Science.gov

Sample records for acid gases carbon

  1. Cryogenic process for removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-04-30

    Low temperature treatments are combined with solvent treatments using particularly selective solvents for stripping acidic gases such as carbon dioxide and hydrogen sulphide from natural gas or from synthetic gases. The preferred solvents are a wide range of compounds having an esteric or an etheric function in their molecule, but there are also examples of compounds which have the two functions simultaneously. The stripping process is comparatively simple, is efficient, especially for high contents of acidic gases in the raw gas streams, and is economically acceptable.

  2. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  3. Cryogenic process for fractionally removing acidic gases from gas mixtures

    SciTech Connect

    Gazzi, L.; Cotone, G.; Ginnasi, A.; Rescalli, C.; Soldati, G.; Vetere, A.

    1985-07-16

    A process is described for stripping acidic gases, mainly hydrogen sulphide and carbon dioxide, from natural gas or synthesis gas, especially when the percentages of such acidic gases are high and the conventional processes become economically objectionable. The process is based on the use of a number of selective solvents, generally belonging to the class of esters, ethers, mixed ester-ethers and lactones, in combination with sequential absorbing cycles which start from the stripping of hydrogen sulphide, and comprise the regeneration of the solvents used by several expansion cycles: H2S and CO2 are recovered and the regenerated solvents recycled.

  4. Adsorption of Gases on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mbaye, Mamadou Thiao

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  5. Removal of acid gases from gas streams

    SciTech Connect

    Nieh, E.C.Y.

    1988-10-04

    This patent describes a method for the purification of a stream of gas comprising a normally gaseous hydrocarbon or synthesis gas contaminated with acid gases which comprises the steps of: countercurrently contacting the gas stream in an absorption zone with a stream of a treating agent consisting essentially of an aqueous solution of N-methyldiethanolamine and imidazole or a methyl substituted imidazole to thereby remove a substantial portion of the acid contaminants from the hydrocarbon gas stream by absorption into the treating agent, discharging an at least partially purified gas stream from the absorption zone, discharging the treating agent enriched with absorbed acid gas components from the absorption zone; and subsequently regenerating the enriched treating agent.

  6. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  7. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  8. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  9. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  10. Morphological and chemical modification of mineral dust: Observational insight into the heterogeneous uptake of acidic gases

    NASA Astrophysics Data System (ADS)

    Matsuki, Atsushi; Iwasaka, Yasunobu; Shi, Guangyu; Zhang, Daizhou; Trochkine, Dmitri; Yamada, Maromu; Kim, Yoon-Suk; Chen, Bin; Nagatani, Tetsuji; Miyazawa, Takeshi; Nagatani, Masahiro; Nakata, Hiroshi

    2005-11-01

    Aerosol samples were collected in the urban atmosphere of Beijing, China, by deploying a tethered balloon. Coarse particles (d > 1 μm) were individually analyzed using electron microscopes, to investigate the extent of dust modification by acidic gases in the atmosphere. Based on the elemental composition, irregularly shaped mineral dust was separated into carbonate and silicate groups. Both sulfate and nitrate were found to accumulate on carbonate more readily than silicate particles. Interestingly, spherical particles resembling Ca-carbonate in composition were spotted frequently in the samples. These Ca-rich spherical particles were more abundant under humid conditions, suggesting that they are deliquesced carbonate particles that formed in the atmosphere following the uptake of acidic gases. Sulfate and nitrate were more frequently detected in the Ca-rich spherical particles than in carbonate in the original solid form, indicating that the gas uptake efficiency of carbonate is further enhanced after the phase transition.

  11. Method of producing pyrolysis gases from carbon-containing materials

    DOEpatents

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  12. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  13. Method of removing carbon monoxide from gases

    DOEpatents

    Gerstein, Bernard C.; Macaulay, David B.

    1976-06-01

    A process and catalyst are disclosed for purifying an atmosphere containing carbon monoxide by passing the atmosphere through a bed of a catalyst of TbO.sub.x, where x = 1.8 to 1.5, which oxidizes the carbon monoxide to carbon dioxide.

  14. THE SOLUBILITY OF ACID GASES IN METHANOL

    EPA Science Inventory

    The report describes a thermodynamic model developed to predict phase-equilibrium behavior in a methanol/carbon-dioxide/nitrogen/hydrogen-sulfide system based on parameters determined from binary vapor/liquid equilibrium data available in the literature. Model predictions are com...

  15. MULTIPOLLUTANT MERCURY AND ACID GASES CONTROL TECHNOLOGY

    EPA Science Inventory

    Plans are to continue testing for acid gas, mercury and NOx removal on baseline CFB operation with lime slurry, then use modified lime hydrates and slurries, and modified calcium silicates as additives for enhanced mercury and SO2 removal. Also, data from a coal-fired utility b...

  16. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    SciTech Connect

    Aravena, R. . Center for Groundwater Research and Wetlands Research Center); Warner, B.G. . Wetlands Research Center and Dept. of Geography); Charman, D.J. . Dept. of Geographical Sciences); Belyea, L.R. . School of Biological Sciences); Mathur, S.P. ); Dinel, H. )

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere.

  17. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  18. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  19. Heat transfer of suspended carbon nanotube yarn to gases

    NASA Astrophysics Data System (ADS)

    Wada, Yukiko; Kita, Koji; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2016-08-01

    We investigate the pressure dependence of heat transfer to ambient gases for a suspended carbon nanotube yarn. The heat transport of the yarn including the heat exchange with surrounding gases is investigated using a simple one-dimensional heat transport model under Joule heating of the yarn. It is revealed that the effective diameter of the yarn for heat exchange is much smaller than the geometrical diameter of the yarn. This smaller effective diameter for heat exchange should contribute to realizing higher sensitivity and sensing over a wider range of pressures for heat-exchange-type vacuum gauges and flow sensors.

  20. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  1. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  2. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  3. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  4. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  5. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  6. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use...

  7. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  8. Tunnelling in carbonic acid.

    PubMed

    Wagner, J Philipp; Reisenauer, Hans Peter; Hirvonen, Viivi; Wu, Chia-Hua; Tyberg, Joseph L; Allen, Wesley D; Schreiner, Peter R

    2016-06-14

    The cis,trans-conformer of carbonic acid (H2CO3), generated by near-infrared radiation, undergoes an unreported quantum mechanical tunnelling rotamerization with half-lives in cryogenic matrices of 4-20 h, depending on temperature and host material. First-principles quantum chemistry at high levels of theory gives a tunnelling half-life of about 1 h, quite near those measured for the fastest rotamerizations. PMID:27248671

  9. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  10. Treatment of gas streams for removal of acid gases

    SciTech Connect

    Nieh, E.C.Y.

    1987-09-29

    A method is described for the purification of a stream of gas comprising a normally gaseous hydrocarbon or synthesis gas contaminated with acid gases which comprises the steps of: countercurrently contacting the gas stream in an absorption zone with a treating agent to remove a substantial portion of the acid contaminants from the hydrocarbon gas stream by absorption into the treating agent, discharging an at least partially purified hydrocarbon gas stream from the absorption zone, and discharging the treating agent enriched with absorbed acid gas components from the absorption zone. The treating agent consists essentially of an aqueous solution of from about 40 to about 60 wt. % of N-methyldiethanolamine and from about 5 to about 15 wt. % of N,N-diethyl hydroxylamine.

  11. Solubility calculations for acid gases in amine blends

    SciTech Connect

    Chakravarty, T.

    1985-01-01

    Treating with alkanolamines is often used to sweeten gases containing only a few parts per million of CO/sub 2/ and H/sub 2/S. Primary amines such as monoethanolamine (MEA) have great affinity for acid gases and are able to produce high purity sweet gas; on the other hand, tertiary amines like methyldiethanolamine (MDEA) have large capacity and are easy to regenerate but, because they do not bind chemically with CO/sub 2/, they are unable to produce a sweetened gas low in this component. Recently, the use of amine blends has become a subject of potentially great commercial importance. Since, the range of possible amines and blend formulations is large, a method for predicting equilibrium solubility is needed. A rigorous thermodynamic model has been developed which uses the extended Debye-Huckel expression, is very similar to one developed for single-amine solutions, and involves the fitting of binary interaction parameters to experimental data. In this work the interaction parameters found to be important in the activity coefficient expression were fitted to each single-acid-gas single-amine subsystem using all published solubility data. The resulting model was then validated by comparing mixed-acid-gas single-amine solubility predictions with published VLE data. MEA-MDEA and DEA-MDEA blends have been studied in detail in this work. It is found that each amine contributes to the overall acid gas solubility in a nonlinear way and that the solubility curves can exhibit maxima and minima as a function of the relative concentrations of the amines.

  12. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  13. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  14. Indoor exposures to fine aerosols and acid gases.

    PubMed Central

    Koutrakis, P; Brauer, M; Briggs, S L; Leaderer, B P

    1991-01-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions between pollutants and indoor surfaces. It is well established that fine particles (diameter less than or equal to 2.5 microns) originating from outdoor sources such as automobiles, oil and coal combustion, incineration, and diverse industrial activities can penetrate into the indoor environment. Indoor/outdoor ratios, usually varying between 0.4 and 0.8, depend on parameters such as particle size and density, air exchange rate, and the surface-to-volume ratio of the indoor environment. Determining fine particle elemental composition makes it possible to identify the contribution of different outdoor sources. This paper focuses on the origin and the concentration of indoor aerosols and acid gases by highlighting the results from two indoor air quality studies. PMID:1821374

  15. Removal of mercury from stack gases by activated carbon

    SciTech Connect

    Vidic, R.D.

    1995-10-01

    On combustion, the trace elements in the incinerator feed stream are partitioned between the bottom ash (slag) stream, and a flue gas stream containing suspended fly ash and vapors of volatile elements or compounds. A further partitioning of the flue gas stream takes place in the particulate emission control devices that efficiently remove larger fly ash particles but are less efficient for vapors and finer particles. Environmental control agencies, researchers, and general public have become increasingly concerned with the mobilization of trace elements to the environment from solid and hazardous waste incinerators. Mercury is the trace element of particular concern since, during combustion, most of the mercury present in the influent stream is transferred into the vapor phase due to its high volatility. There is a considerable evidence in the literature that currently used pollution abatement technologies (flue gas clean-up and particulate control devices) are not capable of controlling gas phase mercury emissions. Activated carbon adsorption is a unit process that offers great promise for achieving high quality air emissions with respect to mercury and other trace elements that might be present in gases emitted from solid and hazardous waste incinerators. This study is designed to evaluate the rate of vapor-phase mercury removal by virgin and sulfur impregnated activated carbons under various process conditions. The specific process conditions that will be evaluated for their effect on the rate and mechanism of mercury uptake include temperature, moisture content, oxygen partial pressure, and presence of other compounds and trace elements in the vapor-phase. Accurate description of the kinetics of mercury removal by activated carbon is an essential component in establishing design procedures that would ensure successful application of this efficient technology for mercury control.

  16. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  17. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  18. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  19. Solubility of acid gases in a mixed solvent

    SciTech Connect

    MacGregor, R.J.; Mather, A.E.

    1987-01-01

    The solubility of hydrogen sulphide and carbon dioxide and their mixtures has been measured at 40/sup 0/ and 100/sup 0/C in a mixed solvent consisting of 20.9 wt% (2.0 M) MDEA (methyldiethanolamine), 30.5 wt% sulfolane, and 48.6 wt% water. The results have been compared with those for aqueous 2.0 M MDEA and an analogous mixed solvent, containing AMP (2-amino-2-methyl-1-propanol), which are available in the literature. At solution loadings less than 1 mol acid gas/mol MDEA, the solubility of the acid gas was lower in the mixed solvent that in the corresponding aqueous MDEA solvent; at solution loadings greater than 1 mol acid gas/mol MDEA, the reverse was true. At all loadings and at both temperatures studied, the mixed MDEA solvent absorbed equal or lesser quantities of acid gas than the comparable mixed AMP solvent. However, the shapes of the solubility curves show that the mixed MDEA solvent would be a better choice for certain industrial applications. These data were used to modify the solubility model of Deshmukh and Mather to account for the mixed solvent effects on the system thermodynamics. Results show that the model is useful as a first approximation in predicting acid gas solubilities; agreement with experiment was generally found to be within +-15%.

  20. Experimental equilibrium between acid gases and ethanolamine solutions

    SciTech Connect

    Bhairi, A.M.

    1984-01-01

    The general subject area of this study is equilibrium solubility of carbon dioxide and hydrogen sulfide in solutions of some common ethanolamines. The amines studied are most widely used in the area of gas sweetening. They include monoethanolamine, diglycolamine, diethanolamine and methyldiethanolamine. Only limited data are available for some of these amines. The process involved developing simple apparatus and procedure for investigating the equilibrium solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamine solutions. The procedure uses a single equilibrium cell. No gas chromatograph nor liquid chemical analysis is required. Measurements of the solubility were made in different amine solution concentrations at acid gas partial pressures to 1000 psia and temperatures from 77 to 240{degree}F. The method used was found to be sound as indicated by the consistency and reproducibility of the data.

