. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In vitro fermentation of nuts results in the formation of butyrate and c9,t11 conjugated linoleic acid as chemopreventive metabolites.

    PubMed

    Schlörmann, W; Birringer, M; Lochner, A; Lorkowski, S; Richter, I; Rohrer, C; Glei, M

    2016-09-01

    The consumption of foods rich in dietary fiber and polyunsaturated fatty acids such as nuts can contribute to a healthy diet. Therefore, the formation of fermentation end-products which might exert chemopreventive effects regarding colon cancer was investigated after an in vitro simulated digestion and fermentation of nuts using human fecal microbiota. Fermentation supernatants (FS) and pellets (FP) were obtained after an in vitro fermentation of hazelnuts, almonds, macadamia, pistachios and walnuts. Short-chain fatty acids (SCFA) and bile acids (BA) in FS as well as fatty acids in FP were analyzed via gas chromatography. Malondialdehyde (MDA) levels in FS were determined photometrically. Fermentation of nuts resulted in 1.9- to 2.8-fold higher concentrations of SCFA compared to the control and a shift of molar ratios toward butyrate production. In vitro fermentation resulted in the formation of vaccenic acid (C18:1t11, 32.1 ± 3.2 % FAME; fatty acid methyl ester) and conjugated linoleic acid (c9,t11 CLA, 2.4 ± 0.7 % FAME) exclusively in fermented walnut samples. Concentrations of secondary BA deoxycholic-/iso-deoxycholic acid (6.8-24.1-fold/4.9-10.9-fold, respectively) and levels of MDA (1.3-fold) were significantly reduced in fermented nut samples compared to the control. This is the first study that demonstrates the ability of the human fecal microbiota to convert polyunsaturated fatty acids from walnuts to c9,t11 CLA as a potential chemopreventive metabolite. In addition, the production of butyrate and reduction in potential carcinogens such as secondary BA and lipid peroxidation products might contribute to the protective effects of nuts regarding colon cancer development.

  3. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  4. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  5. Acid Gradient across Plasma Membrane Can Drive Phosphate Bond Synthesis in Cancer Cells: Acidic Tumor Milieu as a Potential Energy Source

    PubMed Central

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  6. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    PubMed Central

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  7. A nitrous acid biosynthetic pathway for diazo group formation in bacteria.

    PubMed

    Sugai, Yoshinori; Katsuyama, Yohei; Ohnishi, Yasuo

    2016-02-01

    Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

  8. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.

    PubMed

    Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha

    2016-12-01

    Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; p<0.05) over the same temperature range, suggesting a more uniform maintenance of lipid dynamics despite the presence of cholesterol. These data indicate that EPA and DHA had different effects on membrane bilayer width, membrane fluidity, and cholesterol crystalline domain formation; suggesting omega-3 fatty acids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by

  9. Fatty acid anilides: in vivo formation and relevance to toxic oil syndrome.

    PubMed

    Kaphalia, B S; Khan, M F; Ansari, G A

    1999-01-01

    Toxic oil syndrome (TOS), a multisystemic epidemic outbreak in 1981 in Spain, was caused by the ingestion of a cooking oil mixture containing rapeseed oil denatured with aniline. The mechanisms and causative agents responsible for the TOS are still not known. Although primary lesions observed in TOS patients could not be reproduced experimentally, the levels of fatty acid anilides (FAAs) and aniline in TOS-related cooking oil were considered proximate markers of TOS. Aniline, available from free aniline and FAAs ingested with TOS-related cooking oil, and its reconjugation with endogenous fatty acids could be an early event leading to TOS. Therefore, the present study was undertaken to determine the formation of FAAs following an oral dose of 2 mmol/kg aniline hydrochloride (AH) via gavage in rats. Here, 16:0, 18:0, 18:1, 18:2, 18:3, and 20:4 FAAs were analyzed in the whole blood, brown fat, liver, and pancreas at 0 (control), 0.25, 0.5, 1, 3, 6, 12, 24, and 48 hours. Generally, 16:0 and 18:1 FAAs were detected in the whole blood, brown fat, and liver of AH-treated rats with highest mean levels at 0.25 or 0.5 hour, except 3 hours for the whole blood. Only 16:0 FAA was detectable in the pancreas of AH-treated animals. The 18:0 FAA was also detected frequently in the liver while other FAAs were either in trace amounts or not detectable in the tissues analyzed in the present study. Overall, highest formation of the 16:0 FAA was found in the liver followed by pancreas and of 18:1 FAA in the whole blood and brown fat. These results indicate a rapid formation and further metabolism and disposition of FAAs in rat model and support our previous findings that 18:1 and 16:0 fatty acids are better substrates for the conjugation with aniline. Surprisingly, a small or trace amount of a few FAAs also detected in the tissues of control rats indicates their endogenous biosynthesis and/or presence. Results of 18:1 fatty acid incubation and aniline in the presence of fatty acid ethyl

  10. Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: implications for sunscreens.

    PubMed

    Karsili, Tolga N V; Marchetti, Barbara; Ashfold, Michael N R; Domcke, Wolfgang

    2014-12-26

    Oxybenzone (OB) and ferulic acid (FA) both find use in commercial sunscreens; caffeic acid (CA) differs from FA by virtue of an -OH group in place of a -OCH3 group on the aromatic ring. We report the results of ab initio calculations designed to explore the excited state nonradiative relaxation pathways that provide photostability to these molecules and the photoprotection they offer toward UV-A and UV-B radiation. In the case of OB, internal conversion (IC) is deduced to occur on ultrafast time scales, via a barrierless electron-driven H atom transfer pathway from the S1(1(1)nπ*) state to a conical intersection (CI) with the ground (S0) state potential energy surface (PES). The situation with respect to CA and FA is somewhat less clear-cut, with low energy CIs identified by linking excited states to the S0 state following photoexcitation and subsequent evolution along (i) a ring centered out-of-plane deformation coordinate, (ii) the E/Z isomerism coordinate and, in the case of CA, (iii) an O-H stretch coordinate. Analogy with catechol suggests that the last of these processes (if active) would lead to radical formation (and thus potential phototoxicity), encouraging a suggestion that FA might be superior to CA as a sunscreen ingredient.

  11. Potential effects of chlorogenic acids on platelet activiation

    USDA-ARS?s Scientific Manuscript database

    Coffee (Coffea sp) is a most consumed beverage world-wide. Chlorogenic acids (CHAs) are naturally occurring phenolic acid esters abundantly found in coffee. They are reported to have potential health effects on several chronic diseases such as obesity, diabetes and cardiovascular diseases (CVD). At...

  12. Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry.

    PubMed

    Silbaugh, Trent L; Karp, Eric M; Campbell, Charles T

    2014-03-12

    Carboxylates adsorbed on solid surfaces are important in many technological applications, ranging from heterogeneous catalysis and surface organo-functionalization to medical implants. We report here the first experimentally determined enthalpy of formation of any surface bound carboxylate on any surface, formate on Pt(111). This was accomplished by studying the dissociative adsorption of formic acid on oxygen-presaturated (O-sat) Pt(111) to make adsorbed monodentate and bidentate formates using single-crystal adsorption calorimetry. The integral heat of molecular adsorption of formic acid on clean Pt(111) at 100 K is 62.5 kJ/mol at 0.25 monolayer (ML). On O-sat Pt(111), the integral heat of the dissociative adsorption of formic acid to make monodentate formate (HCOOmon,ad) plus the water-hydroxyl complex ((H2O-OH)ad) was found to be 76 kJ/mol at 3/8 ML and 100-150 K. Similarly, its integral heat of dissociative adsorption to make bidentate formate (HCOObi,ad) plus (H2O-OH)ad was 106 kJ/mol at 3/8 ML and 150 K. These heats give the standard enthalpies of formation of adsorbed monodentate and bidentate formate on Pt(111) to be -354 ± 5 and -384 ± 5 kJ/mol, respectively, and their net bond enthalpies to the Pt(111) surface to be 224 ± 13 and 254 ± 13 kJ/mol, respectively. Coverage-dependent enthalpies of formation were used to estimate the enthalpy of the elementary reaction HCOOHad → HCOObi,ad + Had to be -4 kJ/mol at zero coverage and +24 kJ/mol at 3/8 ML.

  13. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  14. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia.

    PubMed

    Vanini, Giancarlo; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2008-12-01

    Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.

  15. FORMATION AND ENANTIOSELECTIVE BIODEGRADATION OF THE ENANTIOMERS OF BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Bromochloroacetic acid (BCAA) is formed by chlorination of drinking waters containing naturally occurring bromide. This haloacetic acid is a concern to public health because of suspected carcinogenicity and toxicity, and is a potential target of disinfectant byproduct regulations...

  16. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  17. Physiological functions and pathogenic potential of uric acid: A review.

    PubMed

    El Ridi, Rashika; Tallima, Hatem

    2017-09-01

    Uric acid is synthesized mainly in the liver, intestines and the vascular endothelium as the end product of an exogenous pool of purines, and endogenously from damaged, dying and dead cells, whereby nucleic acids, adenine and guanine, are degraded into uric acid. Mentioning uric acid generates dread because it is the established etiological agent of the severe, acute and chronic inflammatory arthritis, gout and is implicated in the initiation and progress of the metabolic syndrome. Yet, uric acid is the predominant anti-oxidant molecule in plasma and is necessary and sufficient for induction of type 2 immune responses. These properties may explain its protective potential in neurological and infectious diseases, mainly schistosomiasis. The pivotal protective potential of uric acid against blood-borne pathogens and neurological and autoimmune diseases is yet to be established.

  18. Mutual amino acid catalysis in salt-induced peptide formation supports this mechanism's role in prebiotic peptide evolution.

    PubMed

    Suwannachot, Y; Rode, B M

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 degrees C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms.

  19. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  20. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats.

    PubMed

    Hall, Jean A; Brockman, Jeff A; Davidson, Stephen J; MacLeay, Jen M; Jewell, Dennis E

    2017-01-01

    The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA) on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years) were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA), but no eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001) serum concentrations of EPA (173%), DHA (61%), and AA (35%); decreased urine specific gravity (P = 0.02); decreased urine calcium concentration (P = 0.06); decreased relative-super-saturation for struvite crystals (P = 0.03); and increased resistance to oxalate crystal formation (P = 0.06) compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01). These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA.

  1. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats

    PubMed Central

    Brockman, Jeff A.; Davidson, Stephen J.; MacLeay, Jen M.; Jewell, Dennis E.

    2017-01-01

    The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA) on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years) were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA), but no eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001) serum concentrations of EPA (173%), DHA (61%), and AA (35%); decreased urine specific gravity (P = 0.02); decreased urine calcium concentration (P = 0.06); decreased relative-super-saturation for struvite crystals (P = 0.03); and increased resistance to oxalate crystal formation (P = 0.06) compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01). These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA. PMID:29073223

  2. Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfates.

    PubMed

    Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi

    2010-04-01

    The heterogeneous interaction of alkylamines with sulfuric acid has been investigated to assess the role of amines in aerosol growth through the formation of alkylaminium sulfates. The kinetic experiments were conducted in a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS). The measurements of heterogeneous uptake of methylamine, dimethylamine, and trimethylamine were performed in the acidity range of 59-82 wt % H(2)SO(4) and between 243 and 283 K. Irreversible reactive uptakes were observed for all three alkylamines, with comparable uptake coefficients (gamma) in the range of 2.0 x 10(-2) to 4.4 x 10(-2). The measured gamma value was slightly higher in more concentrated sulfuric acid and at lower temperatures. The results imply that the heterogeneous reactions of alkylamines contribute effectively to the growth of atmospheric acidic particles and, hence, secondary organic aerosol formation.

  3. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation.

    PubMed

    Qian-Yuan, Wu; Chao, Li; Ye, Du; Wen-Long, Wang; Huang, Huang; Hong-Ying, Hu

    2016-05-15

    Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp. Copyright © 2016. Published by Elsevier Ltd.

  4. Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation.

    PubMed

    Sakakibara, Yota; Ito, Eri; Fukushima, Tomohiro; Murakami, Kei; Itami, Kenichiro

    2018-05-02

    The rapid transformation of pharmaceuticals and agrochemicals enables access to unexplored chemical space and thus has accelerated the discovery of novel bioactive molecules. Because arylacetic acids are regarded as key structures in bioactive compounds, new transformations of these structures could contribute to drug/agrochemical discovery and chemical biology. This work reports carbon-nitrogen and carbon-oxygen bond formation through the photoredox-catalyzed decarboxylation of arylacetic acids. The reaction shows good functional group compatibility without pre-activation of the nitrogen- or oxygen-based coupling partners. Under similar reaction conditions, carbon-chlorine bond formation was also feasible. This efficient derivatization of arylacetic acids makes it possible to synthesize pharmaceutical analogues and bioconjugates of pharmaceuticals and natural products. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.

    PubMed

    Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S

    2012-12-05

    Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.

  6. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.

    PubMed

    Sakai, Hiroshi; Tokuhara, Shunsuke; Murakami, Michio; Kosaka, Koji; Oguma, Kumiko; Takizawa, Satoshi

    2016-01-01

    Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by

  7. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    NASA Astrophysics Data System (ADS)

    Mätzing, H.; Namba, H.; Tokunaga, O.

    1994-03-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x) and sulfur dioxide (SO 2) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2) are formed in the electron beam treatment of flue gas. However, no corresponding experimental information is available so far. Therefore, we have undertaken the first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified.

  8. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans.

    PubMed

    Chang, Wenqiang; Li, Ying; Zhang, Li; Cheng, Aixia; Liu, Yongqing; Lou, Hongxiang

    2012-01-01

    Candida albicans is one of the most prevalent human opportunistic pathogens. C. albicans undergoes a yeast-to-hyphal transition that has been identified as a virulence factor as well as a critical element for mature biofilm formation. A previous study in our lab showed retigeric acid B (RAB), a lichen derived pentacyclic triterpenoid, displayed synergistic antifungal activity with azoles. We now showed that this combination also proved to be adequate in combating the formation of hyphae in vitro. In vivo tests with mice demonstrated RAB could markedly enhance the efficacy of fluconazole to promote the host's longevity through inhibiting hyphae formation and adherence to host cells. It was also observed that RAB and azoles interacted synergistically to block the formation of biofilm. Our data suggested the attenuated yeast-to-hyphal switch contributed to the defect of mature biofilm formation. Moreover, quantitative real-time polymerase chain reaction (qPCR) analysis showed RAB could reduce the transcript level of MDR1, a multidrug efflux pump, and caused a slight transcriptional reduction for another drug pump related gene CDR1. Taken together, our work provides a potential application to combat candidiasis using the combination of RAB and azoles.

  9. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Form and format for... And/or Amino Acid Sequences § 1.824 Form and format for nucleotide and/or amino acid sequence... Code for Information Interchange (ASCII) text. No other formats shall be allowed. (3) The computer...

  10. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    PubMed

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  11. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica.

    PubMed

    Moghadam, Sara E; Ebrahimi, Samad N; Salehi, Peyman; Moridi Farimani, Mahdi; Hamburger, Matthias; Jabbarzadeh, Ehsan

    2017-09-08

    Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3- O -β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica , followed by an analysis of the biological effects of myricetin-3- O -β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3- O -β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3- O -β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3- O -β-rhamnoside and chlorogenic acid.

  12. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica

    PubMed Central

    Moghadam, Sara E.; Ebrahimi, Samad N.; Salehi, Peyman; Farimani, Mahdi Moridi; Hamburger, Matthias; Jabbarzadeh, Ehsan

    2017-01-01

    Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 μg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 μg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid. PMID:28885580

  13. Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Liu, Yan; Chen, Shulin

    Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.

  14. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  15. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    PubMed

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients.

    PubMed

    Atya, Hanaa B; Ali, Sahar A; Hegazy, Mohamed I; El Sharkawi, Fathia Z

    2018-04-01

    Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.

  17. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  18. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  19. Potential adverse effects of omega-3 Fatty acids in dogs and cats.

    PubMed

    Lenox, C E; Bauer, J E

    2013-01-01

    Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  20. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 microns) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200 C in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a approx. 15.03-15.23Angstroms (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060

  1. Formation of Fe/Mg Smectite under acidic conditions from synthetic Adirondack Basaltic Glass: An Analog to Fe/Mg Smectite Formation on Mars.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-12-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg-saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 μm) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200ºC in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a ~15.03-15.23Ǻ (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550°C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Ǻ (02l) and 1.54Ǻ (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200ºC for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Mössbauer analysis

  2. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    PubMed

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

  4. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Understanding the primary emissions and secondary formation of gaseous organic acids in the oil sands region of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Liggio, John; Moussa, Samar G.; Wentzell, Jeremy; Darlington, Andrea; Liu, Peter; Leithead, Amy; Hayden, Katherine; O'Brien, Jason; Mittermeier, Richard L.; Staebler, Ralf; Wolde, Mengistu; Li, Shao-Meng

    2017-07-01

    Organic acids are known to be emitted from combustion processes and are key photochemical products of biogenic and anthropogenic precursors. Despite their multiple environmental impacts, such as on acid deposition and human-ecosystem health, little is known regarding their emission magnitudes or detailed chemical formation mechanisms. In the current work, airborne measurements of 18 gas-phase low-molecular-weight organic acids were made in the summer of 2013 over the oil sands region of Alberta, Canada, an area of intense unconventional oil extraction. The data from these measurements were used in conjunction with emission retrieval algorithms to derive the total and speciated primary organic acid emission rates, as well as secondary formation rates downwind of oil sands operations. The results of the analysis indicate that approximately 12 t day-1 of low-molecular-weight organic acids, dominated by C1-C5 acids, were emitted directly from off-road diesel vehicles within open pit mines. Although there are no specific reporting requirements for primary organic acids, the measured emissions were similar in magnitude to primary oxygenated hydrocarbon emissions, for which there are reporting thresholds, measured previously ( ≈ 20 t day-1). Conversely, photochemical production of gaseous organic acids significantly exceeded the primary sources, with formation rates of up to ≈ 184 t day-1 downwind of the oil sands facilities. The formation and evolution of organic acids from a Lagrangian flight were modelled with a box model, incorporating a detailed hydrocarbon reaction mechanism extracted from the Master Chemical Mechanism (v3.3). Despite evidence of significant secondary organic acid formation, the explicit chemical box model largely underestimated their formation in the oil sands plumes, accounting for 39, 46, 26, and 23 % of the measured formic, acetic, acrylic, and propionic acids respectively and with little contributions from biogenic VOC precursors. The model

  6. Encapsulation of ferulic acid ethyl ester in caseinate to suppress off-flavor formation in UHT milk.

    PubMed

    Guan, Yongguang; Zhong, Qixin

    2017-12-15

    Phenolic compounds can principally suppress the off-flavor development in ultrahigh temperature (UHT) treated milk, but little has been studied for lipophilic phenolic compounds that are to be encapsulated for even distribution in milk. The objective of this work was to study physicochemical properties of ferulic acid ethyl ester (FAEE) encapsulated in sodium caseinate and the inhibition of volatile formation after UHT processing. The capsules had an average hydrodynamic diameter of 246.2±10.9nm, a polydispersity index of 0.26±0.01, and a zeta-potential of -31.72±0.74mV. The capsules and the encapsulated FAEE were stable after heating at 138°C for 16min and UV radiation at 365nm for 32h. The encapsulated FAEE at a level of 0.18-1.42mg/mL suppressed the formation of 2-acetyl-2-thiazoline in model UHT milk by 32.8-63.2% after 30-day storage at 30°C. Therefore, FAEE encapsulated in caseinate can be potentially used to improve the quality of UHT milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  8. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  9. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  10. Formation of 6-Aminopenicillanic Acid, Penicillins, and Penicillin Acylase by Various Fungi

    PubMed Central

    Cole, M.

