Sample records for acid ga production

  1. Biotechnological production of gluconic acid: future implications.

    PubMed

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  2. Fully automated GMP production of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 for clinical use

    PubMed Central

    Velikyan, Irina; Rosenstrom, Ulrika; Eriksson, Olof

    2017-01-01

    [68Ga]Ga-DO3A-VS-Cys40-Exendin-4/PET-CT targeting glucagon like peptide-1 receptor (GLP-1R) has previously demonstrated its potential clinical value for the detection of insulinomas. The production and accessibility of this radiopharmaceutical is one of the critical factors in realization of clinical trials and routine clinical examinations. Previously, the radiopharmaceutical was prepared manually, however larger scale of clinical trials and healthcare requires automation of the production process in order to limit the operator radiation dose as well as improve tracer manufacturing robustness and on-line documentation for enhanced good manufacturing practice (GMP) compliance. A method for 68Ga-labelling of DO3A-VS-Cys40-Exendin-4 on a commercially available synthesis platform was developed. Equipment such as 68Ge/68Ga generator, synthesis platform, and disposable cassettes for 68Ga-labelling used in the study was purchased from Eckert & Ziegler. DO3A-VS-Cys40-Exendin-4 was synthesized in-house. The parameters such as time, temperature, precursor concentration, radical scavenger, buffer concentration, pH, product purification step were investigated and optimised. Reproducible and GMP compliant automated production of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 was developed. Exendin-4 comprising methionine amino acid residue was prone to oxidation which was strongly influenced by the elevated temperature, radioactivity amount, and precursor concentration. The suppression of the oxidative radiolysis was achieved by addition of ethanol, dihydroxybenzoic acid and ascorbic acid to the reaction buffer as well as by optimizing heating temperature. The non-decay corrected radiochemical yield was 43±2% with radiochemical purity of over 90% wherein the individual impurity signals in HPLC chromatogram did not exceed 5%. Automated production and quality control methods were established for paving the pathway for broader clinical use of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4. PMID:28721305

  3. Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol ▿ †

    PubMed Central

    Habe, Hiroshi; Shimada, Yuko; Yakushi, Toshiharu; Hattori, Hiromi; Ano, Yoshitaka; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiro; Yanagishita, Hiroshi; Matsushita, Kazunobu; Sakaki, Keiji

    2009-01-01

    Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process. PMID:19837846

  4. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  5. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  6. Differences in phosphatidic acid signalling and metabolism between ABA and GA treatments of barley aleurone cells.

    PubMed

    Villasuso, Ana Laura; Di Palma, Maria A; Aveldaño, Marta; Pasquaré, Susana J; Racagni, Graciela; Giusto, Norma M; Machado, Estela E

    2013-04-01

    Phosphatidic acid (PA) is the common lipid product in abscisic acid (ABA) and gibberellic acid (GA) response. In this work we investigated the lipid metabolism in response to both hormones. We could detect an in vivo phospholipase D activity (PLD, EC 3.1.4.4). This PLD produced [(32)P]PA (phosphatidic acid) rapidly (minutes) in the presence of ABA, confirming PA involvement in signal transduction, and transiently, indicating rapid PA removal after generation. The presence of PA removal by phosphatidate phosphatase 1 and 2 isoforms (E.C. 3.1.3.4) was verified in isolated aleurone membranes in vitro, the former but not the latter being specifically responsive to the presence of GA or ABA. The in vitro DGPP phosphatase activity was not modified by short time incubation with GA or ABA while the in vitro PA kinase - that allows the production of 18:2-DGPP from 18:2-PA - is stimulated by ABA. The long term effects (24 h) of ABA or GA on lipid and fatty acid composition of aleurone layer cells were then investigated. An increase in PC and, to a lesser extent, in PE levels is the consequence of both hormone treatments. ABA, in aleurone layer cells, specifically activates a PLD whose product, PA, could be the substrate of PAP1 and/or PAK activities. Neither PLD nor PAK activation can be monitored by GA treatment. The increase in PAP1 activity monitored after ABA or GA treatment might participate in the increase in PC level observed after 24 h hormone incubation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  8. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  9. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  10. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  11. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  12. A Novel Approach to Enhancing Ganoderic Acid Production by Ganoderma lucidum Using Apoptosis Induction

    PubMed Central

    You, Bang-Jau; Lee, Miin-Huey; Tien, Ni; Lee, Meng-Shiou; Hsieh, Hui-Chuan; Tseng, Lin-Hsien; Chung, Yu-Lin; Lee, Hong-Zin

    2013-01-01

    Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi. PMID:23326470

  13. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production.

    PubMed

    Kwon, Choon-Tak; Paek, Nam-Chon

    2016-05-23

    The phytohormone gibberellic acid (GA) has essential signaling functions in multiple processes during plant development. In the "Green Revolution", breeders developed high-yield rice cultivars that exhibited both semi-dwarfism and altered GA responses, thus improving grain production. Most studies of GA have concentrated on germination and cell elongation, but GA also has a pivotal role in floral organ development, particularly in stamen/anther formation. In rice, GA signaling plays an important role in spikelet fertility; however, the molecular genetic and biochemical mechanisms of GA in male fertility remain largely unknown. Here, we review recent progress in understanding the network of GA signaling and its connection with spikelet fertility, which is tightly associated with grain productivity in cereal crops.

  14. Binding effect of fluorescence labeled glycyrrhetinic acid with GA receptors in hepatocellular carcinoma cells.

    PubMed

    Sun, Yu-Qi; Dai, Chun-Mei; Zheng, Yan; Shi, Shu-Dan; Hu, Hai-Yang; Chen, Da-Wei

    2017-11-01

    Glycyrrhetinic acid (GA) is a natural active component from licorice, which is broadly used in traditional Chinese medicine. Lots of glycyrrhetinic acid receptors (GA-R) are proved to locate on the surface of liver cells. Many reports about the hepatocellular carcinoma (HCC) treatment were dependent on GA modified carriers. However, the reality of GA-R in HCC cells was not clear. In this paper, 18β-glycyrrhetinic acid (18β-GA) was labeled with fluorescence (FITC) by chemical synthesis. Together with the binding effect of fluorescence labeled glycyrrhetinic acid (FITC-GA), the competitive action of 18β-GA with GA-R was investigated in HCC cells. The results showed that in HepG2 cells, 18β-GA and FITC-GA presented similar cytotoxicity. The specific binding saturation of GA showed the dissociation constant (K d ) was 7.457±2.122pmol/L and the maximum binding counts (B max ) was 2.385±0.175pmol/2.5×10 6 cells, respectively. FITC-GA bound to cytomembrane specifically and 18β-GA competed to bind the sites significantly in HepG2 cells. Therefore, there is binding effect between fluorescence labeled GA and GA-R. The GA-R on HCC cells is confirmed as expected, which provides a useful reference of active target modified by GA and a novel approach for receptors and ligands study. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Acides gras oméga-3 et dyslexie

    PubMed Central

    Zelcer, Michal; Goldman, Ran D.

    2015-01-01

    Résumé Question À la lumière de la hausse du nombre d’enfants d’âge scolaire ayant reçu un diagnostic de dyslexie, quel est le rôle des suppléments d’acides gras oméga-3 dans la prise en charge de cette affection? Réponse La dyslexie est le trouble d’apprentissage le plus répandu et elle est connue pour ses causes multifactorielles. De récentes données probantes pointent vers une corrélation entre le métabolisme défectueux des acides gras polyinsaturés et les troubles de neurodéveloppement, tels que la dyslexie. Bien que l’administration de suppléments d’acides gras oméga-3 aux enfants dyslexiques ait fait l’objet d’études, les données probantes sont limitées. Les critères diagnostiques homogènes de dyslexie, les mesures objectives de carence en acides gras et la surveillance étroite de l’apport alimentaire ne sont que quelques-uns des facteurs pouvant améliorer la qualité de la recherche dans ce domaine.

  16. Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system.

    PubMed

    Rico-Rodríguez, Fabián; Serrato, Juan Carlos; Montilla, Antonia; Villamiel, Mar

    2018-06-01

    Galactooligosaccharides (GOS), recognised prebiotic, can be industrially produced from lactose and commercial β-galactosidase (β-gal) from Kluyveromyces lactis. Residual lactose and glucose limit GOS applications. To handle this problem, a multienzymatic system, with β-gal and glucose oxidase (Gox), was proposed to reduce glucose content in reaction media through its oxidation to gluconic acid (GA). Besides, ultrasound (US) probe effect over the multienzymatic system to produce GOS and GA has been evaluated. A production around 40% of GOS was found in all treatments after the first hour of reaction. However, glucose consumption and GA production was significantly higher (P < 0.05) for sequential reaction assisted by US, obtaining the best production of GOS (49%) and GA (28%) after 2 h of reaction. The conformational and residual activity changes of enzymes under US conditions were also evaluated, Gox being positively affected whereas in β-gal hardly any change was found. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    PubMed

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  18. Design of CGMP Production of 18F- and 68Ga-Radiopharmaceuticals

    PubMed Central

    Chu, Pei-Chun; Chao, Hao-Yu; Shieh, Wei-Chen; Chen, Chuck C.

    2014-01-01

    Objective. Radiopharmaceutical production process must adhere to current good manufacturing process (CGMP) compliance to ensure the quality of precursor, prodrug (active pharmaceutical ingredient, API), and the final drug product that meet acceptance criteria. We aimed to develop an automated system for production of CGMP grade of PET radiopharmaceuticals. Methods. The hardware and software of the automated synthesizer that fit in the hot cell under cGMP requirement were developed. Examples of production yield and purity for 68Ga-DOTATATE and 18F-FDG at CGMP facility were optimized. Analytical assays and acceptance criteria for cGMP grade of 68Ga-DOTATATE and 18F-FDG were established. Results. CGMP facility for the production of PET radiopharmaceuticals has been established. Radio-TLC and HPLC analyses of 68Ga-DOTATATE and 18F-FDG showed that the radiochemical purity was 92% and 96%, respectively. The products were sterile and pyrogenic-free. Conclusion. CGMP compliance of radiopharmaceuticals has been reviewed. 68Ga-DOTATATE and 18F-FDG were synthesized with high radiochemical yield under CGMP process. PMID:25276810

  19. Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with PET.

    PubMed

    Tsoukalas, Charalambos; Geninatti-Crich, Simonetta; Gaitanis, Anastasios; Tsotakos, Theodoros; Paravatou-Petsotas, Maria; Aime, Silvio; Jiménez-Juárez, Rogelio; Anagnostopoulos, Constantinos D; Djanashvili, Kristina; Bouziotis, Penelope

    2018-02-20

    The aim of this study was to demonstrate the potential of Ga-68-labeled macrocycle (DOTA-en-pba) conjugated with phenylboronic vector for tumor recognition by positron emission tomography (PET), based on targeting of the overexpressed sialic acid (Sia). The imaging reporter DOTA-en-pba was synthesized and labeled with Ga-68 at high efficiency. Cell binding assay on Mel-C and B16-F10 melanoma cells was used to evaluate melanin production and Sia overexpression to determine the best model for demonstrating the capability of [ 68 Ga]DOTA-en-pba to recognize tumors. The in vivo PET imaging was done with B16-F10 tumor-bearing SCID mice injected with [ 68 Ga]DOTA-en-pba intravenously. Tumor, blood, and urine metabolites were assessed to evaluate the presence of a targeting agent. The affinity of [ 68 Ga]DOTA-en-pba to Sia was demonstrated on B16-F10 melanoma cells, after the production of melanin as well as Sia overexpression was proved to be up to four times higher in this cell line compared to that in Mel-C cells. Biodistribution studies in B16-F10 tumor-bearing SCID mice showed blood clearance at the time points studied, while uptake in the tumor peaked at 60 min post-injection (6.36 ± 2.41 % ID/g). The acquired PET images were in accordance with the ex vivo biodistribution results. Metabolite assessment on tumor, blood, and urine samples showed that [ 68 Ga]DOTA-en-pba remains unmetabolized up to at least 60 min post-injection. Our work is the first attempt for in vivo imaging of cancer by targeting overexpression of sialic acid on cancer cells with a radiotracer in PET.

  20. Production status of GaAs/Ge solar cells and panels

    NASA Technical Reports Server (NTRS)

    Smith, B.; Gillanders, M.; Vijayakumar, P.; Lillington, D.; Yang, H.; Rolph, R.

    1991-01-01

    GaAs/Ge solar cells with lot average efficiencies in excess of 18 percent were produced by MOCVD growth techniques. A description of the cell, its performance and the production facility are discussed. Production GaAs/Ge cells of this type were recently assembled into circuits and bonded to aluminum honeycomb panels to be used as the solar array for the British UOSAT-F program.

  1. Production status of GaAs/Ge solar cells and panels

    NASA Astrophysics Data System (ADS)

    Smith, B.; Gillanders, M.; Vijayakumar, P.; Lillington, D.; Yang, H.; Rolph, R.

    1991-08-01

    GaAs/Ge solar cells with lot average efficiencies in excess of 18 percent were produced by MOCVD growth techniques. A description of the cell, its performance and the production facility are discussed. Production GaAs/Ge cells of this type were recently assembled into circuits and bonded to aluminum honeycomb panels to be used as the solar array for the British UOSAT-F program.

  2. Production of gymnemic acid depends on medium, explants, PGRs, color lights, temperature, photoperiod, and sucrose sources in batch culture of Gymnema sylvestre.

    PubMed

    Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V; Taha, Rosna Mat

    2012-01-01

    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  3. On the Role of Acidity in Bulk and Nanosheet [T]MFI (T=Al3+ , Ga3+, Fe3+, B3+) Zeolites in the Methanol‐to‐Hydrocarbons Reaction

    PubMed Central

    Meng, Lingqian; Zhu, Xiaochun; Mezari, Brahim; Pestman, Robert; Wannapakdee, Wannaruedee

    2017-01-01

    Abstract The influence of framework substituents (Al3+, Ga3+, Fe3+ and B3+) and morphology (bulk vs. nanometer‐sized sheets) of MFI zeolites on the acidity and catalytic performance in the methanol‐to‐hydrocarbons (MTH) reaction was investigated. The Brønsted acid density and strength decreased in the order Al(OH)Si>Ga(OH)Si>Fe(OH)Si≫B(OH)Si. Pyridine 15N NMR spectra confirmed the differences in the Brønsted and Lewis acid strengths but also provided evidence for site heterogeneity in the Brønsted acid sites. Owing to the lower efficiency with which tervalent ions can be inserted into the zeolite framework, sheet‐like zeolites exhibited lower acidity than bulk zeolites. The sheet‐like Al‐containing MFI zeolite exhibited the greatest longevity as a MTH catalyst, outperforming its bulk [Al]MFI counterpart. Although the lower acidity of bulk [Ga]MFI led to a better catalytic performance than bulk [Al]MFI, the sheet‐like [Ga]MFI sample was found to be nearly inactive owing to lower and heterogeneous Brønsted acidity. All Fe‐ and B‐substituted zeolite samples displayed very low catalytic performance owing to their weak acidity. Based on the product distribution, the MTH reaction was found to be dominated by the olefins‐based catalytic cycle. The small contribution of the aromatics‐based catalytic cycle was larger for bulk zeolite than for sheet‐like zeolite, indicating that shorter residence time of aromatics can explain the lower tendency toward coking and enhanced catalyst longevity. PMID:29201243

  4. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    PubMed Central

    Ahmed, A. Bakrudeen Ali; Rao, A. S.; Rao, M. V.; Taha, Rosna Mat

    2012-01-01

    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors. PMID:22629221

  5. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less

  6. Continuation of comprehensive quality control of the itG 68Ge/68Ga generator and production of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC for clinical research studies.

    PubMed

    Amor-Coarasa, Alejandro; Kelly, James M; Gruca, Monika; Nikolopoulou, Anastasia; Vallabhajosula, Shankar; Babich, John W

    2017-10-01

    Performance of a second itG 68 Ge/ 68 Ga generator system and production of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were tested over one year as an accompaniment to a previously published study (J Nucl Med. 2016;57:1402-1405). Performance of a 1951MBq 68 Ge/ 68 Ga generator was characterized and the eluate used for preparation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC. Weekly elution profiles of 68 Ga elution yield and 68 Ge breakthrough were determined. 68 Ga elution yields averaged 82% (61.8-98.4%) and 68 Ge breakthrough averaged 0.002% (0.0007% to 0.004%). The radiochemical purities of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC were determined by HPLC analysis to be >98% and specific activity was 12.6 and 42GBq/μmol, respectively. 68 Ge contamination in the product was under the detection limit (0.00001%). Final sterile, pyrogen-free formulation of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC in physiologic saline with 5%-7% ethanol was achieved. Performance of a 68 Ge/ 68 Ga generator was studied over one year with satisfactory results. The generator eluate was used to synthesize 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC on a routine basis in high purity. Copyright © 2017. Published by Elsevier Inc.

  7. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone.

    PubMed

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Makino, Akira; Kozaka, Takashi; Kiyono, Yasushi; Shiba, Kazuhiro; Odani, Akira

    2017-10-25

    67 Ga-DOTA-(L-Asp) 11 and 67 Ga-DOTA-(L-Asp) 14 , which have been developed as bone imaging agents, showed a high accumulation in bone and a rapid blood clearance in mice. However, peptides composed of D-amino acids are more stable in vivo than those composed of their L-equivalents. In this study, 67 Ga-DOTA-(D-Asp) n (n = 2, 5, 8, 11, or 14) were synthesized using the Fmoc-based solid-phase methodology and evaluated. In hydroxyapatite binding assay, binding of 67 Ga-DOTA-(D-Asp) n tended to increase with increasing length of the amino acid chain. 67 Ga-DOTA-(D-Asp) 11 and 67 Ga-DOTA-(D-Asp) 14 caused a high accumulation of radioactivity in the bones of the mice. However, the results for 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n were comparable. In urine analyses, the proportion of intact complex after injection of 67 Ga-DOTA-(D-Asp) 14 was significantly higher than that of 67 Ga-DOTA-(L-Asp) 14 . Although 67 Ga-DOTA-(D-Asp) 14 was more stable than 67 Ga-DOTA-(L-Asp) 14 , the properties of 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n as bone imaging agents may be comparable.

  8. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    PubMed Central

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664

  9. Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol.

    PubMed

    Sato, Shun; Morita, Naoki; Kitamoto, Dai; Habe, Hiroshi

    2013-01-01

    Some acetic acid bacteria have been shown to produce large amounts of glyceric acid (GA) from glycerol, which is a by-product of biodiesel fuel (BDF) production. Previously, a Gluconobacter strain was found that produced decreased amounts of GA from glycerol in the presence of methanol, a major ingredient of raw glycerol derived from the BDF industry. Thus, a comparative transcriptome analysis of Gluconobacter frateurii NBRC103465 was performed to investigate changes in gene expression during GA production from glycerol in the presence of methanol. Cells grown with methanol showed upregulated expression of a class III alcohol dehydrogenase homolog (adhC(Gf)) and decreased GA production. adhC(Gf) was cloned and expressed heterologously in Escherichia coli, and the presence of an additional protein with an approximate molecular mass of 39 kDa in the cytosol of the recombinant E. coli cells was identified by SDS-PAGE. Activity measurements of the cytosol revealed that the translational product of adhC(Gf) exhibited formaldehyde dehydrogenase activity in the presence of nicotinamide adenine dinucleotide and glutathione. Gluconobacter frateurii cells grown in 1% methanol-containing glycerol were found to have fivefold higher formaldehyde dehydrogenase activity than cells grown without methanol, suggesting that adhC(Gf) in G. frateurii cells functions in the dissimilation of methanol-derived formaldehyde.

  10. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    PubMed

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  11. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  12. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    PubMed

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  14. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice

    NASA Astrophysics Data System (ADS)

    Alves, F.; Alves, V. H.; Neves, A. C. B.; do Carmo, S. J. C.; Nactergal, B.; Hellas, V.; Kral, E.; Gonçalves-Gameiro, C.; Abrunhosa, A. J.

    2017-05-01

    A fully automated system for the production of 68Ga based on commercially available cyclotron liquid target and synthesis modules is described. A solution containing enriched 68Zn dissolved in a nitric solution is irradiated in a Cyclone 18/9 IBA cyclotron leading to the production of up to about 25 GBq of 68Ga. The irradiated solution is transferred to a Synthera synthesis module in which 68Ga is separated and purified with a yield superior to 85 % and where further labelling is achieved with yields no inferior to 70 %. The developed and implemented method presents an improved approach for the production of 68Ga-radiopharmaceuticals suitable for human use, in a process that takes less than 2 hours. This technique represents an economically viable alternative to 68Ge/68Ga generators with improved characteristics.

  16. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films

    NASA Astrophysics Data System (ADS)

    Criado, P.; Fraschini, C.; Salmieri, S.; Becher, D.; Safrany, A.; Lacroix, M.

    2016-01-01

    Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm-1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg-1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg-1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.

  17. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Part I. Chemistry and labeling technique.

    PubMed

    Schuhmacher, J; Matys, R; Hauser, H; Maier-Borst, W; Matzku, S

    1986-01-01

    As a chelating agent for labeling antibodies (Abs) with metallic radionuclides, a propionic acid substituted ethylenediamine N,N'-di-[(o-hydroxyphenyl) acetic acid] (P-EDDHA), which tightly complexes 67Ga, was synthesized. The 67Ga-P-EDDHA chelate was coupled in aqueous solution to IgG at a molar ratio of 1:1 via carbodiimide. The average coupling yield was 15%. A specific activity of 4 mCi/mg IgG could be obtained with commercially supplied 67Ga. In vitro stability was evaluated in human serum at 37 degrees C and showed a half-life of about 120 h for the release of 67Ga from the labeled Ab during the initial phase of incubation. This in vitro halflife is similar to that measured for 111In-DTPA labeled Abs. Because of the high stability of the 67Ga-P-EDDHA chelate, the in vivo formation of radioactive labeled transferrin by transchelation, as described for 111In-DTPA labeled Abs, should, however, be reduced by this labeling technique.