  1. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    PubMed

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution. PMID:24682452

  2. Vapor-liquid equilibria in the system ethanethiol + methyldiethanolamine + water in the presence of acid gases

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Schmidt, K.A.G.; Ng, H.J.

    1999-07-01

    This investigation was carried out to determine the solubility of ethanethiol in a methyldiethanolamine (MDEA) solution. Measurements were made in the absence of acid gases, H{sub 2}H and CO{sub 2}, with individual acid gases present, and with mixtures of acid gases present. Experiments with an aqueous solution of 50 mass % MDEA were carried out at 40 and 70 C. The total pressure for most of the experiments was 6,890 kPa, which was maintained by methane. Partial pressures of ethanethiol ranged from 0.2 to 15 kPa.

  3. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  4. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  5. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  6. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  7. Plasma-chemical waste treatment of acid gases

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  8. Nanostructured carbon materials for adsorption of methane and other gases

    SciTech Connect

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  9. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  10. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  11. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  12. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  13. Experimental Determination of the Partitioning Behavior of Noble Gases Between Carbonate and Silicate Liquids

    NASA Astrophysics Data System (ADS)

    Burnard, P.; Koga, K. T.

    2010-12-01

    weeks) between quench and analysis. The second stage was designed to extract noble gases by thermal decarbonation of the carbonate glass. The metal of the capsule itself was also measured, but this never contained any noble gas above blank levels. Our preliminary results show that the noble gases do not preferentially partition into carbonate liquids compared to silicate liquids: DHe(carbonate/silicate)=0.3-1.4 and DAr(carbonate/silicate)=0.15-0.17 (at 1 GPa) In a two phase carbonate - silicate system, the noble gases will essentially reside in the silicate portion of the system (particularly given that carbonatite liquids will represent a small volume fraction of the two phase magma). This partitioning behavior could nevertheless separate - decouple - noble gas isotope systematics from lithophile isotopes (Sr, Nd, Pb etc) as a significant fraction of these elements could partition into the carbonate phase while noble gases remain in the silicate portion of the magma. Further work investigating pressure, temperature and compositional effects on the noble gas partition coefficients is planned. References 1. Burnard, P., Toplis, M. J. and Medynski, S. (2010) Geochim. Cosmochim. Acta 74: 1672-1683.

  14. Carbon and Conservation: Cropping systems and greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  15. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...EPA is proposing a rule to require reporting on carbon dioxide (CO2) injection and geologic sequestration (GS). The proposed rulemaking does not require control of greenhouse gases (GHGs), rather it requires only monitoring and reporting of CO2 injection and geologic sequestration. EPA first proposed that suppliers of CO2 be subject to mandatory GHG reporting......

  16. Exposure assessment of oxidant gases and acidic aerosols

    SciTech Connect

    Lioy, P.J.

    1989-01-01

    Clearly the presence of high ozone and acidic species in North America is primarily dependent upon photochemical air pollution. Evidence shows, however, that high acid exposures may occur in specific types of areas of high sulfur fuel use during the winter. At the present time, our concerns about exposure to local populations and regional populations should be directed primarily toward the outdoor activity patterns of individuals in the summer, and how those activity patterns relate to the location, duration, and concentrations of ozone and acid aerosol in photochemical air pollution episodes. Lioy Dyba and Mage et al have examined the activity patterns of children in summer camps. Because they spend more time outside than the normal population, these children form an important group of exercising individuals subject to photochemical pollution exposures. The dose of ozone inhaled by the children in the two camps was within 50% and 25% of the dose inhaled by adults in controlled clinical situations that produced clinically significant decrements in pulmonary function and increased the symptoms after 6.6 hr exposure in a given day. The chamber studies have used only ozone, whereas in the environment this effect may be enhanced by the presence of a complex mixture. The work of Lioy et al in Mendham, New Jersey found that hydrogen ion seemed to play a role in the inability of the children to return immediately to their normal peak expiratory flow rate after exposure. The camp health study conducted in Dunsville, Ontario suggested that children participating in a summer camp where moderate levels of ozone (100 ppb) but high levels of acid (46 micrograms/m3) occurred during an episode had a similar response. Thus, for children or exercising adults who are outdoors for at least one hour or more during a given day, the presence and persistence of oxidants in the environment are of particular concern. 63 references.

  17. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    PubMed

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-01-01

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989

  18. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    PubMed Central

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-01-01

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:26066989

  19. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  20. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  1. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  2. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  3. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  4. ARM Carbon Cycle Gases Flasks at SGP Site

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  5. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  6. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Astrophysics Data System (ADS)

    Yang, J.; Anders, E.

    1982-06-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  7. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  8. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  9. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  10. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  11. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  12. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  13. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  14. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  15. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  16. Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases.

    PubMed

    Jensen, Benjamin D; Bandyopadhyay, Ananyo; Wise, Kristopher E; Odegard, Gregory M

    2012-09-11

    The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions. PMID:26605713

  17. Flame Synthesis of Carbon Nanotubes Using Low Calorific Value Gases

    SciTech Connect

    Jorge Camacho; Mahesh Subramanya; Ahsan R. Choudhuri

    2007-03-31

    Nanostructures formed in diffusion flames of pure fuels [CH{sub 4}, C{sub 3}H{sub 8}, and C{sub 2}H{sub 2}] at different fuel flow rates have been analyzed. Synthesis samples have been also collected from diffusion flames of various fuel blends [H{sub 2}-CH{sub 4}, H{sub 2}-CO, H{sub 2}-C{sub 3}H{sub 8}, H{sub 2}-C{sub 2}H{sub 2}] at different combustion conditions. SEM images of particulate samples collected from H{sub 2}-CH{sub 4} diffusion flames show formation of nanostructures. However, the formation of nanostructures only occurs at a narrow window of fuel compositions (< 10% H{sub 2} concentration in the mixture) and flow conditions (Jet Exit Reynolds number Re{sub j} = 200). At higher H{sub 2} concentration and flow velocity, formation of nanostructures diminishes and H{sub 2}-CH{sub 4} flames produce amorphous carbon and soot particles.

  18. Molecular equilibria and condensation sequences in carbon rich gases

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Wasserburg, G. J.

    1993-01-01

    Chemical equilibria in stellar atmospheres have been investigated by many authors. Lattimer, Schramm, and Grossman presented calculations in both O rich and C rich environments and predicted possible presolar condensates. A recent paper by Cherchneff and Barker considered a C rich composition with PAH's included in the calculations. However, the condensation sequences of C bearing species have not been investigated in detail. In a carbon rich gas surrounding an AGB star, it is often assumed that graphite (or diamond) condenses out before TiC and SiC. However, Lattimer et al. found some conditions under which TiC condenses before graphite. We have performed molecular equilibrium calculations to establish the stability fields of C(s), TiC(s), and SiC(s) and other high temperature phases under conditions of different pressures and C/O. The preserved presolar interstellar dust grains so far discovered in meteorites are graphite, diamond, SiC, TiC, and possibly Al2O3.

  19. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  20. Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries.

    PubMed

    Molitor, Bastian; Richter, Hanno; Martin, Michael E; Jensen, Rasmus O; Juminaga, Alex; Mihalcea, Christophe; Angenent, Largus T

    2016-09-01

    Technological solutions to reduce greenhouse gas (GHG) emissions from anthropogenic sources are required. Heavy industrial processes, such as steel making, contribute considerably to GHG emissions. Fermentation of carbon monoxide (CO)-rich off gases with wild-type acetogenic bacteria can be used to produce ethanol, acetate, and 2,3-butanediol, thereby, reducing the carbon footprint of heavy industries. Here, the processes for the production of ethanol from CO-rich off gases are discussed and a perspective on further routes towards an integrated biorefinery at a steel mill is given. Recent achievements in genetic engineering as well as integration of other biotechnology platforms to increase the product portfolio are summarized. Already, yields have been increased and the portfolio of products broadened. To develop a commercially viable process, however, the extraction from dilute product streams is a critical step and alternatives to distillation are discussed. Finally, another critical step is waste(water) treatment with the possibility to recover resources. PMID:27095410

  1. Isotopic geochemistry of acid thermal waters and volcanic gases from Zaō volcano in Japan

    NASA Astrophysics Data System (ADS)

    Kiyosu, Yasuhiro; Kurahashi, Makoto

    1984-08-01

    The chemical composition and D/H, {18O }/{16O } and {34S }/{32S } ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO 2, SO 2 and N 2, exclusive of H 2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H 2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate ( δ 34S = ˜ + 4‰ ) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.

  2. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

  3. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  4. Emission factors for particles, elemental carbon, and trace gases from the Kuwait oil fires

    SciTech Connect

    Laursen, K.K.; Ferek, R.J.; Hobbs, P.V.; Rasmussen, R.A.

    1992-09-20

    Emission factors are presented for particles, elemental carbon (i.e., soot), total organic carbon in particles and vapor, and for various trace gases from the 1991 Kuwait oil fires. Particle emissions accounted for {approximately} 2% of the fuel burned. In general, soot emission factors were substantially lower than those used in recent {open_quotes}nuclear winter{close_quotes} calculations. Differences in the emissions and appearances of some of the individual fires are discussed. Carbon budget data for the composite plumes from the Kuwait fires are summarized; most of the burned carbon in the plumes was in the form of CO{sub 2}. Fluxes are presented for several combustion products. 26 refs., 1 fig., 5 tabs.

  5. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  6. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of 0.080 milligrams per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection...

  8. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustor acid gases, expressed as sulfur dioxide and hydrogen chloride, are specified in... include emission limits for hydrogen chloride at least as protective as the emission limits for hydrogen... hydrogen chloride contained in the gases discharged to the atmosphere from a designated facility is...

  9. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-01

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  10. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    SciTech Connect

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  11. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  12. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    PubMed Central

    Cadena-Pereda, Raúl O.; Rivera-Muñoz, Eric M.; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J.; Anaya-Rivera, Ely K.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible. PMID:23112626

  13. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    PubMed

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed. PMID:24950094

  14. Survey of lunar carbon compounds. I - The presence of indigenous gases and hydrolysable carbon compounds in Apollo 11 and Apollo 12 samples

    NASA Technical Reports Server (NTRS)

    Abell, P. I.; Cadogan, P. H.; Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1971-01-01

    Indigenous gases and hydrolyzable carbon compounds in Apollo 11 and 12 samples through gas chromatographic and mass spectrometric examination, noting meteoritic impact and solar wind implantation as probable origins

  15. Impact of carbon dioxide, trace gases, and climate change on global agriculture

    SciTech Connect

    Not Available

    1990-01-01

    Global climate change is one of several important issues that will command the attention of policymakers and scientist in the 1990s. The evidence that concentrations of carbon dioxide (CO{sub 2}), and other gases are increasing in the atmosphere is irrefutable. The evidence, and the knowledge that CO{sub 2} and trace gases may absorb thermal radiation sufficient to warm the atmosphere, has prompted much speculation that ensuing atmospheric warming may lead to changes in the distribution of precipitation, and of crop adaptation and productivity, that would alter the world supply of food and fiber. The implications of this speculation are compelling for agronomists, because agronomists are stewards of the world's food supply and of the natural resources that are used to produce food. Agronomists have a pivotal role in conducting the research needed to anticipate crop response to climate changes, and in informing policymakers and the general public about the adequacy of our knowledge. In this publication agronomists assess the current status of scientific knowledge about the putative role of greenhouse gases in global climate change and report their findings.

  16. Laboratory simulation of meteoritic noble gases. III - Sorption of neon, argon, krypton, and xenon on carbon - Elemental fractionation

    NASA Technical Reports Server (NTRS)

    Wacker, John F.

    1989-01-01

    The sorption of Ne, Ar, Kr, and Xe was studied in carbon black, acridine carbon, and diamond in an attempt to understand the origin of trapped noble gases in meteorites. The results support a model in which gases are physically adsorbed on interior surfaces formed by a pore labyrinth within amorphous carbons. The data show that: (1) the adsorption/desorption times are controlled by choke points that restrict the movement of noble gas atoms within the pore labyrinth, and (2) the physical adsorption controls the temperature behavior and elemental fractionation patterns.

  17. Modeling the simultaneous transport of two acid gases in tertiary amines with reversible reactions

    SciTech Connect

    Al-Ghawas, H.A.; Sandall, O.C.