    1966-01-01

    Several penicillin-producing fungi were examined for ability to produce 6-aminopenicillanic acid (6-APA) and penicillin acylase. 6-APA was found in corn steep liquor fermentations of Trichophyton mentagrophytes, Aspergillus ochraceous, and three strains of Penicillium sp. 6-APA was not detected in fermentations of Epidermophyton floccosum although penicillins were produced. 6-APA formed a large part of the total antibiotic production of T. mentagrophytes. The types of penicillins produced by various fungi were identified by paper chromatography, and it was found that all cultures produced benzylpenicillin. T. mentagrophytes and A. ochraceous showed increased yields of benzylpenicillin and the formation of phenoxymethylpenicillin in response to the addition to the fermentation medium of phenylacetic acid and phenoxyacetic acid, respectively. Washed mycelia of the three Penicillium spp. and two high penicillin-yielding strains of P. chrysogenum possessed penicillin acylase activity against phenoxymethylpenicillin. A. ochraceous, T. mentagrophytes, E. floccosum, and Cephalosporium sp. also had penicillin acylase activity against phenoxymethylpenicillin. Only two of the above fungi, T. mentagrophytes and E. floccosum, showed significant penicillin acylase activity against benzylpenicillin; in both cases it was very low. The acylase activity of A. ochraceous was considerably increased by culturing in the presence of phenoxyacetic acid. It is concluded that 6-APA frequently but not invariably accompanies the formation of penicillin, and that penicillin acylase activity against phenoxymethylpenicillin is present in all penicillin-producing fungi. PMID:5950252

  11. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis.

    PubMed

    Hathroubi, Skander; Servetas, Stephanie L; Windham, Ian; Merrell, D Scott; Ottemann, Karen M

    2018-06-01

    Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori , which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence. Copyright © 2018 American Society for Microbiology.

  13. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    PubMed

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  15. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    PubMed

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  16. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

    PubMed

    Ober, Courtney A; Gupta, Ram B

    2012-12-01

    Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

  17. Time-Dependent ATR-FTIR Spectroscopic Studies on Fatty Acid Diffusion and the Formation of Metal Soaps in Oil Paint Model Systems.

    PubMed

    Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet

    2018-06-18

    The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  19. Forms of acid hydrolysis and gley formation and their role in the development of light-colored acid eluvial (Podzolic) horizons

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2010-04-01

    Nowadays, three processes, namely lessivage, acid hydrolysis, and gleying, are considered as responsible for the development of loamy and clayey podzolic soils. However, as was shown earlier, lessivage is not obligatory for their origin. In view of assessing the reasons for the formation of light-colored acid eluvial horizons, this article deals with the role of acid hydrolysis under aerobic conditions against the background of a percolative water regime and of two forms of gleying in the development of the horizons mentioned above. One form of gleying occurs under permanent anaerobic conditions against the background of a stagnant water regime; the other one is formed under pulsating anaerobic-aerobic conditions against the background of a stagnant-percolative water regime. As a result, three large genetically individual groups of soils are formed: nondifferentiated brown and gley, and differentiated podzolic soils on different parent rocks. The two latter forms of gleying are identical in their effects on the mineral substrates. They cause the iron removal from the soils. Among the three processes considered, the last one (gleying under a stagnant-percolative water regime) is the single reason for the leaching of most of the metals, the formation of light-colored acid eluvial horizons and their clay depletion, and for the differentiation of the soil profile.

  20. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  1. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  2. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  3. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia.

    PubMed

    Boord, Jeffrey B; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R; Fazio, Sergio; Linton, MacRae F; Hotamisligil, Gökhan S

    2002-10-01

    The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Mice deficient in aP2 and apolipoprotein E (aP2(-/-)apoE(-/-) mice) and apolipoprotein E-deficient control mice (apoE(-/-) mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE(-/-) control mice, male and female aP2(-/-)apoE(-/-) mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis.

  4. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    PubMed

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  5. Potential impact of acid precipitation on arsenic and selenium.

    PubMed Central

    Mushak, P

    1985-01-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075

  6. Potential impact of acid precipitation on arsenic and selenium.

    PubMed

    Mushak, P

    1985-11-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.

  7. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  8. Laser photocoagulation stops diabetic retinopathy by controlling lactic acid formation

    NASA Astrophysics Data System (ADS)

    Wolbarsht, Myron L.

    1994-08-01

    Many different types of proliferative retinopathy induced by various types of initial disorders have a common pathology in their mid and terminal stages. Thus, proper therapy is devoted toward elimination of the initial cause as well as alleviation of the proliferative processes. Vasodilatation, which is an initial symptom of diabetes, is itself destructive to the retinal capillary bed and appears to be a constant feature in all stages of diabetic retinopathy. In the mid and late stages, the vasodilatation seems very dependent upon capillary dropout, whereas the initial vasodilatation may derive from quite different causes. The efficacy of photocoagulation as a therapy for all stages seems to derive from decreasing the metabolism in the photoreceptor layer sufficiently to result in vasoconstriction of the retinal vessels. A model is proposed to show how diabetes, by altering the metabolism in the photoreceptor layer to produce excess lactic acid, causes the initial vasodilatation. The lactic acid also induces free radical (superoxide) formation; both act together to destroy the retinal capillary bed followed by vasoproliferation. Photocoagulation, thus, is even more appropriate for this particular syndrome than previously had been thought, as it not only reduces potentially destructive vasodilatation but also removes the metabolic cause of the free radical induced destruction of the capillary endothelium which is the initial step in capillary drop-out. A review of the present data indicates that the best type of pan- retinal photocoagulation is a very light type affecting the photoreceptors only with a minimal amount of damage to other parts of retina and the vessels in the choroid. The possible use of photochemical types of destruction of the photoreceptor as a therapeutic modality is attractive, but it is certainly too speculative to use until more detailed investigations have been completed. However, the basic therapeutic approach of choice may be to prevent the

  9. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  10. Sources and formation processes of water-soluble dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, and major ions in summer aerosols from eastern central India

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Deb, Manas K.; Boreddy, Suresh K. R.

    2017-03-01

    The sources and formation processes of dicarboxylic acids are still under investigation. Size-segregated aerosol (nine-size) samples collected in the urban site (Raipur: 21.2°N and 82.3°E) in eastern central India during summer of 2013 were measured for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), α-dicarbonyls (C2-C3), and inorganic ions to better understand their sources and formation processes. Diacids showed the predominance of oxalic acid (C2), whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2), and glyoxal (Gly) was a major α-dicarbonyl in all the sizes. Diacids, ω-oxoacids, and α-dicarbonyls as well as SO42

  11. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum.

    PubMed

    BenSaad, Lamees A; Kim, Kah Hwi; Quah, Chin Chew; Kim, Wee Ric; Shahimi, Mustafa

    2017-01-14

    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells. The compounds ellagic acid, gallic acid and punicalagin A&B were isolated from EtOAc by high performance liquid chromatography (HPLC) and further identified by mass spectrometry (MS). The inhibitory effect of ellagic acid, gallic acid and punicalagin A&B were evaluated on the production of LPS-induced NO by Griess reagent, PGE-2 and IL-6 by immunoassay kit and prostaglandin E2 competitive ELISA kit, and COX-2 by Western blotting. Ellagic acid, gallic acid and punicalagin A&B potentially inhibited LPS-induced NO, PGE-2 and IL-6 production. The results indicate that ellagic acid, gallic acid and punicalagin may be the compounds responsible for the anti-inflammatory potential of P. granatum.

  12. Mineralogical signatures of stone formation mechanisms.

    PubMed

    Gower, Laurie B; Amos, Fairland F; Khan, Saeed R

    2010-08-01

    The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

  13. Formation of amino acids and nucleic acid constituents from simulated primitive planetary atmospheres by irradiation with high-energy protons

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.

    It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com

  14. Potential Antagonist of Folic Acid Metabolism as Malarial Drugs,

    DTIC Science & Technology

    1982-09-01

    which sen.irited from the hydrocloric acid was filtered and then washed with water (25 ml). The reaction gave 2.3 g of the product which melted be...neutralized with cold dilute hydrocloric acid and evaporated to dryness. The residue was then extracted with methylene chloride filtered, and again...FhGh6/15hEE 1281 12.5 ~I1.50 IIA 132ii MJCRc)tll I’RE SOLU i UN ltIS CHiARI AD FINAL REPORT POTENTIAL ANTAGONIST OF FOLIC ACID METABOLISM AS MALARIAL

  15. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  16. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less

  17. DBP formation of aquatic humic substances

    USGS Publications Warehouse

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  18. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  19. Field Observation of Heterogeneous Formation of Dicarboxylic acids, Keto-carboxylic acids, α-Dicarbonyls and Nitrate in Xi'an, China during Asian dust storm periods

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wang, J.; Ren, Y.; Li, J.

    2015-12-01

    To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, p<0.001) rather than SO42-.This phenomenon differs greatly from the SOA in any other nondust period that is characterized by an enrichment of oxalic acid in fine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.

  20. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.

    PubMed

    Bornik, Maria-Anna; Kroh, Lothar W

    2013-04-10

    Thermal treatment of an aqueous solution of D-galacturonic acid at pH 3, 5, and 8 led to rapid browning of the solution and to the formation of carbocyclic compounds such as reductic acid (2,3-dihydroxy-2-cyclopenten-1-one), DHCP (4,5-dihydroxy-2-cyclopenten-1-one), and furan-2-carbaldehyde, as degradation products in weak acidic solution. Studies on their formation revealed 2-ketoglutaraldehyde as their common key intermediate. Norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) is a typical alkaline degradation product and formed after isomerization. Further model studies revealed reductic acid as an important and more browning active compound than furan-2-carbaldehyde, which led to a red color of the model solution. This red-brown color is also characteristic of thermally treated uronic acid solutions.

  1. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-01

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.

  2. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition.

    PubMed

    Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis

    2015-09-01

    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  4. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  5. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  6. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  7. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  8. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    PubMed

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  9. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  10. A step into the RNA world: Conditional analysis of hydrogel formation of adenosine 5'-monophosphate induced by cyanuric acid.

    PubMed

    Yokosawa, Takumi; Enomoto, Ryota; Uchino, Sho; Hirasawa, Ito; Umehara, Takuya; Tamura, Koji

    2017-12-01

    Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID

  12. Formation of Mixed-Ligand Complexes of Metals(II) with Monoamine Complexones and Amino Acids in Solution

    NASA Astrophysics Data System (ADS)

    Pyreu, D. F.; Gridchin, S. N.

    2018-05-01

    The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.

  13. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    NASA Astrophysics Data System (ADS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  14. Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates.

    PubMed

    Haritos, V S; Dojchinov, G

    2003-10-01

    Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.

  15. Acid composition and use thereof in treating fluid-bearing geologic formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, C.H.

    1972-04-04

    A composition useful as a fluid-loss control additive consists of a mixture of the following ingredients in the amount of between 7% and 30% by wt of each, to make a total of 100%: (1) an aqueous dispersion for binding clay selected from the class consisting of resins, rubber, rosin acids, and natural gums; (2) a thickening agent selected from the class consisting of fatty acids having from 10 to 24 carbon atoms, rosin acids, and metal soaps thereof; (3) an anionic or nonionic surfactant; and (4) a colloid-forming material which is either clay or asbestos cement. Another optional ingredientmore » is a low- viscosity oil, which is added in amount of up to 75% by wt of the sum of ingredients (1) to (4). The present composition prevents or greatly retards the excessive loss of fluids through the connecting pores of a geologic formation. (7 claims)« less

  16. Formation of amino acids from NH3 /NO2, CO2 and H2O: implications for the prebiotic origin of biomolecules.

    PubMed

    Singh, Amrinder; Nisha; Singh, Palwinder

    2015-11-15

    The search for the conditions which must have prevailed in the long-distant past during the conversion of inanimate matter into animate matter is a fascinating area of research and it continues to draw the attention of the scientific community. The initiation of life on this planet must have been preceded by the development of biomolecules, amongst which amino acids have unique importance. Formation of amino acids under a certain set of conditions is shown in the present experiments. Solutions of ammonium carboxylates or the mixture of two such salts were prepared in 3:6.9:0.1 (v/v/v) acetonitrile/water/formic acid at a concentration of 50 μM. The studies were performed using a quadrupole time-of-flight (QqTOF) mass spectrometer. The formation of different amino acids was detected with high-resolution mass spectrometry. Here, we show the formation of amino acids when a solution of ammonium salts was injected into an electrospray ionization (ESI)-QqTOF-MS instrument. The ammonium salts were the source of NH3 and CO2 and H2 O was available in the medium. It seems that the combination of NH3 , CO2 , and H2 O leads to the formation of amino acids. Further to the literature reports of formation of amino acids under the reduced atmosphere represented by gases such as NH3 , CH4 , H2 and H2 O, here we demonstrate the formation of amino acids by the combination of NH3 /NO2 , CO2 and water vapours in the ESI source of the mass spectrometer. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article.

    PubMed

    Grajeda-Iglesias, Claudia; Aviram, Michael

    2018-06-20

    The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

  18. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  19. Boric Acid Inhibition of Trichophyton rubrum Growth and Conidia Formation.

    PubMed

    Schmidt, Martin

    2017-12-01

    Trichophyton rubrum is a common human dermatophyte that is the causative agent of 80-93% of fungal infections of the skin and nails. While dermatophyte infections in healthy people are easily treatable with over-the-counter medications, such infections pose a higher risk for patients with compromised immune function and impaired regenerative potential. The efficacy of boric acid (BA) for the treatment of vaginal yeast infections prompted an investigation of the effect of BA on growth and morphology of T. rubrum. This is of particular interest since BA facilitates wound healing, raising the possibility that treating athlete's foot with BA, either alone or in combination with other antifungal drugs, would combine the benefits of antimicrobial activity and tissue regeneration to accelerate healing of infected skin. The data presented here show that BA represses T. rubrum growth at a concentration reported to be beneficial for host tissue regeneration. Oxygen exposure increases BA toxicity, and mycelia growing under BA stress avoid colonizing the surface of the growth surface, which leads to a suppression of aerial mycelium growth and surface conidia formation. BA penetrates into solid agar matrices, but the relative lack of oxygen below the substrate surface limits the effectiveness of BA in suppressing growth of embedded T. rubrum cells.

  20. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.

    2018-01-01

    The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.

  1. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  2. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling.

    PubMed

    Wang, Leshan; Luo, Lv; Zhao, Weijie; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan; Wang, Lina

    2018-06-18

    Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.

  3. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    PubMed

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Formate production through biocatalysis

    PubMed Central

    Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J

    2013-01-01

    The generation of formate from CO2 provides a method for sequestration of this greenhouse gas as well as the production of a valuable commodity chemical and stabilized form of hydrogen fuel. Formate dehydrogenases are enzymes with the potential to catalyze this reaction; however they generally favor the reverse process, i.e., formate oxidation. By contrast, the formate dehydrogenase of the acetogen Clostridium carboxidivorans has been found to preferentially catalyze the reduction of CO2. This is in accord with its natural role to introduce CO2 as a carbon source in the Wood-Ljungdahl pathway. The direction of catalysis derives from the enzyme’s low affinity for formate. This enzyme is therefore an excellent candidate for biotechnological applications aimed at producing formic acid and derivative chemicals from CO2. PMID:23841981

  5. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid.

    PubMed

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-15

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00≤pH≤7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  7. P-chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings.

    PubMed

    Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2008-01-01

    Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.

  8. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.

    PubMed

    Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok

    2016-10-20

    Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  10. Energy-saving management modelling and optimization for lead-acid battery formation process

    NASA Astrophysics Data System (ADS)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  11. Response of humic acid formation to elevated nitrate during chicken manure composting.

    PubMed

    Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue

    2018-06-01

    Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines

    PubMed Central

    Malm, Christian; Kim, Heejae; Wagner, Manfred

    2017-01-01

    Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513

  13. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    PubMed

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  14. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina; Zbořil, Radek; Sohn, Mary; Schultz, Brian J; Banerjee, Sarbajit

    2013-01-15

    This study investigated the possible natural formation of silver nanoparticles (AgNPs) in Ag(+)-fulvic acid (FA) solutions under various environmentally relevant conditions (temperature, pH, and UV light). Increase in temperature (24-90 °C) and pH (6.1-9.0) of Ag(+)-Suwannee River fulvic acid (SRFA) solutions accelerated the appearance of the characteristic surface plasmon resonance (SPR) of AgNPs. The rate of AgNP formation via reduction of Ag(+) in the presence of different FAs (SRFA, Pahokee Peat fulvic acid, PPFA, Nordic lake fulvic acid, NLFA) and Suwannee River humic acid (SRHA) followed the order NLFA > SRHA > PPFA > SRFA. This order was found to be related to the free radical content of the acids, which was consistent with the proposed mechanism. The same order of AgNP growth was seen upon UV light illumination of Ag(+)-FA and Ag(+)-HA mixtures in moderately hard reconstituted water (MHRW). Stability studies of AgNPs, formed from the interactions of Ag(+)-SRFA, over a period of several months showed that these AgNPs were highly stable with SPR peak reductions of only ~15%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements revealed bimodal particle size distributions of aged AgNPs. The stable AgNPs formed through the reduction of Ag(+) by fulvic and humic acid fractions of natural organic matter in the environment may be transported over significant distances and might also influence the overall bioavailability and ecotoxicity of AgNPs.

  15. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries.

    PubMed

    Desbois, Andrew P

    2012-08-01

    The antimicrobial effects of free fatty acids are well recognised and these compounds can prevent the growth of or directly kill bacteria, fungi and other microbes by affecting multiple cellular targets, including the cell membrane and components found therein. Moreover, fatty acids exert detrimental effects on microbial pathogens by interfering with mechanisms of virulence, such as preventing biofilm formation and inhibiting the production of toxins and enzymes. The antimicrobial properties of free fatty acids can be exploited for the preservation of perishable products, such as food and cosmetics, and for the prevention and treatment of infections. These safe natural products are particularly useful in circumstances where antimicrobial activity is required but where the use of conventional antibiotics is undesirable or forbidden. This review focuses on the most promising prospects for exploiting the antimicrobial properties of free fatty acids for applications in various industries. The benefits of using fatty acids as antimicrobial agents are discussed and relevant recent patents are highlighted.

  16. Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.

    2008-04-01

    Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.

  17. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Han, Yuemei; Stroud, Craig A.; Liggio, John; Li, Shao-Meng

    2016-11-01

    Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2-7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6-36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0-1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33-35 % and CxHyO2+ 16-17 %) in the total organics and the O / C ratio (0.52-0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39-40, 17-19, and

  18. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    PubMed Central

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate,” is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than 1-NOA did. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling. PMID:24800738

  19. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation.

    PubMed

    Miyamoto, M; Inoue, K; Gu, Y; Hoki, M; Haji, S; Ohyanagi, H

    1999-01-01

    At a number of points in the current procedures of islet isolation and islet culture after the harvesting of donor pancreata, microorganisms could potentially infect the islet preparation. Furthermore, the use of islets from multiple donors can compound the risks of contamination of individual recipients. Acidic oxidative potential water (also termed electrolyzed strong acid solution, function water, or acqua oxidation water), which was developed in Japan, is a strong acid formed on the anode in the electrolysis of water containing a small amount of sodium chloride. It has these physical properties: pH, from 2.3 to 2.7; oxidative-reduction potential, from 1,000 to 1,100 mV; dissolved chlorine, from 30 to 40 ppm; and dissolved oxygen, from 10 to 30 ppm. Because of these properties, acidic oxidative potential water has strong bactericidal effects on all bacteria including methicillin-resistant Staphylococcus aureus (MRSA), viruses including HIV, HBV, HCV, CMV, and fungi as a result of the action of the active oxygen and active chlorine that it contains. We conducted this study to evaluate the effect of acidic oxidative potential water irrigation on bacterial contamination on the harvesting of porcine pancreata from slaughterhouses for islet xenotransplantation by counting the number of pancreatic surface bacteria using the Dip-slide method, and on the results of islet culture; and to evaluate the direct effect on isolated islets when it is used to prevent bacterial contamination by the static incubation test and by morphological examination. Direct irrigation of the pancreas by acidic oxidative potential water was found to be very effective in preventing bacterial contamination, but direct irrigation of isolated islets slightly decreased their viability and function.

  20. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    DOEpatents

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  1. Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization.

    PubMed

    Halling Linder, Cecilia; Ek-Rylander, Barbro; Krumpel, Michael; Norgård, Maria; Narisawa, Sonoko; Millán, José Luis; Andersson, Göran; Magnusson, Per

    2017-07-01

    Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5'-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.