  18. [Microbial transformation of glycyrrhetinic acid by Cunninghamella blakesleeana].

    PubMed

    Ma, Yuan; Xie, Dan; Wang, Zhao-hua; Dai, Jun-gui; An, Xi-qiang; Gu, Zheng-yi

    2015-11-01

    A study on the microbial transformation of glycyrrhetinic acid (GA) was conducted by a fungus, Cunninghamella blakesleeana CGMCC 3.970 systematically. After incubation with the cell cultures of C. blakesleeana CGMCC 3.970 at 25 degrees C for 7 days on a rotary shaker operating at 135 r x min(-1), GA was converted into one major product and five minor products. The products were extracted and purified by solvent extraction, macroporous adsorbent resin, silica gel column chromatography, and semi-preparative RP-HPLC chromatography. Their structures were identified as 3-oxo-15α-hydroxy-18β-glycyrrhetinic acid(1), 3-oxo-15β-hydroxy-18β-glycyrrhetinic acid (2), 7β,15α-dihydroxy-18β-glycyrrhetinic acid (3), 3-oxo-7β, 15α-dihydroxy-18β-glycyrrhetinic acid (4), 7β-hydroxy-18β-glycyrrhetinic acid(5) and 15α-hydroxy-18β-glycyrrhetinic acid(6) by the analyses of MS, 1H-NMR and 13C-NMR spectroscopic data respectively. Among them, 2 was a new compound. These results suggest that C. blakesleeana CGMCC 3.970 has the capability of selective ketonization and hydroxylation for GA. [Key words] glycyrrhetinic acid; Cunninghamella blakesleeana CGMCC 3. 970; microbial transformation

  19. Good manufacturing practice production of [68Ga]Ga-ABY-025 for HER2 specific breast cancer imaging

    PubMed Central

    Velikyan, Irina; Wennborg, Anders; Feldwisch, Joachim; Lindman, Henrik; Carlsson, Jörgen; Sörensen, Jens

    2016-01-01

    Therapies targeting human epidermal growth factor receptor type 2 (HER2) have revolutionized breast cancer treatment, but require invasive biopsies and rigorous histopathology for optimal patient stratification. A non-invasive and quantitative diagnostic method such as positron emission tomography (PET) for the pre-therapeutic determination of the presence and density of the HER2 would significantly improve patient management efficacy and treatment cost. The essential part of the PET methodology is the production of the radiopharmaceutical in compliance with good manufacturing practice (GMP). The use of generator produced positron emitting 68Ga radionuclide would provide worldwide accessibility of the agent. GMP compliant, reliable and highly reproducible production of [68Ga]Ga-ABY-025 with control over the product peptide concentration and amount of radioactivity was accomplished within one hour. Two radiopharmaceuticals were developed differing in the total peptide content and were validated independently. The specific radioactivity could be kept similar throughout the study, and it was 6-fold higher for the low peptide content radiopharmaceutical. Intrapatient comparison of the two peptide doses allowed imaging optimization. The high peptide content decreased the uptake in healthy tissue, in particular liver, improving image contrast. The later imaging time points enhanced the contrast. The combination of high peptide content radiopharmaceutical and whole-body imaging at 2 hours post injection appeared to be optimal for routine clinical use. PMID:27186441

  20. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  1. Experience in production of (68)Ga-DOTA-NOC for clinical use under an Expanded Access IND.

    PubMed

    Green, Mark A; Mathias, Carla J; Fletcher, James W

    2016-10-01

    [(68)Ga]Ga-DOTA-NOC was produced under an Expanded Access IND for 174 clinical PET/CT studies to evaluate patients with neuroendocrine tumors. Production employed either the TiO2-based Eckert & Ziegler (EZAG) (68)Ge/(68)Ga-generator (with fractionated elution), or the SiO2-based ITG (68)Ge/(68)Ga-generator. In both cases, [(68)Ga]Ga-DOTA-NOC was reliably produced, without pre-synthesis purification of the(68)Ga generator eluate, using readily-implemented manual synthesis procedures. [(68)Ga]Ga-DOTA-NOC radiochemical purity averaged 99.2±0.4%. Administered (68)Ga dose averaged 181±22 MBq, and administered peptide mass averaged 43.2±5.2µg (n=47) and 23.9±5.7µg (n=127), respectively, using the EZAG and ITG generators. At dose expiration, (68)Ge breakthrough in the final product averaged 2.7×10(-7)% and 5.4×10(-5%) using the EZAG and ITG generators, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Photocatalytic degradation of perfluorooctanoic acid with beta-Ga2O3 in anoxic aqueous solution.

    PubMed

    Zhao, Baoxiu; Lv, Mou; Zhou, Li

    2012-01-01

    Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO*) due to its stable chemical structure and the high electronegativity of fluorine. Photocatalytic reduction of PFOA with beta-Ga2O3 in anoxic aqueous solution was investigated for the first time, and the results showed that the photoinduced electron (e(cb-)) coming from the beta-Ga2O3 conduction band was the major degradation substance for PFOA, and shorter-chain perfluorinated carboxylic acids (PFCAs, CnF2n+i1COOH, 1 < or = n < or = 6) were the dominant products. Furthermore, the concentration of F- was measured by the IC technique and defluorination efficiency was calculated. After 3 hr, the photocatalytic degradation efficiency was 98.8% and defluorination efficiency was 31.6% in the presence of thiosulfate and bubbling N2. The degradation reaction followed first-order kinetics (k = 0.0239 min(-1), t1/2 = 0.48 hr). PFCAs (CnF2n+1COOH, 1 < or = n < or = 7) were detected and measured by LC-MS and LC-MS/MS methods. It was deduced that the probable photocatalytic degradation mechanism involves e(cb-) attacking the carboxyl of CnF2n+1COOH, resulting in decarboxylation and the generation of CnF2n+1*. The produced CnF2n+1* reacted with H2O, forming CnF2n+1OH, then CnF2n+1OH underwent HF loss and hydrolysis to form CnF2n+1COOH.

  3. The protection of glycyrrhetinic acid (GA) towards acetaminophen (APAP)-induced toxicity partially through fatty acids metabolic pathway.

    PubMed

    Yang, Hua; Jiang, Tingshu; Li, Ping; Mao, Qishan

    2015-09-01

    Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of compounds preventing APAP-induced toxicity. To investigate the protection mechanism of glycyrrhetinic acid towards APAP-induced liver damage using metabolomics method. APAP-induced liver toxicity model was made through intraperitoneal injection (i.p.) of APAP (400 mg/kg). Glycyrrhetinic acid was dissolved in corn oil, and intraperitoneal injection (i.p.) of glycyrrhetinic acid (500 mg/kg body weight) was performed for 20 days before the injection of APAP. UPLC-ESI-QTOF MS was employed to analyze the metabolomic profile of serum samples. The pre-treatment of glycyrrhetinic acid significantly protected APAP-induced toxicity, indicated by the histology of liver, the activity of ALT and AST. Metabolomics showed that the level of palmtioylcarnitine and oleoylcarnitine significantly increased in serum of APAP-treated mice, and the pre-treatment with GA can prevent this elevation of these two fatty acid-carnitines. Reversing the metabolism pathway of fatty acid is an important mechanism for the protection of glycyrrhetinic acid towards acetaminophen-induced liver toxicity.

  4. Effect of citric acid on material properties of ZnGa2O4:Cr3+ nanopowder prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Hussen, Megersa K.; Dejene, Francis B.; Gonfa, Girma G.

    2018-05-01

    This paper reports the material properties of Cr3+ (1.0 mol%)-doped ZnGa2O4 nanopowders prepared by citric acid-assisted sol-gel method with metal cations (Zn + Ga) to citric (M:CA) molar ratios of (1:0.5, 1:1, 1:3 and 1:4). The X-ray diffraction (XRD) results show that the synthesized nanoparticles are cubic structured and concentration of citric acid did not affect the structure. The scanning electron microscope (SEM) shows that the increase of the M:CA molar ratio favors the formation of smaller nano particle of ZnGa2O4:Cr3+. The photoluminescence (PL) is found to be maximum for sample with M:CA ratio of 1:1. Further increase in citric acid leads to significant decrease in the PL intensity. Energy-dispersive X-ray spectroscopy (EDS) measurement confirms the presence of the Zn, Ga, O and Cr ions. Ultraviolet-visible (UV-Vis) spectrophotometer measurement shows an increase in reflectance in visible region and the energy band gap was found to decrease with an increase in citric acid molar ratio. The emission spectra, particle size and photoluminescence lifetimes are comparable with reports on bioimaging applications.

  5. Effect of heat-generated product from uronic acids on the physiological activities of microbial cells and its application.

    PubMed

    Aoyagi, Hideki; Ishii, Hideki; Ugwu, Charles U; Tanaka, Hideo

    2008-07-01

    Filtered samples of monogalacturonic (GA) and monoglucuronic acids (GL) that were prepared using millipore filter (pore size=0.2 microm) slightly inhibited the growth of Escherichia coli while the autoclaved (at 121 degrees C for 20 min) samples of GA and GL completely inhibited the growth of E. coli. The most effective substance generated upon autoclave treatment was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP generation were also established by autoclaving GA (pH 2.3) at 121 degrees C for 3h. DHCP completely inhibited the growth of E. coli. However, the growth of E. coli was restored when superoxide dismutase and catalase were added to the culture broth that contained DHCP. It was thought that DHCP might have induced the release of active oxygen, which resulted in the inhibition of microbial growth. In the case of gram-positive bacteria (Bacillus cereus, Bacillus subtilis and Staphylococcus aureus) and yeast (Saccharomyces cerevisiae and Candida brassicae), DHCP inhibited the cell growth. Based on our results, methods for preparation of food preservatives that contained pectin degraded products (oligo-galacturonic acid and monogalacturonic acid) and DHCP were developed. The preservatives were very effective in inhibiting the growth of E. coli and S. cerevisiae.

  6. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  7. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  8. 77 FR 75406 - Foreign-Trade Zone 26-Atlanta, GA; Notification of Proposed Production Activity; Perkins Shibaura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-90-2012] Foreign-Trade Zone 26--Atlanta, GA; Notification of Proposed Production Activity; Perkins Shibaura Engines LLC, (Diesel Engines), Griffin, GA Perkins Shibaura Engines LLC (Perkins Shibaura), an operator of FTZ 26, submitted a notification of proposed production activity for its facilit...

  9. A convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer.

    PubMed

    Mathias, Carla J; Green, Mark A

    2008-12-01

    A convenient method is described for compounding [(68)Ga]Ga-MAA (MAA=macroaggregated human serum albumin) with the eluate of a commercially available TiO(2)-based (68)Ge/(68)Ga generator. The final [(68)Ga]Ga-MAA product was obtained with an 81.6+/-5.3% decay-corrected radiochemical yield and a radiochemical purity of 99.8+/-0.1% (n=5). Microscopic examination showed the [(68)Ga]Ga-MAA product to remain within the original particle size range. The entire procedure, from generator elution to delivery of the final [(68)Ga]Ga-MAA suspension, could be completed in 25 min. Only 4.4+/-0.9% of the total (68)Ge breakthrough remaining associated with the final [(68)Ga]Ga-MAA product. The procedure allows reasonably convenient preparation of [(68)Ga]Ga-MAA in a fashion that can be readily adapted to sterile product compounding for human use.

  10. A Convenient Route to [68Ga]Ga-MAA for Use as a Particulate PET Perfusion Tracer

    PubMed Central

    Mathias, Carla J.; Green, Mark A.

    2008-01-01

    A convenient method is described for compounding [68Ga]Ga-MAA (MAA = macroaggregated human serum albumin) with the eluate of a commercially available TiO2-based 68Ge/68Ga generator. The final [68Ga]Ga-MAA product was obtained with an 81.6 ± 5.3% decay-corrected radiochemical yield and a radiochemical purity of 99.8 ± 0.1% (n = 5). Microscopic examination showed the [68Ga]Ga-MAA product to remain within the original particle size range. The entire procedure, from generator elution to delivery of the final [68Ga]Ga-MAA suspension, could be completed in 25 minutes. Only 4.4 ± 0.9% of the total 68Ge breakthrough remaining associated with the final [68Ga]Ga-MAA product. The procedure allows reasonably convenient preparation of [68Ga]Ga-MAA in a fashion that can be readily adapted to sterile product compounding for human use. PMID:18640845

  11. Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings.

    PubMed

    Jiang, Sha; Xu, Ke; Wang, Yong-Zhou; Ren, Yan-Ping; Gu, Song

    2008-01-01

    GA(3) and GA(4) (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA(3) and GA(4) on xylem cell formation and the G-layer, we studied the effect of GA(3) and GA(4) and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10(-9) micromol acetone as control, 5.78 x 10(-8) micromol gibberellic acid (GA(3)), 6.21 x 10(-8) micromol GA(4), and 6.86 x 10(-8) micromol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA(3) and GA(4) promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA(3) and GA(4) affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA(3) and GA(4) in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.

  12. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahal, R.; Pantha, B. N.; Li, J.

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias,more » setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.« less

  13. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  14. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  15. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-03-01

    Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.

  16. [Fatty acids in confectionery products].

    PubMed

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  17. Controlled release of 18-β-glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line

    NASA Astrophysics Data System (ADS)

    Cacciotti, Ilaria; Chronopoulou, Laura; Palocci, Cleofe; Amalfitano, Adriana; Cantiani, Monica; Cordaro, Massimo; Lajolo, Carlo; Callà, Cinzia; Boninsegna, Alma; Lucchetti, Donatella; Gallenzi, Patrizia; Sgambato, Alessandro; Nocca, Giuseppina; Arcovito, Alessandro

    2018-07-01

    The topical treatment for oral mucosal diseases is often based on products optimized for dermatologic applications; consequently, a lower therapeutic effect may be present. 18-β-glycyrrhetic acid (GA) is extracted from Glycirrhiza glabra. The first aim of this study was to test the cytotoxicity of GA on PE/CA-PJ15 cells. The second aim was to propose and test two different delivery systems, i.e. nanoparticles and fibers, to guarantee a controlled release of GA in vitro. We used chitosan and poly(lactic-co-glycolic) acid based nanoparticles and polylactic acid fibers. We tested both delivery systems in vitro on PE/CA-PJ15 cells and on normal human gingival fibroblasts (HGFs). The morphology of GA-loaded nanoparticles (GA-NPs) and fibers (GA-FBs) was investigated by electron microscopy and dynamic light scattering; GA release kinetics was studied spectrophotometrically. MTT test was used to assess GA cytotoxicity on both cancer and normal cells. Cells were exposed to different concentrations of GA (20–500 μmol l‑1) administered as free GA (GA-f), and to GA-NPs or GA-FBs. ROS production was evaluated using dichlorodihydrofluorescein as a fluorescent probe. Regarding the cytotoxic effect of GA on PE/CA-PJ15 cells, the lowest TC50 value was 200 μmol l‑1 when GA was added as GA-NPs. No cytotoxic effects were observed when GA was administered to HGFs. N-acetyl Cysteine reduced mortality induced by GA-f in PE/CA-PJ15 cells. The specific effect of GA on PE/CA-PJ15 cells is mainly due to the different sensitivity of cancer cells to ROS over-production; GA-NPs and GA-FBs formulations increase, in vitro, this toxic effect on oral cancer cells.

  18. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    PubMed

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  19. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    PubMed

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.

    PubMed

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2017-06-01

    Some acetic acid bacteria produce large amounts of glyceric acid (GA) from glycerol in culture broth. However, methanol, which is a major contaminant of raw glycerol derived from the biodiesel fuel industry, sharply decreases cell growth and GA production [AMB Express, 3, 20, 2013]. Thus, we evaluated the methylotrophic acetic acid bacterium Acidomonas methanolica NBRC104435 for its ability to produce GA from glycerol containing methanol. This strain accumulated GA in its culture broth when 1-3 wt% glycerol was available as a carbon source. We observed improved cell growth and GA accumulation when 1 vol% methanol was added to the 3-5 wt% glycerol medium. The maximum concentration of GA was 12.8 g/L in medium containing 3 wt% glycerol plus 1 vol% methanol. In addition, the enantiomeric excess (ee) of the GA produced was revealed to be 44%, indicating that this strain converted glycerol to d-GA with a lower enantioselectivity than other acetic acid bacteria, which had 70-99% ee.

  1. An Overview of Structurally Modified Glycyrrhetinic Acid Derivatives as Antitumor Agents.

    PubMed

    Xu, Bing; Wu, Gao-Rong; Zhang, Xin-Yu; Yan, Meng-Meng; Zhao, Rui; Xue, Nan-Nan; Fang, Kang; Wang, Hui; Chen, Meng; Guo, Wen-Bo; Wang, Peng-Long; Lei, Hai-Min

    2017-06-02

    Glycyrrhetinic Acid ( GA ), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.

  2. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  3. Organic Acid Production by Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, Jon K.; Lasure, Linda L.

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter.more » Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  4. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  5. Rht18 Semidwarfism in Wheat Is Due to Increased GA 2-oxidaseA9 Expression and Reduced GA Content1[OPEN

    PubMed Central

    Karafiatova, Miroslava; Uauy, Cristobal

    2018-01-01

    Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these “overgrowth” mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9. PMID:29545269

  6. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  7. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  8. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  9. Spatio-temporal appearance of α-amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid.

    PubMed

    Shahpiri, Azar; Talaei, Nasim; Finnie, Christine

    2015-01-01

    Cereal seed germination involves mobilization of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellin produced by the embryo the aleurone layer synthesizes hydrolases that are secreted to the endosperm for degradation of storage products. In this study analysis of intracellular protein accumulation and release from barley aleurone layers is presented for the important enzymes in starch degradation: α-amylase and limit dextrinase (LD). Proteins were visualized by immunoblotting in aleurone layers and culture supernatants from dissected aleurone layers incubated up to 72 h with either gibberellic acid (GA), abscisic acid (ABA) or salicylic acid (SA). The results show that α-amylase is secreted from aleurone layer treated with GA soon after synthesis but the release of LD to culture supernatants was significantly delayed and coincided with a general loss of proteins from aleurone layers. Release of LD was found to differ from that of amylase and was suggested to depend on programmed cell death (PCD). Despite detection of intracellular amylase in untreated aleurone layers or aleurone layers treated with ABA or SA, α-amylase was not released from these samples. Nevertheless, the release of α-amylase was observed from aleurone layers treated with GA+ABA or GA+SA. © 2014 Society of Chemical Industry.

  10. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  11. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  12. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants.

    PubMed

    Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M, Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B; Shukor, Nor Aini Ab

    2015-06-01

    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3-1.52 ng g(-1) fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants.

  13. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants

    PubMed Central

    Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M., Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B.; Shukor, Nor Aini Ab.

    2015-01-01

    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3–1.52 ng g−1 fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants. PMID:26175614

  14. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae.

    PubMed

    Gong, Qian; Yang, Zhaoen; Wang, Xiaoqian; Butt, Hamama Islam; Chen, Eryong; He, Shoupu; Zhang, Chaojun; Zhang, Xueyan; Li, Fuguang

    2017-03-03

    Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in

  15. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum.

    PubMed

    Kang, Mi-Sun; Jang, Hee-Sook; Oh, Jong-Suk; Yang, Kyu-Ho; Choi, Nam-Ki; Lim, Hoi-Soon; Kim, Seon-Mi

    2009-12-01

    Interactions between periodontal bacteria and human oral epithelial cells can lead to the activation and expression of a variety of inflammatory mediators in epithelial cells. Fusobacterium nucleatum is a filamentous human pathogen that is strongly associated with periodontal diseases. This study examined the effects of methyl gallate (MG) and gallic acid (GA) on the production of inflammatory mediators, interleukin (IL)-6 and IL-8, by oral epithelial cells stimulated by F. nucleatum. In a real-time reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay, live F. nucleatum induced high levels of gene expression and protein release of IL-6 and IL-8. The effects of MG and GA were examined by treating KB oral epithelial cells with MG and GA and stimulating them with F. nucleatum. MG and GA inhibited significantly the increases in the IL-6 and IL-8 gene and protein levels in a dose-dependent manner. These Compounds also inhibited the growth of F. nucleatum. No visible effects of MG and GA on the adhesion and invasion of KB cells by F. nucleatum were observed. In conclusion, both MG and GA inhibit IL-6 and IL-8 production from F. nucleatum-activated KB cells.

  16. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  17. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.

    PubMed

    Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong

    2017-08-17

    Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.

  18. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  19. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  20. Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic Acid), MFM-300(Ga2).

    PubMed

    Krap, Cristina P; Newby, Ruth; Dhakshinamoorthy, Amarajothi; García, Hermenegildo; Cebula, Izabela; Easun, Timothy L; Savage, Mathew; Eyley, Jennifer E; Gao, Shan; Blake, Alexander J; Lewis, William; Beton, Peter H; Warren, Mark R; Allan, David R; Frogley, Mark D; Tang, Chiu C; Cinque, Gianfelice; Yang, Sihai; Schröder, Martin

    2016-02-01

    Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga(1.87)Fe(0.13)(OH)2(L)], MFM-300(Ga(1.87)Fe(0.13)), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O(1.5)(OH)(HL)(L)(0.5)(H2O)(3.5)], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga(1.87)Fe(0.13)) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report

  1. New Passivation Methods of GaAs.

    DTIC Science & Technology

    1980-01-01

    Fabrication of Thin Nitride Layers on GaAs 33 - 35 CHAPTER 7 Passivation of InGaAsP 36 - 37 CHAPTER 8 Emulsions on GaAs Surfaces 38 - 42 APPENDIX...not yet given any useful results. The deposition of SiO2 by using emulsions is pursued and first results on the possibility of GaAs doping are...glycol-tartaric acid based aqueous solution was used in order to anodically oxidise the gate notch after the source and drain ohmic contacts were formed

  2. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  3. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders.