    1988-10-01

    The objective of this work is to develop a model for the simultaneous mass transfer of two acid gases in tertiary amines accompanied by reversible chemical reactions. The model has been applied to the industrially important system of simultaneous absorption or desorption of CO/sub 2/ and H/sub 2/S in aqueous methyldiethanolamine (MDEA). In most applications the treated gas must be virtually free of H/sub 2/S; however, it is often not necessary or economical to remove substantial amounts of CO/sub 2/. Hence, selective removal of H/sub 2/S from gas streams such as natural or synthetic gases which contain CO/sub 2/ is desirable. In this research a film theory model describing the simultaneous diffusion and reversible reaction of two gases into reactive liquid has been used to predict the mass transfer enhancement factors of CO/sub 2/ and H/sub 2/S in aqueous MDEA solutions. The resulting unstable two point boundary value problem has been solved numerically for a range of the dimensionless parameters that characterize an important application for this system. In studying the simultaneous transport of CO/sub 2/ and H/sub 2/S, it is found that the reversibility of the reactions, under certain conditions, causes desorption to take place although absorption would be expected on the basis of overall driving forces. This showed that not only enhancement factors larger but also smaller than unity and even negative values are possible.

  18. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    NASA Astrophysics Data System (ADS)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  19. Laboratory simulation of meteoritic noble gases. I - Sorption of xenon on carbon: Trapping experiments

    NASA Technical Reports Server (NTRS)

    Wacker, J. F.; Zadnik, M. G.; Anders, E.

    1985-01-01

    The sorption of Xe-127 at 5 x 10 to the -7th atm onto carbon black, pyrolyzed polyvinylidene chloride, and pyrolyzed acridine at 100-1000 C for 5 min-240 h is measured experimentally by gamma spectrometry. The results are presented in tables and graphs and characterized in detail. The tightly bound Xe remaining in the samples after 4000 min pumping at temperatures above 100 C is found to comprise two components: a low-temperature component attributed to physisorption within an atomic-scale labyrinth of micropores, and a high-temperature component due to volume diffusion. The implications for the trapping of noble gases near grain surfaces of amorphous carbon in meteorites are considered.

  20. Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene

    NASA Technical Reports Server (NTRS)

    Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.

    2005-01-01

    Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.

  1. Role of acid diffusion in matrix acidizing of carbonates

    SciTech Connect

    Hoefner, M.L.; Fogler, H.S.; Stenius, P.; Sjoblom, J.

    1987-02-01

    To increase the efficiency of matrix treatments in carbonates, a new type of retarded acid-in-oil microemulsion system has ben developed. The microemulsion is of low viscosity but can exhibit acid diffusion rates two orders of magnitude lower than aqueous HCl. Decreased acid diffusion delays spending and allows live acid to penetrate the rock matrix more uniformly and to greater distances. Coreflood results show that the microemulsion can stimulate cores in fewer PV's and under conditions of low injection rates where aqueous HCl fails completely. The microemulsion could also conceivably increase acid penetration along any natural fractures and fissures that may be present, thus increasing acidizing efficiency in this type of treatment. The relationship between the acid diffusion rate and the ability of the fluid to matrix-stimulate limestone is investigated.

  2. Synthesis of carbon-13-labeled tetradecanoic acids.

    PubMed

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  3. Measurement and analysis of the relationship between ammonia, acid gases, and fine particles in eastern North Carolina.

    PubMed

    Baek, Bok Haeng; Aneja, Viney P

    2004-05-01

    An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere. PMID:15149049

  4. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  5. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  6. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  7. Fundamental Understanding of the Interaction of Acid Gases with CeO2 : From Surface Science to Practical Catalysis

    DOE PAGESBeta

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    2016-03-21

    Acid gases including CO2, SO2, and NOx are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO2 and CeO2-based catalysts have gained prominence in the removal and conversion of CO2, SO2, and NOx because of their structural robustness and redox and acid–basemore » properties. In this article, we provide a brief overview of the application of CeO2 and CeO2-based catalysts for the removal of CO2, SO2, and NOx gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO2 materials with defects and dopants. After an introduction to the properties of CeO2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO2 and CeO2-based catalysts.« less

  8. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  9. Effect of Nitrogen and Hydrogen Gases on the Synthesis of Carbon Nanomaterials from Coal Waste Fly Ash as a Catalyst.

    PubMed

    Hintsho, Nomso; Shaikjee, Ahmed; Triphati, Pranav K; Masenda, Hilary; Naidoo, Deena; Franklyn, Paul; Durbach, Shane

    2016-05-01

    Various reducing and inert gases have been used in the catalytic chemical vapour deposition (CCVD) synthesis of carbon nanomaterials (CNMs). In this paper we report on the effects that hydrogen and nitrogen gases have on the production of CNMs from acetylene on fly ash catalysts. Parameters such as temperature and gas environments were investigated. Transmission electron microscopy (TEM) revealed that CNMs of various morphologies such as carbon nanofibers (CNFs) and carbon nanospheres (CNSs) were formed. When hydrogen was used the carbonaceous products were formed in higher yields as compared to when nitrogen was used. This could be due to the multifunctional roles that hydrogen plays as compared to nitrogen. Laser Raman and Mössbauer spectroscopy measurements revealed that three types of products were formed, namely: amorphous carbon, graphitic carbon and iron carbide. Significantly cementite (Fe3C) was identified as the main intermediate carbide species in the catalytic growth of well-ordered CNMs. PMID:27483807

  10. Measurement, analysis, and modeling of gas-to-particle conversion between ammonia, acid gases, and fine particles

    NASA Astrophysics Data System (ADS)

    Baek, Bok-Haeng

    Since 1990, the population of hogs in eastern North Carolina has increased sharply resulting in increased emissions of ammonia. An Annular Denuder System (ADS) was used, which consisted of a cyclone separator, two diffusion denuders coated with sodium carbonate and citric acid, respectively, and a filter pack consisting of Teflon and nylon filters in series. The ADS measured ammonia, acid gases, and fine particles in ambient atmosphere at a commercial hog farm in Eastern North Carolina from April 1998 to March 1999. The sodium carbonate coated denuders yielded average acid gas concentrations of 0.23 mug/m 3 HCl (+/-0.20 mug/m3); 1.10 mug/m 3 HONO (+/-1.17 mug/m3); 1.14 mug/m 3 HNO3 (+/-0.81 mug/m3), and 1.61 mug/m 3 SO2 (+/-1.58 mug/m3). The citric acid coated denuders yielded an average concentration of 17.89 mug/m 3 NH3 (+/-15.03 mug/m3). The filters yielded average fine aerosol (i.e., fine particular matter, Dp ≤ 2.5 mum) concentrations of 1.64 mug/m3 NH4+ (+/-1.26 mug/m3); 0.26 mug/m3 Cl - (+/-0.69 mug/m3); 1.92 mug/m 3 NO3- (+/-1.09 mug/m 3), and 3.18 mug/m3 SO42- (+/-3.12 mug/m3). Using the data collected from the study sites, we evaluated the seasonal variations and the effects of relative humidity on fine particle species. Based on the measurements of ammonia, acid gases, and fine particles, the mean pseudo-first-order rate constant, kS, between NH3 and H2SO4 aerosol is estimated to be 3.70 (+/-2.99) x 10-3 sec-1. The rate constant was found to increase as temperature increases, and decrease with increasing relative humidity. The equilibrium time constant was determined based on the estimated kinetic rate constants and the observed inorganic components of atmospheric aerosols. The average value of equilibrium time constant was determined to be 17.01 (+/-12.19) minutes for ambient equilibrium time between ammonia, nitric acid gas and ammonium nitrate aerosol; and 10.83 (+/-8.97) minutes for ammonia, hydrochloric acid, and ammonium chloride. The aerosol

  11. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Myhrvold, N. P.; Caldeira, K.

    2012-03-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1-100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot.

  12. Water-responsive carbon nanotubes for selective detection of toxic gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumalya; Sakorikar, Tushar; Mukherjee, Anwesha; Misra, Abha

    2015-03-01

    Ammonia plays an important role in our daily lives and hence its quantitative and qualitative sensing has become necessary. Bulk structure of carbon nanotubes (CNTs) has been employed to detect the gas concentration of 10 ppm. Hydrophobic CNTs were turned to hydrophilic via the application of a ramp electric field that allowed confinement of a controlled amount of water inside CNT microstructure. These samples were then also used to detect different gases. A comparative study has been performed for sensing three reducing gases, namely, ammonia, sulphur-di-oxide, and hydrogen sulphide to elaborate the selectivity of the sensor. A considerable structural bending in the bulk CNT was observed on evaporation of the confined water, which can be accounted to the zipping of individual nanotubes. However, the rate of the stress induced on these bulk microstructures increased on the exposure of ammonia due to the change in the surface tension of the confined solvent. A prototype of an alarm system has been developed to illustrate sensing concept, wherein the generated stress in the bulk CNT induces a reversible loss in electrical contact that changes the equivalent resistance of the electrical circuit upon exposure to the gas.

  13. Estimated flows of gases and carbon within CEEF ecosystem composed of human, crops and goats

    NASA Astrophysics Data System (ADS)

    Tako, Y.; Komatsubara, O.; Honda, G.; Arai, R.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation necessary for long term missions such as Lunar and Mars exploration. In the experiment conducted under closed condition in FY2003, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation area of 30 m2 and floor area of 43 m2, inside the Plantation Module with artificial lighting of the CEEF. In the chamber having a cultivation area of 60 m2 and floor area of 65 m2, inside the Plantation Module with natural and artificial lighting, peanuts and safflowers were also cultivated. Stable transplant (or seeding) and harvest of each crop were maintained during a month. Flows of CO2, O2 and carbon to and from the crops were analyzed during the stable cultivation period. Simulated works and stay in the CEEF lasting five days were conducted two times under ventilating condition in FY2003. Gas exchange of human was estimated using heart rate data collected during the experiments and correlation between gas exchange rate and heart rate. Gas exchange rate and carbon balance of female goats were determined using an open-flow measurement system with a gastight chamber. From these results, flows of gases and carbon in the CEEF were discussed.

  14. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  15. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Mesick, H. H.

    1985-01-01

    Foliage plants were evaluated for their ability to sorb carbon monoxide and nitrogen dioxide, the two primary gases produced during the combustion of fossil fuels and tobacco. The spider plant (Chlorophytum elatum var. vittatum) could sorb 2.86 micrograms CO/sq cm leaf surface in a 6 h photoperiod. The golden pothos (Scindapsus aureus) sorbed 0.98 micrograms CO/sq cm leaf surface in the same time period. In a system with the spider plant, greater than or equal to 99 percent of an initial concentration of 47 ppm NO2 could be removed in 6 h from a void volume of approximately 0.35 cu m. One spider plant potted in a 3.8 liter container can sorb 3300 micrograms CO and effect the removal of 8500 micrograms NO2/hour, recognizing the fact that a significant fraction of NO2 at high concentrations will be lost by surface sorption, dissolving in moisture, etc.

  16. Effect of gases on the temperature dependence of the electric conductivity of CVD multiwalled carbon nanotubes

    SciTech Connect

    Buryakov, T. I. Romanenko, A. I.; Anikeeva, O. B.; Kuznetsov, V. L.; Usol'tseva, A. N.; Tkachev, E. N.

    2007-07-15

    The influence of various gaseous media on the temperature dependence of the electric conductivity {sigma} of multiwalled carbon nanotubes (MWNTs) synthesized using the method of catalytical chemical vapor deposition (CVD) has been studied. The {sigma}(T) curves were measured in a temperature range from 4.2 to 300 K in helium and its mixtures with air, methane, oxygen, and hydrogen. The introduction of various gaseous components into a helium atmosphere leads to a significant decrease in the conductivity of MWNTs in the interval between the temperatures of condensation and melting of the corresponding gas. Upon a heating-cooling cycle, the conductivity restores on the initial level. It is concluded that a decrease in {sigma} is caused by the adsorption of gases on the surface of nanotubes.

  17. Collisions and Reactions of Protic Gases with Surfactant-Coated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Park, Seong-Chan; Glass, Samuel; Lawrence, Jennifer; Nathanson, Gilbert

    2004-03-01

    The presence of surfactant molecules on sulfuric acid droplets in the atmosphere may alter the rates of heterogeneous reactions by impeding gas entry. We perform molecular beam experiments with deuterated sulfuric acid solutions (60-68 wt % D_2SO4 at 213 K) with varying concentrations of surfactants including butanol, hexanol, and octanol. We direct a beam of a protic gas HX (X = Cl or Br) at a continuously renewed film of supercooled D_2SO_4/D_2O in vacuum and measure the fraction of thermalized HX that undergo HX→ DX exchange. Our results contradict the notion that surfactants impede gas transport. The presence of surface alcohol does not alter the rate of D_2O evaporation from the liquid surface. Our most striking result is that surface alcohol actually increases the HX→ DX exchange fraction, implying that HX dissociates more readily at the interface when alcohol is present. This enhancement may be caused by the dilution of the acid near the surface by segregated alcohol molecules, which provide additional OH groups for protonation by HX. We are now investigating other surfactants as well as other atmospheric gases.