  2. The YvqE two-component system controls biofilm formation and acid production in Streptococcus pyogenes.

    PubMed

    Isaka, Masanori; Tatsuno, Ichiro; Maeyama, Jun-Ichi; Matsui, Hideyuki; Zhang, Yan; Hasegawa, Tadao

    2016-07-01

    In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  3. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  4. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccharide Sensing-Interface

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Lee, Jaebeom; Kim, Jae-Ho; Gal, Yeong-Soon; Hwang, Yoon-Hwae; An, Won Gun; Koh, Kwangnak

    2007-01-01

    We designed and synthesized phenylboronic acid as a molecular recognition model system for saccharide detection. The phenylboronic acid derivatives that have boronic acid moiety are well known to interact with saccharides in aqueous solution; thus, they can be applied to a functional interface of saccharide sensing through the formation of self-assembled monolayer (SAM). In this study, self-assembled phenylboronic acid derivative monolayers were formed on Au surface and carefully characterized by atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS), surface enhanced Raman spectroscopy (SERS), and surface electrochemical measurements. The saccharide sensing application was investigated using surface plasmon resonance (SPR) spectroscopy. The phenylboronic acid monolayers showed good sensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10−12 M). The SPR angle shift derived from interaction between phenylboronic acid and monosaccharide was increased with increasing the alkyl spacer length of synthesized phenylboronic acid derivatives.

  5. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry

    PubMed Central

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H.; Martens, Stefan; Schwab, Wilfried

    2016-01-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-d-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  6. Analysis of the Enhanced Stability of R(+)-Alpha Lipoic Acid by the Complex Formation with Cyclodextrins

    PubMed Central

    Ikuta, Naoko; Sugiyama, Hironori; Shimosegawa, Hiroshi; Nakane, Rie; Ishida, Yoshiyuki; Uekaji, Yukiko; Nakata, Daisuke; Pallauf, Kathrin; Rimbach, Gerald; Terao, Keiji; Matsugo, Seiichi

    2013-01-01

    R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD. PMID:23434662

  7. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments

    PubMed Central

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-01-01

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti–6Al–4V, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone. PMID:28946646

  8. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  9. Potential human health effects of acid rain: report of a workshop

    PubMed Central

    Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.

    1985-01-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772

  10. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation

    PubMed Central

    Gómez, Natacha C.; Ramiro, Juan M. P.; Quecan, Beatriz X. V.; de Melo Franco, Bernadette D. G.

    2016-01-01

    Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’s foods and (ii) to develop protective biofilms with these strains and test them for exclusion of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. LAB were tested for survival in acid and bile salt conditions, surface properties, biosurfactant production, β-galactosidase and gelatinase activity, antibiotic resistance and presence of virulence genes. Most strains survived exposure to pH 2 and 4% bile salts. The highest percentages of auto-aggregation were obtained after 24 h of incubation. Sixty-seven percentage auto-aggregation value was observed in W. viridescens 113 and Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7). Tests for hemolytic activity, bacterial cell adherence with xylene, and drop collapse confirmed the biosurfactant-producing ability of most strains. Only one strain (L. lactis 368) produced β-galactosidase. All strains were negative for virulence genes cob, ccf, cylLL, cylLs, cyllM, cylB, cylA and efaAfs and gelatinase production. The antibiotic susceptibility tests indicated that the MIC for ciprofloxacin, clindamycin, gentamicin, kanamycin, and streptomycin did not exceed the epidemiological cut-off suggested by the European Food Safety Authority. Some strains were resistant to one or more antibiotics and

  11. Perchlorate Formation on Mars Through Surface Radiolysis-Initiated Atmospheric Chemistry: A Potential Mechanism

    NASA Technical Reports Server (NTRS)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-01-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 x 10(exp 7) molecules/sq cm/s sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  12. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 1: Model system studies.

    PubMed

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Stadler, Richard H; Delatour, Thierry

    2017-07-15

    This study describes, for the first time, the role of pipecolic acid betaine and pipecolic acid, naturally present in some foods, in the formation of the plant growth regulator N,N-dimethylpiperidinium (mepiquat) under dry thermal conditions. The formation of mepiquat and intermediate compounds was investigated in model systems using high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Mepiquat is released with a yield of up to 0.66mol% after thermal treatment (>150°C) of pipecolic acid betaine. Similar conversion rates are attained with the congener piperidine-2-carboxylic acid (dl-pipecolic acid), albeit in the presence of alkylating agents, such as choline, glycine betaine or trigonelline, that are fairly widespread in food crops. These new pathways to mepiquat indicate that the occurrence of low levels of this thermally induced compound is probably more widespread in processed foods than initially suspected (see Part 2 of this study on the occurrence of mepiquat in selected foodstuffs). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains

    PubMed Central

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-01-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h−1 liter−1 (300 liters h−1 liter−1 at 37°C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application. PMID:16269707

  14. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-11-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.

  15. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metabolic alterations by clofibric acid in the formation of molecular species of phosphatidylcholine in rat liver.

    PubMed

    Mizuguchi, H; Kudo, N; Kawashima, Y

    2001-10-01

    The mechanism by which p-chlorophenoxyisobutyric acid (clofibric acid) induces striking changes in the proportion of the molecular species of phosphatidylcholine (PC) in rat liver was studied. Treatment of rats with clofibric acid strikingly increased the content of 1-palmitoyl-2-oleoyl (16:0-18:1) PC, but decreased the contents of 1-palmitoyl-2-docosahexaenoyl (16:0-22:6), 1-stearoyl-2-arachidonoyl (18:0-20:4), and 1-stearoyl-2-linoleoyl (18:0-18:2) PC; the drug did not change the content of 1-palmitoyl-2-arachidonoyl (16:0-20:4) PC. The mechanism underlying these changes has been investigated with regard to the in vivo formation of the molecular species of PC by: (i) de novo synthesis, (ii) reacylation, and (iii) methylation of phosphatidylethanolamine (PE). We found that (i) the incorporation of [3H]glycerol, which was injected intravenously, into 16:0-18:1 diacylglycerol (DG) and 16:0-18:1 PC was increased markedly by clofibric acid feeding without changing the substrate specificity of CDP-choline:DG cholinephosphotransferase, (ii) the in vivo formation of 16:0-18:1 and 16:0-20:4 PC from 1-16:0-[3H]glycerophosphocholine (GPC), which was injected intraportally, was increased markedly by clofibric acid feeding, and (iii) the incorporation of [14C]ethanolamine, which was injected intravenously into 16:0-22:6, 18:0-22:6, and 18:0-20:4 PC, was decreased by clofibric acid feeding; the extent of the decrease in 16:0-20:4 PC was less than that of 18:0-20:4 PC. It was concluded, therefore, that (i) clofibric acid selectively increased the content and proportion of 16:0-18:1 PC by enhancing both the CDP-choline pathway and the remodeling of the pre-existing PC molecule, and (ii) the drug kept the content of 16:0-20:4 PC unchanged by stimulating the remodeling of the pre-existing PC molecule, whereas the formation of other more long chain, polyunsaturated molecular species, such as 16:0-22:6, 18:0-22:6, and 18:0-20:4, was decreased owing to the suppression of PE

  17. Flow instabilities due to the interfacial formation of surfactant-fatty acid material in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Niroobakhsh, Zahra; Litman, Matthew; Belmonte, Andrew

    2017-11-01

    We present an experimental study of pattern formation during the penetration of an aqueous surfactant solution into a liquid fatty acid in a Hele-Shaw cell. When a solution of the cationic surfactant cetylpyridinium chloride is injected into oleic acid, a wide variety of fingering patterns are observed as a function of surfactant concentration and flow rate, which are strikingly different than the classic Saffman-Taylor (ST) instability. We observe evidence of interfacial material forming between the two liquids, causing these instabilities. Moreover, the number of fingers decreases with increasing flow rate Q , while the average finger width increases with Q , both trends opposite to the ST case. Bulk rheology on related mixtures indicates a gel-like state. Comparison of experiments using other oils indicates the importance of pH and the carboxylic head group in the formation of the surfactant-fatty acid material.

  18. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade—A Review

    PubMed Central

    Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan

    2016-01-01

    Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568

  19. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  20. CACODYLIC ACID (DMAV): METABOLISM AND ...

    EPA Pesticide Factsheets

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.

  1. Indole-3-Butyric Acid Induces Ectopic Formation of Metaxylem in the Hypocotyl of Arabidopsis thaliana without Conversion into Indole-3-Acetic Acid and with a Positive Interaction with Ethylene.

    PubMed

    Fattorini, Laura; Della Rovere, Federica; Andreini, Eleonora; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2017-11-21

    The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation.

  2. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawabata, Y.; Shimizu, T.; Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient freemore » energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.« less

  3. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  5. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  6. Biochemical and dietary factors of uric acid stone formation.

    PubMed

    Trinchieri, Alberto; Montanari, Emanuele

    2018-04-01

    The aim of this study was to compare the clinical characteristics of "pure" uric acid renal stone formers (UA-RSFs) with that of mixed uric acid/calcium oxalate stone formers (UC-RSFs) and to identify which urinary and dietary risk factors predispose to their formation. A total of 136 UA-RSFs and 115 UC-RSFs were extracted from our database of renal stone formers. A control group of 60 subjects without history of renal stones was considered for comparison. Data from serum chemistries, 24-h urine collections and 24-h dietary recalls were considered. UA-RSFs had a significantly (p = 0.001) higher body mass index (26.3 ± 3.6 kg/m 2 ) than UC-RSFs, whereas body mass index of UA-RSFs was higher but not significantly than in controls (24.6 ± 4.7) (p = 0.108). The mean urinary pH was significantly lower in UA-RSFs (5.57 ± 0.58) and UC-RSFs (5.71 ± 0.56) compared with controls (5.83 ± 0.29) (p = 0.007). No difference of daily urinary uric acid excretion was observed in the three groups (p = 0.902). Daily urinary calcium excretion was significantly (p = 0.018) higher in UC-RSFs (224 ± 149 mg/day) than UA-RSFs (179 ± 115) whereas no significant difference was observed with controls (181 ± 89). UA-RSFs tend to have a lower uric acid fractional excretion (0.083 ± 0.045% vs 0.107+/-0.165; p = 0.120) and had significantly higher serum uric acid (5.33 ± 1.66 vs 4.78 ± 1.44 mg/dl; p = 0.007) than UC-RSFs. The mean energy, carbohydrate and vitamin C intakes were higher in UA-SFs (1987 ± 683 kcal, 272 ± 91 g, 112 ± 72 mg) and UC-SFs (1836 ± 74 kcal, 265 ± 117, 140 ± 118) with respect to controls (1474 ± 601, 188 ± 84, 76 ± 53) (p = 0.000). UA-RSFs should be differentiated from UC-RSFs as they present lower urinary pH, lower uric acid fractional excretion and higher serum uric acid. On the contrary, patients with UC-RSFs show urinary risk factors

  7. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    NASA Astrophysics Data System (ADS)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins

  8. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  9. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    PubMed Central

    2016-01-01

    Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC) bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC) and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy)-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia. PMID:27366754

  10. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  11. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    NASA Astrophysics Data System (ADS)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  12. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: a clear relationship with fluorescence changes.

    PubMed

    Liu, Chen; Tang, Xiangyu; Kim, Jaeshin; Korshin, Gregory V

    2015-04-01

    This study examined the formation of aldehydes and carboxylic acids in ozonated surface water and municipal wastewater secondary effluent and addressed correlations between the generation of these compounds and concurrent changes of the fluorescence of natural/effluent organic matter (NOM/EfOM) substrates. Ozonation was effective in removing fluorophores in all excitation/emission matrix (EEM) regions, with those operationally assigned to humic- and protein-like species showing relatively higher reactivity than fulvic-like species. Examination of HO exposures and attendant changes of fluorescence-based parameters allows establishing strong linear relationships between formation of the aldehydes and carboxylic acids and the relative changes of integrated fluorescence (ΔIF/IF0). This demonstrates the feasibility of surrogate monitoring of the formation of biodegradable ozonation by-products via online measurements of water/wastewater EEM fluorescence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  14. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    PubMed

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes

    PubMed Central

    Mills, SC; Windsor, AC; Knight, SC

    2005-01-01

    n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207

  16. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    PubMed Central

    Lei, Chao; Fan, Sheng; Li, Ke; Meng, Yuan; Mao, Jiangping; Han, Mingyu; Zhao, Caiping; Bao, Lu; Zhang, Dong

    2018-01-01

    Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings. PMID:29495482

  17. Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: Sources and formation pathways

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo

    2015-05-01

    The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.

  18. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    NASA Astrophysics Data System (ADS)

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  19. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid.

    PubMed

    Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T

    1999-09-01

    It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.

  20. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  1. Mycophenolic acid induces differentiation of Toxoplasma gondii RH strain tachyzoites into bradyzoites and formation of cyst-like structure in vitro.

    PubMed

    Castro-Elizalde, Kitzia N; Hernández-Contreras, Pedro; Ramírez-Flores, Carlos J; González-Pozos, Sirenia; Gómez de León, Carmen T; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo

    2018-02-01

    The biochemical and structural changes that occur during the conversion of Toxoplasma gondii tachyzoites to bradyzoites and the formation of tissue cyst are not well understood. Maintaining cells infected with T. gondii type II and III strains under stress conditions induces the tachyzoite-bradyzoite in vitro differentiation, along with the formation of cyst-like structures. However, due to the long exposure to such conditions required to induce the differentiation, the severe damages in the host cell and the low encystation frequency, it has been difficult to dissect in more detail these processes. Here, we successfully induced the in vitro formation of Toxoplasma cysts-like structures from tachyzoites of the type I RH strain by treating with mycophenolic acid, an inhibitor of the inosine monophosphate dehydrogenase. Mycophenolic acid is a drug widely used for HXGPRT positive selection of Toxoplasma mutant strains along with xanthine incubation in the culture medium; under such conditions, formation of tissue cysts has not been reported. We show that the exposure of extracellular tachyzoites to mycophenolic acid in absence of xanthine, followed by host cell invasion, triggered their differentiation into cyst-like structures. The differential expression of CST1, BAG1, and SAG1 molecules, as well as the structural modifications of infected cells, was characterized during the formation of cyst-like structures in vitro. These findings will allow the characterization of signaling pathways involved in tachyzoite to bradyzoite conversion and formation of tissue cysts.

  2. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.

    PubMed

    Clifford, Michael N; Jaganath, Indu B; Ludwig, Iziar A; Crozier, Alan

    2017-12-13

    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.

  3. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli.

    PubMed

    Bagramyan, K; Trchounian, A

    2003-11-01

    Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.

  4. In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid.

    PubMed

    Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska

    2016-07-14

    A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.

  5. Field measurements of the ambient ozone formation potential in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William

    2017-04-01

    The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.

  6. Third phase formation in the extraction of phosphotungstic acid by TBP in n-octane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, M. R.; Chiarizia, R.; Jaffrennou, F.

    2010-08-30

    The solvent extraction of 12-phosphotungstic acid, also known as 12-tungstophosphoric acid-H{sub 3}PW{sub 12}O{sub 40}, the so-called Keggin heteropolyacid - by 0.73 M (20%v/v) tri-n-butyl phosphate (TBP) in n-octane under conditions comparable to those used previously for the extraction of conventional inorganic mineral acids is described. A simplified phase diagram for the pentanary system comprised of H{sub 3}PW{sub 12}O{sub 40}, HNO{sub 3}, H{sub 2}O, TBP, and n-octane reveals an extremely low initial concentration of H{sub 3}PW{sub 12}O{sub 40} (1.1 mM) at the LOC (limiting organic concentration) condition, far lower than the most effective third-phase-forming inorganic acid, namely HClO{sub 4}. The resultsmore » from small-angle neutron scattering (SANS) indicate that the interparticle attraction energy - U(r) calculated through application of the Baxter sticky sphere model to the SANS data at the LOC condition - does not approach the -2 k{sub B} T value associated with phase splitting in previous studies of TBP third-phase formation. The third-phase formation model based on attractive interactions between polar cores of reverse micelles, successfully developed for TBP and other extraction systems does not apply to the extraction of H{sub 3}PW{sub 12}O{sub 40}. Rather, the separation of a third-phase from the TBP organic phase stems from the limited solubility of the heavy and highly polar H{sub 3}PW{sub 12}O{sub 40}-TBP species in the alkane diluent.« less

  7. Mechanism of 1,4,5,8-naphthalene tetracarboxylic acid dianhydride hydrolysis and formation in aqueous solution.

    PubMed

    Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J

    2006-01-07

    The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.

  8. The formation of 2-hydroxypropylmercapturic acid from 1-halogenopropanes in the rat.

    PubMed

    Barnsley, E A

    1966-08-01

    1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (-)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (-)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (-)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (-)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate.

  9. Immunohistochemical detection of a substituted 1,N(2)-ethenodeoxyguanosine adduct by omega-6 polyunsaturated fatty acid hydroperoxides in the liver of rats fed a choline-deficient, L-amino acid-defined diet.

    PubMed

    Kawai, Yoshichika; Kato, Yoji; Nakae, Dai; Kusuoka, Osamu; Konishi, Yoichi; Uchida, Koji; Osawa, Toshihiko

    2002-03-01

    Endogenous lipid peroxidation products react with DNA and form exocyclic DNA adducts. The purpose of this study was to investigate the in vivo formation of 7-(2-oxo-heptyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct (Oxo-heptyl-varepsilondG), one of the major products from the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with dG. The monoclonal antibody specific to Oxo-heptyl-varepsilondG was prepared using a chemically synthesized conjugate of Oxo-heptyl-varepsilondG and carrier protein as immunogen. The characterization showed that the obtained antibody (mAb6A3) is specific to the Oxo-heptyl-varepsilondG moiety. Using the novel antibody, the presence of the Oxo-heptyl-varepsilondG adduct in vivo was immunohistochemically revealed in the liver of rats fed a choline-deficient, L-amino acid-defined diet, an endogenous carcinogenesis model, for 3 days. In addition, the Oxo-heptyl-varepsilondG formation was confirmed in DNAs treated with peroxidized linoleic acid, arachidonic acid and gamma-linolenic acid, respectively, suggesting that the hydroperoxides of omega-6 polyunsaturated fatty acids could be the potential sources of Oxo-heptyl-varepsilondG formation in vivo. Collectively, the results in this study suggest the first evidence that the formation of Oxo-heptyl-varepsilondG, the omega-6 lipid hydroperoxide-mediated DNA adduct, may be a potential biomarker for the early phase of carcinogenesis.