  4. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors

    NASA Astrophysics Data System (ADS)

    Zhan, Xiang-Mi; Hao, Mei-Lan; Wang, Quan; Li, Wei; Xiao, Hong-Ling; Feng, Chun; Jiang, Li-Juan; Wang, Cui-Mei; Wang, Xiao-Liang; Wang, Zhan-Guo

    2017-03-01

    Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ( {V}{DS}=0.5 V) shows a clear decrease of 69 μA upon the introduction of 1 μmolL {}-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.

  5. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  6. Oral hygiene products and acidic medicines.

    PubMed

    Hellwig, E; Lussi, A

    2006-01-01

    Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.

  7. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia.

    PubMed

    Negishi, Osamu; Negishi, Yukiko

    2017-09-01

    Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.

  9. Improving the fermentation production of the individual key triterpene ganoderic acid me by the medicinal fungus Ganoderma lucidum in submerged culture.

    PubMed

    Liu, Gao-Qiang; Wang, Xiao-Ling; Han, Wen-Jun; Lin, Qin-Lu

    2012-10-24

    Enhanced ganoderic acid Me (GA-Me, an important anti-tumor triterpene) yield was attained with the medicinal fungus Ganoderma lucidum using response surface methodology (RSM). Interactions were studied with three variables, viz. glucose, peptone and culture time using a Central Composite Design (CCD). The CCD contains a total of 20 experiments with the first 14 experiments organized in a fractional factorial design, with the experimental trails from 15 to 20 involving the replications of the central points. A polynomial model, describing the relationships between the yield of GA-Me and the three factors in a second-order equation, was developed. The model predicted the maximum GA-Me yield of 11.9 mg·L−1 for glucose, peptone, culture time values of 44.4 g·L−1, 5.0 g·L−1, 437.1 h, respectively, and a maximum GA-Me yield of 12.4 mg·L−1 was obtained in the validation experiment, which represented a 129.6% increase in titre compared to that of the non-optimized conditions. In addition, 11.4 mg·L−1 of GA-Me was obtained in a 30-L agitated fermenter under the optimized conditions, suggesting the submerged culture conditions optimized in the present study were also suitable for GA-Me production on a large scale.

  10. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  11. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  12. Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2)

    PubMed Central

    2016-01-01

    Metal–organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3′,5,5′-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with −OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga1.87Fe0.13(OH)2(L)], MFM-300(Ga1.87Fe0.13), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3′,5,5′-tetracarboxylic acid. An Fe(III)-based material [Fe3O1.5(OH)(HL)(L)0.5(H2O)3.5], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates μ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga1.87Fe0.13) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the

  13. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  14. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris.

    PubMed

    Witthuhn, R Corli; van der Merwe, Enette; Venter, Pierre; Cameron, Michelle

    2012-06-15

    Alicyclobacilli are thermophilic, acidophilic bacteria (TAB) that spoil fruit juice products by producing guaiacol. It is currently believed that guaiacol is formed by Alicyclobacillus in fruit juices as a product of ferulic acid metabolism. The aim of this study was to identify the precursors that can be metabolised by Alicyclobacillus acidoterrestris to produce guaiacol and to evaluate the pathway of guaiacol production. A. acidoterrestris FB2 was incubated at 45°C for 7days in Bacillus acidoterrestris (BAT) broth supplemented with ferulic acid, vanillin or vanillic acid, respectively. The samples were analysed every day to determine the cell concentration, the supplement concentration using high performance liquid chromatography with UV-diode array detection (HPLC-DAD) and the guaiacol concentration, using both the peroxidase enzyme colourimetric assay (PECA) and HPLC-DAD. The cell concentration of A. acidoterrestris FB2 during the 7days in all samples were above the critical cell concentration of 10(5)cfu/mL reportedly required for guaiacol production. The guaiacol produced by A. acidoterrestris FB2 increased with an increase in vanillin or vanillic acid concentration and a metabolic pathway of A. acidoterrestris FB2 directly from vanillin to guaiacol was established. The high concentration of vanillic acid (1000mg/L) resulted in an initial inhibitory effect on the cells, but the cell concentration increased after day 2. Guaiacol production did not occur in the absence of either a precursor or A. acidoterrestris FB2 and guaiacol was not produced by A. acidoterrestris FB2 in the samples supplemented with ferulic acid. The presence of Alicyclobacillus spp. that has the ability to produce guaiacol, as well as the substrates vanillin or vanillic acid is prerequisite for production of guaiacol. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  16. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells.

    PubMed

    Acevedo, Francisca; Hermosilla, Jeyson; Sanhueza, Claudia; Mora-Lagos, Barbara; Fuentes, Irma; Rubilar, Mónica; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2018-07-01

    Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). GA loading efficiency as high as 77% was obtained under optimal process conditions. The coaxial nanofibers controlled GA release in acid and neutral pH medium. Cytotoxicity and reactive oxygen species (ROS) production on gallbladder cancer cell lines GB-d1 and NOZ in the presence of GA-nanofibers were assessed. GA-nanofibers triggered an increase in the cellular cytotoxicity compared with free GA on GB-d1 and NOZ cells. Statistically significant differences were found in ROS levels of GA-nanofibers compared with free GA on NOZ cells. Differently, ROS production on GB-d1 cell line was similar. Based on these results, the coaxial nanofibers obtained in this study under optimized operational conditions offer an alternative for the development of a GA release system with improved chemopreventive action on gallbladder cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  18. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Factors Which Increase Acid Production in Milk by Lactobacilli

    PubMed Central

    Huhtanen, C. N.; Williams, W. L.

    1963-01-01

    The stimulation by yeast extract of acid production in milk by various lactobacilli was studied. It was found that supplementing milk with purine and pyrimidine bases and amino acids allowed nearly maximal acid production by Lactobacillus bulgaricus strain 7994, L. acidophilus 4796, 4356, and 4357, and L. leichmannii 326 and 327. Further supplementation with deoxyribotides allowed maximal acid production by L. acidophilus 204, but L. acidophilus 207 required adenosine or adenylic acid. L. casei strain 7469 showed no appreciable response to the amino acids or purine and pyrimidine bases, and is presumed to require an unidentified factor in corn steep liquor. PMID:13955610

  20. Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al+In toxicity.

    PubMed

    Su, Jeng-Yan; Syu, Chien-Hui; Lee, Dar-Yuan

    2018-02-15

    Limited information exists on the effects of emerging contaminants gallium (Ga) and indium (In) on rice plant growth. This study investigated the effects on growth and uptake of Ga and In by rice plants grown in soils with different properties. Pot experiment was conducted and the rice seedlings were grown in two soils of different pH (Pc and Cf) spiked with various Ga and In concentrations. The results showed concentrations of Ga, In, and Al in soil pore water increased with Ga- or In-spiking in acidic Pc soils, significantly decreasing growth indices. According to the dose-response curve, we observed that the EC 50 value for Ga and In treatments were 271 and 390mgkg -1 in Pc soils, respectively. The context of previous hydroponic studies suggests that growth inhibition of rice seedlings in Ga-spiked Pc soils is mainly due to Al toxicity resulting from enhanced Al release through competitive adsorption of Ga, rather than from Ga toxicity. In-spiked Pc soils, both In and Al toxicity resulted in growth inhibition, while no such effect was found in Cf soils due to the low availability of Ga, In and Al under neutral pH conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  2. Exploring the radiosynthesis and in vitro characteristics of [68 Ga]Ga-DOTA-Siglec-9.

    PubMed

    Jensen, Svend B; Käkelä, Meeri; Jødal, Lars; Moisio, Olli; Alstrup, Aage K O; Jalkanen, Sirpa; Roivainen, Anne

    2017-07-01

    Vascular adhesion protein 1 is a leukocyte homing-associated glycoprotein, which upon inflammation rapidly translocates from intracellular sources to the endothelial cell surface. It has been discovered that the cyclic peptide residues 283-297 of sialic acid-binding IgG-like lectin 9 (Siglec-9) "CARLSLSWRGLTLCPSK" bind to vascular adhesion protein 1 and hence makes the radioactive analogues of this compound ([ 68 Ga]Ga-DOTA-Siglec-9) interesting as a noninvasive visualizing marker of inflammation. Three different approaches to the radiosynthesis of [ 68 Ga]Ga-DOTA-Siglec-9 are presented and compared with previously published methods. A simple, robust radiosynthesis of [ 68 Ga]Ga-DOTA-Siglec-9 with a yield of 62% (non decay-corrected) was identified, and it had a radiochemical purity >98% and a specific radioactivity of 35 MBq/nmol. Furthermore, the protein binding and stability of [ 68 Ga]Ga-DOTA-Siglec-9 were analyzed in vitro in mouse, rat, rabbit, pig, and human plasma and compared with in vivo pig results. The plasma in vitro protein binding of [ 68 Ga]Ga-DOTA-Siglec-9 was the lowest in the pig followed by rabbit, human, rat, and mouse. It was considerably higher in the in vivo pig experiments. The in vivo stability in pigs was lower than the in vitro stability. Despite considerable species differences, the observed characteristics of [ 68 Ga]Ga-DOTA-Siglec-9 are suitable as a positron emission tomography tracer. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinru

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, westernmore » blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro.

  4. Amino acids production focusing on fermentation technologies - A review.

    PubMed

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gibberellic acid (GA3) induced changes in proanthocyanidins and malt quality of two- and six-row husked barleys.

    PubMed

    Yadav, S K; Luthra, Y P; Sood, D R; Aggarwal, N K

    2000-01-01

    Analysis of husked barleys for proanthocyanidins and malt quality attributes has shown that not a single variety is free of proanthocyanidins. The proanthocyanidins in barley grains varied from 3.85 to 4.94 mg/g as catechin equivalent. The concentration of proanthocyanidins decreased, while total soluble sugars, reducing sugars, diastatic power and beta-amylase activity increased during maltings as well as with exogenous gibberellic acid (GA3) application. Alfa 93 (two-row) and RD2560 (six-row) varieties appeared to be superior for malting and brewing purposes on the basis of proanthocyanidins, total phenols, diastatic power and beta-amylase activity. It is suggested that exogenous application of GA3 at 15 ppm may be useful for producing good quality malt from barley grains.

  6. 0.15 {mu}m InGaAs/AlGaAs/GaAs HEMT production process for high performance and high yield v-band power MMICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, R.; Biedenbender, M.; Lee, J.

    1995-12-31

    The authors present a unique high yield, high performance 0.15 {mu}m HEMT production process which supports fabrication of MMW power MMICs up to 70 GHz. This process has been transferred successfully from an R&D process to TRW`s GaAs production line. This paper reports the on-wafer test results of more than 1300 V-band MMIC PA circuits measured over 24 wafers. The best 2-stage V-band power MMICs have demonstrated state-of-the-art performance with 9 dB power gain, 20% PAE and 330 mW output power. An excellent RF yield of 60% was achieved with an 8 dB power gain and 250 mW output powermore » specification.« less

  7. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    NASA Astrophysics Data System (ADS)

    Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.

    2013-06-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.

  8. Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary

    AlGaN/GaN Field Effect Transistors (FETs) are promising biosensing devices. Functionalization of these devices is explored in this study using an in situ approach with phosphoric acid etchant and a phosphonic acid derivative. Devices are terminated on peptides and soaked in water for up to 168 hrs to examine FETs for both device responses and surface chemistry changes. Measurements demonstrated threshold voltage shifting after the functionalization and soaking processes, but demonstrated stable FET behavior throughout. X-ray photoelectron spectroscopy and atomic force microscopy confirmed peptides attachment to device surfaces before and after water soaking. Results of this work point to the stabilitymore » of peptide coated functionalized AlGaN/GaN devices in solution and support further research of these devices as disposable, long term, in situ biosensors.« less

  9. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  10. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  11. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  12. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.

    2018-06-01

    In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.

  14. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  15. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  16. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    PubMed

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Structural Characterization of AgGaS2-type Photocatalysts for Hydrogen Production from Water Under Visible Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sun Hee; Shin, Namsoo; Jang, Jum Suk

    Bulky AgGaS2 was synthesized as a p-type semiconductor photocatalyst by a conventional solid state reaction under N2 flow for hydrogen production under visible light. To remove the impurity phase involved in the synthesized material and improve its crystallinity, the material was treated at various temperatures of 873-1123 K under H2S flow. Impurity phases were identified as {beta}-Ga2O3 and Ag9GaS6 with Rietveld analysis of XRD, and the local coordination structure around gallium atom in AgGaS2 was investigated by EXAFS. As the H2S-treatment temperature increased, the contribution from impurity phase was diminished. When the temperature reached 1123 K, the impurity phases weremore » completely removed and the material showed the highest photocatalytic activity.« less

  18. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    PubMed

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  19. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  1. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  2. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.

  3. Electrical properties of polycrystalline GaN films functionalized with cysteine and stabilization of GaN nanoparticles in aqueous media.

    PubMed

    Arízaga, Gregorio Guadalupe Carbajal; Oviedo, Mariana J; López, Oscar Edel Contreras

    2012-10-01

    GaN was synthesized onto sapphire substrates by chemical vapor deposition, reacting gallium, ammonium chloride and ammonia. The polycrystalline films were immersed in glycine, aspartic acid and cysteine solutions. Cysteine chemisorbed onto GaN films produced detectable changes in conductivity, mobility and Hall coefficient indicating that GaN is capable of detecting and reacting with thiolate groups, which was confirmed by X-ray photoelectron spectroscopy. The Cys-GaN film solution was adjusted to pH 10, upon which the GaN nanoparticles were transferred to the aqueous phase forming a suspension stable for seven days. The alkaline colloid was then further adjusted down to pH 3 retaining stability for three days. The GaN colloid obtained represents a suitable medium to study GaN properties for biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Improvement of Nutritional and Bioactive Compound Production by Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), by Spraying Growth Regulators.

    PubMed

    Vi, Minhthuan; Yang, Xueqin; Zeng, Xianlu; Chen, Rui'an; Guo, Liqiong; Lin, Junfang; He, Qianyun; Zheng, Qianwang; Wei, Tao

    2018-01-01

    Hericium erinaceus is a popular culinary and medicinal mushroom in China because of its broad beneficial effects. In this study we evaluated the effects of stimulation with 7 growth regulators at 5 different concentrations on improving the production of nutritional and bioactive compounds by H. erinaceus. Results showed that among all the tested regulators, gibberellic acid (GA) increased protein content (165%), free amino acids (100%), polysaccharides (108%), and polyphenols (26%). Spraying nephthyl acetic acid increased polysaccharides and triterpenoids to 4.37 and 17.27 g/100 g, respectively. Spraying chitosan significantly increased polyphenols by 42%. The addition of triacontanol, indole acetic acid, and 2,4-dichlorophenoxyacetic acid improved the production of proteins, free amino acids, polysaccharides, and polyphenols, but not to the extent that GA did. These results indicate that adding certain growth regulators can effectively improve the production of nutritional and bioactive compounds in H. erinaceus.

  5. Production and Recovery of Pyruvic Acid: Recent Advances

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  6. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  7. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.

    PubMed

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung

    2016-04-01

    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    PubMed

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  9. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  10. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  11. Glycyrrhetinic Acid-Mediated Polymeric Drug Delivery Targeting the Acidic Microenvironment of Hepatocellular Carcinoma.

    PubMed

    Zhang, Jinming; Zhang, Min; Ji, Juan; Fang, Xiefan; Pan, Xin; Wang, Yitao; Wu, Chuanbin; Chen, Meiwan

    2015-10-01

    The major hurdle of current drug carrier against hepatocellular carcinoma (HCC) is the lack of specific and selective drug delivery to HCC. In this study, a novel glycyrrhetinic acid (GA) and poly(L-Histidine) (PHIS) mediated polymeric drug delivery system was developed to target HCC that have GA binding receptors and release its encapsulated anticancer drug in the acidic microenvironment of HCC. Firstly, GA and PHIS were conjugated to form poly (ethylene glycol)-poly(lactic-co-glycolic acid) (GA-PEG-PHIS-PLGA, GA-PPP) micelles by grafting reaction between active terminal groups. Secondly, andrographolide (AGP) was encapsulated to GA-PPP to make AGP/GA-PPP using the solvent evaporation method. The pH-responsive property of AGP/GA-PPP micelles was validated by monitoring its stability and drug release behavior in different pH conditions. Furthermore, selective hepatocellular uptake of GA-PPP micelles in vitro, liver specific drug accumulation in vivo, as well as the enhanced antitumor effects of AGP/GA-PPP micelles confirmed the HCC targeting property of our novel drug delivery system. Average size of AGP/GA-PPP micelles increased significantly and the encapsulated AGP released faster in vitro at pH 5.0, while micelles keeping stable in pH 7.4. AGP/GA-PPP micelles were uptaken more efficiently by human Hep3B liver cells than that by human MDA-MB-231 breast cancer cells. GA-PPP micelles accumulated specifically in the liver and possessed long retention time in vivo. AGP/GA-PPP micelles significantly inhibited tumor growth and provided better therapeutic outcomes compared to free AGP and AGP/PEG-PLGA(AGP/PP) micelles without GA and PHIS decoration. This novel GA-PPP polymeric carrier is promising for targeted treatment of HCC.

  12. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  13. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate

    PubMed Central

    Subramanian, Mohan Raj; Talluri, Suvarna; Christopher, Lew P

    2015-01-01

    Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l−1 was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2–13% of carbon for its growth and energy metabolism, while 87–98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l−1 h−1. At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l−1 h−1, which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs. PMID:24894833

  14. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  15. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  16. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6

  17. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  18. Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher; Klein, Walter E; Li, Zhen

    Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV andmore » decreased saturated photocurrent density from 18 to 8 mA/cm2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa3Se5) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (~12 mA/cm2 at -1 V vs RHE). This is equivalent to ~17 200 C/cm2, which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa3Se5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.« less

  19. Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes.

    PubMed

    Muzzillo, Christopher P; Klein, W Ellis; Li, Zhen; DeAngelis, Alexander Daniel; Horsley, Kimberly; Zhu, Kai; Gaillard, Nicolas

    2018-06-13

    Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H 2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV and decreased saturated photocurrent density from 18 to 8 mA/cm 2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa 3 Se 5 ) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (∼12 mA/cm 2 at -1 V vs RHE). This is equivalent to ∼17 200 C/cm 2 , which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa 3 Se 5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.

  20. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  1. Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging.

    PubMed

    Gündel, Daniel; Pohle, Ulrike; Prell, Erik; Odparlik, Andreas; Thews, Oliver

    2018-06-01

    Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals. Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals. Both tracers did not bind to blood cells. [ 68 Ga]DPTA but not [ 68 Ga]EDTA showed strong binding to plasma proteins. For this reason, [ 68 Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [ 68 Ga]EDTA was 89 ± 1 %. The calculated GFR using [ 68 Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [ 68 Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR. [ 68 Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [ 68 Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.

  2. By-products of electrochemical synthesis of suberic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  3. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    PubMed

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  7. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  8. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  9. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  10. [Dependence of rumen fatty acid production on the composition of rations].

    PubMed

    Lebzien, P; Rohr, K; Oslage, H J

    1981-10-01

    In three experiments with two Black-and-White dairy cows the influence of soybean oil and coconut fat as well as that of rations rich in roughage and concentrated feed on the production of fatty acids were determined with the isotope dilution method. A change in the method of sampling from the rumen in the course of the investigations resulted in distinctly different absolute production quotas, which can presumably be traced back to the disproportionate mixing in of the isotope and/or different production quotas in various regions of the rumen. The relative differences between the production quotas dependent on the rations, however were approximately the same with both sampling methods, so that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation o that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation o that they make the comparison of the rations concerning rumen fermentation possible. The production of acetic acid and the total production of fatty acids (C2--C4) correlated closely both with the intake of digestible energy and the intake of digestible organic matter. There was also a highly significant correlation between the relation of acetic and propionic acid in the rumen fluid and the quotient from acetic and propionic acid produced. In contrast to this, a significant relation between the concentration of fatty acids and the production of fatty acids could not be ascertained. Soybean oil and coconut fat brought about a slightly better

  11. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with (68Ga)EDTA and positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlageter, N.L.; Carson, R.E.; Rapoport, S.I.

    1987-02-01

    Positron emission tomography with (/sup 68/Ga)ethylenediaminetetraacetic acid ((/sup 68/Ga)EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of (68Ga)EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type.

  12. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  13. Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z

    NASA Astrophysics Data System (ADS)

    Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning

    Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

  14. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  15. Mechanical, Optical, and Barrier Properties of Soy Protein Film As Affected by Phenolic Acid Addition.

    PubMed

    Insaward, Anchana; Duangmal, Kiattisak; Mahawanich, Thanachan

    2015-11-04

    This study aimed to explore the effect of phenolic acid addition on properties of soy protein film. Ferulic (FE), caffeic (CA), and gallic (GA) acids as well as their oxidized products were used in this study. Phenolic acid addition was found to have a significant effect (p ≤ 0.05) on the mechanical properties of the film. GA-containing films exhibited the highest tensile strength and elongation at break, followed by those with added CA and FE, respectively. Oxidized phenolic acids were shown to produce a film with higher tensile strength and elongation at break than their unoxidized counterparts. Phenolic acid addition also affected film color and transparency. As compared to the control, phenolic-containing film samples demonstrated reduced water vapor permeability and water solubility and increased contact angle, especially at high concentrations of oxidized phenolic acid addition.