  18. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  19. Combustion vs. Pyrolysis of Presolar Diamonds: Association of P3 and HL Noble Gases with Carbon

    NASA Astrophysics Data System (ADS)

    Verchovsky, A. B.; Fisenko, A. V.; Pillinger, C. T.

    1995-09-01

    Since it became clear that presolar diamonds are not identical and perhaps consist of several carriers of isotopically anomalous (like HL-Xe and light nitrogen) and isotopically normal (carbon and P3 noble gases) components, it is important to know how these components are related to the diamond carriers. Because of diamond grains are too small to be analyzed individually and the attempts to separate the diamonds [1] have had little, if any, success, the only method currently available to investigate the relationship between the carriers and corresponding components is the temperature dependence of their release pattern. The interpretation of the latter however is often not straight forward because the mechanism by which the gases are released is complicated and simultaneously involves several processes such as diffusion, chemical reactions between coexisting phases and/or their heating environment and phase transformations [2, 3]. To unravel this interdependent matrix we use several extraction methods applied to the same sample. In the present study we used a combination of stepped pyrolysis and combustion for investigation of the release pattern of Ar components for presolar diamonds concentrated from CI (Orgueil), and CV (Allende, Efremovka) meteorites. From the previous studies [2] it is known that Ar in the most primitive CI's and CM's meteorites consists mostly of P3 component while for CV3's like Allende and Efremovka it is represented mainly by HL component. This difference in the noble gas components composition probably reflects the thermal history of the corresponding parent bodies and the extreme sensitivity of the P3 component concentrations, in presolar diamonds, to the thermal metamorphism. Laboratory pyrolysis experiments show that most of the P3 argon is released at rather low temperature though some of the gas is still being liberated at temperatures as high as those usually associated with HL component [2]. The low release temperatures have led

  20. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W.

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  1. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  2. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  3. Oral drug delivery of therapeutic gases - carbon monoxide release for gastrointestinal diseases.

    PubMed

    Steiger, Christoph; Lühmann, Tessa; Meinel, Lorenz

    2014-09-10

    Deploying the therapeutic potential of carbon monoxide (CO) in various gastrointestinal diseases is challenged by inappropriate oral delivery modes. It is for this challenge, that we developed an easy to use tablet referred to as oral carbon monoxide release system (OCORS) providing precise, controlled, tunable and targeted CO delivery for the treatment of sequelae of gastrointestinal diseases. OCORS is an oral tablet based on sulfite induced CO release from the CO releasing molecule 2 (CORM-2). OCORS performance was detailed as a function of the presence of buffer within the tablet core and the composition of a semipermeable cellulose acetate coating, shielding the tablet core. OCORS delivered CO for up to 10h with a nearly linear release profile between approximately 30 to 240min. This controlled release system delivered the therapeutic gas independent of environmental pH for reliable CO generation at gastric, intestinal or colonic sites. In vivo experiments and toxicological assessments particularly with respect to observed ruthenium release of OCORS are required to demonstrate the pharmacokinetics and clinical potential of this oral delivery platform for therapeutic gases. PMID:24969354

  4. SEPARATION OF CO2 FROM FLUE GASES BY CARBON-MULTIWALL CARBON NANOTUBE MEMBRANES

    SciTech Connect

    Rodney Andrews

    2001-03-01

    Multiwalled carbon nanotubes (MWNT) were found to be an effective separation media for removing CO{sub 2} from N{sub 2}. The separation mechanism favors the selective condensation of CO{sub 2} from the flowing gas stream. Significant uptakes of CO{sub 2} were measured at 30 C and 150 C over the pressure range 0.5 to 5 bar. No measurable uptake of nitrogen was found for this range of conditions. The mass uptake of CO{sub 2} by MWNT was found to increase with increasing temperature. A packed bed of MWNT completely removed CO{sub 2} from a flowing stream of CO{sub 2}/N{sub 2}, and exhibited rapid uptake kinetics for CO{sub 2}.

  5. CARBONGASES: Retrieval and Analysis of Carbon Dioxide and Methane Greenhouse Gases from SCIAMACHY on Envisat

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J. P.

    2010-12-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases contributing to global climate change. Despite their importance our knowledge about their variable natural and anthropogenic sources and sinks has significant gaps. Satellite observations can add important global scale information on greenhouse gas sources and sinks provided the data are accurate and precise enough and are sensitive to the lowest atmospheric layers where the variability due to regional greenhouse gas sources and sinks are largest. SCIAMACHY onboard ENVISAT was the first and is now besides TANSO onboard GOSAT the only satellite instrument which covers important absorption bands of both gases in the near-infrared/shortwave- infrared (NIR/SWIR) spectral region. In nadir mode SCIAMACHY observes reflected and backscattered solar radiation. The daytime measurements are therefore very sensitive to near-surface greenhouse gas concentration changes except in case of significant cloud cover. The atmospheric greenhouse gas information is extracted from the SCIAMACHY spectra using the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS or WFMD) algorithm developed at the Institute of Environmental Physics (IUP) of the University of Bremen, Germany. In the framework of the CARBONGASES project, which is part of the Changing Earth Science Network, the afore existing data set focussing on the first three full years of the ENVISAT mission (2003-2005) is improved and extended up to end of 2009 constituting seven years of greenhouse gas information derived from European Earth observation data and closing the gap to GOSAT. The status of this retrieval activity and first results are presented.

  6. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  7. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  8. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  9. Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study

    NASA Technical Reports Server (NTRS)

    Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.

    1984-01-01

    Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.

  10. Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2005-01-01

    We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,

  11. Contamination monitoring for ammonia, amines, and acid gases utilizing ion mobility spectroscopy (IMS)

    NASA Astrophysics Data System (ADS)

    Bacon, Tad; Webber, Kurt; Carpio, Ronald A.

    1998-06-01

    The effect of ammonia (NH3) and n-methyl pyrrolidinone (NMP) contamination on chemically amplified DUV resists is well documented. Other amines and related compounds are under suspicion as well. In addition, the concentration levels that are of concern have steadily decreased from approximately 10 ppbv down to levels as low as 0.1 ppbv. While some techniques such as ion chromotagraphy (IC) have been demonstrated to have limits of detection at these levels, the analysis times are rather long and cumbersome. This paper describes the use of IMS to perform these measurements, in a totally automated, continuous instrument. IMS is a simplified time-of-flight technique that requires no liquid reagents and has been demonstrated to be a reliable method for monitoring for ammonia and NMP in cleanrooms. This paper demonstrates the ability of the technique to monitor for amines such as dimethylamine, methylamine, methanolamine, ethanolamine, diethanolamine, butylamine and others. Detection limits of 0.1 ppbv and below are clearly demonstrated. Also discussed are methods of monitoring multiple points with a single analyzer. Ability to detect corrosive gases such as hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), sulfur trioxide (SO3), nitrogen dioxide (NO2), chlorine (Cl2), bromine (Br2), phosphoric acid (H3PO4) are also demonstrated.

  12. Annular denuders for use in global climate and stratospheric measurements of acidic gases and particles

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.

    1991-02-01

    Measurements of acidic and basic gases that coexist with fine particle (less than 2.5 micron) may be useful for determining the impact of these species on global climate changes and determining species that influence stratospheric ozone levels. Annular denuders are well suited for this purpose. A new concentric annular denuder system, consisting of a three channel denuder, a Teflon coated cyclone preseparator, and a multistage filter pack was developed, evaluated, and shown to provide reliable atmospheric measurements of SO2, HNO2, HNO3, NH3, SO4(=), NH4(+), NO3(-), and H(+). For example, the precision of the annular denuder for the ambient measurements of HNO3 and nitrates at concentrations between 0.1 to 3 microgram/cu m was + or - 12 and 16 pct., respectively. The 120 x 25 mm three channel denuder is encased in a stainless steel sheath and has annular spaces that are 1 mm wide. This design was shown to have nearly identical capacity for removal of SO2 as conventional 210 x 25 mm single channel denuder configurations. The cyclone preseparator was designed and tested to have a D sub 50 cutoff diameter of 2.5 micron and minimal retention of HNO3.

  13. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  14. Sources of greenhouse gases and carbon monoxide in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent

  15. Black carbon and trace gases over South Asia: Measurements and Regional Climate model simulations

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pradip; Pathak, Binita; Parottil, Ajay

    2016-07-01

    Trace gases and aerosols are simulated with 50 km spatial resolution over South Asian CORDEX domain enclosing the Indian sub-continent and North-East India for the year 2012 using two regional climate models RegCM4 coupled with CLM4.5 and WRF-Chem 3.5. Both models are found to capture the seasonality in the simulated O3 and its precursors, NOx and CO and black carbon concentrations together with the meteorological variables over the Indian Subcontinent as well as over the sub-Himalayan North-Eastern region of India including Bangladesh. The model simulations are compared with the measurements made at Dibrugarh (27.3°N, 94.6°E, 111 m amsl). Both the models are found to capture the observed diurnal and seasonal variations in O3 concentrations with maximum in spring and minimum in monsoon, the correlation being better for WRF-Chem (R~0.77) than RegCM (R~0.54). Simulated NOx and CO is underestimated in all the seasons by both the models, the performance being better in the case of WRF-Chem. The observed difference may be contributed by the bias in the estimation of the O3 precursors NOx and CO in the emission inventories or the error in the simulation of the meteorological variables which influences O3 concentration in both the models. For example, in the pre-monsoon and winter season, the WRF-Chem model simulated shortwave flux overestimates the observation by ~500 Wm-2 while in the monsoon and post monsoon season, simulated shortwave flux is equivalent to the observation. The model predicts higher wind speed in all the seasons especially during night-time. In the post-monsoon and winter season, the simulated wind pattern is reverse to observation with daytime low and night-time high values. Rainfall is overestimated in all the seasons. RegCM-CLM4.5 is found to underestimate rainfall and other meteorological parameters. The WRF-Chem model closely captured the observed values of black carbon mass concentrations during pre-monsoon and summer monsoon seasons, but

  16. STABILITY EVALUATION OF SULFUR DIOXIDE, NITRIC OXIDE AND CARBON MONOXIDE GASES IN CYLINDERS

    EPA Science Inventory

    The US EPA recommends in their EPA Traceability Protocol 1 and 2 that reactive gases be reanalyzed every six months. The purpose of this study was to assess the stability of selected reactive gases as a function of time to determine the feasibility of extending the recertificatio...

  17. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    PubMed

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. PMID:25585865

  18. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  19. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  20. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  1. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. PMID:25465511

  2. Isotope composition of carbon in amino acids of solid bitumens

    NASA Astrophysics Data System (ADS)

    Shanina, S. N.; Bushnev, D. A.

    2014-06-01

    Primary data are presented on the isotope composition of carbon in individual amino acids from solid bitumens and several biological objects. The amino acids of biological objects are characterized by wide variations of the isotope composition of carbon. This fact occurs owing to the difference in biochemical paths of metabolism resulting in the synthesis of individual amino acids. The δ13C values are somewhat decreased for individual amino acids in asphaltenes, varying from -7.7 to -31.7‰. The carbon of amino acids is weighted in kerits from Bad'el' compared to asphaltenes. All the natural bitumens retain the characteristic trend for natural substances: the isotopically heavy and light amino acids by carbon are glycine and leucine, respectively. The isotope composition of amino-acid carbon is lightened compared to natural bitumens in the samples formed under a pronounced thermal impact (asphalt-like crust and kirishite).

  3. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?

    NASA Astrophysics Data System (ADS)

    Liu, Quanyou; Dai, Jinxing; Jin, Zhijun; Li, Jian; Wu, Xiaoqi; Meng, Qingqiang; Yang, Chun; Zhou, Qinghua; Feng, Zihui; Zhu, Dongya

    2016-01-01

    It is great debate that the alkane gases of abiogenic origin would constitute a major portion of the commercial accumulation of the Qingshen gas field, Songliao Basin, China. In this study, abiogenic gases characterized by heavy δ13C1 values, reversal of the usual carbon isotopic trend of C1-C5 alkanes, very narrow variation in δ2HC1 values, and low CH4/3He ratios associated with high R/Ra values (>1) were identified. The hydrocarbon gas in the Qingshen gas field is a mixture of thermogenic alkanes derived from Cretaceous mudstone (type I kerogen) or Jurassic coal (type III kerogen) and abiogenic alkanes (mainly CH4) from mantle degassing. A quantitative estimation of abiogenic alkanes contribution to the Qingshen gas field is made based on a δ13C1 vs. δ13C2 plot: about 30-40% of alkane gases in the Qingshen gas field, along with its helium, are estimated to be derived from the mantle via magmatic activity. Particularly, the abiogenic formation of CH4 generated from the reduction of CO2 by hydrothermal activity may contribute. Our study suggests that abiogenic alkane gases in certain geological settings could be more widespread than previously thought, and may accumulate into economic reservoirs.