  10. Influence of Length and Amino Acid Composition on Dimer Formation of Immunoglobulin based Chimera.

    PubMed

    Manoj, Patidar; Naveen, Yadav; Dalai, Sarat Kumar

    2017-10-18

    The dimeric immunoglobulin (Ig) chimeras used for drug targeting and delivery are preferred biologics over their monomeric forms. Designing these Ig chimeras involves critical selection of a suitable Ig base that ensures dimer formation. In the present study, we systematically analyzed several factors that influence the formation of dimeric chimera. We designed and predicted 608 cytokine-Ig chimeras where we tested the contributions of (1) different domains of Ig constant heavy chain, (2) length of partner proteins, (3) amino acid (AA) composition and (4) position of cysteine in the formation of homodimer. The sequences of various Ig and cytokines were procured from Uniprot database, fused and submitted to COTH (CO-THreader) server for the prediction of dimer formation. Contributions of different domains of Ig constant heavy chain, length of chimeric proteins, AA composition and position of cysteine were tested to the homodimer formation of 608 cytokine-Ig chimeras. Various in silico approaches were adopted for validating the in silico findings. Experimentally we also validated our approach by expressing in CHO cells the chimeric design of shorter cytokine with Ig domain and analyzing the protein by SDS-PAGE. Our results advocate that while the CH1 region and the Hinge region of Ig heavy chain are critical, the length of partner proteins also crucially influences homodimer formation of the Ig-based chimera. We also report that the CH1 domain of Ig is not required for dimer formation of Ig based chimera in the presence of larger partner proteins. For shorter partner proteins fused to CH2-CH3, however, careful selection of partner sequence is critical, particularly the hydrophobic AA composition, cysteine content & their positions, disulphide bond formation property, and the linker sequences. We validated our in silico observation by various bioinformatics tools and checked the ability of chimeras to bind with the receptors of native protein by docking studies. As a

  11. Choline-stabilized orthosilicic acid supplementation as an adjunct to Calcium/Vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial

    PubMed Central

    Spector, Tim D; Calomme, Mario R; Anderson, Simon H; Clement, Gail; Bevan, Liisa; Demeester, Nathalie; Swaminathan, Rami; Jugdaohsingh, Ravin; Berghe, Dirk A Vanden; Powell, Jonathan J

    2008-01-01

    Background Mounting evidence supports a physiological role for silicon (Si) as orthosilicic acid (OSA, Si(OH)4) in bone formation. The effect of oral choline-stabilized orthosilicic acid (ch-OSA) on markers of bone turnover and bone mineral density (BMD) was investigated in a double-blind placebo-controlled trial. Methods Over 12-months, 136 women out of 184 randomized (T-score spine < -1.5) completed the study and received, daily, 1000 mg Ca and 20 μg cholecalciferol (Vit D3) and three different ch-OSA doses (3, 6 and 12 mg Si) or placebo. Bone formation markers in serum and urinary resorption markers were measured at baseline, and after 6 and 12 months. Femoral and lumbar BMD were measured at baseline and after 12 months by DEXA. Results Overall, there was a trend for ch-OSA to confer some additional benefit to Ca and Vit D3 treatment, especially for markers of bone formation, but only the marker for type I collagen formation (PINP) was significant at 12 months for the 6 and 12 mg Si dose (vs. placebo) without a clear dose response effect. A trend for a dose-corresponding increase was observed in the bone resorption marker, collagen type I C-terminal telopeptide (CTX-I). Lumbar spine BMD did not change significantly. Post-hoc subgroup analysis (baseline T-score femur < -1) however was significant for the 6 mg dose at the femoral neck (T-test). There were no ch-OSA related adverse events observed and biochemical safety parameters remained within the normal range. Conclusion Combined therapy of ch-OSA and Ca/Vit D3 had a potential beneficial effect on bone collagen compared to Ca/Vit D3 alone which suggests that this treatment is of potential use in osteoporosis. NTR 1029 PMID:18547426

  12. Zoledronic acid induces micronuclei formation, mitochondrial-mediated apoptosis and cytostasis in kidney cells.

    PubMed

    Singireesu, Soma Shiva Nageswara Rao; Mondal, Sujan Kumar; Yerramsetty, Suresh; Misra, Sunil

    2018-06-15

    Zoledronic acid (ZA), a FDA approved drug has used widely in the treatment of bone metastasis complications, has been linked to renal toxicity with unclear mechanism. The present study is aimed at investigating the genotoxic and cytotoxic effects of ZA in renal epithelial cells. The genotoxic effect of ZA in Vero and MDCK cells determined by cytokinesis block micronucleus (CBMN) assay. The cytotoxic effect assessed by analysing cell cycle profile, cell death and mitochondrial membrane potential by flow cytometry using propidium iodide, AnnexinV-FITC/PI and JC1 dye staining, respectively, BAX and Bcl-2 expression by Western blotting and caspase activity by spectrofluorimetry. The cytotoxic effect of ZA based on MTT assay revealed variable sensitivities of Vero and MDCK cells, with IC 50 values of 7.41 and 109.58 μM, respectively. The CBMN assay has shown prominent dose-dependent (IC 10-50 ) induction of micronuclei formation in both cells, indicating ZA's clastogenic and aneugenic potential. Further, the ZA treatment led the cells to apoptosis, evident from dose-dependent increase in the percentage of cells in subG1 phase and display of membranous phosphatidylserine translocation. Studies also confirmed apoptosis through mitochondria, evident from the prominent increase in BAX/Bcl-2 ratio, mitochondrial membrane depolarization and caspase-3/7 activity. In addition, ZA reduces cytokinetic activity of renal cells, evident from dose-wise lowered replicative indices. The study depict ZA's potential genotoxic effect along with cytotoxic effect in renal epithelial cells, could be key factors for the development of renal complications associated with it, which prompts renal safety measures in lieu with ZA usage. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  14. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    USDA-ARS?s Scientific Manuscript database

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  15. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  16. Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids.

    PubMed

    Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A

    2017-09-05

    The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.

  17. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    PubMed

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  18. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  19. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    PubMed Central

    2015-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  20. Formation of (HCOO – )(H 2 SO 4 ) Anion Clusters: Violation of Gas-Phase Acidity Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Wang, Xue-Bin; Valiev, Marat

    2017-08-10

    Sulfuric acid is commonly known to be a strong acid and, by all counts, should readily donate its proton to formate, which has much higher proton affinity. This conventional wisdom is challenged in this work, where temperature-dependent negative ion photoelectron spectroscopy (NIPES) and theoretical studies demonstrate the existence of (HCOO?)(H2SO4) pair at the energy slightly below the conventional (HCOOH)(HSO4?) structure. Analysis of quantum-mechanical calculations indicates that large proton affinity barrier (~36 kcal/mol), favoring proton transfer to formate, is offset by the gain in inter-molecular interaction energy between HCOO? and H2SO4 through the formation of two strong hydrogen bonds. However, thismore » stabilization comes with severe entropic penalty, requiring the two species in the precise align-ment. As a result, the population of (HCOO?)(H2SO4) drops significantly at higher temperatures, rendering (HCOOH)(HSO4?) to be the dominant species. This phe-nomenon is consistent with the NIPES data, which shows depletion in the spectra assigned to (HCOO?)(H2SO4), and has also been verified by ab initio molecular dynamics simulations.« less

  1. Potential benefits of eicosapentaenoic acid on atherosclerotic plaques.

    PubMed

    Nelson, J R; Wani, O; May, H T; Budoff, M

    2017-04-01

    Residual cardiovascular (CV) risk remains in some patients despite optimized statin therapy and may necessitate add-on therapy to reduce this risk. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, lowers plasma triglyceride levels without raising low-density lipoprotein cholesterol levels and has potential beneficial effects on atherosclerotic plaques. Animal studies have shown that EPA reduces levels of pro-inflammatory cytokines and chemokines. In clinical trials utilizing a wide spectrum of plaque imaging modalities, EPA has shown beneficial effects on plaque characteristics. Studies of patients with coronary artery disease receiving statin therapy suggest that EPA may decrease plaque vulnerability and prevent plaque progression. EPA also decreased pentraxin-3 and macrophage accumulation. A large, randomized, Japanese study reported that EPA plus a statin resulted in a 19% relative reduction in major coronary events at 5years versus a statin alone in patients with hypercholesterolemia (P=0.011). Icosapent ethyl, a high-purity prescription form of EPA ethyl ester, has been shown to reduce triglyceride levels and markers of atherosclerotic inflammation. Results of an ongoing CV outcomes study will further define the potential clinical benefits of icosapent ethyl in reducing CV risk in high-risk patients receiving statin therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Inhibitory effect of glutamic acid on the scale formation process using electrochemical methods.

    PubMed

    Karar, A; Naamoune, F; Kahoul, A; Belattar, N

    2016-08-01

    The formation of calcium carbonate CaCO3 in water has some important implications in geoscience researches, ocean chemistry studies, CO2 emission issues and biology. In industry, the scaling phenomenon may cause technical problems, such as reduction in heat transfer efficiency in cooling systems and obstruction of pipes. This paper focuses on the study of the glutamic acid (GA) for reducing CaCO3 scale formation on metallic surfaces in the water of Bir Aissa region. The anti-scaling properties of glutamic acid (GA), used as a complexing agent of Ca(2+) ions, have been evaluated by the chronoamperometry and electrochemical impedance spectroscopy methods in conjunction with a microscopic examination. Chemical and electrochemical study of this water shows a high calcium concentration. The characterization using X-ray diffraction reveals that while the CaCO3 scale formed chemically is a mixture of calcite, aragonite and vaterite, the one deposited electrochemically is a pure calcite. The effect of temperature on the efficiency of the inhibitor was investigated. At 30 and 40°C, a complete scaling inhibition was obtained at a GA concentration of 18 mg/L with 90.2% efficiency rate. However, the efficiency of GA decreased at 50 and 60°C.

  3. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  4. Photolysis of α-KETO Acids in Model Atmospheric Water

    NASA Astrophysics Data System (ADS)

    Eugene, A. J.; Guzman, M. I.

    2017-12-01

    Recent work has reported the potential of aqueous-phase photochemistry to promote secondary organic aerosol (SOA) formation. New aqueous photochemical SOA sources may contribute to bridging the gap between field measurements of SOA and models of SOA formation. The ubiquitous α-ketocarboxylic acids pyruvic and glyoxylic acid are known products of the atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) as well as of biogenic volatile organic compounds (VOCs). The combination of a carbonyl chromophore (absorbing at wavelengths λ ≥ 300 nm) and hydrophilic functional groups makes these acids likely candidates for forming aqueous SOA by direct sunlight photolysis. We use a variety of analytical techniques including: 2,4-dinitrophenylhydrazine (DNPH) derivatization; ultra-high performance liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry;1H and 13C NMR; and 13C gCOSY NMR to probe the kinetics and mechanisms of the direct photolysis of model solutions of pyruvic acid and glyoxylic acid. The results indicate that despite the structural similarity between the two acids, they each react via very different primary photochemical pathways. Pyruvic acid undergoes a proton-coupled electron transfer (PCET) mechanism with radical recombination, resulting in CO2 and 6-8 carbon organic acids. In contrast, glyoxylic acid primarily undergoes α-cleavage to generate CO, CO2, and glyoxal which is a key species in SOA formation. This work demonstrates that aqueous photolysis is a very competitive atmospheric sink for both pyruvic and glyoxylic acid, indicating that these photoreactions are capable of contributing substantially to SOA formation.

  5. Effects of irradiation on trans fatty acids formation in ground beef

    NASA Astrophysics Data System (ADS)

    Brito, Mônica S.; Villavicencio, Anna Lúcia C. H.; Mancini-filho, Jorge

    2002-03-01

    In order to give the consumer the assurance that meat processed by irradiation is a safe product, a great deal of research has been developed in the world. The effect of irradiation on the hygienic quality of meat and meat products is considered as related to the control of meat-borne parasites of humans; elimination of pathogens from fresh meat and poultry; and elimination of pathogens from processed meat. Lipid oxidation and associated changes are the major causes of the quality deterioration of meat during storage. Irradiation of lipids induces the production of free radicals, which react with oxygen, leading to the formation of carbonyls, responsible for alterations in food nutritional and sensorial characteristics. Trans fatty acids are present in ground beef and can also be formed during its processing. Interestingly, the trans fatty acids, due to their chemical and physical characteristics, show more resistance to the oxidizing process. This property motivated us to investigate the level of the trans fatty acids, as well as the level of oxidation in irradiated ground beef. Irradiation of ground beef was performed by gamma rays from a 60Co source. The applied radiation doses were 0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0 and 8.0 kGy. Lipid peroxidation in terms of TBA number and carbonyl content was monitored during storage. The sample characteristics and trans fatty acids composition were measured, following irradiation and after 60 and 90 days of storage at -10°C.

  6. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    PubMed

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  7. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    PubMed

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  9. Inhibitory effects of acid water prepared by an electrolysis apparatus on early plaque formation on specimens of dentine.

    PubMed

    Ito, K; Nishida, T; Murai, S

    1996-05-01

    The aim of this study was to compare the effects of acid water prepared by an electrolysis apparatus with placebo treatment on the ultrastructure of early plaque formed on dentine specimens attached to retainers in the oral cavity. Dentine specimens were taken from 12 healthy extracted human 3rd molars. 4 dentine specimens were placed in the both the right and left buccal flanges of retainers fabricated from self-setting acrylic resin. The retainers were placed on both maxillary buccal sites in 6 subjects. The test solution was acid water (AW) prepared by an electrolysis apparatus with a pH of 2.7 and an oxidation-reduction potential of more than 1100 mV. As a positive control, 0.2% chlorhexidine digluconate (CHX) solution was used and normal saline solution as a negative control. 4 specimens placed in the right and left retainers were randomly allocated to 4 treatments as follows: treatment A, washing with AW; treatment B, washing with CHX solution; treatment C, washing with normal saline; treatment D, no washing. Washing was carried out in a plastic beaker containing 30 ml of each solution for 30s 2X daily over a 7-day period. The specimens were then carefully removed from the retainers, the morphology and thickness of the plaque formed examined by SEM, and the developmental condition of the plaque analyzed statistically. The plaque on the specimens in treatments A and B consisted mainly of coccoid forms. Mature plaque formation with complex flora was seen on the specimens in treatments C and D. The mean thickness of the plaque deposits on the dentin specimens as measured on SEM photographs magnified 2000 times was 8.80 mm for treatment. A, while in treatment B it was 3.90 mm. Plaque thickness for treatment C was 24.97 mm, and for treatment D 25.67 mm. The thickness of plaque formed on the sectioned specimens was significantly less for treatments A and B than for treatments C and D. However, there was no statistically significant difference between treatments A

  10. Redirection of arachidonic acid metabolism by ICI D1542: effects on thrombus formation in the coronary artery of the anaesthetized dog.

    PubMed Central

    McAuliffe, S. J.; Moors, J. A.; Snow, H. M.; Wayne, M.; Jessup, R.

    1993-01-01

    1. The effects of simultaneous redirection of arachidonic acid metabolism, by inhibition of thromboxane A2 (TXA2) synthase and blockade of the platelet thromboxane A2 receptor (TP-receptor), was examined on the rate of thrombus formation in a stenosed coronary artery with damaged endothelium in an anaesthetized dog. 2. Redirection of arachidonic acid metabolism was achieved by intravenous doses of ICI D1542, a selective and potent inhibitor of TXA2 synthase and the TP-receptor. 3. Redirection of arachidonic acid metabolism was demonstrated in whole blood, stimulated ex vivo by collagen. The ED50 for inhibition of TXB2 production was 7.1 micrograms kg-1, i.v.; there were corresponding increases in the production of the eicosanoids prostaglandin D2 (PGD2), PGE2 and PGF2 alpha. 4. Thrombus formation was inhibited by D1542 (ED50 0.55 micrograms kg-1, i.v.), but could be restarted by an intravenous infusion of adrenaline (0.2-38 micrograms kg-1 min-1, i.v.). In the presence of the maximum effective dose of D1542 (1 mg kg-1, i.v.) a 190 fold increase in the infusion rate of adrenaline was required to restore thrombus formation. 5. In the presence of D1542, removal of endoperoxide metabolites by inhibition of cyclo-oxygenase with aspirin (5 mg kg-1, i.v.) caused thrombus formation to restart, indicating the ability of the endoperoxide metabolites to inhibit thrombus formation in vivo. 6. These results indicate that, in the stenosed and damaged coronary artery of the dog, redirection of arachidonic acid metabolism by D1542 is more effective at preventing thrombus formation than inhibition of cyclo-oxygenase by aspirin. PMID:8485629

  11. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  12. Influence of l-pyroglutamic acid on the color formation process of non-enzymatic browning reactions.

    PubMed

    Wegener, Steffen; Kaufmann, Martin; Kroh, Lothar W

    2017-10-01

    Heating aqueous d-glucose model reactions with l-glutamine and l-alanine yielded similar colored solutions. However, size-exclusion chromatography (SEC) revealed that both non-enzymatic browning reactions proceeded differently. Due to a fast occurring cyclization of l-glutamine to pyroglutamic acid, the typical amino-carbonyl reaction was slowed down. However, l-glutamine and l-alanine model reactions showed the same browning index. Closer investigations could prove that l-pyroglutamic acid was able to influence non-enzymatic browning reactions. SEC analyses of d-glucose model reactions with and without l-pyroglutamic acid revealed an increase of low molecular colored compounds in the presence of l-pyroglutamic acid. Polarimetric measurements showed a doubling of d-glucose mutarotation velocity and HPLC analyses of d-fructose formation during thermal treatment indicated a tripling of aldose-ketose transformation in the presence of l-pyroglutamic acid, which are signs of a faster proceeding non-enzymatic browning process. 2-Pyrrolidone showed no such behavior, thus the additional carboxylic group should be responsible for the observed effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    PubMed

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  14. The formation of 2-hydroxypropylmercapturic acid from 1-halogenopropanes in the rat

    PubMed Central

    Barnsley, E. A.

    1966-01-01

    1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (−)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (−)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (−)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (−)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate. PMID:5968536

  15. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  16. Ammonia Formation By The Reduction Of Nitrite/Nitrate By Fes: Ammonia Formation Under Acidic Conditions

    NASA Astrophysics Data System (ADS)

    Summers, David P.

    2005-08-01

    One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species)

  17. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.

    PubMed

    Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2016-03-01

    In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.

  18. Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain.

    PubMed

    Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2015-09-01

    Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.

  19. Relation of trihalomethane-formation potential to water-quality and physical characteristics of small water-supply lakes, eastern Kansas

    USGS Publications Warehouse

    Pope, L.M.; Arruda, J.A.; Fromm, C.H.

    1988-01-01

    The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)

  20. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces

    PubMed Central

    Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P.

    2004-01-01

    In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways. PMID:15504865

  1. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.

    PubMed

    Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao

    2016-03-01

    The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Oil shale potential of the Heath and Tyler formations, Central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, W.E.; Cole, G.A.

    The units in the middle of the Heath formation below the gypsum beds were found to have the highest oil yields. That interval was generally 25 to 50 ft (7.6 to 15.2 m) thick. The upper portion of the Heath formation yielded as much as 9.8 gal/ton in section 9, and 14.9 gal/ton in section 10. The Tyler formation was determined to have very low oil potential, with the maximum yield being 2.2 gal/ton. The instability of some of the Heath slopes could present problems in the mining of oil shale. Specific stratigraphic horizons in which zones of high andmore » low oil and metal contents occur would be extremely difficult to map in areas where the units have been displaced by landslide movement.« less

  3. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation.

    PubMed

    Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2016-01-01

    Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.

  4. Evaluation of zosteric acid for mitigating biofilm formation of Pseudomonas putida isolated from a membrane bioreactor system.

    PubMed

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-05-28

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (-97%) and thickness (-50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition.

  5. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    PubMed Central

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-01-01

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97%) and thickness (−50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition. PMID:24879523

  6. Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India

    NASA Astrophysics Data System (ADS)

    Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh

    2017-11-01

    Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.

  7. Investigating the Formation Mechanisms and Inorganic Precursors of Formate and Acetate in Lost City Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Lang, S. Q.; Bernasconi, S. M.; Früh-Green, G.

    2010-12-01

    Fluids from the Lost City Hydrothermal Field are rich in hydrogen and methane, with high pHs (9 - 11), as a result of serpentinization reactions at moderate temperatures of approximately 120-200°C. It has been predicted that organic carbon compounds would form abiologically under these chemical and thermal conditions from inorganic precursors, in the form of hydrocarbons and organic acids. Previous work has demonstrated the presence of high concentrations of both formate and acetate in the Lost City fluids [Lang et al., 2010, GCA]. Formate is the second most prevalent carbon species in the fluids and may provide local microbial communities with a necessary carbon source in the face of low dissolved inorganic carbon concentrations. The goals of this study are to constrain the formation mechanisms of these organic acids (abiotic vs. biotic) and to identify their inorganic precursors. Formate and acetate were isolated from multiple fluid samples by preparative high-performance liquid chromatography for isotopic analysis. The δ13C of formate is similar to that of Lost City methane, and consistent with an abiological origin. The isotopic signature of acetate is significantly different from these values, and may be indicative of a biological source. Radiocarbon measurements of the isolated formate are in progress and should allow us to determine if the precursor carbon is derived from a mantle or deep-seawater source. Alkaline hydrothermal systems have been proposed as potential sites to the origin of life and formate has been proposed as a critical intermediate towards the kinds of reduced carbon species found in biochemistry. Evidence of an abiological formation mechanism of formate at Lost City may significantly further our understanding of prebiotic chemistry.