  16. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer.

    PubMed

    Zhang, Zi-Hui; Tan, Swee Tiam; Liu, Wei; Ju, Zhengang; Zheng, Ke; Kyaw, Zabu; Ji, Yun; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-02-25

    This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced.

  17. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  18. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance.

    PubMed

    Khalloufi, Mouna; Martínez-Andújar, Cristina; Lachaâl, Mokhtar; Karray-Bouraoui, Najoua; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2017-07-01

    The agriculture industry is frequently affected by various abiotic stresses limiting plant productivity. To decrease the negative effect of salinity and improve growth performance, some strategies have been used, such as exogenous application of plant growth regulators (i.e. gibberellic acid, GA 3 ), or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights about the cross-talk effect of exogenous GA 3 application and AMF inoculation on growth under salinity conditions, tomato plants (Solanum lycopersicum, cv. TT-115) were inoculated or not with the AMF Rhizophagus irregularis and exposed to different treatments during two weeks: 0M GA 3 +0mM NaCl, 10 -6 M GA 3 +0mM NaCl, 0M GA 3 +100mM NaCl and 10 -6 M GA 3 +100mM NaCl. Results have revealed that AMF inoculation or GA 3 application alone, but especially their interaction, resulted in growth improvement under salinity conditions. The growth improvement observed in AMF-inoculated tomato plants under salinity conditions was mainly associated to ionic factors (higherK concentration and K/Na ratio) while the alleviating effect of GA 3 application and its interaction with AMF appear to be due to changes in the hormonal balance. Foliar GA 3 application was found to increase the active gibberellins (GAs), resulting in a positive correlation between GA 3 and the growth-related parameters. Furthermore, cytokinins, indoleacetic acid and abscisic acid concentrations increased in AMF inoculated or GA 3 treated plants but, notably, in AMF plants treated with GA 3 , which showed improved growth under salinity conditions. This suggests that there is an interactive positive effect between GAs and AMF which alleviates growth impairment under salinity conditions by modifying the hormonal balance of the plant. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Work Plan for Site-Wide Assessment for Petroleum Product (Operable Unit 2), LCP Chemicals Site, Brunswick, GA

    EPA Pesticide Factsheets

    April 2012 assessment to delineate the extent of light non-aqueous phase liquid (LNAPL) petroleum product on the LCP Chemicals Site in Brunswick, GA. Region ID: 04 DocID: 10843426, DocDate: 04-01-2012

  20. Glycyrrhetinic Acid-Poly(ethylene glycol)-glycyrrhetinic Acid Tri-Block Conjugates Based Self-Assembled Micelles for Hepatic Targeted Delivery of Poorly Water Soluble Drug

    PubMed Central

    Xu, Ting; Liu, Chi; Chen, Can; Song, Xiangrong; Zheng, Yu

    2013-01-01

    The triblock 18β-glycyrrhetinic acid-poly(ethylene glycol)-18β-glycyrrhetinic acid conjugates (GA-PEG-GA) based self-assembled micelles were synthesized and characterized by FTIR, NMR, transmission electron microscopy, and particle size analysis. The GA-PEG-GA conjugates having the critical micelle concentration of 6 × 10−5 M were used to form nanosized micelles, with mean diameters of 159.21 ± 2.2 nm, and then paclitaxel (PTX) was incorporated into GA-PEG-GA micelles by self-assembly method. The physicochemical properties of the PTX loaded GA-PEG-GA micelles were evaluated including in vitro cellular uptake, cytotoxicity, drug release profile, and in vivo tissue distribution. The results demonstrate that the GA-PEG-GA micelles had low cytotoxicity and good ability of selectively delivering drug to hepatic cells in vitro and in vivo by the targeting moiety glycyrrhetinic acid. In conclusion, the GA-PEG-GA conjugates have potential medical applications for targeted delivery of poor soluble drug delivery. PMID:24376388

  1. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    PubMed

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  3. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  4. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. Copyright © 2016. Published by Elsevier Ltd.

  5. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia

    USDA-ARS?s Scientific Manuscript database

    Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...

  6. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  7. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  8. Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Tamaki, Ryo; Okada, Yoshitaka

    2017-06-01

    We have investigated the performance of 10-layer stacked GaSb/GaAs quantum dot (QD) and quantum ring (QR) solar cells (SCs) having a type-II band alignment. For both SCs, the external quantum efficiency (EQE) increased in the longer wavelength region beyond GaAs bandedge wavelength of λ > 870 nm due to an additive contribution from GaSb/GaAs QD or QR layers inserted in the intrinsic region of p-i-n SC structure. The EQE of GaSb/GaAs QRSC was higher than that of QDSC at room temperature and the photoluminescence intensity from GaSb/GaAs QRs was stronger compared with GaSb/GaAs QDs. These results indicate that crystal quality of GaSb/GaAs QRs is superior to that of GaSb/GaAs QDs. Furthermore, a photocurrent production due to two-step photo-absorption via GaSb/GaAs QD states or QR states, ΔEQE was measured at low temperature and the ratio of two-step absorption to total carrier extraction defined as ΔEQE / (ΔEQE + EQE), was higher for GaSb/GaAs QRSC than that of QDSC. The ratio of GaSb/GaAs QRSC exceeds 80% over the wavelength region of λ = 950 - 1250 nm. This suggests that two-step absorption process is more dominant for carrier extraction from GaSb/GaAs QR structure.

  9. Comparative investigation of InGaP/GaAs/GaAsBi and InGaP/GaAs heterojunction bipolar transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi-Chen; Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw; Chiang, Te-Kuang

    2015-10-15

    In this article the characteristics of In{sub 0.49}Ga{sub 0.51}P/GaAs/GaAs{sub 0.975}Bi{sub 0.025} and In{sub 0.49}Ga{sub 0.51}P/GaAs heterojunction bipolar transistor (HBTs) are demonstrated and compared by two-dimensional simulated analysis. As compared to the traditional InGaP/GaAs HBT, the studied InGaP/GaAs/GaAsBi HBT exhibits a higher collector current, a lower base-emitter (B–E) turn-on voltage, and a relatively lower collector-emitter offset voltage of only 7 mV. Because the more electrons stored in the base is further increased in the InGaP/GaAs/GaAsBi HBT, it introduces the collector current to increase and the B–E turn-on voltage to decrease for low input power applications. However, the current gain is slightlymore » smaller than the traditional InGaP/GaAs HBT attributed to the increase of base current for the minority carriers stored in the GaAsBi base.« less

  10. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.

    PubMed

    Voorend, Wannes; Nelissen, Hilde; Vanholme, Ruben; De Vliegher, Alex; Van Breusegem, Frank; Boerjan, Wout; Roldán-Ruiz, Isabel; Muylle, Hilde; Inzé, Dirk

    2016-03-01

    Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the rate-limiting step in GA biosynthesis, is known to affect cell division and cell expansion, resulting in larger plants and organs in several plant species. In this study, we examined biomass yield and quality traits of maize plants overexpressing GA20-OX1 (GA20-OX1). GA20-OX1 plants accumulated more vegetative biomass than control plants in greenhouse experiments, but not consistently over two years of field trials. The stems of these plants were longer but also more slender. Investigation of GA20-OX1 biomass quality using biochemical analyses showed the presence of more cellulose, lignin and cell wall residue. Cell wall analysis as well as expression analysis of lignin biosynthetic genes in developing stems revealed that cellulose and lignin were deposited earlier in development. Pretreatment of GA20-OX1 biomass with NaOH resulted in a higher saccharification efficiency per unit of dry weight, in agreement with the higher cellulose content. On the other hand, the cellulose-to-glucose conversion was slower upon HCl or hot-water pretreatment, presumably due to the higher lignin content. This study showed that biomass yield and quality traits can be interconnected, which is important for the development of future breeding strategies to improve lignocellulosic feedstock for bioethanol production. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  12. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling.

    PubMed

    Zheng, Pu; Zhang, Kunkun; Yan, Qiang; Xu, Yan; Sun, Zhihao

    2013-08-01

    Succinic acid is an important platform chemical for synthesis of C4 compounds. We applied genome shuffling to improve fermentative production of succinic acid by A. succinogenes. Using a screening strategy composed of selection in fermentation broth, cultured in 96-deep-well plates, and condensed HPLC screening, a starting population of 11 mutants producing a higher succinic acid concentration was selected and subjected to recursive protoplasts fusion. After three rounds of genome shuffling, strain F3-II-3-F was obtained, producing succinic acid at 1.99 g/l/h with a yield of 95.6 g/l. The genome shuffled strain had about a 73 % improvement in succinic acid production compared to the parent strain after 48 h in fed-batch fermentation. The genomic variability of F3-II-3-F was confirmed by amplified fragment-length polymorphism. The activity levels of key enzymes involved in end-product formation from glucose and metabolic flux distribution during succinic acid production were compared between A. succinogenes CGMCC 1593 and F3-II-3-F. Increased activity of glucokinase, fructose-1,6-bisphosphate aldolase, PEP carboxykinase and fumarase, as well as decreased activity of pyruvate kinase, pyruvate formate-lyase, and acetate kinase explained the enhanced succinic acid production and decreased acetic acid formation. Metabolic flux analysis suggested that increased flux to NADH was the main reason for increased activity of the C4 pathway resulting in increased yields of succinic acid. The present work will be propitious to the development of a bio-succinic acid fermentation industry.

  13. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  14. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  15. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  16. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ...

  17. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    PubMed

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  18. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  19. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  20. Formic acid production using a microbial electrolysis desalination and chemical-production cell.

    PubMed

    Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo

    2017-11-01

    The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of gallium at trace levels using a spectrofluorimetric method in synthetic U-Ga and Ga-As solutions.

    PubMed

    Kara, Derya; Fisher, Andrew; Foulkes, Mike; Hill, Steve J

    2010-01-01

    A simple, easy to use and selective spectrofluorimetric method for the determination of trace levels of gallium has been developed. A new Schiff base, N-o-vanillidine-2-amino-p-cresol (OVAC) was synthesized and its fluorescence activity with gallium investigated. Based on this chelation reaction, a spectrofluorimetric method has been developed for the determination of gallium in synthetically prepared Ga-U and Ga-As samples buffered at pH 4.0 using acetic acid-sodium acetate. The chelation reaction between Ga(III) and N-o-vanillidine-2-amino-p-cresol was very fast, requiring only 30min at room temperature to complex completely. The limit of detection (LOD) (3sigma) for Ga(III) was 7.17 nM (0.50 microgL(-1)), determined from the analysis of 11 different solutions of 20 microg L(-1) Ga(III). Copyright 2009 Elsevier B.V. All rights reserved.

  2. Effects of co-exposure to imidacloprid and gibberellic acid on redox status, kidney variables and histopathology in adult rats.

    PubMed

    Lafi, Bornia; Chaâbane, Mariem; Elwej, Awatef; Grati, Malek; Jamoussi, Kamel; Mnif, Hela; Boudawara, Tahia; Ketata Bouaziz, Hanen; Zeghal, Najiba

    2018-05-01

    Data on the individual nephrotoxic effects of imidacloprid (IMI) and gibberellic acid (GA 3 ) are scarce. Moreover, there is a lack of information about their combined effects on the renal tissue. Our study investigated the effects of IMI and GA 3 separately or together on rats kidney. IMI (64 mg/kg bw) was given for 3 weeks by gavage either individually or in combination with GA 3 (200 mg/L) via drinking water. IMI associated or no with GA 3 increased the levels of kidney malondialdehyde, advanced oxidation protein products, protein carbonyls and metallothionein, plasma creatinine, urea, blood urea nitrogen and lactate dehydrogenase activity. A decline of kidney uric acid level and antioxidant status was also observed. All these changes were supported by histopathological observations. Our results highlighted the role of IMI and/or GA 3 -induced nephrotoxicity. Co-exposure to IMI and GA 3 exhibited synergism in biochemical kidney variables and histopathology and antagonism in physical and morphological parameters.

  3. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  5. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. ß-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid.

    PubMed

    Zhao, Baoxiu; Li, Xiang; Yang, Long; Wang, Fen; Li, Jincheng; Xia, Wenxiang; Li, Weijiang; Zhou, Li; Zhao, Colin

    2015-01-01

    ß-Ga2O3 nanorod was first directly prepared by the microwave irradiation hydrothermal way without any subsequent heat treatments, and its characterizations were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflection spectroscopy techniques, and also its photocatalytic degradation for perfluorooctanoic acid (PFOA) was investigated. XRD patterns revealed that ß-Ga2O3 crystallization increased with the enhancement of microwave power and the adding of active carbon (AC). PFOA, as an environmental and persistent pollutant, is hard decomposed by hydroxyl radicals (HO·); however, it is facilely destroyed by ß-Ga2O3 photocatalytic reaction in an anaerobic atmosphere. The important factors such as pH, ß-Ga2O3 dosage and bubbling atmosphere were researched, and the degradation and defluorination was 98.8% and 56.2%, respectively. Reductive atmosphere reveals that photoinduced electron may be the major reactant for PFOA. Furthermore, the degradation kinetics for PFOA was simulated and constant and half-life was calculated, respectively. © 2014 The American Society of Photobiology.

  7. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes.

    PubMed

    Kyaw, Zabu; Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ju, Zhen Gang; Zhang, Xue Liang; Ji, Yun; Hasanov, Namig; Zhu, Binbin; Lu, Shunpeng; Zhang, Yiping; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-01-13

    N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple quantum wells (MQWs) are systematically studied both experimentally and theoretically to increase the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN layer sandwiched in the NPNPN-GaN structure is completely depleted due to the built-in electric field in the NPNPN-GaN junctions, and the ionized acceptors in these P-GaN layers serve as the energy barriers for electrons from the n-GaN region, resulting in a reduced electron over flow and enhanced the current spreading horizontally in the n- GaN region. These lead to increased optical output power and external quantum efficiency (EQE) from the proposed device.

  8. Solar hydrogen production using epitaxial SrTiO 3 on a GaAs photovoltaic

    DOE PAGES

    Kornblum, L.; Fenning, D. P.; Faucher, J.; ...

    2016-12-22

    We demonstrate an oxide-stabilized III–V photoelectrode architecture for solar fuel production from water in neutral pH. For this tunable architecture we demonstrate 100% Faradaic efficiency for hydrogen evolution, and incident photon-to-current efficiencies (IPCE) exceeding 50%. High IPCE for hydrogen evolution is a consequence of the low-loss interface achieved via epitaxial growth of a thin oxide on a GaAs solar cell. Developing optimal energetic alignment across the interfaces of the photoelectrode using well-established III–V technology is key to obtaining high performance. This advance constitutes a critical milestone towards efficient, unassisted fuel production from solar energy.

  9. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    PubMed Central

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  10. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice.

    PubMed

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  11. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    PubMed

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  12. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  13. Oxidation of ultrathin GaSe

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; ...

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga 2Se 3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  14. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul

    2010-09-30

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.

  15. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  16. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  17. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  18. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  20. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  1. 2012: no trans fatty acids in Spanish bakery products.

    PubMed

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Synthesis of GaN by high-pressure ammonolysis of gallium triiodide

    NASA Astrophysics Data System (ADS)

    Purdy, Andrew P.; Case, Sean; Muratore, Nicole

    2003-05-01

    The ammonothermal conversion of GaI 3 to both cubic (zinc-blende) and hexagonal GaN was explored in detail. Gallium triiodide, anhydrous NH 3, and in some cases CuI or LiI co-mineralizers, were sealed in quartz tubes and heated in a pressurized autoclave from 300°C to 515°C. At hot-zone temperatures above 430°C, a deposit of mostly c-GaN collects in the upper portion of the tube, and deposits of phase-pure c-GaN were reliably produced on a 50-60 mg scale when CuI co-mineralizer was added. Crystal morphologies of these microcrystalline c-GaN products are highly dependent on growth conditions and range from triangular prisms to triangular plates, dendritic crystals, and irregular particles. Hexagonal GaN products were either in the form of microrods or micron sized prisms. Nanorods, of presumably h-GaN, also formed in some reactions in low yields, intermixed with microcrystalline c-GaN products.

  3. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  4. Enzymatic Production of Ascorbic Acid-2-phosphate by Recombinant Acid Phosphatase.

    PubMed

    Zheng, Kai; Song, Wei; Sun, Anran; Chen, Xiulai; Liu, Jia; Luo, Qiuling; Wu, Jing

    2017-05-24

    In this study, an environmentally friendly and efficient enzymatic method for the synthesis of l-ascorbic acid-2-phosphate (AsA-2P) from l-ascorbic acid (AsA) was developed. The Pseudomonas aeruginosa acid phosphatase (PaAPase) was expressed in Escherichia coli BL21. The optimal temperature, optimal pH, K m , k cat , and catalytic efficiency of recombinant PaAPase were 50 °C, 5.0, 93 mM, 4.2 s -1 , and 2.7 mM -1 min -1 , respectively. The maximal dry cell weight and PaAPase phosphorylating activity reached 8.5 g/L and 1127.7 U/L, respectively. The highest AsA-2P concentration (50.0 g/L) and the maximal conversion (39.2%) were obtained by incubating 75 g/L intact cells with 88 g/L AsA and 160 g/L sodium pyrophosphate under optimal conditions (0.1 mM Ca 2+ , pH 4.0, 30 °C) for 10 h; the average AsA-2P production rate was 5.0 g/L/h, and the AsA-2P production system was successfully scaled up to a 7.5 L fermenter. Therefore, the enzymatic process showed great potential for production of AsA-2P in industry.

  5. Tailored Gallium(III) chelator NOPO: synthesis, characterization, bioconjugation, and application in preclinical Ga-68-PET imaging.

    PubMed

    Simeček, Jakub; Zemek, Ondřej; Hermann, Petr; Notni, Johannes; Wester, Hans-Jürgen

    2014-11-03

    The bifunctional chelator NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) shows remarkably high Ga(III) complexation efficiency and comprises one carboxylic acid moiety which is not involved into metal ion coordination. An improved synthetic protocol affords NOPO with 45% overall yield. Stepwise protonation constants (log Ka), determined by potentiometry, are 11.96, 5.22, 3.77, and 1.54; the stability constant of the Ga(III) complex is log KGaL = 25.0. Within 5 min, (68)Ga(III) incorporation by NOPO is virtually quantitative at room temperature between pH 3 and 4, and at 95 °C at pH ranging from 0.5 to 7, at NOPO concentrations of 30 μM and 10 μM, respectively. During amide bond formation at the distant carboxylate using the HATU coupling reagent, an intramolecular phosphinic acid ester (phosphilactone) is formed, which is cleaved during (68)Ga complexation or in acidic media, such as trifluoroacetic acid (TFA). Phosphilactone formation can also be suppressed by complexation of Zn(2+) prior to conjugation, the resulting zinc-containing conjugates nevertheless being suitable for direct (68)Ga-labeling. In AR42J (rat pancreatic carcinoma) xenografted CD-1 nude mice, (68)Ga-labeled NOPO-NaI(3)-octreotide conjugate ((68)Ga-NOPO-NOC) showed high and fully blockable tumor uptake (13.9 ± 5% ID/g, 120 min p.i., compared to 0.9 ± 0.4% ID/g with 5 mg/kg of nonlabeled peptide). Uptake in other tissues was generally below 3% ID/g, except appearance of excretion-related activity accumulation in kidneys. NOPO-functionalized compounds tend to be more hydrophilic than the corresponding DOTA- and NODAGA-conjugates, thus promoting fast and extensive renal excretion of (68)Ga-NOPO-radiopharmaceuticals. NOPO-functionalized peptides provide suitable pharmacokinetics in vivo and meet all requirements for efficient (68)Ga-labeling even at room temperature in a kit-like manner.

  6. Design consideration of δ-doping channels for high-performance n + - GaAs / p + -InGaP/n-GaAs camel-gate field effect transistors

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui

    2005-01-01

    The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.

  7. Microfluidic 68Ga-labeling: a proof of principle study.

    PubMed

    Pfaff, Sarah; Philippe, Cecile; Pichler, Verena; Hacker, Marcus; Mitterhauser, Markus; Wadsak, Wolfgang

    2018-05-01

    Positron emission tomography (PET) as a tool for molecular imaging of cancer has gained huge interest in the last few years. Gallium-68 is a popular PET nuclide due to its favorable characteristics, like advantageous half-life (68 min) and independency of a cyclotron on-site for its production. Accordingly, several 68Ga-complexes for cancer imaging via PET have been made available during the last few years. In this work, 68Ga-labeled compounds were synthesized applying a commercially available microfluidic device for the first time. Therefore, a proof of principle study using three important radiotracers, [68Ga]Ga-PSMA-11, [68Ga]Ga-NODAGA-RGDyk and [68Ga]Ga-DOTA-NOC, was designed. For all three radioligands, various synthesis parameters were evaluated and the feasibility of using a continuous flow reactor was assessed. All of the precursors were successfully radiolabeled with a radiochemical yield higher than 80%, proving the principle that a microfluidic set-up is a suitable approach for the production of 68Ga-labeled tracers.

  8. Production of chlorogenic acid in Varthemia persica DC (var. persica) callus cultures

    PubMed Central

    Siahpoush, A.; Ghasemi, N.; Ardakani, M. Shams; Asghari, G.