  4. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth

    NASA Astrophysics Data System (ADS)

    Marty, Bernard

    2012-01-01

    elements and of noble gases is also chondritic, with two notable exceptions. Nitrogen is depleted by one order of magnitude relative to water, carbon and most noble gases, which is consistent with either N retention in a mantle phase during magma generation, or trapping of N in the core. Xenon is also depleted by one order of magnitude, and enriched in heavy isotopes relative to chondritic or solar Xe (the so-called "xenon paradox"). This depletion and isotope fractionation might have taken place due to preferential ionization of xenon by UV light from the early Sun, either before Earth's formation on parent material, or during irradiation of the ancient atmosphere. The second possibility is consistent with a recent report of chondritic-like Xe in Archean sedimentary rocks that suggests that this process was still ongoing during the Archean eon (Pujol et al., 2011). If the depletion of Xe in the atmosphere was a long-term process that took place after the Earth-building events, then the amounts of atmospheric 129Xe and 131-136Xe, produced by the short-lived radioactivities of 129I (T 1/2 = 16 Ma) and 244Pu (T 1/2 = 82 Ma), respectively, need to be corrected for subsequent loss. Doing so, the I-Pu-Xe age of the Earth becomes ≤ 50 Ma after start of solar system formation, instead of ~ 120 Ma as computed with the present-day atmospheric Xe inventory.

  5. The Perils of Carbonic Acid and Equilibrium Constants.

    ERIC Educational Resources Information Center

    Jencks, William P.; Altura, Rachel A.

    1988-01-01

    Discusses the effects caused by small amounts of carbon dioxide usually present in water and acid-base equilibria of dilute solutions. Notes that dilute solutions of most weak acids and bases undergo significant dissociation or protonation. (MVL)

  6. A Widely Tunable Infrared Laser Spectrometer for Measurements of Isotopic Ratios of Carbon Cycle Gases

    SciTech Connect

    Joanne H. Shorter; J. Barry McManus; David D. Nelson; Charles E. Kolb; Mark S. Zahniser; Ray Bambha; Uwe Lehmann; Tomas Kulp; Stanley C. Tyler

    2005-01-31

    The atmospheric abundances of carbon dioxide and methane have increased dramatically during the industrial era. Measurements of the isotopic composition of these gases can provide a powerful tool for quantifying their sources and sinks. This report describes the development of a portable instrument for isotopic analysis CO{sub 2} and CH{sub 4} using tunable infrared laser absorption spectroscopy. This instrument combines novel optical design and signal processing methods with a widely tunable mid-infrared laser source based on difference frequency generation (DFG) which will can access spectral regions for all the isotopes of CO{sub 2} and CH{sub 4} with a single instrument. The instrument design compensates for the large difference in concentration between major and minor isotopes by measuring them with path lengths which differ by a factor of 100 within the same multipass cell. During Phase I we demonstrated the basic optical design and signal processing by determining {sup 13}CO{sub 2} isotopic ratios with precisions as small as 0.2{per_thousand} using a conventional lead salt diode laser. During Phase II, the DFG laser source was coupled with the optical instrument and was demonstrated to detect {sup 13}CH{sub 4}/{sup 12}CH{sub 4} ratios with a precision of 0.5{per_thousand} and an averaging time of 20 s using concentrated methane in air with a mixing ratio of 2700 ppm. Methods for concentrating ambient air for isotopic analysis using this technique have been evaluated. Extensions of this instrument to other species such as {sup 13}CO{sub 2}, C{sup 18}OO, and CH{sub 3}D are possible by substituting lasers at other wavelengths in the DFG source module. The immediate commercial application of this instrument will be to compete with existing mass spectrometric isotope instruments which are expensive, large and relatively slow. The novel infrared source developed in this project can be applied to the measurement of many other gas species and will have wide

  7. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  8. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy.

    PubMed

    Jauniaux, E; Watson, A; Ozturk, O; Quick, D; Burton, G

    1999-11-01

    A new multiparameter sensor that combines electrochemical and fibre-optic technology was used for continuous in-vivo investigation of pH, carbon dioxide partial pressure (PCO(2)), oxygen partial pressure (PO(2)), bicarbonate concentration (HCO(3)(-)), base excess, and oxygen saturation (O(2)Sat) early in human pregnancy. The sensor was inserted into the amniotic cavity and the placental bed of 16 pregnancies at 10-15 weeks gestation, before termination under general anaesthesia. Amniotic fluid and retroplacental blood from the same site were also aspirated and analysed by means of cartridges and a portable blood gas analyser. Eleven series of measurements were obtained. The variation in measurements over the 5 min of monitoring was acid-base with a sensor is stable and accurate. Such technology will be helpful in improving our understanding of the fetoplacental metabolism in normal and complicated pregnancies. PMID:10548645

  9. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  10. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. PMID:21334872

  11. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons

    SciTech Connect

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2011-06-15

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 deg. C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 {mu}g I-TEQ kg{sup -1} toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 {mu}g I-TEQ kg{sup -1} in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.

  12. Removal of NO sub x from flue gases using the urea acidic process; Kinetics of the chemical reaction of nitrous acid with urea

    SciTech Connect

    Lasalle, A.; Roizard, C.; Midoux, N.; Bourret, P.; Dyens, P.J. )

    1992-03-01

    This paper deals with the removal of nitrogen oxides from flue gases using the acidic urea process. The chemical hydrolysis of nitrous acid, which leads to NO formation, is avoided by nitrous acid reaction with urea. Products of this reaction are gases, e.g. CO{sub 2} and N{sub 2} which can then be directly released into the atmosphere. The aim here is to determine the kinetic parameters of the chemical reaction of nitrous acid with urea. Experiments are performed in a closed stirred reactor. The manometric method (measurement of the pressure versus time curve) leads to the determination of the concentration of HNO{sub 2} and then to the chemical rate versus time. Operating parameters are the concentration of urea (333-3330 mol m{sup {minus}3}), the pH (0.75-1.25), and the temperature (3-40{degrees}C). The experimental results are as follows: the order relative to nitrous acid is 1; the rate constant decreases with pH; the influence of temperature on the rate constant can be expressed by (pH = 1) k = 1.82 {times} 10{sup 8} exp ({minus}(60400/RT)) (SI units).

  13. Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases

    NASA Astrophysics Data System (ADS)

    Lin, Haiqing

    Membrane technology has attracted interest for the selective removal of carbon dioxide from mixtures with light gases such as H2, CH4 and N2. While conventional structure-property correlations have focused mainly on improving the separation performance by increasing polymer size sieving ability (i.e., diffusivity selectivity), this project explores the possibility of harnessing favorable interactions between CO 2 and polymers containing polar groups to improve permeability/selectivity properties. Ether oxide groups are discovered to be among the best moieties known to interact with CO2, leading to high CO2 solubility and CO2/light gas solubility selectivity, while still providing polymer chain flexibility, leading to high CO2 diffusivity and favorable CO2/H2 diffusivity selectivity. Poly(ethylene oxide) (PEO) has a high concentration of ether oxygen groups and exhibits high CO2/light gas selectivities. However, gas permeability is low due to the high crystallinity in PEO. Crosslinking and introduction of short chain branching are efficient methods to inhibit crystallization. Three series of crosslinked poly(ethylene oxide) rubbers have been prepared using prepolymer solutions containing: (1) poly(ethylene glycol) diacrylate (PEGDA) and H2O, (2) PEGDA and poly(ethylene glycol) methyl ether acrylate (PEGMEA), and (3) PEGDA and poly(ethylene glycol) acrylate (PEGA). Independent of the prepolymer composition, all of these polymers have similar ethylene oxide (EO) content (approximately 82 wt.%). Crosslink density decreases with decreasing PEGDA content in the prepolymer solution, which is estimated from water swelling experiments and/or dynamic mechanical testing and has essentially no effect on gas transport properties. Increasing PEGMEA content increases the average size of free volume elements, resulting in a decreased glass transition temperature, and increased CO 2 permeability and CO2/H2 selectivity. In contrast, the presence of PEGA or water has a negligible

  14. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream

    USGS Publications Warehouse

    Schindler, J.E.; Krabbenhoft, D.P.

    1998-01-01

    The objective of this study was to examine chemical changes in porewaters that occur over small scales (cm) as groundwater flows through the hyporheic zone and discharges to a stream in a temperate forest of northern Wisconsin. Hyporheic-zone porewaters were sampled at discrete depths of 2, 10, 15, 61, and 183 cm at three study sites in the study basin. Chemical profiles of dissolved organic carbon (DOC), CO2, CH4, and pH show dramatic changes between 61 cm sediment depth and the water-sediment interface. Unless discrete samples at small depth intervals are taken, these chemical profiles are not accounted for. Similar trends were observed at the three study locations, despite each site having very different hydraulic-flow regimes. Increases in DOC concentration by an order of magnitude from 61 to 15 cm depth with a corresponding decrease in pH and rapid decreases in the molecular weight of the DOC suggest that aliphatic compounds (likely organic acids) are being generated in the hyporheic zone. Estimated efflux rates of DOC, CO2, and CH4 to the stream are 6.2, 0.79, 0.13 moles m2 d-1, respectively, with the vast majority of these materials produced in the hyporheic zone. Very little of these materials are accounted for by sampling stream water, suggesting rapid uptake and/or volatilization.

  15. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  16. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  17. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  18. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  19. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  20. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  1. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  2. Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge

    SciTech Connect

    LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

    1980-01-25

    The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

  3. Simultaneous control of acid gases and PAHs using a spray dryer combined with a fabric filter using different additives.

    PubMed

    Liu, Zhen Shu; Wey, Ming Yen; Lin, Chiou Liang

    2002-04-26

    The purpose of this research was to simultaneously evaluate the removal efficiency of acid gases and PAHs from the flue gas emitted by a laboratory incinerator. This flue gas contained dust, acid gases, organics and heavy metals. A spray dryer combined with a fabric filter was used as the air pollution control device (APCD) in this study. The operating conditions investigated included different feedstock additives (polyvinyl chloride (PVC) and NaCl) and spray dryer additives (SiO2, CaCl2 and NaHCO3). The removal efficiency for SO2 could be enhanced by adding inorganic additives, such as SiO2, CaCl2 and NaHCO3. The presence of PVC in the incinerator feedstock also increased the removal efficiency of SO2in the spray dryer. The improved removal of PAHs could be attributed to the addition of feedstock additives (PVC and NaCl) and spray dryer additives (SiO2, CaCl2 and NaHCO3). PMID:11900910

  4. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  5. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  6. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  7. Separation of H2S and NH3 gases from tofu waste water-based biogas using activated carbon adsorption

    NASA Astrophysics Data System (ADS)

    Harihastuti, Nani; Purwanto, P.; Istadi, I.

    2015-12-01

    Research on the separation of H2S and NH3 gases from tofu waste water-based biogas has been conducted to improve the content of CH4 of biogas in order to increase calorific value. Biogas from tofu waste water contained many kinds of gases such as: CH4 of 53-64%, CO2 of 36-45%, H2S of 3,724-5,880 mg/Nm3, NH3 of 0.19-70.36 mg/Nm3, and H2O of 33,800-19,770,000 mg/Nm3. In fact, CO2, H2S, NH3, and moisture are impurities that have disturbance to human and environment, so that they are necessary to be separated from biogas. Particularly, H2S and NH3 have high toxicity to people, particularly the workers in the tofu industry. Therefore, separation of H2S and NH3 from biogas to increase calorific value is the focus of this research. The method used in this research is by adsorption of H2S and NH3 gases using activated carbon as adsorbent. It also used condensation as pretreatment to remove moisture content in biogas. Biogas was flowed to adsorption column (70 cm height and 9 cm diameter containing activated carbon as much as 500 g) so that the H2S and NH3 gases were adsorbed. This research was conducted by varying flow rate and flow time of biogas. From this experiment, it was found that the optimum adsorption conditions were flow rate of 3.5 l/min and 4 hours flow time. This condition could reach 99.95% adsorption efficiency of H2S from 5,879.50 mg/Nm3 to 0.67 mg/Nm3, and 74.96% adsorption efficiency of NH3 from 2.93 mg/Nm3 to 0.73 mg/Nm3. The concentration of CH4 increased from 63.88% to 76.24% in the biogas.

  8. Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

    SciTech Connect

    Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz; Jensen, Jens; Hultman, Lars

    2013-01-15

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inert gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.

  9. Nature of the carbon and sulfur phases and inorganic gases in the Kenna ureilite

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.

    1976-01-01

    Abundances of carbon and sulfur in the Kenna ureilite are 2.219 plus or minus 0.060 wt. % C and 0.179 plus or minus 0.008 wt. % S. Secondary carbonates resulting from terrestrial weathering account for 0.25 plus or minus 0.02 wt. % C. No hydrocarbons were detected during gas release measurements. Most of the carbon is in graphite, diamond, or lonsdaleite. The sample of Kenna contained 0.95 plus or minus 0.05 wt.% H2O. Total carbon and sulfur measurements were made on three additional ureilites: Havero, Dingo Pup Donga, and North Haig. Ureilite carbon abundances are similar to those of C-2 chondrites, whereas sulfur abundances are a factor of 10 less than C-2 chondrites and ordinary chondrites. The elemental abundances, ratios, and phases present in the ureilites rule out a direct genetic relationship between the ureilites and the carbonaceous chondrites.