  8. Evaluation of the Initiation/Promotion Potential of CTFE Trimer Acid

    DTIC Science & Technology

    1990-11-01

    0 1 0 0 0 0 0 0 0 Atrophic hepatic cords 3 Cc Cc Cc Cc Cc Cc Cc 3 0e Ce Ce 0e Ge 0e Ce Steatosis 3 2 4 4 4 4 4 3 2 1 0 2 2 1 2 1 Kuppfercell pigment...with the formation of hepatic tumors. Therefore, the present study was designed to evaluate CTFE trimer acid for both tumor initiation and promoting...oxidation of palmitoyl coenzyme A (CoA) MOelRaso, unpublished findings). Many compounds cause an increase in the number of hepatic peroxisomes and are

  9. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    PubMed

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  10. Potential SSP Perfluorooctanoic Acid Related Fluoropolymer Materials Obsolescence

    NASA Technical Reports Server (NTRS)

    Segars, Matt G.

    2006-01-01

    The Shuttle Environmental Assurance Initiative (SEA) has identified a potential for the Space Shuttle Program (SSP) to incur materials obsolescence issues due to agreements between the fluoro-chemical industry and the United States Environmental Protection Agency (USEPA) to participate in a Global Stewardship Program for perfluorooctanoic acid (PFOA). This presentation will include discussions of the chemistry, regulatory drivers, affected types of fluoropolymer and fluoroelastomer products, timeline for reformulations, and methodology for addressing the issue. It will cover the coordination of assessment efforts with the International Space Station and Head Quarters Air Force Space Command, along with some examples of impacted materials. The presentation is directed at all members of the international aerospace community concerned with identifying potential environmentally driven materials obsolescence issues.

  11. Microbial activity in an acid resin deposit: biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination.

    PubMed

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-11-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1.

  12. Unlocking the Potential of Phenacyl Protecting Groups: CO2-Based Formation and Photocatalytic Release of Caged Amines.

    PubMed

    Speckmeier, Elisabeth; Klimkait, Michael; Zeitler, Kirsten

    2018-04-06

    Orthogonal protection and deprotection of amines remain important tools in synthetic design as well as in chemical biology and material research applications. A robust, highly efficient, and sustainable method for the formation of phenacyl-based carbamate esters was developed using CO 2 for the in situ preparation of the intermediate carbamates. Our mild and broadly applicable protocol allows for the formation of phenacyl urethanes of anilines, primary amines, including amino acids, and secondary amines in high to excellent yields. Moreover, we demonstrate the utility by a mild and convenient photocatalytic deprotection protocol using visible light. A key feature of the [Ru(bpy) 3 ](PF 6 ) 2 -catalyzed method is the use of ascorbic acid as reductive quencher in a neutral, buffered, two-phase acetonitrile/water mixture, granting fast and highly selective deprotection for all presented examples.

  13. Ascorbic acid insufficiency induces the severe defect on bone formation via the down-regulation of osteocalcin production

    PubMed Central

    Kim, Won; Bae, Seyeon; Kim, Hyemin; Kim, Yejin; Choi, Jiwon; Lim, Sun Young; Lee, Hei Jin; Lee, Jihyuk; Choi, Jiyea; Jang, Mirim; Lee, Kyoung Eun; Chung, Sun G.; Hwang, Young-il

    2013-01-01

    The L-gulono-γ-lactone oxidase gene (Gulo) encodes an essential enzyme in the synthesis of ascorbic acid from glucose. On the basis of previous findings of bone abnormalities in Gulo-/- mice under conditions of ascorbic acid insufficiency, we investigated the effect of ascorbic acid insufficiency on factors related to bone metabolism in Gulo-/- mice. Four groups of mice were raised for 4 weeks under differing conditions of ascorbic acid insufficiency, namely, wild type; ascorbic acid-sufficient Gulo-/- mice, 3-week ascorbic acid-insufficient Gulo-/- mice, and 4-week ascorbic acid-insufficient Gulo-/- mice. Four weeks of ascorbic acid insufficiency resulted in significant weight loss in Gulo-/- mice. Interestingly, average plasma osteocalcin levels were significantly decreased in Gulo-/- mice after 3 weeks of ascorbic acid insufficiency. In addition, the tibia weight in ascorbic acid-sufficient Gulo-/- mice was significantly higher than that in the other three groups. Moreover, significant decreases in trabecular bone volume near to the growth plate, as well as in trabecular bone attachment to the growth plate, were evident in 3- or 4-week ascorbic acid-insufficient Gulo-/-. In summary, ascorbic acid insufficiency in Gulo-/- mice results in severe defects in normal bone formation, which are closely related to a decrease in plasma osteocalcin levels. PMID:24386598

  14. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds.

    PubMed

    Chang, Chenchen; Huang, Rong; Yan, Yan; Ma, Hongmin; Dai, Zheng; Zhang, Benying; Deng, Zixin; Liu, Wen; Qu, Xudong

    2015-04-01

    Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.

  15. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.

    PubMed

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-05-14

    The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats

  16. Formation of disinfection byproducts in typical Chinese drinking water.

    PubMed

    Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng

    2011-01-01

    Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.

  17. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.

    PubMed

    De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José

    2015-12-15

    When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  19. Dietary docosahexaenoic acid supplementation prevents the formation of cholesterol oxidation products in arteries from orchidectomized rats

    PubMed Central

    Villalpando, Diva M.; Rojas, Mibsam M.; García, Hugo S.

    2017-01-01

    Testosterone deficiency has been correlated with increased cardiovascular diseases, which in turn has been associated with increased oxidative stress. Several studies have considered cholesterol oxidation products (COPs) as oxidative stress biomarkers, since some of them play pro-oxidant and pro-inflammatory roles. We have previously described the cardioprotective effects of a dosahexaenoic acid (DHA) supplemented diet on the aortic and mesenteric artery function of orchidectomized rats. The aim of this study was to investigate whether impaired gonadal function alters the formation of COPs, as well as the potential preventive role of a DHA-supplemented diet on that effect. For this purpose, aortic and mesenteric artery segments obtained from control and orchidectomized rats, fed with a standard or supplemented with DHA, were used. The content of the following COPs: 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol and 25-hydroxycholesterol, were analyzed by gas chromatography. The results showed that orchidectomy increased the formation of COPs in arteries from orchidectomized rats, which may participate in the orchidectomy-induced structural and functional vascular alterations already reported. The fact that the DHA-supplemented diet prevented the orchidectomy-induced COPs increase confirms the cardiovascular protective actions of DHA, which could be of special relevance in mesenteric arterial bed, since it importantly controls the systemic vascular resistance. PMID:28968462

  20. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    PubMed

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  1. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers.

    PubMed

    Trinchieri, Alberto; Lizzano, Renata; Marchesotti, Federica; Zanetti, Giampaolo

    2006-02-01

    The aim of this study was to investigate the influence of the potential renal acid load (PRAL) of the diet on the urinary risk factors for renal stone formation. The present series comprises 187 consecutive renal calcium stone patients (114 males, 73 females) who were studied in our stone clinic. Each patient was subjected to an investigation including a 24-h dietary record and 24-h urine sample taken over the same period. Nutrients and calories were calculated by means of food composition tables using a computerized procedure. Daily PRAL was calculated considering the mineral and protein composition of foods, the mean intestinal absorption rate for each nutrient and the metabolism of sulfur-containing amino acids. Sodium, potassium, calcium, magnesium, phosphate, oxalate, urate, citrate, and creatinine levels were measured in the urine. The mean daily PRAL was higher in male than in female patients (24.1+/-24.0 vs 16.1+/-20.1 mEq/day, P=0.000). A significantly (P=0.01) negative correlation (R=-0.18) was found between daily PRAL and daily urinary citrate, but no correlation between PRAL and urinary calcium, oxalate, and urate was shown. Daily urinary calcium (R=0.186, P=0.011) and uric acid (R=0.157, P=0.033) were significantly related to the dietary intake of protein. Daily urinary citrate was significantly related to the intakes of copper (R=0.178, P=0.015), riboflavin (R=0.20, P=0.006), piridoxine (R=0.169, P=0.021) and biotin (R=0.196, P=0.007). The regression analysis by stepwise selection confirmed the significant negative correlation between PRAL and urinary citrate (P=0.002) and the significant positive correlation between riboflavin and urinary citrate (P=0.000). Urinary citrate excretion of renal stone formers (RSFs) is highly dependent from dietary acid load. The computation of the renal acid load is advisable to investigate the role of diet in the pathogenesis of calcium stone disease and it is also a useful tool to evaluate the lithogenic potential of

  2. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  3. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  4. Acrylamide formation in different foods and potential strategies for reduction.

    PubMed

    Stadler, Richard H

    2005-01-01

    This paper summarizes the progress made to date on acrylamide research pertaining to analytical methods, mechanisms of formation, and mitigation research in the major food categories. Initial difficulties with the establishment of reliable analytical methods have today in most cases been overcome, but challenges still remain in terms of the needs to develop simple and rapid test methods. Several researchers have identified that the main pathway of formation of acrylamide in foods is linked to the Maillard reaction and in particular the amino acid asparagine. Decarboxylation of the resulting Schiff base is a key step, and the reaction product may either furnish acrylamide directly or via 3-aminopropionamide. An alternative proposal is that the corresponding decarboxylated Amadori compound may release acrylamide by a beta-elimination reaction. Many experimental trials have been conducted in different foods, and a number of possible measures identified to relatively lower the amounts of acrylamide in food. The validity of laboratory trials must, however, be assessed under actual food processing conditions. Some progress in relatively lowering acrylamide in certain food categories has been achieved, but can at this stage be considered marginal. However, any options that are chosen to reduce acrylamide must be technologically feasible and also not negatively impact the quality and safety of the final product.

  5. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    PubMed Central

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  6. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    PubMed

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  7. Perfluorocarboxylic acid (PFCA) atmospheric formation and transport to the Arctic.

    NASA Astrophysics Data System (ADS)

    Pike-thackray, C.; Selin, N. E.

    2015-12-01

    Perfluorocarboxylic acids (PFCAs) are highly persistent and toxic environmental contaminants that have been found in remote locations such as the Arctic, far from emission sources. These persistent organic pollutants are emitted directly to the atmosphere as well as being produced by the degradation of precursor compounds in the atmosphere, but recent trends towards increasing precursor emissions and decreasing direct emissions raise the importance of production in the atmosphere. Our work aims to improve understanding of the atmospheric degradation of fluorotelomer precursor compounds to form the long-chain PFCAs PFOA (C8) and PFNA (C9).Using the atmospheric chemical transport model GEOS-Chem, which uses assimilated meteorology to simulate the atmospheric transport of trace gas species, we investigate the interaction of the atmospheric formation of PFCAs and the atmospheric transport of their precursor species. Our simulations are a first application of the GEOS-Chem framework to PFCA chemistry. We highlight the importance of the spatial and temporal variability of background atmospheric chemical conditions experienced during transport. We find that yields and formation times of PFOA and PFNA respond differently and strongly to the photochemical conditions of the atmosphere, such as the abundance of NO, HO2, and other photochemical species.

  8. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  9. Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid.

    PubMed

    Pinske, Constanze; Sargent, Frank

    2016-10-01

    During mixed-acid fermentation Escherichia coli produces formate, which is initially excreted out the cell. Accumulation of formate, and dropping extracellular pH, leads to biosynthesis of the formate hydrogenlyase (FHL) complex. FHL consists of membrane and soluble domains anchored within the inner membrane. The soluble domain comprises a [NiFe] hydrogenase and a formate dehydrogenase that link formate oxidation directly to proton reduction with the release of CO 2 and H 2 . Thus, the function of FHL is to oxidize excess formate at low pH. FHL subunits share identity with subunits of the respiratory Complex I. In particular, the FHL membrane domain contains subunits (HycC and HycD) that are homologs of NuoL/M/N and NuoH, respectively, which have been implicated in proton translocation. In this work, strain engineering and new assays demonstrate unequivocally the nonphysiological reverse activity of FHL in vivo and in vitro. Harnessing FHL to reduce CO 2 to formate is biotechnologically important. Moreover, assays for both possible FHL reactions provide opportunities to explore the bioenergetics using biochemical and genetic approaches. Comprehensive mutagenesis of hycC did not identify any single amino acid residues essential for FHL operation. However, the HycD E199, E201, and E203 residues were found to be critically important for FHL function. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    PubMed

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-06-19

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.

  11. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    PubMed Central

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  12. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    PubMed

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  14. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE PAGES

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.; ...

    2017-11-21

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  15. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  16. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    PubMed

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  17. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.

    PubMed

    Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma

    2013-10-15

    Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.

  18. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  19. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    PubMed

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  20. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans.

    PubMed

    Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui

    2017-08-18

    Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Selective Formation of Ser-His Dipeptide via Phosphorus Activation

    NASA Astrophysics Data System (ADS)

    Shu, Wanyun; Yu, Yongfei; Chen, Su; Yan, Xia; Liu, Yan; Zhao, Yufen

    2018-04-01

    The Ser-His dipeptide is the shortest active peptide. This dipeptide not only hydrolyzes proteins and DNA but also catalyzes the formation of peptides and phosphodiester bonds. As a potential candidate for the prototype of modern hydrolase, Ser-His has attracted increasing attention. To explore if Ser-His could be obtained efficiently in the prebiotic condition, we investigated the reactions of N-DIPP-Ser with His or other amino acids in an aqueous system. We observed that N-DIPP-Ser incubated with His can form Ser-His more efficiently than with other amino acids. A synergistic effect involving the two side chains of Ser and His is presumed to be the critical factor for the selectivity of this specific peptide formation.

  2. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkylmore » esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.« less

  3. A novel high-throughput screening format to identify inhibitors of secreted acid sphingomyelinase.

    PubMed

    Mintzer, Robert J; Appell, Kenneth C; Cole, Andrew; Johns, Anthony; Pagila, Rene; Polokoff, Mark A; Tabas, Ira; Snider, R Michael; Meurer-Ogden, Janet A

    2005-04-01

    Secreted extracellular acid sphingomyelinase (sASM) activity has been suggested to promote atherosclerosis by enhancing subendothelial aggregation and retention of low-density lipoprotein (LDL) with resultant foam cell formation. Compounds that inhibit sASM activity, at neutral pH, may prevent lipid retention and thus would be expected to be anti-atherosclerotic. With the goal of identifying novel compounds that inhibit sASM at pH 7.4, a high-throughput screen was performed. Initial screening was run using a modification of a proven system that measures the hydrolysis of radiolabeled sphingomyelin presented in detergent micelles in a 96-well format. Separation of the radiolabeled aqueous phosphorylcholine reaction product from uncleaved sphingomyelin lipid substrate was achieved by chloroform/methanol extraction. During the screening campaign, a novel extraction procedure was developed to eliminate the use of the hazardous organic reagents. This new procedure exploited the ability of uncleaved, radiolabeled lipid substrate to interact with hydrophobic phenyl-sepharose beads. A comparison of the organic-based and the bead-based extraction sASM screening assays revealed Z' factor values ranging from 0.7 to 0.95 for both formats. In addition, both assay formats led to the identification of sub- to low micromolar inhibitors of sASM at pH 7.4 with similar IC(50) values. Subsequent studies demonstrated that both methods were also adaptable to run in a 384-well format. In contrast to the results observed at neutral pH, however, only the organic extraction assay was capable of accurately measuring sASM activity at its pH optimum of 5.0. The advantages and disadvantages of both sASM assay formats are discussed.

  4. Ammonia formation by the reduction of nitrite/nitrate by FeS: ammonia formation under acidic conditions.

    PubMed

    Summers, David P

    2005-08-01

    One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species).

  5. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  6. SOA formation potential of emissions from soil and leaf litter.

    PubMed

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.

  7. SOA formation potential of emissions from soil and leaf litter

    DOE PAGES

    Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...

    2013-12-13

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less

  8. Detection in vivo of a Novel Endogenous Etheno DNA Adduct Derived from Arachidonic Acid and the Effects of Antioxidants on Its Formation

    PubMed Central

    Cruz, Idalia M.; Pondicherry, Sharanya R.; Fernandez, Aileen; Schultz, Casey L.; Yang, Peiying; Pan, Jishen; Desai, Dhimant; Krzeminski, Jacek; Amin, Shantu; Christov, Plamen P.; Hara, Yukihiko; Chung, Fung-Lung

    2014-01-01

    Previous studies showed that the 7-(1′,2′-dihydroxyheptyl) substituted etheno DNA adducts are products from reactions with epoxide of (E)-4-hydroxy-2-nonenal (HNE), an oxidation product of ω-6 polyunsaturated fatty acids (PUFAs). In this work, we report the detection of 7-(1′,2′-dihydroxyheptyl)-1,N6-ethenodeoxyadenosine (DHHedA) in rodent and human tissues by two independent methods: a 32P-postlabeling/HPLC method and an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method (ID-LC-ESI-MS/MS), demonstrating for the first time that DHHedA is a background DNA lesion in vivo. We showed that DHHedA can be formed upon incubation of arachidonic acid (AA) with deoxyadenosine (dA), supporting the notion that ω-6 PUFAs are the endogenous source of DHHedA formation. Because cyclic adducts are derived from the oxidation of PUFAs, we subsequently examined the effects of antioxidants, α-lipoic acid, Polyphenon E and vitamin E, on the formation of DHHedA and γ-hydroxy-1,N2-propanodeoxyguanosine (γ-OHPdG), a widely studied acrolein-derived adduct arising from oxidized PUFAs, in the livers of Long Evans Cinnamon (LEC) rats. LEC rats are inflicted with elevated lipid peroxidation and prone to the development of hepatocellular carcinomas. The results showed that while the survival of LEC rats increased significantly by α-lipoic acid, none of the antioxidants inhibited the formation of DHHedA and only Polyphenon E decreased the formation of γ-OHPdG. In contrast, vitamin E caused a significant increase in the formation of both γ-OHPdG and DHHedA in the livers of LEC rats. PMID:24816294

  9. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  10. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  11. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  12. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant.

    PubMed

    Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar

    2017-08-01

    Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p  < 0.05), where a significant decrease in the aldehydes fraction was found.

  13. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajkumari, Jobina; Borkotoky, Subhomoi; Murali, Ayaluru; Suchiang, Kitlangki; Mohanty, Saswat Kumar; Busi, Siddhardha

    2018-04-21

    Anti-quorum sensing and anti-biofilm efficacy of Cinnamic acid against Pseudomonas aeruginosa was comparatively assessed with respect to potent quorum sensing inhibitor, Baicalein. At sub-lethal concentration, Cinnamic acid effectively inhibited both the production of the QS-dependent virulence factors and biofilm formation in P. aeruginosa without affecting the viability of the bacterium. The phytocompound interfered with the initial attachment of planktonic cells to the substratum thereby causing reduction in biofilm development. In addition, the in vivo study indicated that the test compound protected Caenorhabditis elegans from the virulence factors of P. aeruginosa leading to reduced mortality. The in silico analysis revealed that Cinnamic acid can act as a competitive inhibitor for the natural ligands towards the ligand binding domain of the transcriptional activators of the quorum sensing circuit in P. aeruginosa, LasR and RhlR. The findings suggest that Cinnamic acid may serve as a novel quorum sensing based anti-infective in controlling P. aeruginosa infections.

  14. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  15. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    NASA Astrophysics Data System (ADS)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  17. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo.

    PubMed

    Chemerovski-Glikman, Marina; Mimouni, Michael; Dagan, Yarden; Haj, Esraa; Vainer, Igor; Allon, Raviv; Blumenthal, Eytan Z; Adler-Abramovich, Lihi; Segal, Daniel; Gazit, Ehud; Zayit-Soudry, Shiri

    2018-06-19

    Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.