    2011-01-01

    Chlorogenic acid, a pharmacologically important compound, is a phenolic compound that occurs in certain commonly used medicinal herbs. We looked for the presence of this compound in the callus cultures of Varthemia persica DC (var. persica). We have evaluated the conditions for establishment of callus cultures of V. persica and the in vitro production of chlorogenic acid. Callus was initiated by culturing seedling of V. persica on MS basal medium supplemented with different concentrations of kinetin, naphthalene acetic acid and 2,4-diphenoxy acetic acid. Also, the influence of light, and phytohormones on the production of chlorogenic acid was examined. Kinetin stimulated the production of chlorogenic acid. Replacement of 2,4-diphenoxy acetic acid with naphthalene acetic acid did not alter the chlorogenic acid production. The ability to induce the accumulation of chlorogenic acid in the V. persica callus cultures offers an opportunity to produce a phenolic compound with therapeutic value. PMID:22049279

  9. DC electrodeposition of NiGa alloy nanowires in AAO template

    NASA Astrophysics Data System (ADS)

    Maleki, K.; Sanjabi, S.; Alemipour, Z.

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2-4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively.

  10. Malic acid production from thin stillage by Aspergillus species.

    PubMed

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains. © Springer Science+Business Media B.V. 2011

  11. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu

    2011-04-07

    Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth

    2015-09-21

    Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield

  14. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  16. Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chang, K. I.; Tandon, J.

    1984-01-01

    Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.

  17. High production of D-tagatose by the addition of boric acid.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2007-01-01

    An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.

  18. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    USDA-ARS?s Scientific Manuscript database

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  19. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.

  20. Clinical tolerance and efficacy of capryloyl salicylic acid peel compared to a glycolic acid peel in subjects with fine lines/wrinkles and hyperpigmented skin.

    PubMed

    Oresajo, Christian; Yatskayer, Margarita; Hansenne, Isabelle

    2008-12-01

    Several chemical agents are currently used to perform superficial peels of the face to reduce facial hyperpigmentation and fine lines/wrinkles. Some of the most commonly used agents are alpha hydroxyl acids, such as glycolic acid (GA), or beta hydroxy acid, such as salicylic acid. This study aims to compare the efficacy of GA to that of a novel derivative of salicylic acid, capryloyl salicylic acid (LHA). In a split-face study, 50 female volunteers between the ages of 35 and 60 years with mild to moderate facial hyperpigmentation and fine lines/wrinkles were randomized and LHA or GA peel was applied to one side of the face. Increasing peel concentrations were applied (5-10% LHA or 20-50% GA) based on the tolerance level of the subjects and clinical observations of an expert dermatologist for 12 weeks at biweekly intervals. Of the 44 volunteers who completed the study, at 12 weeks 41% of LHA-treated and 30% of GA-treated subjects demonstrated significant reduction of fine lines/wrinkles compared to baseline. Forty-six percent of LHA-treated subjects and 34% of GA-treated subjects showed significant reduction of hyperpigmentation compared to baseline. LHA treatment was better than GA peels, although there were no statistically significant differences between the two groups. Five percent to 10% of LHA peel is generally safe and as effective as 20-50% GA peel in reducing facial hyperpigmentation and fine lines/wrinkles.

  1. Comparison of efficacy of products containing azelaic acid in melasma treatment.

    PubMed

    Mazurek, Klaudia; Pierzchała, Ewa

    2016-09-01

    Melasma is one of the most frequently diagnosed hyperpigmentation changes on the skin of women's faces. Nearly 30% of women using oral estrogen therapy struggle with this problem. A common way of reducing melasma is the application of azelaic acid products. Comparison of efficacy of three dermocosmetic products, containing azelaic acid, in the reduction in melasma for women aged 35-55. A group of 60 women diagnosed with melasma were divided into three even, twenty-person subgroups. Each subgroup was assigned one dermocosmetic product containing azelaic acid. For 24 weeks, the patients applied the assigned product twice a day. The level of the colorant within the hyperpigmentation was marked before the treatment, after 1 month, after 3 months, and after 6 months of therapy. The pigmentation was measured using Mexameter(®) (Courage + Khazaka electronic, Germany). In addition, during each inspection, the patients' level of hydration, elasticity, and intensity of erythema was checked using Corneometer(®) , Reviscometer(®) . All dermocosmetics containing azelaic acid that were applied significantly contributed to the reduction in pigment in the pigmentary lesion. The largest decrease in the amount of pigment was observed in the first 3 months of use of the products. A combination containing 20% azelaic acid and mandelic acid, phytic acid, 4N-butyl resorcinol, and ferulic acid proved to be the most effective dermocosmetic III (Sesderma, Valencia, Spain). Dermocosmetics containing azelaic acid significantly contribute to the clearing of melasma. The effect depends on the treatment time, the acid concentration, and addition of other components. © 2016 Wiley Periodicals, Inc.

  2. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  3. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  4. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  5. InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lin, Yu-Chuan; Chen, Yu-Tong; Tu, S J; Lee, M L; Lai, W C

    2013-11-04

    Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

  6. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  7. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    PubMed

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  8. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  9. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    PubMed

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  10. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production.

    PubMed

    Belgrano, F D S; Verçoza, B R F; Rodrigues, J C F; Hatti-Kaul, R; Pereira, N

    2018-04-28

    Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g -1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l -1  h -1 and 0·314 g g -1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l -1 after 48 h. These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix. © 2018 The Society for Applied Microbiology.

  11. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  12. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enzyme immunoassay for tenuazonic acid in apple and tomato products.

    PubMed

    Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald

    2011-12-14

    The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.

  14. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  15. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Lee, Tae Youp; Sun, Zheng-Wang; Yi, Tae Hoo

    2014-12-01

    Ultraviolet (UV) radiation is the primary factor in skin photoaging, which is characterized by wrinkle formation, dryness, and thickening. The mechanisms underlying skin photoaging are closely associated with degradation of collagen via upregulation of matrix metalloproteinase (MMP) activity, which is induced by reactive oxygen species (ROS) production. Gallic acid (GA), a phenolic compound, possesses a variety of biological activities including antioxidant and antiinflammatory activities. We investigated the protective effects of GA against photoaging caused by UVB irradiation using normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. The production levels of ROS, interlukin-6, and MMP-1 were significantly suppressed, and type I procollagen expression was stimulated in UVB-irradiated and GA-treated NHDFs. GA treatment inhibited the activity of transcription factor activation protein 1. The effects of GA following topical application and dietary administration were examined by measuring wrinkle formation, histological modification, protein expression, and physiological changes such as stratum corneum hydration, transepidermal water loss, and erythema index. We found that GA decreased dryness, skin thickness, and wrinkle formation via negative modulation of MMP-1 secretion and positive regulation of elastin, type I procollagen, and transforming growth factor-β1. Our data indicate that GA is a potential candidate for the prevention of UVB-induced premature skin aging. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  17. Potential Regulatory Role of Gibberellic and Humic Acids in Sprouting of Chlorophytum borivilianum Tubers

    PubMed Central

    Puteh, Adam; Hassan, Siti Aishah

    2014-01-01

    Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg L−1) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg L−1 GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg L−1 GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli. PMID:24688363

  18. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.

    PubMed

    Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai

    2016-02-01

    In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  1. (67/68)Ga-labeling agent that liberates (67/68)Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels.

    PubMed

    Uehara, Tomoya; Rokugawa, Takemi; Kinoshita, Mai; Nemoto, Souki; Fransisco Lazaro, Guerra Gomez; Hanaoka, Hirofumi; Arano, Yasushi

    2014-11-19

    The renal localization of gallium-67 or gallium-68 ((67/68)Ga)-labeled low molecular weight (LMW) probes such as peptides and antibody fragments constitutes a problem in targeted imaging. Wu et al. previously showed that (67)Ga-labeled S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)-conjugated methionine ((67)Ga-NOTA-Met) was rapidly excreted from the kidney in urine following lysosomal proteolysis of the parental (67)Ga-NOTA-Bz-SCN-disulfide-stabilized Fv fragment (Bioconjugate Chem., (1997) 8, 365-369). In the present study, a new (67/68)Ga-labeling reagent for LMW probes that liberates (67/68)Ga-NOTA-Met was designed, synthesized, and evaluated using longer-lived (67)Ga in order to reduce renal radioactivity levels. We employed a methionine-isoleucine (MI) dipeptide bond as the cleavable linkage. The amine residue of MI was coupled with SCN-Bz-NOTA for (67)Ga-labeling, while the carboxylic acid residue of MI was derivatized to maleimide for antibody conjugation in order to synthesize NOTA-MI-Mal. A Fab fragment of the anti-Her2 antibody was thiolated with iminothiolane, and NOTA-MI-Mal was conjugated with the antibody fragment by maleimide-thiol chemistry. The Fab fragment was also conjugated with SCN-Bz-NOTA (NOTA-Fab) for comparison. (67)Ga-NOTA-MI-Fab was obtained at radiochemical yields of over 95% and was stable in murine serum for 24 h. In the biodistribution study using normal mice, (67)Ga-NOTA-MI-Fab registered significantly lower renal radioactivity levels from 1 to 6 h postinjection than those of (67)Ga-NOTA-Fab. An analysis of urine samples obtained 6 h after the injection of (67)Ga-NOTA-MI-Fab showed that the majority of radioactivity was excreted as (67)Ga-NOTA-Met. In the biodistribution study using tumor-bearing mice, the tumor to kidney ratios of (67)Ga-NOTA-MI-Fab were 4 times higher (6 h postinjection) than those of (67)Ga-NOTA-Fab. Although further studies including the structure of radiometabolites and

  2. Catalytic amino acid production from biomass-derived intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  3. Catalytic amino acid production from biomass-derived intermediates

    PubMed Central

    Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826

  4. Catalytic amino acid production from biomass-derived intermediates.

    PubMed

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M; Hülsey, Max J; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M; Beckham, Gregg T; Dyson, Paul J; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-05-15

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. Copyright © 2018 the Author(s). Published by PNAS.

  5. Catalytic amino acid production from biomass-derived intermediates

    DOE PAGES

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  6. Preclinical evaluation of potential infection-imaging probe [68 Ga]Ga-DOTA-K-A9 in sterile and infectious inflammation.

    PubMed

    Nielsen, Karin M; Jørgensen, Nis P; Kyneb, Majbritt H; Borghammer, Per; Meyer, Rikke L; Thomsen, Trine R; Bender, Dirk; Jensen, Svend B; Nielsen, Ole L; Alstrup, Aage K O

    2018-05-23

    The development of bacteria-specific infection radiotracers is of considerable interest to improve diagnostic accuracy and enabling therapy monitoring. The aim of this study was to determine if the previously reported radiolabelled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA) conjugated peptide [ 68 Ga]Ga-DOTA-K-A9 could detect a staphylococcal infection in vivo and distinguish it from aseptic inflammation. An optimized [ 68 Ga]Ga-DOTA-K-A9 synthesis omitting the use of acetone was developed, yielding 93 ± 0.9% radiochemical purity. The in vivo infection binding specificity of [ 68 Ga]Ga-DOTA-K-A9 was evaluated by micro positron emission tomography/magnetic resonance imaging of 15 mice with either subcutaneous Staphylococcus aureus infection or turpentine-induced inflammation and compared with 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG). The scans showed that [ 68 Ga]Ga-DOTA-K-A9 accumulated in all the infected mice at injected doses ≥3.6 MBq. However, the tracer was not found to be selective towards infection, since the [ 68 Ga]Ga-DOTA-K-A9 also accumulated in mice with inflammation. In a concurrent in vitro binding evaluation performed with a 5-carboxytetramethylrhodamine (TAMRA) fluorescence analogue of the peptide, TAMRA-K-A9, the microscopy results suggested that TAMRA-K-A9 bound to an intracellular epitope and therefore preferentially targeted dead bacteria. Thus, the [ 68 Ga]Ga-DOTA-K-A9 uptake observed in vivo is presumably a combination of local hyperemia, vascular leakiness and/or binding to an epitope present in dead bacteria. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films

    PubMed Central

    Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849

  8. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    PubMed

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  9. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  10. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  11. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  12. Analysis of improved dc and ac performances of an InGaP/GaAs heterojunction bipolar transistor with a graded Al xGa 1- xAs layer at emitter/base heterojunction

    NASA Astrophysics Data System (ADS)

    Cheng, Shiou-Ying

    2004-07-01

    An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.

  13. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    PubMed

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  14. Comparison of trap characteristics between AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by frequency dependent conductance measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Apurba, E-mail: apurba.chakraborty86@gmail.com; Biswas, Dhrubes; Advanced Technology Development Centre, IIT Kharagpur, Kharagpur 721302

    2015-02-23

    Frequency dependent conductance measurement is carried out to observe the trapping effect in AlGaN/InGaN/GaN double heterostructure and compared that with conventional AlGaN/GaN single heterostructure. It is found that the AlGaN/InGaN/GaN diode structure does not show any trapping effect, whereas single heterostructure AlGaN/GaN diode suffers from two kinds of trap energy states in near depletion to higher negative voltage bias region. This conductance behaviour of AlGaN/InGaN/GaN heterostructure is owing to more Fermi energy level shift from trap energy states at AlGaN/InGaN junction compare to single AlGaN/GaN heterostructure and eliminates the trapping effects. Analysis yielded interface trap energy state in AlGaN/GaN ismore » to be with time constant of (33.8–76.5) μs and trap density of (2.38–0.656) × 10{sup 12 }eV{sup −1} cm{sup −2} in −3.2 to −4.8 V bias region, whereas for AlGaN/InGaN/GaN structure no interface energy states are found and the extracted surface trap energy concentrations and time constants are (5.87–4.39) ×10{sup 10} eV{sup −1} cm{sup −2} and (17.8–11.3) μs, respectively, in bias range of −0.8–0.0 V.« less

  15. Potential drug interactions associated with glycyrrhizin and glycyrrhetinic acid.

    PubMed

    Feng, Xinchi; Ding, Liqin; Qiu, Feng

    2015-05-01

    Glycyrrhizin (GZ), the main active component of licorice, is a widely used therapeutic in the clinic. Depending on the disease, the treatment may involve a long course of high dose GZ. Another component of licorice, glycyrrhetinic acid (GA), is the main active metabolite of GZ and is thought to be responsible for the majority of the pharmacological properties of GZ. Therefore, GZ and GA are both used for therapeutic purposes. In addition, GZ and GA are also widely used to sweeten and flavor foods. Due to this widespread, multifaceted use of these substances, potential drug interactions with GZ and GA have recently gained attention. Along these lines, this review covers the known effects of GZ and GA on drug-metabolizing enzymes and efflux transporters. We conclude that both GZ and GA may have an effect on the activity of CYPs. For example, GZ may induce CYP3A activity through activation of PXR. Also, GZ and GA may affect glucuronidation in rats and humans. Furthermore, 18β-GA is a potent inhibitor of P-gp, while GZ and GA are inhibitors of MRP1, MRP2 and BCRP. The pharmacokinetics and pharmacodynamics of many medications may be altered when used concurrently with GZ or GA, which is also covered in this review. Overall, GZ, GA or related products should be taken with caution when taken with additional medications due to the possible drug interactions.

  16. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  17. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai

    2014-01-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.

  18. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    PubMed

    Park, Hyun Joo; Bae, Jung-Hoon; Ko, Hyeok-Jin; Lee, Sun-Hee; Sung, Bong Hyun; Han, Jong-In; Sohn, Jung-Hoon

    2018-06-13

    Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of D-lactic acid, an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain was able to grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing pyruvate decarboxylase 1 gene (PDC1) with D-lactate dehydrogenase gene (D-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of D-lactic acid with productivity over 3.66 g/L/h at pH 3.6 and 4.16 g/L/h at pH 4.7, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Production of 5'-phosphodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid.

    PubMed

    Akimoto-Tomiyama, Chiharu; Aoyagi, Hideki; Ozawa, Tetsuo; Tanaka, Hideo

    2002-01-01

    Polyalginate was autoclaved at 121 degrees C for 20 min and its molecular weight distribution was analyzed. The autoclaved alginate yielded alginate polymer, oligomer and heat degraded products (HDPs). Each of the separated substances promoted 5'-phosphodiesterase (5'-PDase) production in suspension culture of Catharanthus roseus cells. HDPs could also be generated from other uronic acids (galacturonic acid and glucuronic acid) by autoclave treatment. The most effective substance in the HDPs was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP production were also established (autoclaving 1 mg/ml monogalacturonic acid [pH 2] at 121 degrees C for 2 h). A combination of oligo-alginate (below 4 kDa) and HDPs significantly promoted the production of 5'-PDase in C. roseus. Based on the above results, a novel alginate complex that gave a 44-fold increase in 5'-PDase production by C. roseus was developed.

  1. Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.

    2016-02-01

    p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.

  2. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures.

    PubMed

    Yamamoto, Hirobumi; Zhao, Ping; Yazaki, Kazufumi; Inoue, Kenichiro

    2002-08-01

    Cell suspension cultures of Lithospermum erythrorhizon produced a large amount of lithospermic acid B, a caffeic acid tetramer, as well as shikonin derivatives (each ca. 10% of dry wt.) when cultured in shikonin production medium M-9. Various culture factors for increasing the production of lithospermic acid B were investigated. Lithospermic acid B production was inhibited by 2, 4-D or NH4+, whereas it was stimulated by Cu2+. These regulatory patterns were similar to those for the production of shikonin derivatives in these cell cultures, suggestive of close relations and similar metabolic regulation between the production of these compounds. Cultivation under light illumination, however, showed that these metabolisms were independently regulated. In particular, blue light showed a stimulatory effect on lithospermic acid B production, while shikonin production was strongly inhibited, indicative of an effective condition for lithospermic acid B production.

  3. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs

  5. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  6. Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.

    2016-11-01

    We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.

  7. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    PubMed

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  8. Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids.

    PubMed

    Farhat, Mounira Ben; Boukhris, Ines; Chouayekh, Hichem

    2015-03-01

    The actinomycetes isolates (128) which were taken from agricultural soil samples and collected near a rock phosphate processing unit were screened for mineral phosphate-solubilizing (MPS) ability. A significant MPS activity was observed for 30 isolates on various phosphate sources when grown in the National Botanical Research Institute's phosphate broth. CTM396 and CTM397 strains which showed the highest MPS abilities were identified by 16S rDNA sequencing as members of the genus Streptomyces. Their MPS activity was proved to be concomitant with a drop in pH due to the secretion of gluconic acid (GA). This was correlated with the simultaneous detection by PCR of genes gdh [encoding the glucose dehydrogenase (GDH) responsible for GA production from glucose] and pqq (involved in biosynthesis of the pyrroloquinoline quinone cofactor of GDH), as well as the highlighting of GHD enzyme activity, for the first time in a Streptomyces sp. strain producing GA. Furthermore, the 0.05% of humic acids proved to have a stimulatory effect on the growth and the ability of CTM396 to solubilize Gafsa rock phosphate. According to this study, it is possible to use humic acids and Gafsa rock phosphate in association with spores of ad hoc Streptomyces strains as natural and efficient amendments to improve plant growth with no need of costly and pollutant transformation of Gafsa rock phosphate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Bio-based production of methacrylic acid

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...

  10. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  11. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  12. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  13. Integrated production of lactic acid and biomass on distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  14. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  15. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  16. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  17. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Leu, Shao-Yuan; Wang, Ying

    2018-05-02

    One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the boric...

  20. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the boric...

  1. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the boric...

  2. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the boric...

  3. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  4. Clavulanic acid production estimation based on color and structural features of Streptomyces clavuligerus bacteria using self-organizing map and genetic algorithm.

    PubMed

    Nurmohamadi, Maryam; Pourghassem, Hossein

    2014-05-01

    The utilization of antibiotics produced by Clavulanic acid (CA) is an increasing need in medicine and industry. Usually, the CA is created from the fermentation of Streptomycen Clavuligerus (SC) bacteria. Analysis of visual and morphological features of SC bacteria is an appropriate measure to estimate the growth of CA. In this paper, an automatic and fast CA production level estimation algorithm based on visual and structural features of SC bacteria instead of statistical methods and experimental evaluation by microbiologist is proposed. In this algorithm, structural features such as the number of newborn branches, thickness of hyphal and bacterial density and also color features such as acceptance color levels are extracted from the SC bacteria. Moreover, PH and biomass of the medium provided by microbiologists are considered as specified features. The level of CA production is estimated by using a new application of Self-Organizing Map (SOM), and a hybrid model of genetic algorithm with back propagation network (GA-BPN). The proposed algorithm is evaluated on four carbonic resources including malt, starch, wheat flour and glycerol that had used as different mediums of bacterial growth. Then, the obtained results are compared and evaluated with observation of specialist. Finally, the Relative Error (RE) for the SOM and GA-BPN are achieved 14.97% and 16.63%, respectively. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    PubMed

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  6. Glycyrrhizic Acid in the Treatment of Liver Diseases: Literature Review

    PubMed Central

    Li, Jian-yuan; Cao, Hong-yan; Cheng, Gen-hong; Sun, Ming-yu

    2014-01-01

    Glycyrrhizic acid (GA) is a triterpene glycoside found in the roots of licorice plants (Glycyrrhiza glabra). GA is the most important active ingredient in the licorice root, and possesses a wide range of pharmacological and biological activities. GA coupled with glycyrrhetinic acid and 18-beta-glycyrrhetic acid was developed in China or Japan as an anti-inflammatory, antiviral, and antiallergic drug for liver disease. This review summarizes the current biological activities of GA and its medical applications in liver diseases. The pharmacological actions of GA include inhibition of hepatic apoptosis and necrosis; anti-inflammatory and immune regulatory actions; antiviral effects; and antitumor effects. This paper will be a useful reference for physicians and biologists researching GA and will open the door to novel agents in drug discovery and development from Chinese herbs. With additional research, GA may be more widely used in the treatment of liver diseases or other conditions. PMID:24963489

  7. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  8. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  9. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  10. Production of amino acids - Genetic and metabolic engineering approaches.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic.