  10. Measurements of Acetic Acid and its Relationships with Trace Gases on Appledore Island, ME during the ICARTT Campaign

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Sive, B. C.; White, M. L.; Russo, R. S.; Ambrose, J. L.; Zhou, Y.; Talbot, R. W.

    2011-12-01

    Acetic acid is ubiquitously present in the ambient atmosphere. Acetic acid, along with formic acid, is the one of the most abundant gas phase organic acids with mixing ratios reaching into the tens of parts per billion by volume (ppbv) range, and can influence the pH of aerosols and precipitation. The magnitude of the sources and sinks of acetic acid in the environment is not well understood (~24 Tg/yr of missing emissions globally), as they are widely dispersed and measurements are relatively challenging to accomplish using established techniques. Here, the application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) is explored as a technique for quantification of ambient acetic acid. Direct calibrations of PTR-MS instruments at low ppbv levels show good linearity and fast response, and during the ICARTT campaign, a PTR-MS measured acetic acid and a suite of other volatile organic compounds on Appledore Island, ME over a period of 6 weeks. During the campaign, the average mixing ratio of acetic acid on the island was 607.9 ± 341.8 (1σ) pptv with a median of 530 pptv. Mixing ratios of acetic acid observed on the island showed diurnal variations corresponding land breeze/sea breeze transport, similar to other pollutants including ozone and carbon monoxide, indicating that acetic acid was advected to the sample site, and not a product of local emissions. Additionally, no mixing ratio dependence on wind speed was found, indicating that at this location, loss due to dry deposition to the ocean during transport was minimal. Over the course of the campaign, acetic acid showed complex relationships with a range of other VOCs, indicating a diverse set of sources and further showing the utility of the PTR-MS technique for monitoring acetic acid. Mixing ratios of acetic acid showed correlations with different compounds at different times, indicating a complex source signature comprised of (1) anthropogenic emissions, (2) biomass burning, and (3) photochemical

  11. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  12. Sorption of noble gases by solids, with reference to meteorites. I - Magnetite and carbon

    NASA Technical Reports Server (NTRS)

    Yang, J.; Lewis, R. S.; Anders, E.

    1982-01-01

    The trapping of meteoritic noble gases by solids is simulated through the synthesis of 18 Fe3O4 samples at 350-720 K in a noble gas atmosphere, by means of the reactions: (1) 3Fe + 4H2O yields Fe3O4 + 4H2, using Ne, Ar, Kr and Xe; and (2) 3Fe + 4CO yields Fe3O4 + 4C + carbides, using Xe. Etching experiments suggest an analogy with 'Phase Q' in meteorites. Adsorbed atmospheric gases are present in all samples, and dominate whenever the noble gas partial pressure in the atmosphere is greater than that in the synthesis. While many of the results of Lancet and Anders (1973) appear to have been dominated by such an atmospheric component, others are suspect. When the doubtful samples of Lancet and Anders are corrected or eliminated, the fractionation pattern no longer peaks at Ar, but rather, as in the present sample, rises monotonically from Ne to Xe. No evidence is found for the earlier study's claim of a strong temperature dependence.

  13. FIELD METHOD COMPARISON FOR THE CHARACTERIZATION OF ACID AEROSOLS AND GASES

    EPA Science Inventory

    This paper presents findings from two intercomparison studies of acid aerosol measurement systems, which were conducted in Uniontown and State College, PA, during the summers of 1990 and 1991, respectively. s part of these studies, acid aerosol and gas concentrations (NH3, HNO3, ...

  14. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  15. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  16. The Strongest Acid: Protonation of Carbon Dioxide.

    PubMed

    Cummings, Steven; Hratchian, Hrant P; Reed, Christopher A

    2016-01-22

    The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2(+). The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation. PMID:26663640

  17. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  18. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  19. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  20. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  1. Carbon dioxide and helium dissolved gases in groundwater at central Tenerife Island, Canary Islands: chemical and isotopic characterization

    NASA Astrophysics Data System (ADS)

    Marrero-Diaz, Rayco; López, Dina; Perez, Nemesio M.; Custodio, Emilio; Sumino, Hirochika; Melián, Gladys V.; Padrón, Eleazar; Hernandez, Pedro A.; Calvo, David; Barrancos, José; Padilla, Germán; Sortino, Francesco

    2015-10-01

    Seismic-volcanic unrest was detected between 2004 and 2005 in the central and northwest zones of Tenerife Island (Canary Islands, Spain). With the aim of strengthening the program of geochemical and seismic-volcanic surveillance, a study of the origin, characteristics, and spatial distribution of dissolved carbon dioxide (CO2) and helium (He) gases in the volcanic aquifer of central Tenerife Island and around Teide volcano was carried out. This work also improves the hydrogeological and hydrogeochemical conceptual model of groundwater flow. Dissolved CO2 concentrations in sampled groundwater are several orders of magnitude higher than that of air-saturated water (ASW) suggesting a significant contribution of non-atmospheric CO2, mainly magmatic, confirmed through measurement of isotopic compositions (δ13CTDIC) and total dissolved inorganic carbon (TDIC) concentrations. A vertical stratification of dissolved CO2 and δ13CTDIC values was observed in the volcanic aquifer at the eastern region of Las Cañadas Caldera. Stratification seems to be controlled by both degree of magmatic CO2-water interaction and CO2 degassing and the original δ13Cco2(g) isotopic composition. The highest dissolved helium (4He) concentrations in groundwater seem to be related to radiogenic contributions resulting from water-rock interactions, and increase with residence time, instead of with endogenous magmatic inputs. Isotopic systematics show that the dissolved gases in groundwater of central Tenerife are variable mixtures of CO2-3He-rich fluids of volcanic-hydrothermal origin with both organic and atmospheric components. The results suggest that the eastern area of Las Cañadas Caldera, the South Volcanic Ridge, and the Teide summit cone are the areas most affected by degassing of the volcanic-hydrothermal system, and they are therefore the most suitable zones for future geochemical monitoring.

  2. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases.

    PubMed

    de Godos, I; Mendoza, J L; Acién, F G; Molina, E; Banks, C J; Heaven, S; Rogalla, F

    2014-02-01

    Mass transfer of CO2 from flue gas was quantified in a 100m(2) raceway. The carbonation sump was operated with and without a baffle at different liquid/gas ratios, with the latter having the greatest influence on CO2 recovery from the flue gas. A rate of mass transfer sufficient to meet the demands of an actively growing algal culture was best achieved by maintaining pH at ∼8. Full optimisation of the process required both pH control and selection of the best liquid/gas flow ratio. A carbon transfer rate of 10gCmin(-1) supporting an algal productivity of 17gm(-2)day(-1) was achieved with only 4% direct loss of CO2 in the sump. 66% of the carbon was incorporated into biomass, while 6% was lost by outgassing and the remainder as dissolved carbon in the liquid phase. Use of a sump baffle required additional power without significantly improving carbon mass transfer. PMID:24374031

  3. Reaction of folic acid with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ellison, Mark D.; Chorney, Matthew

    2016-10-01

    The oxygen-containing functional groups on oxidized single-walled carbon nanotubes (SWNTs) are used to covalently bond folic acid molecules to the SWNTs. Infrared spectroscopy confirms intact molecular binding to the SWNTs through the formation of an amide bond between a carboxylic acid group on an SWNT and the primary amine group of folic acid. The folic acid-functionalized SWNTs are readily dispersible in water and phosphate-buffered saline, and the dispersions are stable for a period of two weeks or longer. These folic acid-functionalized SWNTs offer potential for use as biocompatible SWNTs.

  4. The Path of Carbon in Photosynthesis II. Amino Acids

    DOE R&D Accomplishments Database

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  5. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  6. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption.

    PubMed

    Chi, Kai Hsien; Chang, Shu Hao; Huang, Chia Hua; Huang, Hung Chi; Chang, Moo Been

    2006-08-01

    Activated carbon adsorption is commonly used to control dioxin-like congener (PCDD/Fs and PCBs) emissions. Partitioning of PCDD/Fs and PCBs between vapor and solid phases and their removal efficiencies achieved with existing air pollution control devices (APCDs) at a large-scale municipal waste incinerator (MWI) and an industrial waste incinerator (IWI) are evaluated via intensive stack sampling and analysis. Those two facilities investigated are equipped with activated carbon injection (ACI) with bag filter (BF) and fixed activated carbon bed (FACB) as major PCDD/F control devices, respectively. Average PCDD/F and PCB concentrations of stack gas with ACI+BF as APCDs are 0.031 and 0.006ng-TEQ/Nm(3), and that achieved with FACB are 1.74 and 0.19ng-TEQ/Nm(3) in MWI and IWI, respectively. The results show that FACB could reduce vapor-phase PCDD/Fs and PCBs concentrations in flue gas, while the ACI+BF can effectively adsorb the vapor-phase dioxin-like congener and collect the solid-phase PCDD/Fs and PCBs in the meantime. Additionally, the results of the pilot-scale adsorption system (PAS) experimentation indicate that each gram activated carbon adsorbs 105-115ng-PCDD/Fs and each surface area (m(2)) of activated carbon adsorbs 10-25ng-PCDD/Fs. Based on the results of PAS experimentation, this study confirms that the surface area of mesopore+macropore (20-200A) of the activated carbon is a critical factor affecting PCDD/F adsorption capacity. PMID:16488462

  7. Field evaluation of gelled acid for carbonate formations

    SciTech Connect

    Church, D.C.; Quisenberry, J.L.; Fox, K.B.

    1981-12-01

    A new gelled acid was evaluated in the west Texas, southeast New Mexico, and Oklahoma areas. The purpose of this evaluation was to determine how successful a gelled acid, prepared from xanthan polymer, would be in several carbonate formations. Several types of acidizing techniques were employed. These treatments vary from one to nine stages, with and without diverting agents. More than 20 treatments are summarized. Production figures for the wells treated are discussed, as well as pertinent related information. 5 refs.

  8. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  9. Characterization of carbon black modified by maleic acid

    NASA Astrophysics Data System (ADS)

    Asokan, Vijayshankar; Kosinski, Pawel; Skodvin, Tore; Myrseth, Velaug

    2013-09-01

    We present here a method for modifying the surface of carbon black (CB) using a simple heat treatment in the presence of a carboxylic acid as well as water or ethylene glycol as a solvent. CB was mixed with maleic acid and either water or ethylene glycol, and heated at 250°C. Unlike the traditional surface modification processes which use heat treatment of carbon with mineral acids the present modification method using a carboxylic acid proved to be simple and time efficient. CB from two different vendors was used, and the modified samples were characterized by TGA, BET surface area measurement, XRD, particle size and zeta potential measurements, and FTIR. It was found that several material properties, including thermal stability and surface area, of the modified CB are significantly altered relative to the parental carbon samples. This method provides a rapid and simple route to tailor new materials with desired properties.

  10. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  11. Coal fly ash based carbons for SO2 removal from flue gases.

    PubMed

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. PMID:20167465

  12. Characterization of the flow of the CO/CO 2 gases through carbon nanotube junctions using molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Sabzyan, Hassan; Tavangar, Zahra

    2009-08-01

    A detailed study of the gas flow in carbon nanotubes (CNT) and carbon nanotube junctions (CNTJ) can open the way towards the study of the reaction mixture flow in prospective nano-reactors. In this work, flow of the pure and mixed CO/CO 2 gases through some selected CNTs and three types of CNT1- J-CNT2 CNTJs, ( 12, 12)- J-( 3, 8), ( 12, 8)- J-( 8, 12) and ( 8, 8)- J-( 13, 0), are studied using molecular dynamic simulations. Results of this study show that regardless of the diameter and helicity type of the CNT1 and CNT2, when the flow starts with the molecules in the CNT1, the number density of molecules in the CNT2 is higher than that in the CNT1. Projected radial distribution of the molecules are calculated and analyzed in terms of the molecule-molecule and molecule-wall interactions. The well-structured projected radial distribution results show that the CNT radius and helicity as well as the type of molecules determine the lateral distribution of the gas molecules along the flow.

  13. CO(2) capture from dilute gases as a component of modern global carbon management.

    PubMed

    Jones, Christopher W

    2011-01-01

    The growing atmospheric CO(2) concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO(2) from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO(2) capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO(2) directly from ambient air (air capture) as a means of reducing the global atmospheric CO(2) concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. PMID:22432609

  14. Oxidation of low carbon steel in multicomponent gases. Part 2: Reaction mechanisms during reheating

    SciTech Connect

    Abuluwefa, H.T.; Guthrie, R.I.L.; Ajersch, F.