  18. In vitro assessment of phthalate acid esters-trypsin complex formation.

    PubMed

    Chi, Zhenxing; Zhao, Jing; Li, Weiguo; Araghi, Arash; Tan, Songwen

    2017-10-01

    In this work, interactions of three phthalate acid esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), with trypsin have been studied in vitro, under simulated physiological conditions using multi-spectroscopic techniques and molecular modeling. The results show that these PAEs can bind to the trypsin, forming trypsin-PAEs complexes, mainly via hydrophobic interactions, with the affinity order of DMP > DEP > DBP. Binding to the PAEs is found to result in molecular deformation of trypsin. The modeling results suggest that only DBP can bind with the amino acid residues of the catalytic triad and S1 binding pocket of trypsin, leading to potential competitive enzyme inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    PubMed

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  20. Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation

    PubMed Central

    Maciejewska, Marta; Adam, Delphine; Naômé, Aymeric; Martinet, Loïc; Tenconi, Elodie; Całusińska, Magdalena; Delfosse, Philippe; Hanikenne, Marc; Baurain, Denis; Compère, Philippe; Carnol, Monique; Barton, Hazel A.; Rigali, Sébastien

    2017-01-01

    Moonmilk is a karstic speleothem mainly composed of fine calcium carbonate crystals (CaCO3) with different textures ranging from pasty to hard, in which the contribution of biotic rock-building processes is presumed to involve indigenous microorganisms. The real microbial input in the genesis of moonmilk is difficult to assess leading to controversial hypotheses explaining the origins and the mechanisms (biotic vs. abiotic) involved. In this work, we undertook a comprehensive approach in order to assess the potential role of filamentous bacteria, particularly a collection of moonmilk-originating Streptomyces, in the genesis of this speleothem. Scanning electron microscopy (SEM) confirmed that indigenous filamentous bacteria could indeed participate in moonmilk development by serving as nucleation sites for CaCO3 deposition. The metabolic activities involved in CaCO3 transformation were furthermore assessed in vitro among the collection of moonmilk Streptomyces, which revealed that peptides/amino acids ammonification, and to a lesser extend ureolysis, could be privileged metabolic pathways participating in carbonate precipitation by increasing the pH of the bacterial environment. Additionally, in silico search for the genes involved in biomineralization processes including ureolysis, dissimilatory nitrate reduction to ammonia, active calcium ion transport, and reversible hydration of CO2 allowed to identify genetic predispositions for carbonate precipitation in Streptomyces. Finally, their biomineralization abilities were confirmed by environmental SEM, which allowed to visualize the formation of abundant mineral deposits under laboratory conditions. Overall, our study provides novel evidences that filamentous Actinobacteria could be key protagonists in the genesis of moonmilk through a wide spectrum of biomineralization processes. PMID:28706508

  1. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    USDA-ARS?s Scientific Manuscript database

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  2. Hydration of the sulfuric acid-methylamine complex and implications for aerosol formation.

    PubMed

    Bustos, Danielle J; Temelso, Berhane; Shields, George C

    2014-09-04

    The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

  3. Effects of debrisoquin and haloperidol on plasma homovanillic acid concentration in schizophrenic patients.

    PubMed

    Davidson, M; Losonczy, M F; Mohs, R C; Lesser, J C; Powchik, P; Freed, L B; Davis, B M; Mykytyn, V V; Davis, K L

    1987-12-01

    Plasma levels of the dopamine metabolite homovanillic acid (pHVA) may potentially reflect upon central dopamine activity. This study examines the effects of debrisoquin, haloperidol, and the two drugs combined on pHVA concentrations of schizophrenic patients. Debrisoquin is a drug that suppresses the peripheral formation of homovanillic acid without affecting the central formation. Acute haloperidol administration consistently increased pHVA concentrations in patients pretreated or not pretreated with debrisoquin, suggesting that this increment reflects haloperidol's central and not peripheral effects.

  4. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin

    2015-07-01

    Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p < 0.001) rather than SO42-. This phenomenon differs greatly from the SOA in any other nondust period that is usually characterized by an enrichment of oxalic acid in fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of

  5. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    PubMed

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  6. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  7. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.

    PubMed

    Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A

    2017-11-01

    Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure

  8. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Tan, Jiawei; Wang, Jiexin

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  9. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The dynamics of complex formation between amylose brushes on gold and fatty acids by QCM-D.

    PubMed

    Cao, Zheng; Tsoufis, Theodoros; Svaldo-Lanero, Tiziana; Duwez, Anne-Sophie; Rudolf, Petra; Loos, Katja

    2013-10-14

    Amylose brushes were synthesized by enzymatic polymerization with glucose-1-phosphate as monomer and rabbit muscle phosphorylase b as catalyst on gold-covered surfaces of a quartz crystal microbalance. Fourier transform infrared (FT-IR) spectra confirmed the presence of the characteristic absorption peaks of amylose between 3100 cm(-1) and 3500 cm(-1). The thickness of the amylose brushes-measured by Spectroscopic Ellipsometry--can be tailored from 4 to 20 nm, depending on the reaction time. The contour length of the stretched amylose chains on gold surfaces has been evaluated by single molecule force spectroscopy, and a total chain length of about 20 nm for 16.2 nm thick amylose brushes was estimated. X-ray photoelectron spectroscopy (XPS) was employed to characterize the amylose brushes before and after the adsorption of fatty acids. The dynamics of inclusion complex formation between amylose brushes and two fatty acids (octanoic acid and myristic acid) with different chain length was investigated as a function of time using a quartz crystal microbalance with dissipation monitoring (QCM-D) immersed in the liquid phase. QCM-D signals including the frequency and dissipation shifts elucidated the effects of the fatty acid concentration, the solvent types, the chain length of the fatty acids and the thickness of the amylose brushes on the dynamics of fatty acid molecule adsorption on the amylose brush-modified sensor surfaces.

  11. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    PubMed

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  13. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production.

    PubMed

    Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I

    2015-10-01

    The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    PubMed Central

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  15. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    PubMed

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  16. Formation of trans fatty acids during the frying of chicken fillet in corn oil.

    PubMed

    Yang, Meiyan; Yang, Ying; Nie, Shaoping; Xie, Mingyong; Chen, Feng; Luo, Pengju George

    2014-05-01

    To assess effects of heated edible oils on intake of trans fatty acids (TFAs); the formation of TFAs in cooking conditions was investigated by a frying system model, in which chicken fillet was fried in a commercial corn oil at 170 °C, for 12 frying cycles. The main TFAs detected in chicken fillet were trans C18:2 fatty acids (FAs) and trans C18:3 FAs, which exhibited no significant differences among the frying cycles. Besides, the content of trans C18:1 FAs were very low in all samples on different frying cycles. The intake of TFAs was estimated to be 0.06 g/100 g when chicken fillet fried in this process was consumed. These results suggest that an ordinary frying process upon a commercial corn oil has little impact on the daily TFAs intake.

  17. Temperature controlled formation of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  18. Wet weather impact on trihalomethane formation potential in tributaries to drinking water reservoirs.

    PubMed

    Alkhatib, E; Peters, R

    2008-04-01

    During rain storm events, land surface runoff and resuspension of bottom sediments cause an increase in Trihalomethane (THM) precursors in rivers. These precursors, when chlorinated at water treatment facilities will lead to the formation of THMs and hence impact drinking water resources. In order to evaluate the wet weather impact on the potential formation of THMs, river samples were collected before, during and after three rain storms ranging from 15.2 to 24.9 mm precipitation. The samples were tested for THM formation potential and other indicators including UV254 absorbance, turbidity and volatile suspended solid (VSS). Average levels of THMs increased from 61 microg/l during dry weather to 131 microg/l during wet weather, and then went back to 81 microg/l after rain ended. Wet weather values of THM are well above the maximum contaminant level (MCL) 80 microg/l, set by EPA for drinking water. THM indicators also exhibited similar trends. Average levels increased from 0.6 to 1.8 abs; 2.6 to 6 ntu; and 7.5 to 15 mg/l respectively for UV254, turbidity and VSS. A positive correlation was observed between THM formation and THM indicators. The t-test of significance (p-value) was less than 0.05 for all indicators, and R values ranged from 0.85 to 0.92 between THMs and the indicators, and 0.72 to 0.9 among indicators themselves.

  19. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  20. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation.

    PubMed

    Chmielowski, Rebecca A; Abdelhamid, Dalia S; Faig, Jonathan J; Petersen, Latrisha K; Gardner, Carol R; Uhrich, Kathryn E; Joseph, Laurie B; Moghe, Prabhas V

    2017-07-15

    limiting localized concentrations of pro-oxidants. In this study, we illustrate the potential of degradable ferulic acid-based polymer nanoparticles to control macrophage foam cell formation by significantly reducing oxLDL uptake through downregulation of scavenger receptors, CD-36, MSR-1, and LOX-1. Another critical finding is the ability of the degradable ferulate-based polymer nanoparticles to lower macrophage reactive oxygen species (ROS) levels, a precursor to apoptosis and plaque escalation. The degradable ferulic acid-based polymer nanoparticles hold significant promise as a means to alter the treatment and progression of atherosclerosis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  2. Long Chain Saturated and Unsaturated Carboxylic Acids: Filling a Large Gap of Knowledge in Their Enthalpies of Formation.

    PubMed

    Rogers, Donald W; Zavitsas, Andreas A

    2017-01-06

    Despite their abundance in nature and their importance in biology, medicine, nutrition, and in industry, gas phase enthalpies of formation of many long chain saturated and unsaturated fatty acids and of dicarboxylic acids are either unavailable or have been estimated with large uncertainties. Available experimental values for stearic acid show a spread of 68 kJ mol -1 . This work fills the knowledge gap by obtaining reliable values by quantum theoretical calculations using G4 model chemistry. Compounds with up to 20 carbon atoms are treated. The theoretical results are in excellent agreement with well established experimental values when such values exist, and they provide a large number of previously unavailable values.

  3. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression.

    PubMed

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D; Muñoz-Caro, Tamara; Silva, Liliana M R; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(-) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(-) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(-) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(-) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H 4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(-) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(-) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(-) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(-) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  4. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation.

    PubMed

    Chen, Shi; Deng, Jing; Li, Lei; Gao, Naiyun

    2018-02-01

    This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm 2 ) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.

  5. Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach.

    PubMed

    Cardoso, Guinea Bc; Chacon, Erivelto; Chacon, Priscila Gl; Bordeaux-Rego, Pedro; Duarte, Adriana Ss; Saad, Sara T Olalla; Zavaglia, Cecilia Ac; Cunha, Marcelo R

    2017-12-01

    Our hypothesis was to investigate the fatty acid potential as a bone induction factor. In vitro and in vivo studies were performed to evaluate this approach. Oleic acid was used in a 0.5 wt.% concentration. Polycaprolactone was used as the polymeric matrix by combining solvent-casting and particulate-leaching techniques, with a final porosity of 70 wt.%, investigated by SEM images. Contact angle measurements were produced to investigate the influence of oleic acid on polycaprolactone chains. Cell culture was performed using adipocyte-derived stem cells to evaluate biocompatibility and bioactivity properties. In addition, in vivo studies were performed to evaluate the induction potential of oleic acid addition. Adipocyte-derived stem cells were used to provide differentiation after 21 days of culture. Likewise, information were obtained with in vivo data and cellular invagination was observed on both scaffolds (polycaprolactone and polycaprolactone /oleic acid); interestingly, the scaffold with oleic acid addition demonstrated that cellular migrations are not related to the surrounding tissue, indicating bioactive potential. Our hypothesis is that fatty acid may be used as a potential induction factor for bone tissue engineering. The study's findings indicate oleic acid as a possible agent for bone induction, according to data on cell differentiation, proliferation, and migration. Impact statement The biomaterial combined in this study on bone regeneration is innovative and shows promising results in the treatment of bone lesions. Polycaprolactone (PCL) and oleic acid have been studied separately. In this research, we combined biomaterials to assess the stimulus and the speed of bone healing.

  6. Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation

    NASA Astrophysics Data System (ADS)

    Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.

    2018-04-01

    This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.

  7. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  8. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  9. A combination of ellagic acid and tetracycline inhibits biofilm formation and the associated virulence of Propionibacterium acnes in vitro and in vivo.

    PubMed

    Sivasankar, Chandran; Maruthupandiyan, Shanmugam; Balamurugan, Krishnaswamy; James, Prabhanand Bhaskar; Krishnan, Venkat; Pandian, Shunmugiah Karutha

    2016-01-01

    Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml(-1) + 0.312 μg ml(-1)) was determined to effectively inhibit biofilm formation by P. acnes (80-91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20-26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.

  10. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Linking optical properties of dissolved organic matter with NDMA formation potential in the Huangpu River].

    PubMed

    Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui

    2014-03-01

    Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P < 0.01), but it had negative relationships with SUVA254 and HIX (r = -0.605, P < 0.01; r = -0.396, P < 0.01). NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P < 0.01; r = 0.426, P < 0.01), but had a negative relationship with humic-like substance (r = -0.422, P < 0.01). Therefore, NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.

  12. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  13. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    DOE PAGES

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10 –5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g –1) had a positive rise potential of 59 ± 4 mVmore » in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g –1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less

  15. Reduction of Pertechnetate By Acetohydroxamic Acid: Formation of [tc**II(NO)(AHA)(2)(H(2)O)]**+ And Implications for the UREX Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, C.-M.S.; Lukens, W.W.; Poineau, F.

    2009-05-18

    Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented bymore » some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}, 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.« less

  16. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less

  17. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    PubMed

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  18. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  19. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  20. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  1. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies.

    PubMed

    Majzner, Katarzyna; Chlopicki, Stefan; Baranska, Malgorzata

    2016-04-01

    In this work the formation of lipid droplets (LDs) in human endothelial cells culture in response to the uptake of polyunsaturated fatty acids (PUFAs) was studied. Additionally, an effect of 1-methylnicotinamide (MNA) on the process of LDs formation was investigated. LDs have been previously described structurally and to some degree biochemically, however neither the precise function of LDs nor the factors responsible for LD induction have been clarified. Lipid droplets, sometimes referred in the literature as lipid bodies are organelles known to regulate neutrophil, eosinophil, or tumor cell functions but their presence and function in the endothelium is largely unexplored. 3D linear Raman spectroscopy was used to study LDs formation in vitro in a single endothelial cell. The method provides information about distribution and size of LDs as well as their composition. The incubation of endothelial cells with various PUFAs resulted in formation of LDs. As a complementary method for LDs identification a fluorescence microscopy was applied. Fluorescence measurements confirmed the Raman results suggesting endothelial cells uptake of PUFAs and subsequent LDs formation in the cytoplasm of the endothelium. Furthermore, MNA seem to potentiate intracellular uptake of PUFAs to the endothelium that may bear physiological and pharmacological significance. Confocal Raman imaging of HAoEC cell with LDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  3. Potential use of cuminic acid as a botanical fungicide against Valsa mali.

    PubMed

    Wang, Yong; Sun, Yang; Han, LiRong; Zhang, Xing; Feng, Juntao

    2017-05-01

    Valsa canker caused by Valsa mali is commonly present in eastern Asia and cause large economic losses. Because of limited agricultural measures and chemical residues of commonly used fungicides there is an urgent need of alternative plant protecting agents. On this background the activity of cuminic acid, a plant extract from the seed of Cuminum cyminum L, was assessed. The median effective concentration (EC 50 ) values for inhibition of mycelial growth of seven V. mali strains ranged from 3.046 to 8.342 μg/mL, with an average EC 50 value of 4.956 ± 0.281 μg/mL. The antifungal activity was the direct activity of cuminic acid instead of the influence on the pH of media by cuminic acid. After treated with cuminic acid, mycelia dissolved with decreased branches and swelling; cell membrane permeability increased while pectinases activity decreased significantly. Moreover, peroxidase (POD) activity of the apple leaves increased after treated with cuminic acid. Importantly, on detached branches of apple tree, cuminic acid exhibited both protective and curative activity. These results indicated that cuminic acid not only showed the antifungal activity, but also could improve the defense capacity of the plants. Taken together, cuminic acid showed the potential as a natural alternative to commercial fungicides or a lead compound to develop new fungicides for the control of Valsa canker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    PubMed Central

    LING, GENG-QIANG; LIU, YI-JING; KE, YI-QUAN; CHEN, LEI; JIANG, XIAO-DAN; JIANG, CHUAN-LU; YE, WEI

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SLCs. The expression of cancer SLC markers CD133 and nestin was detected using immunocytochemistry in order to identify U87 SLCs. In addition, the differentiation of these SLCs was observed through detecting the expression of glial fibrillary acidic protein (GFAP), β-tubulin III and galactosylceramidase (Galc) using immunofluorescent staining. The results showed that the expression levels of GFAP, β-tubulin III and Galc were upregulated following treatment with ATRA in a dose-dependent manner. Furthermore, ATRA significantly reduced the proliferation, invasiveness, tube formation and vascular endothelial growth factor (VEGF) secretion of U87 SLCs. In conclusion, the VM formation ability of SLCs was found to be negatively correlated with differentiation. These results therefore suggested that ATRA may serve as a promising novel agent for the treatment of GBM due to its role in reducing VM formation. PMID:25760394

  5. Does lactobionic acid affect the colloidal structure and skin moisturizing potential of the alkyl polyglucoside-based emulsion systems?

    PubMed

    Tasic-Kostov, M Z; Reichl, S; Lukic, M Z; Jaksic, I N; Savic, S D

    2011-11-01

    Moisturizing creams are the most prescribed products in dermatology, essential in maintaining healthy skin as well as in the topical treatment of some diseases. The irritation potential of commonly used emulsifiers and moisturizing ingredients, but also their mutual interactions, could affect the functionality and safety of those dermopharmaceutics. The aim of this study was to promote moisturizing alkyl polyglucoside (APG)-based emulsion as vehicle for lactobionic acid (LA), advantageous representative of the alphahydroxyacids (AHAs)-multifunctional moisturizers, assessing the safety for use (in vitro acute skin irritation test using cytotoxicity assay compared with in vivo data obtained using skin bioengineering methods) and in vivo moisturizing capacity (bioengineering of the skin). In order to investigate possible interactions between APG mild natural emulsifier-based emulsion and LA, a deeper insight into the colloidal structure of the placebo and the emulsion with LA was given using polarization and transmission electron microscopy, rheology, thermal and texture analysis. This study showed that APG-based emulsions could be promoted as safe cosmetic/dermopharmaceutical vehicles and carriers for extremely acidic and hygroscopic AHA class of actives (specifically LA); prospective safety for human use of both APG and LA with the correlation between in vivo and in vitro findings was shown. However, it was revealed that LA strongly influenced the colloidal structure of the emulsion based on APGs and promoted the formation of lamellar structures which reflects onto the mode of water distribution within the cream. The advantageous skin hydrating potential of LA-containing emulsion vs. placebo was unlikely to be achieved, pointing that emulsions stabilized by lamellar liquid crystalline structures probably are not satisfying carriers for highly hygroscopic actives in order to reach the full moisturizing potential. Safe and effective use on dry skin is presumed.

  6. A new occurrence of ambient inclusion trails from the ~1900-million-year-old Gunflint Formation, Ontario: nanocharacterization and testing of potential formation mechanisms.

    PubMed

    Wacey, D; Saunders, M; Kong, C; Kilburn, M R

    2016-09-01

    Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine-grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878-Ma Gunflint Formation, at Current River, Ontario. The AITs are 1-15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite- and chlorite-rich laminae and chert-filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data ((34) S/(32) S) obtained in situ from AIT pyrite have a δ(34) S of -8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ(34) S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate-reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2 S were partially trapped within the microbial mat, helping produce birds-eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low-grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2 , and potentially CH4 , as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that

  7. Wnt signaling in bone formation and its therapeutic potential for bone diseases

    PubMed Central

    Kim, Jeong Hwan; Liu, Xing; Wang, Jinhua; Chen, Xiang; Zhang, Hongyu; Kim, Stephanie H.; Cui, Jing; Li, Ruidong; Zhang, Wenwen; Kong, Yuhan; Zhang, Jiye; Shui, Wei; Lamplot, Joseph; Rogers, Mary Rose; Zhao, Chen; Wang, Ning; Rajan, Prashant; Tomal, Justin; Statz, Joseph; Wu, Ningning; Luu, Hue H.; Haydon, Rex C.

    2013-01-01

    The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential. PMID:23514963

  8. Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis.

    PubMed

    Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan

    2017-03-01

    Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.

  9. Anaerobic Formate and Hydrogen Metabolism.

    PubMed

    Sawers, R Gary; Blokesch, Melanie; Böck, August

    2004-12-01

    During fermentative growth, Escherichia coli degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of -420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO2 and molecular hydrogen (Em,7 -420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H2 oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase. E. coli has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.