    PubMed

    Jian, Wenjie; Sun, Yuanming; Wu, Jian-Yong

    2017-07-01

    Monascus pigments (Mps) are natural food colorants and their stability in acidic solutions is important for application in the food industry. This study aimed to evaluate the use of gum arabic (GA) as a stabilizer for maintaining the solubility of Mps in an acidic aqueous solution exposed to a high temperature, and to analyze the molecular interactions between GA and Mps. Mps dispersed (0.2 g kg -1 ) in deionized water at pH 3.0-4.0 without GA formed precipitates but remained in a stable solution in the presence of GA (1 g kg -1 ). The significant improvement of Mps water solubility under acidic conditions was attributed to the formation of Mps-GA complexes, as indicated by a sharp increase in the fluorescence intensity. The results on particle size, zeta potential, and transmission electron microscopy further suggested that molecular binding of Mps to GA, electrostatic repulsion, and steric hindrance of GA were contributing factors to preventing the aggregation of Mps in acidic solutions. A mechanistic model was presented for GA-Mps interactions and complex structures. GA was proven to be an effective stabilizer of natural food colorants in acidic solutions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  13. The Tissue Distribution and Urinary Excretion Study of Gallic Acid and Protocatechuic Acid after Oral Administration of Polygonum Capitatum Extract in Rats.

    PubMed

    Ma, Feng-Wei; Deng, Qing-Fang; Zhou, Xin; Gong, Xiao-Jian; Zhao, Yang; Chen, Hua-Guo; Zhao, Chao

    2016-03-24

    In the present study, we investigated the tissue distribution and urinary excretion of gallic acid (GA) and protocatechuic acid (PCA) after rat oral administration of aqueous extract of Polygonum capitatum (P. capitatum, named Herba Polygoni Capitati in China). An UHPLC-MS/MS analytical method was developed and adopted for quantification of GA and PCA in different tissue homogenate and urine samples. Interestingly, we found that GA and PCA showed a relatively targeted distribution in kidney tissue after dosing 60 mg/kg P. capitatum extract (equivalent to 12 mg/kg of GA and 0.9 mg/kg of PCA). The concentrations of GA and PCA in the kidney tissue reached 1218.62 ng/g and 43.98 ng/g, respectively, at one hour after oral administration. The results helped explain the empirical use of P. capitatum for kidney diseases in folk medicine. Further studies on urinary excretion of P. capitatum extract indicated that GA and PCA followed a concentrated elimination over a 4-h period. The predominant metabolites were putatively identified to be 4-methylgallic acid (4-OMeGA) and 4-methylprotocatechuic acid (4-OMePCA) by analyzing their precursor ions and characteristic fragment ions using tandem mass spectrometry. However, the amount of unchanged GA and PCA that survived the metabolism were about 14.60% and 15.72% of the total intake, respectively, which is reported for the first time in this study.

  14. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5

    DOE PAGES

    Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...

    2016-10-07

    Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia

  15. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  16. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  17. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  18. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  19. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD - )/pDQTES and DQ101 (MG1655 fadD - )/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD - )-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD - )/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD - )/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  20. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  1. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  3. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  4. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. Copyright © 2013 Elsevier Inc

  5. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  6. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  7. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  8. Bioactivity and biotechnological production of punicic acid.

    PubMed

    Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun

    2018-04-01

    Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

  9. Prospective of 68Ga-Radiopharmaceutical Development

    PubMed Central

    Velikyan, Irina

    2014-01-01

    Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515

  10. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA).

    PubMed

    Park, Hui Gyu; Cho, Hyung Taek; Song, Myoung-Chong; Kim, Sang Bum; Kwon, Eung Gi; Choi, Nag Jin; Kim, Young Jun

    2012-03-28

    This study was performed to characterize natural CLnA isomer production by Bifidobacterium breve LMC520 of human origin in comparison to conjugated linoleic acid (CLA) production. B. breve LMC520 was found to be highly active in terms of CLnA production, of which the major portion was identified as cis-9,trans-11,cis-15 CLnA isomer by GC-MS and NMR analysis. B. breve LMC520 was incubated for 48 h using MRS medium (containing 0.05% L-cysteine · HCl) under different environmental conditions such as atmosphere, pH, and substrate concentration. The high conversion rate of α-linolenic acid (α-LNA) to CLnA (99%) was retained up to 2 mM α-LNA, and the production was proportionally increased nearly 7-fold with 8 mM by the 6 h of incubation under anaerobic conditions at a wide range of pH values (between 5 and 9). When α-LNA was compared with linoleic acid (LA) as a substrate for isomerization by B. breve LMC520, the conversion of α-LNA was higher than that of LA. These results demonstrated that specific CLnA isomer could be produced through active bacterial conversion at an optimized condition. Because many conjugated octadecatrienoic acids in nature are shown to play many positive roles, the noble isomer found in this study has potential as a functional source.

  11. Preparation of [(68)Ga]PSMA-11 for PET-CT imaging using a manual synthesis module and organic matrix based (68)Ge/(68)Ga generator.

    PubMed

    Nanabala, Raviteja; Anees, Muhammed K; Sasikumar, Arun; Joy, Ajith; Pillai, M R A

    2016-08-01

    [(68)Ga]PSMA-11 is a relatively recently introduced radiopharmaceutical for PET-CT imaging of prostate cancer patients. The availability of (68)Ge/(68)Ga generator and PSMA-11 ligand from commercial sources is facilitating the production of the radiopharmaceutical in-house. This paper describes our experience on the preparation of ~200 batches of [(68)Ga]PSMA-11 for conducting PET-CT imaging in patients suspected/suffering from prostate cancer. The radiosynthesis of [(68)Ga]PSMA-11 was done in a hospital based nuclear medicine department using (68)Ge/(68)Ga generator and a manual synthesis module, both supplied by Isotope Technologies Garching (ITG), Germany. The production involved the reaction of 5μg (5.3nmol) of PSMA-11 ligand in 1 ml of 0.25M sodium acetate buffer with 4ml of (68)GaCl3 in 0.05M HCl for 5min at 105°C; followed by purification in a C18 cartridge and collection through a 0.22μm pore size filter. The radiochemical yields obtained were consistently high, 93.19%±3.76%, and there was hardly any batch failure. The radiochemical purity of the product was >99% and the product was stable for over 2h; however it was used in patients immediately after preparation. About 200 batches of [(68)Ga]PSMA-11 were prepared during the period and more than 300 patients received the tracer during the 14months of study. No adverse reaction was observed in any of the patients and the image qualities were consistent with literature reports. [(68)Ga]PSMA-11 with high radiochemical and radionuclidic purity is conveniently prepared by using a (68)Ge/(68)Ga generator and manual synthesis module. The radiochemical yields are very high; and activity sufficient for 3-4 patients can be prepared in a single batch; multiple batches can be done on the same day and when needed after a gap of 1.5-2h. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  13. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  14. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    PubMed Central

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness. PMID:25632398

  15. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    PubMed

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  16. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    PubMed Central

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress. PMID:28848576

  17. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    PubMed

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  18. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Long-distance transport of Gibberellic Acid Insensitive mRNA in Nicotiana benthamiana

    PubMed Central

    2013-01-01

    Background The Gibberellic Acid (GA) signal is governed by the GAI (Gibberellic Acid Insensitive) repressor, which is characterized by a highly conserved N-terminal DELLA domain. Deletion of the DELLA domain results in constitutive suppression of GA signaling. As the GAI transcript is transportable in phloem elements, a Δ-DELLA GAI (gai) transgenic stock plant can reduce the stature of a scion through transport of gai mRNA from the stock. However, little is known about the characteristics of a scion on a gai stock. Results Arabidopsis Δ-DELLA GAI (gai) was fused with a T7 epitope tag and expressed under the control of a companion cell-specific expression promoter, Commelina yellow mottle virus promoter (CoYMVp), to enhance transport in the phloem. The CoYMVp:Atgai-T7 (CgT) transgenic Nicotiana benthamiana exhibited a dwarf phenotype and lower sensitivity to GA enhancement of shoot stature. A wild-type (WT) scion on a CgT stock contained both Atgai-T7 mRNA and the translated product. Microarray analysis to clarify the effect of the CgT stock on the gene expression pattern in the scion clearly revealed that the WT scions on CgT stocks had fewer genes whose expression was altered in response to GA treatment. An apple rootstock variety, Malus prunifolia, integrating CoYMVp:Atgai moderately reduced the tree height of the apple cultivar scion. Conclusions Our results demonstrate that Atgai mRNA can move from companion cells to sieve tubes and that the translated product remains at the sites to which it is transported, resulting in attenuation of GA responses by reducing the expression of many genes. The induction of semi-dwarfism in an apple cultivar on root stock harbouring Atgai suggests that long-distance transport of mRNA from grafts would be applicable to horticulture crops. PMID:24144190

  20. Detection and Quantification of Valerenic Acid in Commercially Available Valerian Products

    ERIC Educational Resources Information Center

    Douglas, Ruth H.; Muldowney, Ciaran A.; Mohamed, Rabab; Keohane, Fiona; Shanahan, Catherine; Walsh, John J.; Kavanagh, Pierce V.

    2007-01-01

    Several valerian-containing products sold in pharmacies were evaluated to verify the presence of Valeriana officinalis by identifying the presence of valerenic acid found only in species of Valeriana. The content of valerenic acid was found to vary considerably in the products analyzed, thus emphasizing the importance of standardizing herbal…

  1. Glycyrrhetinic acid inhibits contact hypersensitivity induced by trichophytin via dectin-1.

    PubMed

    Nakamura, Tomoya; Nishibu, Akiko; Yoshida, Naoki; Yasoshima, Mitsue; Anzawa, Kazushi; Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi; Ogawa, Kazuo; Mochizuki, Takashi

    2016-04-01

    Trichophyton infection is highly prevalent and tends to be recurrent. Therefore, it is important to develop new therapeutic agents. Previously, we established a mouse model of Trichophyton-induced contact hypersensitivity (CHS) and demonstrated that dectin-1 was involved in inflammation induced by trichophytin, the Trichophyton antigen. Here, we used that model to investigate glycyrrhetinic acid (GA) from plants of the genus Glycyrrhiza as a potential anti-inflammatory agent against superficial mycoses. GA suppressed swelling and the expression of inflammatory cytokines, including macrophage inflammatory protein (MIP)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ mRNA. Anti-MIP-2 antibody suppressed trichophytin-induced inflammation, and antidectin-1 antibody suppressed zymosan-induced MIP-2 production in keratinocyte cells. These results suggest that MIP-2 is produced by dectin-1 activation and is involved in inflammation associated with CHS to trichophytin. GA also suppressed zymosan-induced MIP-2 and interleukin (IL)-8, production in mouse and human macrophages and keratinocytes. Furthermore, GA suppressed the phosphorylation of spleen tyrosine kinase (Syk) and inhibitor of nuclear factor-kappa B (IκBα) and the degradation of IκBα in zymosan-simulated RAW264.7 cells. The results of this study suggest that GA suppresses inflammation induced by trichophytin, partly by the downregulation of Syk phosphorylation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englhard, M.; Klemp, C.; Behringer, M.

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-raymore » diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.« less

  4. Ga3+ as a mechanistic probe in Fe3+ transport: characterization of Ga3+ interaction with FbpA.

    PubMed

    Weaver, Katherine D; Heymann, Jared J; Mehta, Arnav; Roulhac, Petra L; Anderson, Damon S; Nowalk, Andrew J; Adhikari, Pratima; Mietzner, Timothy A; Fitzgerald, Michael C; Crumbliss, Alvin L

    2008-08-01

    The obligate human pathogens Haemophilus influenzae, Neisseria gonorrhoeae, and N. meningitidis utilize a highly conserved, three-protein ATP-binding cassette transporter (FbpABC) to shuttle free Fe(3+) from the periplasm and across the cytoplasmic membrane. The periplasmic binding protein, ferric binding protein (FbpA), is capable of transporting other trivalent cations, including Ga(3+), which, unlike Fe(3+), is not redox-active. Because of a similar size and charge as Fe(3+), Ga(3+) is widely used as a non-redox-active Fe(3+) substitute for studying metal complexation in proteins and bacterial populations. The investigations reported here elucidate the similarities and differences in FbpA sequestration of Ga(3+) and Fe(3+), focusing on metal selectivity and the resulting transport function. The thermodynamic binding constant for Ga(3+) complexed with FbpA at pH 6.5, in 50 mM 4-morpholineethanesulfonic acid, 200 mM KCl, 5 mM KH(2)PO(4) was determined by UV-difference spectroscopy as log K'eff=13.7+/-0.6. This represents a 10(5)-fold weaker binding relative to Fe(3+) at identical conditions. The unfolding/refolding behavior of Ga(3+) and Fe(3+) holo-FbpA were also studied using a matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy technique, stability of unpurified proteins from rates of H/D exchange (SUPREX). This analysis indicates significant differences between Fe(3+) and Ga(3+) sequestration with regard to protein folding behavior. A series of kinetic experiments established the lability of the Ga(3+)FbpA-PO(4) assembly, and the similarities/differences of stepwise loading of Fe(3+) into apo- or Ga(3+)-loaded FbpA. These biophysical characterization data are used to interpret FbpA-mediated Ga(3+) transport and toxicity in cell culture studies.

  5. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  6. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  7. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

    PubMed Central

    Cheng, Mingrong; Xu, Hongzhi; Wang, Yong; Chen, Houxiang; He, Bing; Gao, Xiaoyan; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU), gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA) to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T-cells, decreased expression of cytotoxic T-cell and natural killer cells, and reduced levels of interleukin-2 and interferon gamma. PMID:24187487

  8. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  9. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  10. Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm.

    PubMed

    Lange, T

    1994-01-01

    Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et al., Planta 195, 98-107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.

  11. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with...

  12. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    PubMed

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid.

    PubMed

    Ji, Ying; Shan, Shuo; He, Mingyu; Chu, Chih-Chang

    2017-10-15

    β-Cyclodextrin can form inclusion complex with a series of guest molecules including phenyl moieties, and has gained considerable popularity in the study of supramolecular nanostructure. In this study, a biodegradable nanocomplex (HA(CD)-4Phe4 nanocomplex) was developed from β-cyclodextrin grafted hyaluronic acid (HA) and phenylalanine based poly(ester amide). The phenylalanine based poly(ester amide) is a biodegradable pseudo protein which provides the encapsulation capacity for gambogic acid (GA), a naturally-derived chemotherapeutic which has been effectively employed to treat multidrug resistant tumor. The therapeutic potency of free GA is limited due to its poor solubility in water and the lack of tumor-selective toxicity. The nanocomplex carrier enhanced the solubility and availability of GA in aqueous media, and the HA component enabled the targeted delivery to tumor cells with overexpression of CD44 receptors. In the presence of hyaluronidase, the release of GA from the nanocomplex was significantly accelerated, due to the enzymatic biodegradation of the carrier. Compared to free GA, GA-loaded nanocomplex exhibited improved cytotoxicity in MDA-MB-435/MDR multidrug resistant melanoma cells, and induced enhanced level of apoptosis and mitochondrial depolarization, at low concentration of GA (1-2µM). The nanocomplex enhanced the therapeutic potency of GA, especially when diluted in physiological environment. In addition, suppressed matrix metalloproteinase activity was also detected in MDA-MB-435/MDR cells treated by GA-loaded nanocomplex, which demonstrated its potency in the inhibition of tumor metastasis. The in vitro data suggested that HA(CD)-4Phe4 nanocomplex could provide a promising alternative in the treatment of multidrug resistant tumor cells. Gambogic acid (GA), naturally derived from genus Garcinia trees, exhibited significant cytotoxic activity against multiple types of tumors with resistance to traditional chemotherapeutics. Unfortunately

  14. Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.

    PubMed

    Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin

    2017-02-17

    The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.

  15. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    PubMed

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  16. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    PubMed Central

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  17. A Metallurgical Study of Nāga Bhasma.

    PubMed

    Singh Gautam, Dev Nath

    2017-01-01

    The metal Nāga (Lead) is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā . According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha , Jvara , Gulma , Śukrameha etc. In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM) and by the electric muffle furnace Puṭa method (EMFPM) and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa) process. Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1 st , 30 th and 60 th Puṭa ) from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. The processing of the Nāga Bhasma ( ṣaṣṭipuṭa ) was done according to Ānanda Kanda [9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead) and that processed after 1 st , 30 th and 60 th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes) and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method.

  18. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  19. Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Knaub, N.; Ludewig, P.; Straubinger, R.; Beyer, A.; Volz, K.

    2014-12-01

    Low Bi content GaAs is a promising material for new optical devices with less heat production. The growth of such devices by metal organic vapor phase epitaxy faces several challenges. This paper summarizes results of the formation of metallic droplets during the epitaxial growth of Ga(AsBi) using all-liquid group III and V precursors. The samples that are grown, investigated by atomic force microscopy and scanning electron microscopy, show a different metal droplet distribution over the surface depending on the growth temperature and the V/III ratio of the precursors. Investigations with energy dispersive X-ray analysis and selective etching prove the appearance of phase separated Ga-Bi and pure Bi droplets at growth temperatures between 375 °C and 425 °C, which is explainable by the phase diagram of Ga-Bi. Since the pure Bi droplets show a preferred orientation on the surface after cool-down, transmission electron microscopy measurements were done by using the dark field imaging mode in addition to electron diffraction and high resolution imaging. These experiments show the single crystalline structure of the Bi droplets. The comparison of experimental diffraction patterns with image simulation shows a preferred alignment of Bi {10-1} lattice planes parallel to GaAs {202} lattice planes with the formation of a coincidence lattice. Thus it is possible to derive a model of how the Bi droplets evolve on the GaAs surface.

  20. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    PubMed

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  1. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo...

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo...

  3. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  6. A novel extractive fermentation process for propionic acid production from whey lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, V.P.; Yang, Shangtian

    An extractive fermentation process was developed to produce propionate from lactose. The bacterium Propionibacterium acidipropionici was immobilized in a spiral wound, fibrous matrix packed in the reactor. Propionic acid is the major product from lactose fermentation, with acetic acid and carbon dioxide as byproducts. Propionic acid is a strong inhibitor to this fermentation. A tertiary amine was used to selectively extract propionic acid from the bioreactor, hence enhancing reactor productivity by over 100%. The authors also speculate that by selectively extracting propionic acid, lactose metabolism can be directed to yield more propionate and less byproducts. Other advantages of extractive fermentationmore » include better pH control and a purer product. The propionic acid present in the extractant can be easily stripped with small amounts of an alkaline solution, resulting in a concentrated propionate salt. The extractant was also regenerated in this stripping step. Thus, the process is energy-efficient and economically attractive.« less

  7. Establishment and assessment of an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Comparative Evaluation of Efficacy and Tolerability of Glycolic Acid, Salicylic Mandelic Acid, and Phytic Acid Combination Peels in Melasma.

    PubMed

    Sarkar, Rashmi; Garg, Vijay; Bansal, Shivani; Sethi, Sumit; Gupta, Chitra

    2016-03-01

    Melasma is acquired symmetric hypermelanosis characterized by light-to-deep brown pigmentation over cheeks, forehead, upper lip, and nose. Treatment of this condition is difficult and associated with high recurrence rates. Chemical peels have become a popular modality in the treatment of melasma. To compare the therapeutic efficacy and tolerability of glycolic acid (35%) versus salicylic-mandelic (SM) acid (20% salicylic/10% mandelic acid) versus phytic combination peels in Indian patients with melasma. Ninety patients diagnosed with melasma were randomly assigned into 3 groups of 30 patients each. Group A received glycolic acid (GA-35%) peel, Group B received SM acid, and Group C received phytic combination peels. Each group was primed with 4% hydroquinone and 0.05% tretinoin cream for 4 weeks before treatment. Chemical peeling was done after every 14 days in all groups until 12 weeks. Clinical evaluation using melasma area and severity index (MASI) score and photography was recorded at every visit and follow-up was done until 20 weeks. There was a decrease in MASI score in all 3 groups but it was statistically significantly lower in Group A than Group C (p = .00), and it was also statistically significantly lower in Group B than Group C (p = .00) but there was no statistically significant difference between Groups A and B (p = .876). Objective response to treatment evaluated by reduction in MASI scoring after 12 weeks was 62.36% reduction in GA group, 60.98% reduction in SM group, and 44.71% in phytic acid group. It is concluded that GA (35%) and SM acid peels are both equally efficacious and a safe treatment modality for melasma in Indian skin, and are more effective than phytic acid peels. Salicylic-mandelic peels are better tolerated and more suitable for Indian skin.

  9. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  10. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate.

    PubMed

    Lokman, Ibrahim M; Rashid, Umer; Zainal, Zulkarnain; Yunus, Robiah; Taufiq-Yap, Yun Hin

    2014-01-01

    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.

  11. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  12. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  13. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.

    PubMed

    Jeong, Tae Su; Kim, Young Soo; Oh, Kyeong Keun

    2011-11-01

    Two-stage acid hydrolysis was conducted on easy reacting cellulose and resistant reacting cellulose of fractionated Gelidium amansii (f-GA). Acid hydrolysis of f-GA was performed at between 170 and 200 °C for a period of 0-5 min, and an acid concentration of 2-5% (w/v, H2SO4) to determine the optimal conditions for acid hydrolysis. In the first stage of the acid hydrolysis, an optimum glucose yield of 33.7% was obtained at a reaction temperature of 190 °C, an acid concentration of 3.0%, and a reaction time of 3 min. In the second stage, a glucose yield of 34.2%, on the basis the amount of residual cellulose from the f-GA, was obtained at a temperature of 190 °C, a sulfuric acid concentration of 4.0%, and a reaction time 3.7 min. Finally, 68.58% of the cellulose derived from f-GA was converted into glucose through two-stage acid saccharification under aforementioned conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    PubMed

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  15. Value of acid metabolic products in identification of certain corynebacteria.