    1997-08-01

    Oxidation behavior of low carbon steel during reheating in an industrial walking-beam steel reheat furnace was investigated. It was observed that scaling (oxidation) rates were reduced by reducing the input air/fuel ratio to the furnace, thereby lowering concentrations of free oxygen in the combustion products from about 3 to 1.5 pct. Laboratory experiments involving isothermal and nonisothermal oxidation were carried out in atmospheres consisting of oxygen, carbon dioxide, water vapor, and nitrogen. A general equation for the prediction of weight gains due to oxidation during reheating, using isothermal oxidation rate constants, was developed. The prediction of weight gains from nonisothermal oxidation conducted in the laboratory was poor, owing to a separation of the scale from the metal substrate which took place at about 900 C. The predicted weight gains during reheating in the industrial reheat furnace indicated that oxidation rats during reheating were intermediate between linear and parabolic, especially during reheating with high air/fuel ratio. However, the linear mechanism predominated. Laboratory isothermal experiments for oxidation in atmospheres containing fee oxygen showed that the magnitude of the linear oxidation rates were determined by the oxygen concentration in the atmosphere. It was concluded that the observed reduction in scaling rates during reheating of low carbon steel in the industrial reheat furnace was a result of the lower free oxygen level in the furnace atmosphere.

  15. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  16. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  17. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  18. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  19. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  20. Separation and identification of carboxylic acids in MALT samples from the headspace gases in Hanford tank 103C

    SciTech Connect

    Clauss, S.A.; Lucke, R.B.

    1993-08-01

    Samples of headspace gases from Westinghouse Hanford Company (WHC) waste storage tank 103C were analyzed by gas chromatography/mass spectrometry by Pacific Northwest Laboratory staff. The samples were obtained using a cryo-trap sampler designed by WHC and known as the Mobile Analytical Laboratory Trap (MALT). The samples, which were obtained in September 1989, were available in large amounts (200 mi). The specific targets for this analysis were n-butyric, i-butyric, n-valeric, and i-valeric organic acids. Of the acids targeted, only n-butyric was found, and only trace amounts of it were detected with a detection limit below 1 ppM in the extract. The levels found were so low as to cause difficulty in quantitation. All concentrations reported here are for the methanol extract solutions and not the concentrations in the headspace of tank 103C. To calculate concentrations in the headspace, the MALT sampling volume and the methanol rinse volume must be obtained from the MALT personnel at WHC.

  1. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  2. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  3. Surface tension of water and acid gases from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ghoufi, A.; Goujon, F.; Lachet, V.; Malfreyt, P.

    2008-04-01

    We report direct Monte Carlo (MC) simulations on the liquid-vapor interfaces of pure water, carbon dioxide, and hydrogen sulfide. In the case of water, the recent TIP4P/2005 potential model used with the MC method is shown to reproduce the experimental surface tension and to accurately describe the coexistence curves. The agreement with experiments is also excellent for CO2 and H2S with standard nonpolarizable models. The surface tensions are calculated by using the mechanical and the thermodynamic definitions via profiles along the direction normal to the surface. We also discuss the different contributions to the surface tension due to the repulsion-dispersion and electrostatic interactions. The different profiles of these contributions are proposed in the case of water.

  4. Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid (hmim)(Tf2N)

    SciTech Connect

    A. Yokozeki; Mark B. Shiflett

    2009-09-15

    To understand capturing and/or enhanced gaseous selectivity of industrial flue gases containing CO{sub 2} and SO{sub 2} using room-temperature ionic liquids, we have developed a ternary equation of state (EOS) model for a CO{sub 2}/SO{sub 2}/1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((hmim)(Tf2N)) system. The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical binary interaction parameters of each binary system. These interaction parameters have been determined using our measured VLE (vapor-liquid-equilibrium) data for SO{sub 2}/(hmim)(Tf2N) and CO{sub 2}/(hmim)(Tf2N) and literature data for CO{sub 2}/SO{sub 2}. The validity of the present EOS has been checked by conducting ternary VLE experiments for the present system. With this EOS, isothermal ternary phase diagrams and solubility (VLE) behaviors have been calculated for various (T, P, and feed compositions) conditions. For large and equimolar CO{sub 2}/SO{sub 2} mole ratios, the gaseous selectivity is nearly independent of the amount of the ionic liquid addition. However, for small CO{sub 2}/SO{sub 2} mole ratios the addition of the ionic liquid significantly increases the selectivity. The strong absorption of CO{sub 2} and SO{sub 2} in this ionic liquid may be practical for the simultaneous capture of these acid gases. 39 refs., 8 figs., 4 tabs.

  5. Understanding the fluvial loss of carbon from UK watersheds - implications for terrestrial carbon; greenhouse gases and water quality

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Moody, C.; Burt, T. P.; Howden, N. J.

    2013-12-01

    This study develops a number of methods for estimating the fate of fluvial carbon through UK watersheds. The study considers dissolved organic carbon (DOC); particulate organic carbon (POC); and dissolved CO2. The study considers the loss from the terrestrial source; in-stream losses and production; and export to the continental shelf. The study used multiple approaches, including: mass balance studies; modelling and experimentation. i) Mass balance studies suggest that the UK losses 5 Mtonnes C/yr (21.8 tonnes C/km2/yr) from soils in the proportion of 7:22:4 (POC:DOC:diss. CO2). The mass balance studies suggest 3.5 Mtonnes C/yr (15.2 tonnes C/km2/yr) is lost to the atmosphere in the proportion 8:75:17 (POC:DOC:diss. CO2). ii) UK rivers have short residence times (typically 1-2 days) and so the diurnal cycle becomes critical. Experiments show that turnover rates are close to zero overnight but that these can be periods of DOC production from turnover of POC. iii) Development and modelling using physical rate showed that the loss of the DOC was between 24 and 37% - lower than that estimated from mass balance studies, but that the loss rate of TOC (DOC + POC) was between 57 and 80% - close to that estimated from mass balance studies. iv) Studies of molecular change suggest that nutrient supply is the limiting factor on turnover and that a position of 'pseudo-equilibirum' is achieved that limits the net effect of the fluvial processes.

  6. Laboratory simulation of meteoritic noble gases. II - Sorption of xenon on carbon: Etching and heating experiments

    NASA Technical Reports Server (NTRS)

    Zadnik, M. G.; Wacker, J. F.; Lewis, R. S.

    1985-01-01

    The release of trapped Xe from amorphous-C phases of meteorites is simulated experimentally by HNO3 etching of carbon-black and pyrolyzed polyvinylidene chloride samples exposed to Xe-127 for 0.5-240 h at 100-1000 C and then degassed for 9 h or more at the same temperatures, as reported by Wacker et al. (1985). The results are presented in tables and graphs and characterized in detail. Samples exposed at 100-200 C are found to lose most of their Xe after etching to a depth of only about 20 pm, while those exposed at 800-1000 C exhibit a second more tightly bound component extending to a depth of 3 nm, indicative of diffusion of Xe during exposure and resembling planetary Xe. The higher noble-gas concentrations measured in meteorites are attributed to rate-controlled Xe uptake over a long period in the solar nebula.

  7. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    NASA Astrophysics Data System (ADS)

    Jahangir, M. M. R.; Fenton, O.; Gill, L.; Müller, C.; Johnston, P.; Richards, K. G.

    2014-07-01

    The nitrogen (N) removal efficiency of constructed wetlands (CWs) is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping). There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+), emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr) species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC) and produce substantial amounts of CO2 and CH4. These dissolved carbon (C) species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  8. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  9. A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing

    SciTech Connect

    Hung, K.M.; Hill, A.D.; Sepehrnoorl, K.

    1989-01-01

    A mathematical model that describes the growth and competition of wormholes during ann acidizing treatment in a carbonate formation was developed. The model is initialized with the distribution of largest pores. Wormhole characteristics (size, length, and distribution) were found too be controlled by acid-injection, diffusion, and fluid-loss rates.

  10. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K{sub 2}CO{sub 3}-on-carbon

    SciTech Connect

    Hayashi, Hiromu; Taniuchi, Jun; Furuyashiki, Nobuyoshi; Sugiyama, Shigeru; Hirano, Shinichi; Shigemoto, Naoya; Nonaka, Takazumi

    1998-01-01

    An efficient chemical absorption method capable of cyclic fixed-bed operations under moist conditions for the recovery of carbon dioxide from flue gases has been proposed employing K{sub 2}CO{sub 3}-on-carbon. Carbon dioxide was chemically absorbed by the reaction K{sub 2}CO{sub 3} + CO{sub 2} + H{sub 2}O {r_equilibrium} 2KHCO{sub 3} to form potassium hydrogen carbonate. Moisture, usually contained as high as 8--17% in flue gases, badly affects the capacity of conventional adsorbents such as zeolites, but the present technology has no concern with moisture; water is rather necessary in principle as shown in the equation above. Deliquescent potassium carbonate should be supported on an appropriate porous material to adapt for fixed-bed operations. After breakthrough of carbon dioxide, the entrapped carbon dioxide was released by the decomposition of hydrogen carbonate to shift the reaction in reverse on flushing with steam, which could be condensed by cooling to afford carbon dioxide in high purity. Among various preparations of alkaline-earth carbonates (X{sub 2}CO{sub 3}, X = Li, Na, K) on porous materials, K{sub 2}CO{sub 3}-on-activated carbon revealed excellent properties for the present purpose. Preparation and characterization of K{sub 2}CO{sub 3}-on-carbon and illustrative fixed-bed operations under flue gas conditions in laboratory columns and a bench-scale plant are described.

  11. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid.

    PubMed

    Gonçalves, Helena; Esteves da Silva, Joaquim C G

    2010-09-01

    The synthesis and functionalization of carbon nanoparticles with PEG(200) and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ(1) = 2.71 ns; τ(2) = 7.36 ns; τ(3) = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK(a) of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M(-1)). PMID:20352303

  12. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  13. The utilization of catalyst sorbent in scrubbing acid gases from incineration flue gas.

    PubMed

    Wey, Ming-Yen; Lu, Chi-Yuan; Tseng, Hui-Hsin; Fu, Cheng-Hao

    2002-04-01

    Catalyst sorbents based on alumina-supported CuO, CeO2, and CuO-CeO2 were applied to a dry scrubber to clean up the SO2/HCl/NO simultaneously from pilot-scale fluidized-bed incineration flue gas. In the presence of organic compounds, CO and the submicron particles SO2 and HCI removed by the fresh catalyst sorbents and NO reduced to N2 by NH3 under the catalysis of fresh and spent desulfurization/dechloridization (DeSO2/DeHCl) catalyst sorbents (copper compounds, Cu, CuO, and CuSO4) were evaluated in this paper. The fresh and spent catalyst sorbents were characterized by the Brunner-Emmett-Teller method (BET), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), inductively coupled plasma-mass spectrometry (ICP-MS), and the elemental analyzer (EA). The study showed that the performances of CuO, CeO2, and CuO-CeO2/gamma-Al2O3 were better than that of Ca(OH)2. The removal efficiency of SO2 and HCl was 80-95% in the dry scrubber system. Under NH3/NO = 1, NO could not be reduced to N2 because it was difficult to control the ratio of air/fuel in the flue gas. For estimating the feasibility of regenerating the spent catalyst sorbents, BET and EA analyses were used. They indicated that the pore structures were nearly maintained and a small amount of carbon accumulated on their surface. PMID:12002190

  14. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration

    SciTech Connect

    Jeffrey D. Evanseck; Jeffry D. Madura

    2003-02-23

    A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard to carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Moeller-Plesset 2nd, 3rd, and 4th order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO{sub 2} model reproduces the QM data significantly better than the Steele force-field model.

  15. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy.

    PubMed

    Spearrin, R M; Goldenstein, C S; Jeffries, J B; Hanson, R K

    2014-03-20

    A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS-2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91  cm⁻¹ targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N₂ collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (~20  kHz), in situ measurements of CO concentration in a harsh flow field. PMID:24663473

  16. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Götsch, Thomas; Klötzer, Bernhard; Penner, Simon

    2016-05-25

    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified. PMID:27165763

  17. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  18. Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces

    NASA Technical Reports Server (NTRS)

    Chameides, William L.

    1987-01-01

    A formalism is developed to describe the dry deposition of soluble reactive gases to wetted surfaces in terms of the relevant meteorological conditions, the surface roughness, the total amount of liquid water present on the surface, the rate of accumulation of this water, and the species' solubility and reactivity in the surface water. This formulation is then incorporated into a model designed to simulate the generation of acidic dew from the deposition of HNO3, SO2, S(IV) oxidants, H2O2, and O3. Similar to the observations of dew in the continental U.S., the model generates a dewdrop pH of about 4 by the end of the night; the pH can rapidly fall to toxic levels due to rapid evaporation after sunrise. Relatively low deposition velocities are predicted for the SO2 and O3 because of their lower solubilities and hence larger surface resistances than those of the other oxidants. Because the chemical lifetime of the SO2 in the dew is influenced by the atmospheric levels of H2O2, O3, and SO2, the SO2 deposition velocity is a strong function of these species' atmospheric abundances.