  10. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  11. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  12. Behavioral and Physiological Changes during Benthic-Pelagic Transition in the Harmful Alga, Heterosigma akashiwo: Potential for Rapid Bloom Formation

    PubMed Central

    Tobin, Elizabeth D.; Grünbaum, Daniel; Patterson, Johnathan; Cattolico, Rose Ann

    2013-01-01

    Many species of harmful algae transition between a motile, vegetative stage in the water column and a non-motile, resting stage in the sediments. Physiological and behavioral traits expressed during benthic-pelagic transition potentially regulate the timing, location and persistence of blooms. The roles of key physiological and behavioral traits involved in resting cell emergence and bloom formation were examined in two geographically distinct strains of the harmful alga, Heterosigma akashiwo. Physiological measures of cell viability, division and population growth, and cell fatty acid content were made using flow cytometry and gas chromatography – mass spectrometry techniques as cells transitioned between the benthic resting stage and the vegetative pelagic stage. Video-based tracking was used to quantify cell-level swimming behaviors. Data show increased temperature and light triggered rapid emergence from the resting stage and initiated cell swimming. Algal strains varied in important physiological and behavioral traits, including survivorship during life-stage transitions, population growth rates and swimming velocities. Collectively, these traits function as “population growth strategies” that can influence bloom formation. Many resting cells regained the up-swimming capacity necessary to cross an environmentally relevant halocline and the ability to aggregate in near-surface waters within hours after vegetative growth supporting conditions were restored. Using a heuristic model, we illustrate how strain-specific population growth strategies can govern the timescales over which H. akashiwo blooms form. Our findings highlight the need for identification and quantification of strain-specific physiological and behavioral traits to improve mechanistic understanding of bloom formation and successful bloom prediction. PMID:24124586

  13. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  14. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates

    PubMed Central

    Barrett, Tessa J.; Pattison, David I.; Leonard, Stephen E.; Carroll, Kate S.; Davies, Michael J.; Hawkins, Clare L.

    2012-01-01

    Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes. PMID:22248862

  15. Potential in vivo roles of nucleic acid triple-helices

    PubMed Central

    Buske, Fabian A

    2011-01-01

    The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation. PMID:21525785

  16. Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part I. Its formation, uptake and geographical distribution

    NASA Astrophysics Data System (ADS)

    Weissflog, Ludwig; Pfennigsdorff, Andrea; Martinez-Pastur, Guillermo; Puliafito, Enrique; Figueroa, Dante; Elansky, Nikolai; Nikonov, Vyasheslav; Putz, Erich; Krüger, Gert; Kellner, Klaus

    Trichloroacetic acid (TCA; CCl 3COOH) is a phytotoxic chemical. Although TCA salts and derivatives were once deployed as herbicides against perennial grasses and weeds, their use has since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, high-volatile C 2-chlorohydrocarbons tetrachloroethene (TECE, C 2Cl 4) and 1,1,1-trichloroethane (TCE, CCl 3CH 3) can react to TCA and other substances under oxidative conditions here. Owing to further industrialisation of Southeast Asia, South Africa and South America, a rise can be expected in the use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere (SH). The increasing emissions of this substance—together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the SH—will result in the increased input/formation of TCA in the vegetation located on the lee side of these emission sources. By means of biomonitoring studies, inputs/formation of TCA related to the climatic conditions were detected at various locations in South America, Africa, and Europe.

  17. Using terahertz time-domain spectroscopical technique to monitor cocrystal formation between piracetam and 2,5-dihydroxybenzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xia, Yi; Zhang, Huili; Hong, Zhi

    2013-07-01

    Far-infrared vibrational absorption of cocrystal formation between 2,5-dihydroxybenzoic acid (2,5-DHBA) and piracetam compounds under solvent evaporation and grinding methods have been investigated using terahertz time-domain spectroscopy (THz-TDS) at room temperature. The experimental results show large difference among absorption spectra of the formed cocrystals and the involved individual parent molecules in 0.20-1.50 THz region, which probably originated from the intra-molecular and inter-molecular hydrogen bonds due to the presence of two hydroxyl groups in 2,5-DHBA and amide moieties in piracetam compound. The THz absorption spectra of two formed cocrystals with different methods are almost identical. With grinding method, the reaction process can be monitored directly from both time-domain and frequency-domain spectra using THz-TDS technique. The results indicate that THz-TDS technology can absolutely offer us a high potential method to identify and characterize the formed cocrystals, and also provide the rich information about their reaction dynamic process involving two or more molecular crystals in situ to better know the corresponding reaction mechanism in pharmaceutical fields.

  18. Co-injection of SO2 With CO2 in Geological Sequestration: Potential for Acidification of Formation Brines

    NASA Astrophysics Data System (ADS)

    Ellis, B. R.; Crandell, L. E.; Peters, C. A.

    2008-12-01

    Coal-fired power plants produce flue gas streams containing 0.02-1.4% SO2 after traditional sulfur scrubbing techniques are employed. Due to the corrosive nature of H2SO4, it will likely be necessary to remove the residual SO2 prior to carbon capture and transport; however, it may still be economically advantageous to reintroduce the SO2 to the injection stream to mitigate the cost of SO2 disposal and/or to get credits for SO2 emissions reduction. This study examines the impact of SO2 co-injection on the pH of formation brine. Using phase equilibrium modeling, it is shown that a CO2 gas stream with 1% SO2 under oxidizing conditions can create extremely acidic conditions (pH<1), but this will occur only near the CO2 plume and over a short time frame. Nearly all of the SO2 will be lost to the brine during this first phase equilibration, within approximately a decade, and the pH after the second is only 3.7, which is the pH that would occur from the carbonic acid alone. This suggests that although SO2 will create low pH values due to the formation of H2SO4, the effect will have a very limited lifespan and a localized impact spatially. SO2 is much more soluble than CO2 and as the relative of amount of SO2 to CO2 is very small, the SO2 will quickly dissolve into the formation brine. The extent of H2SO4 formation is dependent on the redox conditions of the system. Several SO2 oxidation pathways are investigated, including SO2 disproportionation which produces both sulfate and the weaker acid, H2S. Further modeling considers a time varying, diffusion limited flux of SO2. Relative to the case of instantaneous phase equilibrium, this results in a smaller decrease in pH occurring over a longer duration. Our overall conclusion is that brine acidification due to SO2 co-injection is not likely to be significant over relevant time and spatial scales.

  19. Ursodeoxycholic Acid in the Prevention of Gallstone Formation After Bariatric Surgery: an Updated Systematic Review and Meta-analysis.

    PubMed

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Svokos, Alexis A; Svokos, Konstantina A; Chatedaki, Christina; Sioka, Eleni; Zacharoulis, Dimitris

    2017-11-01

    We aim to review the available literature on obese patients treated with ursodeoxycholic acid (UDCA) in order to prevent gallstone formation after bariatric surgery. A systematic literature search was performed in PubMed, Cochrane library, and Scopus databases, in accordance with the PRISMA guidelines. Eight studies met the inclusion criteria incorporating 1355 patients. Random-effects meta-analysis showed a lower incidence of gallstone formation in patients taking UDCA. Subgroup analysis reported fewer cases of gallstone disease in the UDCA group in relation to different bariatric procedures, doses of administered UDCA, and time from bariatric surgery. Adverse events were similar in both groups. Fewer patients required cholecystectomy in UDCA group. No deaths were reported. The administration of UDCA after bariatric surgery seems to prevent gallstone formation.

  20. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Mogensen, D.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z. J.; Wiedensohler, A.; Boy, M.

    2013-11-01

    Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.

  1. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yamanaka, Atsushi; Manabe, Kunio; Murao, Nami; Kawano-Kawada, Miyuki; Sekito, Takayuki; Kakinuma, Yoshimi

    2015-01-01

    Active transport systems for various amino acids operate in the vacuolar membrane of Saccharomyces cerevisiae. The gene families for vacuolar amino acid transporters were identified by reverse genetics experiments. In the AVT transporter family, Avt1p works for active uptake of amino acid into vacuole, and Avt3p, Avt4p, and Avt6p for active extrusion of amino acid from vacuole to cytosol. Here, we found green fluorescent protein-tagged Avt7p, an unidentified member of the AVT family, localized to the vacuolar membrane of S. cerevisiae. Disruption of the AVT7 gene enhanced both vacuolar contents of several amino acids and uptake activities of glutamine and proline by vacuolar membrane vesicles. Efficiency of spore formation was impaired by the disruption of the AVT7 gene, suggesting the physiological importance of Avt7p-dependent efflux of amino acid from vacuoles under nutrient-poor condition.

  2. Mechanism of Indole-3-acetic Acid Conjugation

    PubMed Central

    Goren, Raphael; Bukovac, Martin J.; Flore, James A.

    1974-01-01

    Formation of indole-3-acetic acid-aspartate in detached primary leaves of cowpea (Vigna sinensis Endl.) floating on 14C-indole-3-acetic acid (3 μc; 3.15 μm, phosphate-citrate buffer, pH 4.75), almost doubled when leaves were pretreated with 31.5 μm12C-indole-3-acetic acid for 17 hr and then transferred to 14C-indole-3-acetic acid for 4 hours as compared with leaves preincubated in buffer only. When leaves were preincubated with ethylene (11.0 and 104 μl/l) instead of 12C-indole-3-acetic acid, no induction of indole-3-acetylaspartic acid formation was observed, and the rate of indole-3-acetylaspartic acid formation decreased as compared with control leaves. Rhizobitoxine (1.87 μm) inhibited indole-3-acetic acid-induced ethylene production but did not prevent the formation of indole-3-acetylaspartic acid. In view of the similarity of these results and those previously obtained with α-naphthaleneacetic acid, it is concluded that ethylene has no role in the auxin-induced indole-3-acetylaspartic acid formation in cowpea leaves. PMID:16658669

  3. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    PubMed

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  4. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Manosroi, Jiradej; Apriyani, Maria Goretti; Foe, Kuncoro; Manosroi, Aranya

    2005-04-11

    The aim of this study was to investigate the release rates of azelaic acid and azelaic acid-hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex through three types of synthetic membranes, namely cellophane, silicone and elastomer membranes. Solid inclusion complexes of azelaic acid-HPbetaCD at the molar ratio of 1:1 were prepared by coevaporation and freeze-drying methods, subsequently characterized by differential scanning calorimetry, X-ray diffractometry and dissolution studies. Solid inclusion complex obtained by coevaporation method which exhibited the inclusion of azelaic acid in the HPbetaCD cavity and gave the highest dissolution rate of azelaic acid was selected for the release study. Release studies of azelaic acid and this complex through the synthetic membranes were conducted using vertical Franz diffusion cells at 30 degrees C for 6 days. The release rates of azelaic acid through the synthetic membranes were enhanced by the formation of inclusion complex with HPbetaCD at the molar ratio of 1:1, with the increasing fluxes of about 41, 81 and 28 times of the uncomplexed system in cellophane, silicone and elastomer membranes, respectively. The result from this study can be applied for the development of azelaic acid for topical use.

  5. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    PubMed

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  6. d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    PubMed Central

    Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D.; Muñoz-Caro, Tamara; Silva, Liliana M. R.; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A.; Burgos, Rafael A.

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(−) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(−) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(−) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(−) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(−) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(−) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis. PMID:28861083

  7. BACTERIOPHAGE FORMATION WITHOUT BACTERIAL GROWTH

    PubMed Central

    Price, Winston H.

    1947-01-01

    1. Iodoacetate, fluoride, and azide have been found to prevent the formation of phage and to inhibit the synthesis of ATP by Staphylococcus muscae. It is suggested that energy-rich phosphate is needed for the synthesis of phage. 2. Gramicidin prevented the formation of phage. 3. No differences were found between normal bacteria and phage-infected bacteria in the inorganic phosphate, adenosinetriphosphate, ribonucleic acid, and desoxyribonucleic acid content of the cells. 4. The mechanism of phage formation is discussed. PMID:18896936

  8. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warmingmore » up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.« less

  9. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra.

    PubMed

    Dimiev, Ayrat M; Bachilo, Sergei M; Saito, Riichiro; Tour, James M

    2012-09-25

    Graphite intercalation compounds (GICs) can be considered stacks of individual doped graphene layers. Here we demonstrate a reversible formation of sulfuric acid-based GICs using ammonium persulfate as the chemical oxidizing agent. No covalent chemical oxidation leading to the formation of graphite oxide occurs, which inevitably happens when other compounds such as potassium permanganate are used to charge carbon layers. The resulting acid/persulfate-induced stage-1 and stage-2 GICs are characterized by suppression of the 2D band in the Raman spectra and by unusually strong enhancement of the G band. The G band is selectively enhanced at different doping levels with different excitations. These observations are in line with recent reports for chemically doped and gate-modulated graphene and support newly proposed theories of Raman processes. At the same time GICs have some advantageous differences over graphene, which are demonstrated in this report. Our experimental observations, along with earlier reported data, suggest that at high doping levels the G band cannot be used as the reference peak for normalizing Raman spectra, which is a commonly used practice today. A Fermi energy shift of 1.20-1.25 eV and ∼1.0 eV was estimated for the stage-1 and stage-2 GICs, respectively, from the Raman and optical spectroscopy data.

  10. Desalted Duck Egg White Peptides Promote Calcium Uptake and Modulate Bone Formation in the Retinoic Acid-Induced Bone Loss Rat and Caco-2 Cell Model.

    PubMed

    Hou, Tao; Liu, Yanshuang; Kolba, Nikolai; Guo, Danjun; He, Hui

    2017-05-12

    Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups ( p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.

  11. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    PubMed

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  13. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  14. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  15. Food-associated lactic acid bacteria with antimicrobial potential from traditional Mexican foods.

    PubMed

    Alvarado, C; García Almendárez, B E; Martin, S E; Regalado, C

    2006-01-01

    This work was conducted to identify indigenous LAB capable of antimicrobial activity, present in traditional Mexican-foods with potential as natural preservatives. A total of 27 artisan unlabeled Mexican products were evaluated, from which 94 LAB strains were isolated, and only 25 strains showed antimicrobial activity against at least one pathogen indicator microorganism. Most of the inhibitory activity showed by the isolated LAB strains was attributed to pH reduction by organic acids. Lactobacillus and Lactococcus strains were good acid producers, depending on the substrate, and may enhance the safety of food products. Cell free cultures of Leuconostoc mesenteroides CH210, and PT8 (from chorizo and pulque, respectively) reduced the number of viable cells of enteropathogenic E. coli in broth system. Lb. plantarum CC10 (from "madre" of vinegar) showed significant inhibitory effect against S. aureus 8943. E. faecium QPII (from panela cheese) produced a bacteriocin with wide anti-L. monocytogenes activity. Selected LAB from traditional Mexican foods showed good potential as bio-preservatives.

  16. The potential synergistic behaviour of inter- and intra-genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation.

    PubMed

    Fernando, Warnakulasuriya M A D B; Flint, Steve H; Ranaweera, K K D S; Bamunuarachchi, Arthur; Johnson, Stuart K; Brennan, Charles S

    2018-03-01

    This study compared the rate of short chain fatty acid (SCFA) production by different probiotic combinations of Lactobacillus and Bifidobacterium to determine any synergistic effects. Six different fibre fractions were fermented with nine combinations of Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA), Bifidobacterium longum (BL) and Bifidobacterium breve (BB) for 0, 6, 24 and 48 h. SCFAs were quantified by gas chromatography. Inter-genus combinations of bacteria produced more SCFA, especially BB + BL + LR, compared to intra-genus that yielded the lowest SCFA production. Acetate was the most abundant, while propionate and butyrate were the most utilised. The SCFA formation was as acetate > propionate > butyrate and the total dietary fibre produced most of the SCFA. Most combinations utilised 60-80% of the fibre; BB + BL + LR digested the fibre completely. The quantity, pattern and the time of release of SCFA depends on the genus, but the combination of pre and probiotics is of great importance for the outcome.

  17. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    PubMed

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.

  18. Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury.

    PubMed

    Lu, Naihao; Sui, Yinhua; Tian, Rong; Peng, Yi-Yuan

    2018-05-16

    Myeloperoxidase (MPO) from activated neutrophils plays important roles in multiple human inflammatory diseases by catalyzing the formation of powerful oxidant hypochlorous acid (HOCl). As a major flavonoid in the human diet, quercetin has been suggested to act as antioxidant and anti-inflammatory agent in vitro and in vivo. In this study, we showed that quercetin inhibited MPO-mediated HOCl formation (75.0 ± 6.2% for 10 μM quercetin versus 100 ± 5.2% for control group, P < 0.01) and cytotoxicity to endothelial cells in vitro, while this flavonoid was nontoxic to endothelial cell cultures ( P > 0.05, all cases). Moreover, quercetin inhibited HOCl generation by stimulated neutrophils (a rich source of MPO) and protected endothelial cells from neutrophils-induced injury. Furthermore, quercetin could inhibit HOCl-induced endothelial dysfunction such as loss of cell viability, and decrease of nitric oxide formation in endothelial cells ( P < 0.05, all cases). Consistent with these in vitro data, quercetin attenuated lipopolysaccharide-induced endothelial dysfunction and increase of MPO activity in mouse aortas, while this flavonoid could protect against HOCl-mediated endothelial dysfunction in isolated aortas ( P < 0.05). Therefore, it was proposed that quercetin attenuated endothelial injury in inflammatory vasculature via inhibition of vascular-bound MPO-mediated HOCl formation or scavenging of HOCl. These data indicate that quercetin is a nontoxic inhibitor of MPO activity and MPO/neutrophils-induced cytotoxicity in endothelial cells and may be useful for targeting MPO-dependent vascular disease and inflammation.

  19. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    PubMed Central

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  20. Effects of 15-hydroperoxyeicosatetraenoic acid on human lymphocyte sheep erythrocyte rosette formation and response to concanavalin A associated with HLA system.

    PubMed

    Gualde, N; Rabinovitch, H; Fredon, M; Rigaud, M

    1982-09-01

    The lipoxygenase product hydroperoxyeicosatetraenoic acid (HPETE) has immunosuppressive properties in vitro and in vivo. It was observed that 15-HPETE inhibit the sheep red blood cell rosette formation and the concanavalin A-induced blast transformation of human lymphocytes. This inhibition was HLA-linked. HLA-B12 subjects were less sensitive than non-B12 subjects. It is likely that HPETE acids are macrophage mediators which inhibit some lymphocyte functions.

  1. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  2. Monocarboxylic and dicarboxylic acids over oceans from the East China Sea to the Arctic Ocean: Roles of ocean emissions, continental input and secondary formation.

    PubMed

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Kang, Hui; Zhang, Yuqing; Ding, Xiang; Zhang, Pengfei

    2018-05-30

    Organic acids are major components in marine organic aerosols. Many studies on the occurrence, sources and sinks of organic acids over oceans in the low and middle latitudes have been conducted. However, the understanding of relative contributions of specific sources to organic acids over oceans, especially in the high latitudes, is still inadequate. This study measured organic acids, including C 14:0 - C 32:0 saturated monocarboxylic acids (MCAs), C 16:1 , C 18:1 and C 18:2 unsaturated MCAs, and di-C 4 - di-C 10 dicarboxylic acids (DCAs), in the marine boundary layer from the East China Sea to the Arctic Ocean during the 3rd Chinese Arctic Research Expedition (CHINARE 08). The average concentrations were 18 ± 16 ng/m 3 and 11 ± 5.4 ng/m 3 for ΣMCA and ΣDCA, respectively. The levels of saturated MCAs were much higher than those of unsaturated DCAs, with peaks at C 16:0 , C 18:0 and C 14:0 . DCAs peaked at di-C 4 , followed by di-C 9 and di-C 8 . Concentrations of MCAs and DCAs generally decreased with increasing latitudes. Sources of MCAs and DCAs were further investigated using principal component analysis with a multiple linear regression (PCA-MLR) model. Overall, carboxylic acids originated from ocean emissions, continental input (including biomass burning, anthropogenic emissions and terrestrial plant emissions), and secondary formation. All the five sources contributed to MCAs with ocean emissions as the predominant source (48%), followed by biomass burning (20%). In contrast, only 3 sources (i.e., secondary formation (50%), anthropogenic emissions (41%) and biomass burning (9%)) contributed to DCAs. Furthermore, the sources varied with regions. Over the Arctic Ocean, only secondary formation and anthropogenic emissions contributed to MCAs and DCAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Occurrence and formation kinetics of pyranomalvidin-procyanidin dimer pigment in Merlot red wine: impact of acidity and oxygen concentrations.