    PubMed Central

    Reddy, C A; Kao, M

    1978-01-01

    Acid metabolic products of 23 strains of human and animal pathogenic corynebacteria, representing eight different species, were determined by gas chromatography. The results showed that the species examined were metabolically heterogeneous and could be presumptively identified based on the acid products produced. Corynebacterium equi did not produce any acids; C. renale produced lactate; and C. pyogenes produced major amounts of lactate, variable amounts of acetate, and minor amounts of succinate and pyruvate. C. kutscheri produced propionate and lactate as major products and pyruvate and oxalacetate as minor products. C. diphtheriae and C. pseudotuberculosis produced major amounts of propionate, acetate, and formate. In addition, C. pseudotuberculosis produced major amounts of pyruvate and minor amounts of succinate, lactate, and oxalacetate, whereas C. diphtheriae strains produced minor but variable amounts of lactate, succinate, fumarate, pyruvate, and oxalacetate. C. bovis produced aicd products similar to those of C. pyogenes but was readily distinguishable from the latter by the lack of hemolysis on blood agar, colony morphology, catalase reaction, and biochemicals. C. suis characteristically produced major amounts of ethanol, acetate, and formate and minor amounts of lactate and succinate but no propionate. PMID:96126

  16. Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9: Inflammation Imaging and Radiation Dosimetry.

    PubMed

    Virtanen, Helena; Silvola, Johanna M U; Autio, Anu; Li, Xiang-Guo; Liljenbäck, Heidi; Hellberg, Sanna; Siitonen, Riikka; Ståhle, Mia; Käkelä, Meeri; Airaksinen, Anu J; Helariutta, Kerttuli; Tolvanen, Tuula; Veres, Tibor Z; Saraste, Antti; Knuuti, Juhani; Jalkanen, Sirpa; Roivainen, Anne

    2017-01-01

    Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a ligand of inflammation-inducible vascular adhesion protein-1 (VAP-1). We compared 68 Ga-DOTA- and 18 F-fluorodeoxyribose- (FDR-) labeled Siglec-9 motif peptides for PET imaging of inflammation. Methods . Firstly, we examined 68 Ga-DOTA-Siglec-9 and 18 F-FDR-Siglec-9 in rats with skin/muscle inflammation. We then studied 18 F-FDR-Siglec-9 for the detection of inflamed atherosclerotic plaques in mice and compared it with previous 68 Ga-DOTA-Siglec-9 results. Lastly, we estimated human radiation dosimetry from the rat data. Results . In rats, 68 Ga-DOTA-Siglec-9 (SUV, 0.88 ± 0.087) and 18 F-FDR-Siglec-9 (SUV, 0.77 ± 0.22) showed comparable ( P = 0.29) imaging of inflammation. In atherosclerotic mice, 18 F-FDR-Siglec-9 detected inflamed plaques with a target-to-background ratio (1.6 ± 0.078) similar to previously tested 68 Ga-DOTA-Siglec-9 ( P = 0.35). Human effective dose estimates for 68 Ga-DOTA-Siglec-9 and 18 F-FDR-Siglec-9 were 0.024 and 0.022 mSv/MBq, respectively. Conclusion . Both tracers are suitable for PET imaging of inflammation. The easier production and lower cost of 68 Ga-DOTA-Siglec-9 present advantages over 18 F-FDR-Siglec-9, indicating it as a primary choice for clinical studies.

  17. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    PubMed

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  18. Activation cross sections of α-induced reactions on natZn for Ge and Ga production

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Saito, M.; Ebata, S.; Komori, Y.; Haba, H.

    2018-07-01

    The production cross sections of 68,69Ge and 66,67Ga by α-induced reactions on natZn have been measured using the stacked-foil activation method and off-line γ-ray spectrometry from their threshold energies to 50.7 MeV. The derived cross sections were compared with the previous experimental data and the calculated values in the TENLD-2017 library. Our result shows a slightly larger amplitude than the previous data at the peak, though the peak energy is consistent with them.

  19. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective.

    PubMed

    Boruta, Tomasz; Bizukojc, Marcin

    2017-02-01

    Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic statins. Interestingly, their biosynthetic gene clusters were shown to reside in the common genetic neighborhood. Despite the genomic proximity of the underlying biosynthetic genes, the production of lovastatin and itaconic acid was shown to be favored by different factors, especially with respect to pH values of the broth. While there are several reviews on various aspects of lovastatin and itaconic acid production, the survey on growth conditions, biochemistry and morphology related to the formation of these two metabolites has never been presented in the comparative manner. The aim of the current review is to outline the correlations and contrasts with respect to process-related and biochemical discoveries regarding itaconic acid and lovastatin production by A. terreus.

  20. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon

    2016-11-01

    We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

  1. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  2. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis

    PubMed Central

    Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang

    2016-01-01

    The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486

  3. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.

    PubMed

    Xu, Guoqiang; Chen, Xiulai; Liu, Liming; Jiang, Linghuo

    2013-11-01

    In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  5. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  6. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  7. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  8. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  9. Determination of amino acids in grape-derived products: a review.

    PubMed

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  10. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE PAGES

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.; ...

    2017-03-01

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  11. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  12. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  13. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    PubMed

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis.

    PubMed

    Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi

    2018-01-01

    Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1  h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.

  15. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  16. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  17. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini

    2018-05-29

    The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Continuous succinic acid production from xylose by Actinobacillus succinogenes.

    PubMed

    Bradfield, Michael F A; Nicol, Willie

    2016-02-01

    Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h(-1). Succinic acid yields on xylose (0.55-0.68 g g(-1)), titres (10.9-29.4 g L(-1)) and productivities (1.5-3.4 g L(-1) h(-1)) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0-5.0 g g(-1)) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2-1.9 g L(-1)) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.

  19. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  20. Calyx diversity of flavonols and fatty acids in Roselle (Hibiscus sabdariffa) for use as a potential nutraceutical crop.

    USDA-ARS?s Scientific Manuscript database

    Flavonols and fatty acids in plants has potential to be used as an antioxidant, lowering of cholesterol, and for cancer prevention. Roselle is a photoperiod and frost-sensitive species requiring greenhouse production in the Griffin, GA environment. Six accessions of roselle calyces were evaluated fo...

  1. Improved Saturation Performance in High Speed Waveguide Photodetectors at 1.3 ??sing an Asymmetric InA1GaAs/InGaAsP Structure

    NASA Technical Reports Server (NTRS)

    Vang, T. A.; Davis, L.; Keo, S.; Forouhar, S. F.

    1996-01-01

    Waveguide photodetector (WGPD) results have recently been presented demonstrating the very large bandwidth-efficiency product potential of these devices. Improved saturation and linearity characteristics are realized in waveguide p-i-n photodetectors at 1.3 ??y using an asymmetric cladding structure with InA1GaAs/InGaAsP in the anode and InGaAsP in the cathode.

  2. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  3. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

    PubMed Central

    Cheng, Mingrong; Chen, Houxiang; Wang, Yong; Xu, Hongzhi; He, Bing; Han, Jiang; Zhang, Zhiping

    2014-01-01

    The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS) and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared (IR) spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU) nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP) weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v), and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under the curve of GA-CTS/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. We demonstrated that the nanoparticles accumulated in the liver and have significantly inhibited tumor growth in an orthotropic liver cancer mouse model. PMID:24493926

  4. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid.

    PubMed

    Wang, Xiaodan; Gu, Xiangqin; Wang, Huimin; Sun, Yujiao; Wu, Haiyang; Mao, Shirui

    2017-01-01

    Recently, polymeric materials with multiple functions have drawn great attention as the carrier for drug delivery system design. In this study, a series of multifunctional drug delivery carriers, hyaluronic acid (HA)-glycyrrhetinic acid (GA) succinate (HSG) copolymers were synthesized via hydroxyl group modification of hyaluronic acid. It was shown that the HSG nanoparticles had sub-spherical shape, and the particle size was in the range of 152.6-260.7nm depending on GA graft ratio. HSG nanoparticles presented good short term and dilution stability. MTT assay demonstrated all the copolymers presented no significant cytotoxicity. In vivo imaging analysis suggested HSG nanoparticles had superior liver targeting efficiency and the liver targeting capacity was GA graft ratio dependent. The accumulation of DiR (a lipophilic, NIR fluorescent cyanine dye)-loaded HSG-6, HSG-12, and HSG-20 nanoparticles in liver was 1.8-, 2.1-, and 2.9-fold higher than that of free DiR. The binding site of GA on HA may influence liver targeting efficiency. These results indicated that HSG copolymers based nanoparticles are potential drug carrier for improved liver targeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Okino, Shohei; Suda, Masako; Fujikura, Keitaro; Inui, Masayuki; Yukawa, Hideaki

    2008-03-01

    In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of L-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce D-lactic acid. The modification involved expression of fermentative D-lactate dehydrogenase (D-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in L-lactate dehydrogenase (L-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum DeltaldhA/pCRB201 and C. glutamicum DeltaldhA/pCRB204, respectively. The productivity of C. glutamicum DeltaldhA/pCRB204 was fivefold higher than that of C. glutamicum DeltaldhA/pCRB201. By using C. glutamicum DeltaldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l(-1)) of D-lactic acid of greater than 99.9% optical purity was produced within 30 h.

  7. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    USDA-ARS?s Scientific Manuscript database

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  8. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    PubMed Central

    2012-01-01

    Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24) and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20) contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host

  9. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  10. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production.

    PubMed

    Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee

    2018-04-01

    Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.

  12. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  13. Induction of Thymic Stromal Lymphopoietin Production by Nonanoic Acid and Exacerbation of Allergic Inflammation in Mice

    PubMed Central

    Yamashita, Saori; Segawa, Ryosuke; Satou, Nozomi; Hiratsuka, Masahiro; Leonard, Warren J.; Hirasawa, Noriyasu

    2013-01-01

    Background Thymic stromal lymphopoietin (TSLP) plays critical roles in the induction and exacerbation of allergic diseases. We tested various chemicals in the environment and found that xylene and 1,2,4-trimethylbenzene induced the production of TSLP in vivo. These findings prompted us to search for additional chemicals that induce TSLP production. In this study, we examined whether fatty acids could induce the production of TSLP in vivo and exacerbate allergic inflammation. Methods Various fatty acids and related compounds were painted on the ear lobes of mice and the amount of TSLP in the homogenate of ear lobe tissue was determined. The effects of nonanoic acid on allergic inflammation were also examined. Results Octanoic acid, nonanoic acid, and decanoic acid markedly induced TSLP production, while a medium-chain aldehyde and alcohol showed only weak activity. Nonanoic acid induced the production of TSLP with a maximum at 24 h. TSLP production was even observed in nonanoic acid-treated C3H/HeJ mice that lacked functional toll-like receptor 4. The aryl hydrocarbon receptor agonist β-naphthoflavone did not induce TSLP production. Nonanoic acid promoted sensitization to ovalbumin, resulting in an enhancement in the cutaneous anaphylactic response. In addition, painting of nonanoic acid after the sensitization augmented picryl chloride-induced thickening of the ear, which was reversed in TSLP receptor-deficient mice. Conclusion Nonanoic acid and certain fatty acids induced TSLP production, resulting in the exacerbation of allergic inflammation. We propose that TSLP-inducing chemical compounds such as nonanoic acid be recognized as chemical allergo-accelerators. PMID:24060765

  14. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  15. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  16. Soft-template mediated synthesis of GaOOH nanorod-shelled microspheres and thermal conversion to beta-Ga2O3.

    PubMed

    Wang, Jian; Li, Qi; Qiu, Xiaohui; He, Yujian; Liu, Wei

    2010-07-01

    Micrometer-scale hollow spheres self-assembled by GaOOH nanorods were synthesized under hydrothermal conditions using gallium nitrate and sodium hydroxide as starting materials. The structures and morphologies of the products were studied by X-ray diffraction and scanning electron microscopy. Time-dependent experiments revealed three stages involved in the process of reaction including the initial stage of formation of surfactant vesicles which can be considered as soft templates, followed by the nucleation of GaOOH nanoclusters, and the assembling and growth of nanorods under the modulation of the spherical vesicles. The growth kinetics of the GaOOH nanorods was systematically investigated. Based on the experimental observation, a template-mediated assembling mechanism was proposed. We further demonstrated that the GaOOH nanorods could be converted to gallium oxide (beta-Ga2O3) nanorods by calcination without changing the spherical morphology of the assemblies.

  17. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  18. Triacetic acid lactone production from Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  19. Fatty acid analysis of Iranian junk food, dairy, and bakery products: Special attention to trans-fats

    PubMed Central

    Nazari, Bahar; Asgary, Sedigheh; Azadbakht, Leila

    2012-01-01

    Background: Low attention to dairy product consumptions and high intake of junk foods and bakery products might be related to high prevalence of chronic diseases because of their fat content and fatty acid composition. Objective: In this study we investigated the kind and amount of fatty acid content in Iranian junk foods, dairy, and bakery products Materials and Methods: Some common brands of Iranian’s junk foods, dairy, and bakery products were chosen randomly from different supermarkets in Iran. The amount of 10 g sample was considered for fatty acid analysis by gas chromatography equipment with flam ionization detector. Results: In this study stearic acid (C18:0) and palmitic (C16:0) acid have the highest amount among other saturated fatty acids in all groups. In junk foods and bakery products, the most common trans-fatty acid (TFA) is elaidic acid (C18:1 9t) with ranging from 2.4% to 18.5% and in dairy products vaccinic acid (C18:1 11t) has the high level of TFAs among others (2.1% to 11.5%). Conclusion: The amount of TFAs in Iranian junk foods and bakery products was in a high level. PMID:23825996

  20. Fatty acid analysis of Iranian junk food, dairy, and bakery products: Special attention to trans-fats.

    PubMed

    Nazari, Bahar; Asgary, Sedigheh; Azadbakht, Leila

    2012-10-01

    Low attention to dairy product consumptions and high intake of junk foods and bakery products might be related to high prevalence of chronic diseases because of their fat content and fatty acid composition. In this study we investigated the kind and amount of fatty acid content in Iranian junk foods, dairy, and bakery products. Some common brands of Iranian's junk foods, dairy, and bakery products were chosen randomly from different supermarkets in Iran. The amount of 10 g sample was considered for fatty acid analysis by gas chromatography equipment with flam ionization detector. In this study stearic acid (C18:0) and palmitic (C16:0) acid have the highest amount among other saturated fatty acids in all groups. In junk foods and bakery products, the most common trans-fatty acid (TFA) is elaidic acid (C18:1 9t) with ranging from 2.4% to 18.5% and in dairy products vaccinic acid (C18:1 11t) has the high level of TFAs among others (2.1% to 11.5%). The amount of TFAs in Iranian junk foods and bakery products was in a high level.

  1. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles

    NASA Astrophysics Data System (ADS)

    Philipps, Jan M.; Hölzel, Sara; Hille, Pascal; Schörmann, Jörg; Chatterjee, Sangam; Buyanova, Irina A.; Eickhoff, Martin; Hofmann, Detlev M.

    2018-05-01

    The photoelectrochemical responses of GaN, GaNP, and InGaN nanowire ensembles are investigated by the electrical bias dependent photoluminescence, photocurrent, and spin trapping experiments. The results are explained in the frame of the surface band bending model. The model is sufficient for InGaN nanowires, but for GaN nanowires the electrochemical etching processes in the anodic regime have to be considered additionally. These processes lead to oxygen rich surface (GaxOy) conditions as evident from energy dispersive X-ray fluorescence. For the GaNP nanowires, a bias dependence of the carrier transfer to the electrolyte is not reflected in the photoluminescence response, which is tentatively ascribed to a different origin of radiative recombination in this material as compared to (In)GaN. The corresponding consequences for the applications of the materials for water splitting or pH-sensing will be discussed.

  3. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorczyca, I., E-mail: iza@unipress.waw.pl; Skrobas, K.; Suski, T.

    2015-08-21

    The electronic structures of short period mGaN/nGa{sub y}Al{sub 1−y}N and mIn{sub y}Ga{sub 1-y}N/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations,more » the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.« less

  5. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Nagel, Raimund; Turrini, Paula C. G.; Nett, Ryan S.; Leach, Jan E.; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J.

    2016-01-01

    Summary Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the gibberellin (GA) phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid (JA) mediated defense response.Here the function of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae investigated in over 100 isolates.The Xoc operon leads to production of the bioactive GA4, an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (>90%), but absent in the other major oryzae pathovar.These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. PMID:28134995

  6. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2015-08-01

    The electronic structures of short period mGaN/nGayAl1-yN and mInyGa1-yN/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.

  7. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  8. Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer

    NASA Astrophysics Data System (ADS)

    Loeber, Thomas Henning; Richter, Johannes; Strassner, Johannes; Heisel, Carina; Kimmle, Christina; Fouckhardt, Henning

    2013-03-01

    Ga(As)Sb quantum dots (QDs) are epitaxially grown in AlGaAs/GaAs in the Stranski-Krastanov mode. In the recent past we achieved Ga(As)Sb QDs in GaAs with an extremely high dot density of 9.8•1010 cm-2 by optimization of growth temperature, Sb/Ga flux pressure ratio, and coverage. Additionally, the QD emission wavelength could be chosen precisely with these growth parameters in the range between 876 and 1035 nm. Here we report a photoluminescence (PL) intensity improvement for the case with AlGaAs barriers. Again growth parameters and layer composition are varied. The aluminium content is varied between 0 and 90%. Reflectance anisotropy spectroscopy (RAS) is used as insitu growth control to determine growth rate, layer thickness, and AlGaAs composition. Ga(As)Sb QDs, directly grown in AlxGa1-xAs emit no PL signal, even with a very low x ≈ 0.1. With additional around 10 nm thin GaAs intermediate layers between the Ga(As)Sb QDs and the AlGaAs barriers PL signals are detected. Samples with 4 QD layers and AlxGa1-xAs/GaAs barriers in between are grown. The thickness and composition of the barriers are changed. Depending on these values PL intensity is more than 4 times as high as in the case with simple GaAs barriers. With these results efficient Ga(As)Sb QD lasers are realized, so far only with pure GaAs barriers. Our index-guided broad area lasers operate continuous-wave (cw) @ 90 K, emit optical powers of more than 2•50 mW and show a differential quantum efficiency of 54% with a threshold current density of 528 A/cm2.

  9. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  10. Yarrowia lipolytica: a model yeast for citric acid production.

    PubMed

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Unusal pattern of product inhibition: batch acetic acid fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behaviormore » was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.« less

  12. A Metallurgical Study of Nāga Bhasma

    PubMed Central

    Singh Gautam, Dev Nath

    2017-01-01

    Background: The metal Nāga (Lead) is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā. According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha, Jvara, Gulma, Śukrameha etc. Objectives: In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM) and by the electric muffle furnace Puṭa method (EMFPM) and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa) process. Setting and Design: Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1st, 30th and 60th Puṭa) from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. Materials and Methods: The processing of the Nāga Bhasma (ṣaṣṭipuṭa) was done according to Ānanda Kanda[9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead) and that processed after 1st, 30th and 60th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes) and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. Conclusion: This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method. PMID:29269968

  13. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  14. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  16. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba ( Myrciaria jaboticaba ) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans . To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  17. Photoreflectance from GaAs and GaAs/GaAs interfaces

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.

    1989-10-01

    Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.

  18. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    USDA-ARS?s Scientific Manuscript database

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  19. Association of the -1082 G/A promoter polymorphism of interleukin-10 gene with the autoantibodies production in patients with rheumatoid arthritis.

    PubMed

    Nemec, Petr; Pavkova-Goldbergova, Monika; Gatterova, Jindra; Fojtik, Zdenek; Vasku, Anna; Soucek, Miroslav

    2009-08-01

    Interleukin-10 (IL-10) is an immunoregulatory cytokine, usually considered to mediate the downregulation of the inflammatory response in rheumatoid arthritis (RA). Some effects of IL-10 are not anti-inflammatory; for example, the activation of B cells to promote autoantibody production. Allelic polymorphisms located in the promoter region of the IL-10 gene may contribute to the regulation of autoantibodies production. To examine the putative association between the -1082 G/A polymorphism in the promoter region of the IL-10 gene and the susceptibility to disease onset and severity of RA, a total of 144 patients with RA diagnosed according to the revised criteria of the American College of Rheumatology for RA were consecutively recruited into the study. Radiographic progression of RA was scored according to the Sharp/van der Heijde method. Serum levels of rheumatoid factors (RFs) were measured by enzyme-linked immunosorbent assay. Polymerase chain reaction amplification was used for the analysis of the promoter polymorphism of the IL-10 gene. We observed significant differences in genotype distribution of the -1082 G/A polymorphism between IgM RF, IgA RF, and IgG RF positive/negative subgroups of RA patients, with higher prevalence of the GG genotype within IgM RF (Pg = 0.006), IgA RF (Pg = 0.05), and IgG RF (Pg = 0.007) negative RA patients. Results obtained in this study provide the evidence of an association between the -1082 G/A polymorphism in the IL-10 gene promoter and the production of RFs in RA patients.

  20. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  1. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  2. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  3. Effect of high density H 2 plasmas on InGaP/GaAs and AlGaAs/GaAs HEMTs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Kopf, R. F.; Kuo, J. M.; Lothian, J. R.; Lee, J. W.; Pearton, S. J.; Shul, R. J.; Constantine, C.; Johnson, D.