  19. Suicidal chemistry: combined intoxication with carbon monoxide and formic acid.

    PubMed

    Bakovic, Marija; Nestic, Marina; Mayer, Davor

    2016-05-01

    Herein, we present a rare case of suicidal intoxication with carbon monoxide produced via reaction of formic and sulphuric acid with additional toxic effect of formic acid. The deceased was a 22-year-old men found dead in the bathroom locked from the inside. A bucket filled with liquid was found next to him, together with an almost empty canister labeled "formic acid" and another empty unlabeled canister. The postmortem examination revealed corrosive burns of the face, neck and chest, cherry-pink livor mortis, corrosive injury to the oropharyngeal area and trachea, subpleural petechiae, 100 mL of blood in stomach and superficial erosions of stomach mucosa. Toxicology analysis revealed 30% of carboxyhemoglobin in the femoral blood and the presence of the formic acid in various samples. Quantitative analysis of formic acid was performed by measuring methyl ester derivative of formic acid by using headspace gas chromatography with flame ionization detection. The highest concentration of formic acid was measured in the lungs (0.55 g/kg), gastric content (0.39 g/L), and blood (0.28 g/L). In addition, it was established that content of the unlabeled canister had a pH value of 0.79 and contained sulphuric ions. Morphological and toxicology findings suggested that the main route of exposure to formic acid was inhalation of vapors with a possible ingestion of only small amount of liquid acid. The cause of death was determined to be combined intoxication with carbon monoxide and formic acid. PMID:26041513

  20. Helium and carbon isotope systematics of Rungwe geothermal gases and fluids; southern Tanzania

    NASA Astrophysics Data System (ADS)

    Barry, P. H.

    2009-12-01

    P. H. BARRY1*, D. R. HILTON1, T. P. FISCHER2, J. M. DE MOOR2, F. MANGASINI3 C. RAMIREZ4 1 Geosciences Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0244, USA (*Correspondence: pbarry@ucsd.edu) 2 Department of Earth and Planetary Sciences, MSC 03 2040, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA. 3 Department of Mining and Mineral Processing Engineering, University of Dar Es Salaam, PO Box 35131, Dar Es Salaam, Tanzania. 4 Centro de Investigaciones en Ciencias Geologicas, Escuela Centroamericana de Geologia, Universidad de Costa Rica. The East African Rift (EAR) is the largest modern example of continental rifting, extending from the Afar depression in the north to the Rungwe region in southern Tanzania. EAR volcanism is attributed to the presence of one or more mantle plumes [1]. Late Miocene to recent volcanism and geothermal activity mark the Rungwe region [2], with mafic eruptions as recently as 200 years ago. Our aim is to delineate the southern geographical extent of plume influence on the propagating EAR by investigating the He-CO2 characteristics of geothermal fluids in the Rungwe region. We report new helium (He) and carbon (C) isotopes (3He/4He, δ13C) and relative abundance (CO2/3He) characteristics for a suite of 20 geothermal gas and fluid samples from 11 different localities in the Rungwe region. He-isotopes are in good agreement with previous reports [3], and range from ~1 RA to ~7 RA (MORB-like values), indicating admixture between upper mantle He and variable proportions of radiogenic He. C-isotopes ranges from -2.8 to -6.5 ‰ (vs. PDB) with all falling in the MORB range (~4.5 ± 2‰). CO2/3He ratios vary over 5 orders of magnitude from ~3 x 10^9 (MORB-like) to higher values (up to ~3 x 10^13) normally associated with crustal lithologies. Taken together, the He-CO2 data can be explained by 2-component mixing of a deep-seated mantle source with crustal component(s). There are no

  1. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  2. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams per dry... the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average)....

  3. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility shall cause to be discharged into the atmosphere from that affected facility any gases that... operator of an affected facility shall cause to be discharged into the atmosphere from that affected... atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified...

  4. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams per dry... the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average)....

  5. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility shall cause to be discharged into the atmosphere from that affected facility any gases that... operator of an affected facility shall cause to be discharged into the atmosphere from that affected... atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified...

  6. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  7. CARBON CONTRIBUTION AND CHARACTERISTICS OF HUMIC ACID, FULVIC ACID, PARTICULATE ORGANIC MATTER AND GLOMALIN IN DIVERSE ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change and soil carbon sequestration issues are entering the forefront of public policy, and emphasis is growing for research on carbon sinks and long-term terrestrial carbon stabilization. Humic acid (HA), fulvic acid (FA), humin and particulate organic matter (POM) have traditionall...

  8. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  9. Carbon nanotubes and nucleic acids: tools and targets

    NASA Astrophysics Data System (ADS)

    Onoa, Bibiana; Zheng, Ming; Dresselhaus, Mildred S.; Diner, Bruce A.

    2006-05-01

    Nucleic acids, with their intrinsic structural properties as well as their high specificity, are playing an important role in the rapid development of nano-technologies. In turn, these new technologies and their efficient performance enable fast and precise methods for detection of nucleic acids, improving the diagnosis of diseases and identification of pathogens. We discuss the use of nucleic acids to disperse and sort single walled carbon nanotubes (SWNTs), and carbon nanotube-based field effect transistors (CNT-FETs) to electrically detect specific nucleic acid sequences. Both DNA and RNA are efficient agents for dispersion and separation of SWNTs by diameter and chirality. Fractions enriched in a narrow band gap distribution of DNA:SWNT hybrids do not alter the electronic performance of field effect transistors. A CNT-FET fulfills the requirements for a nanosensing device that can greatly exceed the existing technologies. Electrical detection of specific nucleic acid sequence could potentially overcome the current limitations of optical detection, by increasing sensitivity and speed, while reducing sample manipulation, size, and cost.

  10. Amino acids of the Murchison meteorite. III - Seven carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1986-01-01

    All of the eighteen possible seven-carbon acyclic primary alpha-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from less than or equal to 0.5 to 5.3 nmol/g. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.

  11. Karstification without carbonic acid: bedrock dissolution by gypsum- driven dedolomitization

    USGS Publications Warehouse

    Bischoff, J.L.; Julia, R.; Shanks, Wayne C.; Rosenbauer, R.J.

    1994-01-01

    The primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. -from Authors

  12. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    PubMed

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  13. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  14. Fullerenes: A New Carrier Phase for Noble Gases in Meteorites

    NASA Technical Reports Server (NTRS)

    Becker, Luann

    2004-01-01

    The major focus of our research effort has been to measure the noble gases encapsulated within fullerenes, a new carbon carrier phase and compare it to the myriad of components found in the bulk meteorite acid residues. We have concentrated on the carbonaceous chondrites (Allende, Murchison and Tagish Lake) since they have abundant noble gases, typically with a planetary signature that dominates the stepped-release of the meteorite bulk acid residue. They also contain an extractable fullerene component that can be isolated and purified from the same bulk material.

  15. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon

    PubMed Central

    2010-01-01

    Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source. PMID:20184738

  16. REACTIONS OF CHLORITE WITH ACTIVATED CARBON AND WITH VANILLIC ACID AND INDAN ADSORBED ON ACTIVATED CARBON

    EPA Science Inventory

    The reaction between chlorite (CO2(-1)) and vanillic acid, at pH 6.0 in the presence of granular activated carbon (GAC), yielded several reaction products identifiable by GC/MS; no products were found in the absence of GAC. Indan and ClO2 or ClO2(-1) reacted in aqueous solution a...

  17. Acetylene-mediated alkylation of monoalkyl carbonates and carbamic acids with tert-amines

    SciTech Connect

    Sasaki, Yoshiyuki

    1996-12-31

    Carbonic acid diesters and carbamic acid esters are useful organic substances as intermediates for the syntheses of several chemicals. They are currently synthesized in industry using the processes based on phosgene or carbon monoxide. On the other hand, since carbon dioxide is an abundant and cheap carbonyl carbon source, and is much less toxic than those raw materials, substantial efforts have been focused on its fixation into carbonyl compounds including carbonic acid diesters and carbamic acid esters. However, their syntheses based on carbon dioxide reported so far require rather expensive substrates like alkyl halides, and are not competitive with the currently adopted industrial processes.

  18. Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid within a confined space.

    PubMed

    Lin, Peter T; Dunn, William A

    2014-01-01

    Suicide by inhalation of carbon monoxide produced by mixing formic acid and sulfuric acid within a confined space is a rare method of suicide. This method is similar to the so-called "detergent suicide" method where an acid-based detergent is mixed with a sulfur source to produce hydrogen sulfide. Both methods produce a toxic gas that poses significant hazards for death investigators, first responders and bystanders. Carbon monoxide is an odorless gas, while hydrogen sulfide has a characteristic rotten eggs odor, so the risks associated with carbon monoxide are potentially greater due to lack of an important warning signal. While detergent suicides have become increasingly common in the USA, suicide with formic acid and sulfuric acid is rare with only three prior cases being reported. Greater awareness of this method among death investigators is warranted because of the special risks of accidental intoxication by toxic gas and the possibility that this method of suicide will become more common in the future. PMID:24328850

  19. Black Carbon in Sedimentary Organic Carbon in the Northeast Pacific using the Benzene Polycarboxylic Acid Method

    NASA Astrophysics Data System (ADS)

    Coppola, A. I.; Ziolkowski, L. A.; Druffel, E. R.

    2010-12-01

    Black carbon (BC) in the Northeast Pacific ultrafiltered dissolved organic matter (UDOM) was found to be surprisingly old with a 14C age of 18,000 +/-3,000 14C years (Ziolkowski and Druffel, 2010) using the Benzene Polycarboxylic Acid (BPCA) method, while BC in sedimentary organic carbon (SOC) was found to be 2,400-12,900 14C years older than non-BC SOC (Masiello and Druffel, 1998) with a different method. Using the dichromate-sulfuric acid oxidation method (Wolbach and Anders, 1989), Masiello and Druffel (1998) estimated that 12-31% of SOC in the Northeast Pacific and the Southern Ocean surface sediments was black carbon (BC). However, the dichromate-sulfuric acid oxidation may over-estimate the concentration of BC, because this method is more biased toward modern (char) material (Currie et al., 2002). Alternatively, the BPCA method isolates aromatic components of BC as benzene rings substituted with carboxylic acid groups, and provides structural information about the BC. Recent modifications to the BPCA method by Ziolkowski and Druffel (2009) involve few biases in quantifying BC in the continuum between char and soot in UDOM. Here we use the BPCA method to determine the concentrations and 14C values of BC in sediments from three sites in the Northeast Pacific Ocean. Constraining the difference between non-BC SOC and BC-SOC using the BPCA method allows for a more precise estimate of how much BC is present in the sediments and its 14C age. Presumably, the intermediate reservoir of BC is oceanic dissolved organic carbon (DOC) and is, in part, responsible for DOC’s great 14C age. These results can be utilized to better constrain the oceanic carbon budget as a possible sink of BC. References: Currie, L. A., Benner Jr., B. A., Kessler, J.D., et al (2002), A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, nist srm 1649a, J. Res. Natl. Inst. Stand. Technol., 107, 279-298. Masiello, C

  20. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  1. A bio-inspired two-layer sensing structure of polypeptide and multiple-walled carbon nanotube to sense small molecular gases.

    PubMed

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  2. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  3. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  4. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  5. Carbon dioxide generated from carbonates and acids for sampling blood-feeding arthropods.

    PubMed

    Burkett-Cadena, Nathan D; Blosser, Erik M; Young, Ryan M; Toé, Laurent D; Unnasch, Thomas R

    2015-09-01

    Carbon dioxide (CO2) is utilized to attract mosquitoes and other blood-feeding arthropods to traps around the world. Commercial forms of CO2 (e.g., dry ice and compressed gas) are often unavailable or extremely expensive in developing nations, where vector surveillance is essential to make life-saving decisions. We developed and tested inexpensive and reproducible methods of CO2 production from the combination of acids and carbonates, ranging from very basic (crushed seashells and vinegar) to relatively elaborate (a device that controls the timing of the acid-carbonate reaction and extends the reaction over several hours). When utilized with mosquito traps in Florida, USA and black fly traps in Region des Cascades, Burkina Faso, these carbonate-acid CO2 sources attracted significantly greater numbers of both vector groups, than did unbaited traps. CO2 was generated for more than four hours at levels sufficient to attract vectors over the entire period. The utility of this simple methodology in developing nations should be further evaluated. PMID:26103427

  6. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m‑2 yr‑1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42‑ accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  7. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharged into the atmosphere from the affected facility any gases that contain mercury in excess of the... potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen... percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to...

  8. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  9. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  10. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh; Novinrooz, Abdul; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs' diameter.