    PubMed

    Pechamat, Laurent; Zeng, Liming; Jourdes, Michael; Ghidossi, Rémy; Teissedre, Pierre-Louis

    2014-02-19

    Once released from red grape skins, anthocyanins undergo various chemical reactions leading to the formation of more stable pigments such as pyranoanthocyanin, as well as other derivatives. Among these pigments, pyranoanthocyanins linked directly to flavanol dimers have been detected and identified in aged Port wine but not in dry red wine. These pigments are very important with regard to the wine color evolution since they are involved in wine color evolution and stabilization. During this investigation, the occurrence in dry red wine of two pyranomalvidin-procyanidin dimer has been established by low and high resolution HPLC-UV-MS analysis. Moreover, the impact of acidity and oxygen levels on their formation in red wine has been estimated. After four months of evolution, the results showed that, for the same pH, the quantity of this pigment was correlated with oxygen concentrations. Moreover, for the same quantity of oxygen, the concentration of this pigment was related to the acidity level.

  4. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  5. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  6. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    PubMed

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    PubMed

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  8. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    USDA-ARS?s Scientific Manuscript database

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  9. Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

    PubMed Central

    Blanco, Narda; Ahrné, Siv; Molin, Göran

    2013-01-01

    Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine. PMID:23864942

  10. Cumulative irritation potential among metronidazole gel 1%, metronidazole gel 0.75%, and azelaic acid gel 15%.

    PubMed

    Colón, Luz E; Johnson, Lori A; Gottschalk, Ronald W

    2007-04-01

    Topical therapy for rosacea aims to reduce inflammatory lesions and decrease erythema but can carry side effects such as stinging, pruritus, and burning. Metronidazole and azelaic acid gel 15% are U.S. Food and Drug Administration-approved for the treatment of rosacea. The current study was conducted to assess the cumulative irritation potential of 2 formulations of metronidazole 0.75% gel and 1% gel--and azelaic acid gel 15% over 21 days (N=36). Results of this study demonstrated a significantly greater poten tial for irritation from azelaic acid compared with metronidazole gel 0.75% (P < .0001), which had significantly greater potential for irritation compared with metronidazole gel 1% (P = .0054). Metronidazole gel 1% had a similar profile to white petrolatum.

  11. The effect of a lignosulphate type additive on the lead—acid battery positive plate reactions

    NASA Astrophysics Data System (ADS)

    Ovuru, S. E.; Harrison, J. A.

    The electrochemical formation of lead dioxide has been investigated at a lead electrode in a 5 M sulphuric acid solution, and in the presence of phosphoric acid and lignosulphate-type additive. The formation of lead dioxide from lead sulphate, and the reverse reaction, have been investigated by the linear potential sweep method, by an impedance method in which the impedance was measured at the end of each pulse during a potential pulse train, and by a charging curve method in which the current and charge was measured during a similar potential pulse train. The charge measurements prove that the main effect of the additive is to decrease the accompanying oxygen evolution reaction. The impedance measurements, however, show that the additive has a small but significant effect on the structure of the solid lead sulphate and lead dioxide layers.

  12. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-05

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8C7N1H27 and the carboxyl group COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-01

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10 THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8dbnd C7sbnd N1sbnd H27 and the carboxyl group sbnd COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34 THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation.

  14. Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone.

    PubMed

    Arlt, Volker M; Meinl, Walter; Florian, Simone; Nagy, Eszter; Barta, Frantisek; Thomann, Marlies; Mrizova, Iveta; Krais, Annette M; Liu, Maggie; Richards, Meirion; Mirza, Amin; Kopka, Klaus; Phillips, David H; Glatt, Hansruedi; Stiborova, Marie; Schmeiser, Heinz H

    2017-04-01

    Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.

  15. The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester

    NASA Astrophysics Data System (ADS)

    Siebert, Agnieszka; Cholewiński, Grzegorz; Garwolińska, Dorota; Olejnik, Adrian; Rachoń, Janusz; Chojnacki, Jarosław

    2018-01-01

    The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented.

  16. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.

    PubMed

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-02-01

    Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation.

    PubMed

    Sarkar, Saptarshi; Mallick, Subhasish; Kumar, Pradeep; Bandyopadhyay, Biman

    2018-05-16

    Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene. It was found that the reaction can occur via the addition of ammonia at either the C[double bond, length as m-dash]C or C[double bond, length as m-dash]O bond of ketene. The potential energy surface as well as calculated rate coefficients indicate that under tropospheric conditions, ammonolysis would occur almost exclusively via ammonia addition at the C[double bond, length as m-dash]O bond with negligible contribution from addition at the C[double bond, length as m-dash]C bond. The reaction of ketene with water has also been investigated in order to compare between hydrolysis and ammonolysis, as the former is known to be responsible for the formation of acetic acid. The rate coefficient for the formation of acetamide was found to be ∼106 to 109 times higher than that for the formation of acetic acid from the same ketene source in the troposphere. By means of the relative rate of ammonolysis with respect to hydrolysis, it was shown that acetamide formation would dominate over acetic acid formation at various altitudes in the troposphere.

  18. Catalytic control over supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Poolman, Jos M.; Maity, Chandan; Li, Feng; van der Mee, Lars; Minkenberg, Christophe B.; Mendes, Eduardo; van Esch, Jan H.; Eelkema, Rienk

    2013-05-01

    Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

  19. Formic Acid Formation by Clostridium ljungdahlii at Elevated Pressures of Carbon Dioxide and Hydrogen

    PubMed Central

    Oswald, Florian; Stoll, I. Katharina; Zwick, Michaela; Herbig, Sophia; Sauer, Jörg; Boukis, Nikolaos; Neumann, Anke

    2018-01-01

    Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source. With increasing process pressure, the product spectrum shifts from mainly acetic acid and ethanol to almost only formic acid at a total system pressure of 7 bar. On the other hand, no significant changes in overall product yield can be observed. By keeping the amount of substance flow rate constant instead of the volumetric gas feed rate when increasing the process pressure, we increased the overall product yield of 7.5 times of what has been previously reported in the literature. After 90 h of cultivation at a total pressure of 7 bar a total of 4 g L−1 of products is produced consisting of 82.7 % formic acid, 15.6 % acetic acid, and 1.7 % ethanol. PMID:29484294

  20. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water.

    PubMed

    Chen, Zhuo; Valentine, Richard L

    2007-09-01

    N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some

  1. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  2. Formate auxotroph of Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Tanner, R S; McInerney, M J; Nagle, D P

    1989-01-01

    A formate-requiring auxotroph of Methanobacterium thermoautotrophicum Marburg was isolated after hydroxylamine mutagenesis and bacitracin selection. The requirement for formate is unique and specific; combined pools of other volatile fatty acids, amino acids, vitamins, and nitrogen bases did not substitute for formate. Compared with those of the wild type, cell extracts of the formate auxotroph were deficient in formate dehydrogenase activity, but cells of all of the strains examined catalyzed a formate-carbon dioxide exchange activity. All of the strains examined took up a small amount (200 to 260 mumol/liter) of formate (3 mM) added to medium. The results of the study of this novel auxotroph indicate a role for formate in biosynthetic reactions in this methanogen. Moreover, because methanogenesis from H2-CO2 is not impaired in the mutant, free formate is not an intermediate in the reduction of CO2 to CH4. PMID:2687241

  3. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review.

    PubMed

    Du, Ye; Lv, Xiao-Tong; Wu, Qian-Yuan; Zhang, Da-Yin; Zhou, Yu-Ting; Peng, Lu; Hu, Hong-Ying

    2017-08-01

    Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds. Copyright © 2017. Published by Elsevier B.V.

  4. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    PubMed

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  5. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  6. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    PubMed

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl 2 /Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl 2 /Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl 2 /Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue

    NASA Astrophysics Data System (ADS)

    Osterrothová, Kateřina; Jehlička, Jan

    2009-08-01

    Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.

  8. The formation and control of emerging disinfection by-products of health concern.

    PubMed

    Krasner, Stuart W

    2009-10-13

    When drinking water treatment plants disinfect water, a wide range of disinfection by-products (DBPs) of health and regulatory concern are formed. Recent studies have identified emerging DBPs (e.g. iodinated trihalomethanes (THMs) and acids, haloacetonitriles, halonitromethanes (HNMs), haloacetaldehydes, nitrosamines) that may be more toxic than some of the regulated ones (e.g. chlorine- and bromine-containing THMs and haloacetic acids). Some of these emerging DBPs are associated with impaired drinking water supplies (e.g. impacted by treated wastewater, algae, iodide). In some cases, alternative primary or secondary disinfectants to chlorine (e.g. chloramines, chlorine dioxide, ozone, ultraviolet) that minimize the formation of some of the regulated DBPs may increase the formation of some of the emerging by-products. However, optimization of the various treatment processes and disinfection scenarios can allow plants to control to varying degrees the formation of regulated and emerging DBPs. For example, pre-disinfection with chlorine, chlorine dioxide or ozone can destroy precursors for N-nitrosodimethylamine, which is a chloramine by-product, whereas pre-oxidation with chlorine or ozone can oxidize iodide to iodate and minimize iodinated DBP formation during post-chloramination. Although pre-ozonation may increase the formation of trihaloacetaldehydes or selected HNMs during post-chlorination or chloramination, biofiltration may reduce the formation potential of these by-products.

  9. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect

  10. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    NASA Astrophysics Data System (ADS)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  11. A Eukaryotic-Type Serine/Threonine Protein Kinase Is Required for Biofilm Formation, Genetic Competence, and Acid Resistance in Streptococcus mutans

    PubMed Central

    Hussain, Haitham; Branny, Pavel; Allan, Elaine

    2006-01-01

    We report an operon encoding a eukaryotic-type serine/threonine protein kinase (STPK) and its cognate phosphatase (STPP) in Streptococcus mutans. Mutation of the gene encoding the STPK produced defects in biofilm formation, genetic competence, and acid resistance, determinants important in caries pathogenesis. PMID:16452447

  12. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB).

    PubMed

    Nunn, Peter B; Codd, Geoffrey A

    2017-12-01

    The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Relationships between tyrosine, phenylalanine, chlorogenic acid, and ascorbic acid concentrations and blackspot biochemical potential and blackspot susceptibility in stored russet potatoes.

    PubMed

    Goyer, Aymeric; Pellé, Julien

    2018-08-01

    Blackspot in potato is an internal tissue discoloration that occurs during handling and transport of potato tubers. Blackspot is cosmetically undesirable and represents a huge economic cost for the potato industry. The aim of this study was to test whether concentrations of certain metabolites in the potato tuber cortex could predict blackspot susceptibility. Seven russet potato varieties were stored for eight months at 8.8 °C. Stored tubers were subjected to mechanical impact and evaluated for blackspot susceptibility. A blackspot susceptibility index was calculated for each variety by determining an index for the percentage of the tuber cortex area that was covered with blackspot, and an index for the intensity of blackspot discoloration. Concentrations of tyrosine, chlorogenic acid, phenylalanine, and ascorbic acid, and blackspot biochemical potential of tubers to synthesize pigments were measured in the tuber cortex. Blackspot indices, metabolites concentrations and blackspot biochemical potential varied significantly between varieties. Tyrosine concentrations strongly, significantly, and positively correlated with blackspot biochemical potential. Phenylalanine concentrations showed good, significant, and positive correlation with blackspot biochemical potential and discoloration index. None of the analyzed metabolites correlated with blackspot susceptibility. Concentrations of tyrosine and phenylalanine explained up to ∼80% of the variation in blackspot biochemical potential between varieties but did not correlate with blackspot susceptibility. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Understanding Potential Exposure Sources of Perfluorinated Carboxylic Acids in the Workplace

    PubMed Central

    Kaiser, Mary A.; Dawson, Barbara J.; Barton, Catherine A.; Botelho, Miguel A.

    2010-01-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when handling them in the workplace in order to identify appropriate exposure controls. Due to the dramatic difference in physical properties of the protonated acid form and the anionic form, this family of chemicals provides unique industrial hygiene challenges. Workplace monitoring, experimental data, and modeling results were used to ascertain the most probable workplace exposure sources and transport mechanisms for perfluorooctanoic acid (PFOA) and its ammonium salt (APFO). PFOA is biopersistent and its measurement in the blood has been used to assess human exposure since it integrates exposure from all routes of entry. Monitoring suggests that inhalation of airborne material may be an important exposure route. Transport studies indicated that, under low pH conditions, PFOA, the undissociated (acid) species, actively partitions from water into air. In addition, solid-phase PFOA and APFO may also sublime into the air. Modeling studies determined that contributions from surface sublimation and loss from low pH aqueous solutions can be significant potential sources of workplace exposure. These findings suggest that keeping surfaces clean, preventing accumulation of material in unventilated areas, removing solids from waste trenches and sumps, and maintaining neutral pH in sumps can lower workplace exposures. PMID:20974675

  15. Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace.

    PubMed

    Kaiser, Mary A; Dawson, Barbara J; Barton, Catherine A; Botelho, Miguel A

    2010-11-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when handling them in the workplace in order to identify appropriate exposure controls. Due to the dramatic difference in physical properties of the protonated acid form and the anionic form, this family of chemicals provides unique industrial hygiene challenges. Workplace monitoring, experimental data, and modeling results were used to ascertain the most probable workplace exposure sources and transport mechanisms for perfluorooctanoic acid (PFOA) and its ammonium salt (APFO). PFOA is biopersistent and its measurement in the blood has been used to assess human exposure since it integrates exposure from all routes of entry. Monitoring suggests that inhalation of airborne material may be an important exposure route. Transport studies indicated that, under low pH conditions, PFOA, the undissociated (acid) species, actively partitions from water into air. In addition, solid-phase PFOA and APFO may also sublime into the air. Modeling studies determined that contributions from surface sublimation and loss from low pH aqueous solutions can be significant potential sources of workplace exposure. These findings suggest that keeping surfaces clean, preventing accumulation of material in unventilated areas, removing solids from waste trenches and sumps, and maintaining neutral pH in sumps can lower workplace exposures.

  16. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubachka, Kevin M.; Kohan, Michael C.; Herbin-Davis, Karen

    Although metabolism of arsenicals to form methylated oxoarsenical species has been extensively studied, less is known about the formation of thiolated arsenical species that have recently been detected as urinary metabolites. Indeed, their presence suggests that the metabolism of ingested arsenic is more complex than previously thought. Recent reports have shown that thiolated arsenicals can be produced by the anaerobic microflora of the mouse cecum, suggesting that metabolism prior to systemic absorption may be a significant determinant of the pattern and extent of exposure to various arsenic-containing species. Here, we examined the metabolism of {sup 34}S labeled dimethylthioarsinic acid ({supmore » 34}S-DMTA{sup V}) by the anaerobic microflora of the mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS/MS to monitor for the presence of various oxo- and thioarsenicals. The use of isotopically enriched {sup 34}S-DMTA{sup V} made it possible to differentiate among potential metabolic pathways for production of the trimethylarsine sulfide (TMAS{sup V}). Upon in vitro incubation in an assay containing anaerobic microflora of mouse cecum, {sup 34}S-DMTA{sup V} underwent several transformations. Labile {sup 34}S was exchanged with more abundant {sup 32}S to produce {sup 32}S-DMTA{sup V}, a thiol group was added to yield DMDTA{sup V}, and a methyl group was added to yield {sup 34}S-TMAS{sup V}. Because incubation of {sup 34}S-DMTA{sup V} resulted in the formation of {sup 34}S-TMAS{sup V}, the pathway for its formation must preserve the arsenic-sulfur bond. The alternative metabolic pathway postulated for formation of TMAS{sup V} from dimethylarsinic acid (DMA{sup V}) would proceed via a dimethylarsinous acid (DMA{sup III}) intermediate and would necessitate the loss of {sup 34}S label. Structural confirmation of the metabolic product was achieved using HPLC-ESI-MS/MS. The data presented support the direct methylation of DMTA{sup V} to TMAS{sup V}. Additionally, the

  17. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    PubMed

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  18. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  19. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Moriano, Carlos

    2017-02-01

    The lichen-forming fungi Cetraria islandica has been largely used in folk medicines, and it has recently showed promising in vitro antioxidant effects in glial-like cells. Current work aimed at investigating the neuroprotective potential of its major isolated secondary metabolite: the depsidone fumarprotocetraric acid (FUM). H{sub 2}O{sub 2} was used herein to induce oxidative stress (OS)-mediated cytotoxicity in two models of neurons and astrocytes cells (SH-SY5Y and U373-MG cell lines). We found that a pre-treatment with FUM significantly enhanced cell viability compared to H{sub 2}O{sub 2}-treated cells, and we selected the optimal concentrations in each model (1 and 25 μg/ml, respectively)more » for assessing its cytoprotective mechanisms. FUM, which exerted effective peroxyl radical scavenging effect in the chemical oxygen radical antioxidant capacity (ORAC) assay, alleviated the alterations in OS markers provoked by H{sub 2}O{sub 2}. It attenuated intracellular ROS formation, lipid peroxidation and GSH depletion. At mitochondrial level, FUM prevented from the dissipation of mitochondrial membrane potential and the increase in mitochondrial calcium, implying a protective role against oxidative damage in mitochondrial membrane. Similarly, FUM pre-treatment diminished H{sub 2}O{sub 2}-induced apoptosis, as evidenced by the reduction in caspase-3 activity and expression; inmunoblot analysis also revealed a decrease in Bax and an increase in Bcl-2 proteins levels. Furthermore, FUM up-regulated the expression of the antioxidant enzymes catalase, superoxide dismutase-1, and hemeoxigenase-1. These findings and the activation of Nrf2 binding activity in nuclear extracts suggest a plausible involvement of Nrf2 signaling pathway in the cytoprotection by FUM. In conclusion, FUM emerges as a potential drug candidate in the therapy of OS-related diseases, such as the neurodegenerative disorders. - Highlights: • FUM pre-treatment exerts significant cytoprotection

  20. Indole-3-acetic acid: a potential new photosensitizer for photodynamic therapy of acne vulgaris.

    PubMed

    Na, Jung-Im; Kim, So-Young; Kim, Jeong-Hye; Youn, Sang-Woong; Huh, Chang-Hun; Park, Kyoung-Chan

    2011-03-01

    ALA (5-aminolevulinic acid) photodynamic therapy (PDT) is a new treatment option for acne. However, it needs a relatively long incubation period and adverse effects are common. Indole-3-acetic acid (IAA) is not toxic by itself but produces free radicals with ultraviolet B. In this study we examined the potential of IAA as a photosensitizer for acne treatment. Free radical formation was measured after visible light irradiation of IAA. Antimicrobial effect was evaluated by assessing growth suppression of Propionibacterium acnes and Staphylococcus aureus after IAA PDT. To evaluate the histological changes, skin biopsies were performed on nude mice skin after IAA PDT. To evaluate the clinical efficacy of IAA PDT, 14 acne patients were treated with the following IAA PDT regimen: three times each with a 15 minutes incubation period and a 2-week interval. The number of inflammatory lesions and the amount of sebum secretion were then assessed. IAA produced free radicals with green light irradiation. Importantly, IAA lost its photosensitizing ability after exposure to certain amount of light. This implies IAA PDT would not require post-procedure photo-protection. The growth of P. acnes and S. aureus were significantly suppressed with IAA PDT. In addition, IAA PDT treated skin showed destruction of follicular ostia epithelium. Interestingly, there was no significant difference between a 4 hours and a 30 minutes incubation, which means that longer absorption time is not necessary for IAA PDT. In the clinical study, inflammatory lesions and sebum secretion were significantly reduced. The procedure was painless and no adverse effect was observed. Photo-protection was not performed and there were no further phototoxic responses. IAA PDT has therapeutic effects on acne via its antimicrobial activities, its sebum-reducing effect and through relieving follicular occlusion. It is a very simple and safe treatment option for acne. Copyright © 2011 Wiley-Liss, Inc.