    1998-05-01

    InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors have been exposed to inductively coupled plasma or electron cyclotron resonance H 2 plasmas as a function of pressure, source power and rf chuck power. The transconductance, gate ideality factor and saturated drain-source current are all degraded by the plasma treatment. Two mechanisms are identified: passivation of Si dopants in the InGaP or AlGaAs donor layers by H 0 and lattice disorder created by H + and H 2+ ion bombardment. HEMTs are found to be more susceptible to plasma-induced degradation than heterojunction bipolar transistors.

  4. Citric acid production by Koji fermentation using banana peel as a novel substrate.

    PubMed

    Karthikeyan, Alagarsamy; Sivakumar, Nallusamy

    2010-07-01

    The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Permissive role of the acidification caused by wheat aleurone layers upon. alpha. -amylase induction by GA sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Campos, E.; Bernal-Lugo, I.; Hamabata, A.

    1989-04-01

    Wheat aleurone has the capacity of acidifying the incubation medium in 1 to 2 pH units. The {alpha}-amylase induction by GA{sub 3} in isolated wheat aleurone layers is strongly dependent on acidic pH of the medium (pH < 5). To examine possible mechanisms {sup 35}-Met incorporation into proteins and {alpha}-amylase, in the presence of GA{sub 3} and Ca{sup 2+} at pH, 4, 5 and 6 was studied. Although {sup 35}-Met uptake decreased markedly ({approx} 90%) at pH 4 in thepresence of GA{sub 3}, incorporation into total protein did not change significantly from other conditions. Auto-radiography of SDS-PAGE showed that mostmore » of the amino acid was in the {alpha}-amylase band, meaning that the effect of acidic pH is specific for GA{sub 3} actions on aleurone tissue. On the other hand, an increase of protonated GA{sub 3} diffusion could be ruled out. Also, there was not {alpha}-amylase inactivation at pH 6. These findings point out to the important physiological role of the acidification caused by the aleurone.« less

  6. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  7. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  8. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. © 2016 American Institute of Chemical Engineers.

  9. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  10. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of fluoride on growth and acid production by Streptococcus mutans in dental plaque.

    PubMed Central

    van der Hoeven, J S; Franken, H C

    1984-01-01

    The aim of this study was to measure the effect of fluoride on the production of organic acids by Streptococcus mutans in dental plaque. The effect was studied in a simplified model of dental plaque with gnotobiotic rats monoinfected with S. mutans Ny341. Adaptation of S. mutans to fluoride was induced by feeding one group of the rats on fluoride-containing diet and drinking water. No difference was found in the accumulation of S. mutans on the teeth between the fluoride-adapted and the control groups. However, there was a significant difference in the amount of lactic acid in metabolically resting plaque between the groups, lactic acid being lower in the fluoride-adapted plaque. At 5 min after a rinse containing 10% sucrose, a high level of lactic acid was found in plaque from animals not exposed to fluoride. Rinses containing 4 or 20 mM fluoride before the sucrose rinse significantly inhibited the lactic acid production in the control group. In the plaque from rats on fluoridated diet and drinking water the sucrose-induced production of lactic acid was not inhibited by a 4 mM fluoride rinse. Moreover, the production of lactic acid in the fluoride-adapted plaque was prolonged. The results indicate that due to fluoride adaptation the inhibition of acid production is unlikely to be important for the caries-preventive action of fluoride. PMID:6746094

  12. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.

    PubMed

    Wang, Ke-Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao

    2016-07-01

    An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.

  13. World market and biotechnological production of itaconic acid.

    PubMed

    Cunha da Cruz, Juliana; Machado de Castro, Aline; Camporese Sérvulo, Eliana Flávia

    2018-03-01

    The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

  14. High cell density cultivation of probiotics and lactic acid production.

    PubMed

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario

    2003-04-20

    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  15. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia.

  16. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  17. A stimuli-responsive fluorescence platform for simultaneous determination of D-isoascorbic acid and Tartaric acid based on Maillard reaction product

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-01

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.

  18. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  19. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  20. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia

    PubMed Central

    Liang, Yin-Chih; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Since stem elongation is a gibberellic acid (GA) response, GA inhibitors are commonly used to control plant height in the production of potted ornamentals and bedding plants. In this study, we investigated interfering with GA signaling by using molecular techniques as an alternative approach. We isolated three putative GID1 genes (PhGID1A, PhGID1B and PhGID1C) encoding GA receptors from petunia. Virus-induced gene silencing (VIGS) of these genes results in stunted growth, dark-green leaves and late-flowering. We also isolated the gai mutant gene (gai-1) from Arabidopsis. We have generated transgenic petunia plants in which the gai mutant protein is over-expressed under the control of a dexamethasone-inducible promoter. This system permits induction of the dominant Arabidopsis gai mutant gene at a desired stage of plant development in petunia plants by the application of dexamethasone (Dex). The induction of gai in Dex-treated T1 petunia seedlings caused dramatic growth retardation with short internodes. PMID:26504556

  1. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    PubMed

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  2. Modelling and optimization of environmental conditions for kefiran production by Lactobacillus kefiranofaciens.

    PubMed

    Cheirsilp, B; Shimizu, H; Shioya, S

    2001-12-01

    A mathematical model for kefiran production by Lactobacillus kefiranofaciens was established, in which the effects of pH, substrate and product on cell growth, exopolysaccharide formation and substrate assimilation were considered. The model gave a good representation both of the formation of exopolysaccharides (which are not only attached to cells but also released into the medium) and of the time courses of the production of galactose and glucose in the medium (which are produced and consumed by the cells). Since pH and both lactose and lactic acid concentrations differently affected production and growth activity, the model included the effects of pH and the concentrations of lactose and lactic acid. Based on the mathematical model, an optimal pH profile for the maximum production of kefiran in batch culture was obtained. In this study, a simplified optimization method was developed, in which the optimal pH profile was determined at a particular final fermentation time. This was based on the principle that, at a certain time, switching from the maximum specific growth rate to the critical one (which yields the maximum specific production rate) results in maximum production. Maximum kefiran production was obtained, which was 20% higher than that obtained in the constant-pH control fermentation. A genetic algorithm (GA) was also applied to obtain the optimal pH profile; and it was found that practically the same solution was obtained using the GA.

  3. Enhanced itaconic acid production in Aspergillus with increased LaeA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Baker, Scott E.

    Fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (LaeA), or both, are described. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also described, as are compositions and kits including the disclosed fungi. Further described are Aspergillus terreus fungi overexpressing the LaeA gene and the use of such fungi for the production of itaconic acid.

  4. AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers

    NASA Astrophysics Data System (ADS)

    Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2011-09-01

    We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.

  5. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

    PubMed

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon

    2016-01-01

    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus , are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  6. Control over dark current densities and cutoff wavelengths of GaAs/AlGaAs QWIP grown by multi-wafer MBE reactor

    NASA Astrophysics Data System (ADS)

    Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.

    2016-09-01

    Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.

  7. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    PubMed

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  9. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.

    PubMed

    Moi, Ibrahim Musa; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Sabri, Suriana

    2018-05-10

    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.

  10. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  11. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, E. S.; Chang, A. S.; Martin, A. J.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  12. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  13. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  14. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  15. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens

    DOE PAGES

    Salvachúa, Davinia; Smith, Holly; St. John, Peter C.; ...

    2016-05-09

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up tomore » 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.« less

  16. Net endogenous acid production is associated with a faster decline in GFR in African Americans

    PubMed Central

    Scialla, Julia J.; Appel, Lawrence J.; Astor, Brad C.; Miller, Edgar R.; Beddhu, Srinivasan; Woodward, Mark; Parekh, Rulan S.; Anderson, Cheryl A. M.

    2012-01-01

    Increased acid excretion may promote renal injury. To evaluate this in African Americans with hypertensive nephrosclerosis, we studied the association between the net endogenous acid production and progression of kidney disease in 632 patients in the AASK trial. Protein and potassium intakes were estimated from 24-hour urea nitrogen and potassium excretion, and used to estimate net endogenous acid production, averaged over 2 years, approximating routine intake. The link between net endogenous acid production and the I125iothalamate glomerular filtration rate (iGFR) and time to end stage renal disease or doubling of serum creatinine was analyzed using mixed models and Cox proportional hazards regressions. The trend in higher net endogenous acid production was significantly associated with a faster decline in iGFR over a median of 3.2 years. After adjustment for age, body mass index, baseline iGFR, urine protein to creatinine ratio and randomized treatment group, the trend in higher net endogenous acid production remained significantly associated with a faster decline in iGFR at a rate 1.01 mL/min/1.73 m2 per year faster in the highest to the lowest quartile. However, in time to event analyses over a median of 7.7 years, the adjusted hazard ratio (1.10) for composite renal events per 25 mEq/day higher net endogenous acid production was not significant. Hence, our findings implicate endogenous acid production as a potential modifiable risk factor for progressive kidney disease. PMID:22475819

  17. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  18. Sensorially important aldehyde production from amino acids in model wine systems: impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide.

    PubMed

    Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C

    2013-11-01

    The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  20. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji

    2016-10-20

    There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  2. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.

    PubMed

    Liu, Yanjun; Guo, Yongli; Sun, Zhaomin; Jie, Xu; Li, Zhaojie; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2015-01-01

    Docosahexaenoic acid supplementation has been shown well-established health benefits that justify their use as functional ingredients in healthy foods and nutraceutical products. Structured triacylglycerols rich in 1,3-docosahexenoyl-2-palmitoyl-sn-glycerol were produced from algal oil (Schizochytrium sp) which was prepared by a two-step process. Novozym 435 lipase was used to produce tripalmitin. Tripalmitin was then used to produce the final structured triacylglycerol (STAG) through interesterification reactions using Lipozyme RM IM. The optimum conditions for the enzymatic reaction were a mole ratio of tripalmitin/fatty acid ethyl esters 1:9, 60°C, 10% enzyme load (wt % of substrates), 10 h; the enzymatic product contained 51.6% palmitic acid (PA), 30.13% docosahexaenoic acid (DHA, C22:6 n-3) and 5.33% docosapentanoic acid (DPA, C22:5 n-3), 12.15% oleic acid (OLA). This STAG can be used as a functional ingredient in dietary supplementation to provide the benefits of DHA.

  3. Product study of oleic acid ozonolysis as function of humidity

    NASA Astrophysics Data System (ADS)

    Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.

    The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.

  4. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    PubMed

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-12-01

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga 2 O 3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga 2 O 3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO 2 within the 50-90% range, by contrast to conventional TiO 2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO 2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga 2 O 3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO 2 strongly overcoming those obtained on commercial β-Ga 2 O 3 . They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga 3+ units. In the degradation of hydrogen sulfide, PEG-derived β-Ga 2 O 3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga 2 O 3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga 2 O 3 in environmental photocatalysis for gas-phase depollution applications.

  5. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid.

    PubMed

    Tárraga, Susana; Lisón, Purificación; López-Gresa, María Pilar; Torres, Cristina; Rodrigo, Ismael; Bellés, José María; Conejero, Vicente

    2010-10-01

    The importance of salicylic acid (SA) in the signal transduction pathway of plant disease resistance has been well documented in many incompatible plant-pathogen interactions, but less is known about signalling in compatible interactions. In this type of interaction, tomato plants have been found to accumulate high levels of 2,5-dihydroxybenzoic acid (gentisic acid, GA), a metabolic derivative of SA. Exogenous GA treatments induce in tomato plants a set of PR proteins that differ from those induced by salicylic acid. While SA accumulates in tomato plants mainly as 2-O-β-D-glucoside, GA has only been found as 5-O-β-D-xyloside. To characterize this step of the GA signalling pathway further, the present work focuses on the study of the GA-conjugating activity in tomato plants. A gentisate glycosyltransferase (GAGT) cDNA has been isolated and overexpressed in Pichia pastoris, and GA-conjugating activity was confirmed by detecting the xylosylated GA. The purified plant protein is highly specific for GA, showing no activity toward many other phenolic compounds, including SA. In addition, it shows an outstanding selectivity for UDP-xylose as the sugar donor, which differentiates this enzyme from most glycosyltransferases. Both the GA-conjugating activity and the corresponding mRNA show a strong, rapid, and transient induction upon treatment of tomato plants with GA or SA. Furthermore, its expression is rapidly induced by compatible infections. However, neither the gene nor the activity seems to respond to incompatible infections or wounding. The unique properties of this new glycosyltransferase suggest a specific role in regulating the free GA levels in compatible plant-pathogen interactions.

  6. Comparison of alloy disorder scatterings in Ga- and N-polar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, He; Li, Hui-Jie; Yang, Shao-Yan; Zhang, Wei; Zhu, Ming; Liu, Li; Li, Nan

    2018-01-01

    The two-dimensional electron gas (2DEG) mobilities limited by alloy disorder (AD) scattering in both Ga- and N-polar AlGaN/GaN heterostructures are investigated. It was found that the AD scattering limited electron mobility in N-polar heterostructures is on the order of 103-104 cm2/Vs, which is comparable to the optical phonon scattering at room-temperature. In comparison, the AD scattering in Ga-polar samples is much less important. Moreover, the electron mobility decreases with the 2DEG density in the Ga-polar device but shows a reverse trend in the N-polar counterpart. This is found to be caused by the rather different electric field distributions in Ga- and N-polar AlGaN/GaN heterostructures. In addition, we find that an AlN interlayer can effectively reduce the alloy scattering, mainly due to the large band offset between AlN and GaN. The calculated mobilities have been compared with the experiment results and good agreements are found. We believe that our results are important for the design of AlGaN/GaN heterostructure-based devices, especially the N-polar ones.

  7. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  8. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    PubMed Central

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  9. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    PubMed

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  11. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption.

    PubMed

    Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J

    2017-07-01

    Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.

  12. Radioprotective Effects of Gallic Acid in Mice

    PubMed Central

    Nair, Gopakumar Gopinathan

    2013-01-01

    Radioprotecting ability of the natural polyphenol, gallic acid (3,4,5-trihydroxybenzoic acid, GA), was investigated in Swiss albino mice. Oral administration of GA (100 mg/kg body weight), one hour prior to whole body gamma radiation exposure (2–8 Gy; 6 animals/group), reduced the radiation-induced cellular DNA damage in mouse peripheral blood leukocytes, bone marrow cells, and spleenocytes as revealed by comet assay. The GA administration also prevented the radiation-induced decrease in the levels of the antioxidant enzyme, glutathione peroxidise (GPx), and nonprotein thiol glutathione (GSH) and inhibited the peroxidation of membrane lipids in these animals. Exposure of mice to whole body gamma radiation also caused the formation of micronuclei in blood reticulocytes and chromosomal aberrations in bone marrow cells, and the administration of GA resulted in the inhibition of micronucleus formation and chromosomal aberrations. In irradiated animals, administration of GA elicited an enhancement in the rate of DNA repair process and a significant increase in endogenous spleen colony formation. The administration of GA also prevented the radiation-induced weight loss and mortality in animals (10 animals/group) exposed to lethal dose (10 Gy) of gamma radiation. (For every experiment unirradiated animals without GA administration were taken as normal control; specific dose (Gy) irradiated animals without GA administration serve as radiation control; and unirradiated GA treated animals were taken as drug alone control). PMID:24069607

  13. Magnetometory of AlGaN/GaN heterostructure wafers

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2005-06-01

    AlGaN/GaN heterostructure wafers are becoming a key technology for next generation cellar-phone telecommunication system because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the extraordinary Hall effect measurement and the SQUID magnetometory of AlGaN/GaN heterostructure wafer at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540cm2/V s and 6.6 × 1012cm-2, respectively. In the extraordinary Hall effect measurement of AlGaN/GaN heterostructures, the hysteresis of Hall resistance appeared below 4.5 K and disappeared above 4.5 K. On the other hand, the hysteresis of magnetometric data obtained by SQUID magnetometory appears near zero magnetic field when the temperature is lower than 4.5 K. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears. And the slopes of magnetometric data with respect to magnetic field become lower as obeying Currie-Weiss law and the Curie temperature TC is 4.5 K. Agreement of TC measured by the extraordinary Hall effect and the SQUID magnetometory implies the ferromagnetism at the AlGaN/GaN heterojunction. However, the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  14. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  15. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  16. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  17. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  18. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production.

    PubMed

    Kandiel, Tarek A; Anjum, Dalaver H; Takanabe, Kazuhiro

    2014-11-01

    The synthesis of quaternary metal sulfide (QMS) nanocrystals is challenging because of the difficulty to control their stoichiometry and phase structure. Herein, quaternary CuGa2In3S8 photocatalysts with a primary particle size of ≈4 nm are synthesized using a facile hot-injection method by fine-tuning the sulfur source injection temperature and aging time. Characterization of the samples reveals that quaternary CuGa2In3S8 nanocrystals exhibit n-type semiconductor characteristics with a transition band gap of ≈1.8 eV. Their flatband potential is located at -0.56 V versus the standard hydrogen electrode at pH 6.0 and is shifted cathodically by 0.75 V in solutions with pH values greater than 12.0. Under optimized conditions, the 1.0 wt % Ru-loaded CuGa2In3S8 photocatalyst exhibits a photocatalytic H2 evolution response up to 700 nm and an apparent quantum efficiency of (6.9±0.5) % at 560 nm. These results indicate clearly that QMS nanocrystals have great potential as nano-photocatalysts for solar H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  20. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Antwi, Philip

    2018-04-01

    A novel consolidated bioprocess for hyper-production of butyric acid from delignified rice straw without exogenous enzymes involved was developed by co-fermentation of Clostridium thermocellum ATCC 27405 and C. thermobutyricum ATCC 49875. Feasibility of the consolidated bioprocess was approved by batch fermentations, with the optimum pH of 6.5. Fed-batch fermentation with a constant pH of 6.5 at 55 °C could enhance the butyric acid yield to a remarkable 33.9 g/L with a selectivity as high as 78%. Metabolic analysis of the co-culture indicated that sugars liberated by C. thermocellum ATCC 27405 were effectively converted to butyric acid by C. thermobutyricum ATCC 49875. Secondary metabolism of C. thermobutyricum ATCC 49875 also contributed to the hyper-production of butyric acid, resulting in the re-assimilation of by-products such as acetic acid and ethanol. This work provides a more effective fermentation process for butyric acid production from lignocellulosic biomass for future applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  2. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  3. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  4. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  5. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  6. Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast.

    PubMed

    Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan

    2018-04-01

    Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.

    PubMed

    Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim

    2016-10-20

    Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    PubMed

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  9. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  10. A stimuli-responsive fluorescence platform for simultaneous determination of d-isoascorbic acid and Tartaric acid based on Maillard reaction product.

    PubMed

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-05

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Low temperature Zn diffusion for GaSb solar cell structures fabrication

    NASA Technical Reports Server (NTRS)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali

    1995-01-01

    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  12. Efficient production of succinic acid from herbal extraction residue hydrolysate.

    PubMed

    Wang, Caixia; Su, Xinyao; Sun, Wei; Zhou, Sijing; Zheng, Junyu; Zhang, Mengting; Sun, Mengchu; Xue, Jianping; Liu, Xia; Xing, Jianmin; Chen, Shilin

    2018-06-15

    In this study, six different herbal-extraction residues were evaluated for succinic acid production in terms of chemical composition before and after dilute acid pretreatment (DAP) and sugar release performance. Chemical composition showed that pretreated residues of Glycyrrhiza uralensis Fisch (GUR) and Morus alba L. (MAR) had the highest cellulose content, 50% and 52%, respectively. Higher concentrations of free sugars (71.6 g/L total sugar) and higher hydrolysis yield (92%) were both obtained under 40 FPU/g DM at 10% solid loading for GUR. Using scanning electron microscopy (SEM), GUR was found to show a less compact structure due to process of extraction. Specifically, the fibers in pretreated GUR were coarse and disordered compared with that of GUR indicated by SEM. Finally, 65 g/L succinic acid was produced with a higher yield of 0.89 g/g total sugar or 0.49 g/g GUR. Our results illustrate the potential of GUR for succinic acid production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  14. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion.

    PubMed

    Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa

    2017-08-01

    The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.

    PubMed

    Jawaharraj, Kalimuthu; Karpagam, Rathinasamy; Ashokkumar, Balasubramaniem; Kathiresan, Shanmugam; Moorthy, Innasi Muthu Ganesh; Arumugam, Muthu; Varalakshmi, Perumal

    2017-10-01

    In this study, the improved biomass (1.6 folds) and lipid (1.3 folds) productivities in Synechocystis sp. NN using agro-industrial wastes supplementation through hybrid response surface methodology-genetic algorithm (RSM-GA) for cost-effective methodologies for biodiesel production was achieved. Besides, efficient harvesting in Synechocystis sp. NN was achieved by electroflocculation (flocculation efficiency 97.8±1.2%) in 10min when compared to other methods. Furthermore, different pretreatment methods were employed for lipid extraction and maximum lipid content of 19.3±0.2% by Synechocystis sp. NN was attained by ultrasonication than microwave and liquid nitrogen assisted pretreatment methods. The highest FAME (fatty acid methyl ester) conversion of 36.5±8.3mg FAME/g biomass was obtained using titanium oxide as heterogeneous nano-catalyst coupled whole-cell transesterification based method. Conclusively, Synechocystis sp. NN may be used as a biodiesel feedstock and its fuel production can be enriched by hybrid RSM-GA and nano-catalyst technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anti-Atherosclerotic Actions of Azelaic acid, an End Product of Linoleic Acid Peroxidation, in Mice

    PubMed Central

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2009-01-01

    Background Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr−/−) mice. Methods and results LDLr−/− mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After four months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). Conclusions The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body’s defense against oxidative damage. PMID:19880116

  17. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice.

    PubMed

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body's defense against oxidative damage. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  18. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  19. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    PubMed Central

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses. PMID:24956474

  20. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    PubMed

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.