Science.gov

Sample records for acid gases so2

  1. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from zero to 20 vol%. The experimental program with NaHCO{sub 3} is listed in Table 1. In addition, model calculations were carried out based on own and published experimental results that estimate residence time and temperature effects on removal efficiencies.

  2. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    MICHAEL GRUTZECK

    1998-10-31

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

  3. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    Michael Grutzeck

    1999-04-30

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

  4. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (inventors)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  5. Monitoring the SO2 concentration at the summit of Mt. Fuji and a comparison with other trace gases during winter

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhito; Sawa, Yosuke; Yoshioka, Katsuhiro; Matsueda, Hidekazu; Fujii, Kenji; Dokiya, Yukiko

    2004-09-01

    An SO2 continuous monitor consisting of a commercially available pulsed UV fluorescence instrument with zero and span gas calibration was installed at the summit of Mt. Fuji (3776 m asl) in September 2002. The system produces data with a time resolution comparable with other trace gases. The instrumental feasibility was tested onsite, and the SO2 concentration level at the summit was thereafter routinely observed. The present detection capability of the system, expressed in terms of the critical level (Lc, definition by International Union of Pure and Applied Chemistry and International Organization for Standardization), was estimated to be about 0.05 ppbv. Thus it was difficult to observe the temporal change of very low background SO2. However, the system is satisfactory for observing episodic transport of SO2, particularly during winter. No high SO2 episodes were observed during summer, in contrast to winter. One extraordinary episode was observed in late October 2003, the only one attributable to the Miyake-jima SO2 volcanic plume. High SO2 episodes were more evident (with longer duration and higher concentration level) in February 2003 among the winter months observed. Typical February conditions were determined using backward trajectory, a surface weather map, and other indicators. A comparison of the temporal changes in SO2, CO, and 222Rn concentrations in the winter months suggests that these gases in the free troposphere over Japan may have been transported together in most cases from the same source regions somewhere in the Asian continent. The correlation between SO2 and 222Rn in such episodes may also suggest a short timescale for transport from the source to Mt. Fuji of within a few days. The chemical time series data of SO2 at Mt. Fuji is important for understanding the free tropospheric chemical nature, such as the Asian outflow over the North Pacific.

  6. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  7. ESTIMATING PERFORMANCE AND COSTS OF RETROFIT SO2 AND NOX CONTROLS FOR ACID RAIN ABATEMENT

    EPA Science Inventory

    The paper gives results from an ongoing National Acid Precipitation Assessment Program (NAPAP) to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls to existing coal-fired utility boilers. Initia...

  8. Effect of SO2 on oxidation of metallic materials in CO2/H2O?rich gases relevant to oxyfuel environments

    SciTech Connect

    Huczkowski, P; Olszewski, T; Schiek, M; Lutz, B; Holcomb, G R; Shemet, V; Nowak, W; Meier, G H; Singheiser, L; Quadakkers, W J

    2014-01-01

    In an oxyfuel plant, heat exchanging metallic components will be exposed to a ?ue gas that contains substantially higher contents of CO2, water vapor, and SO2 than conventional?ue gases. In the present study, the oxidation behavior of the martensitic steel P92 was studied in CO2?and/or H2O?rich gas mixtures with and without addition of SO2. For this purpose, the corrosion of P92 at 550 8C up to 1000 h in Ar–H2O–SO2, Ar–CO2–SO2, Ar–CO2–O2–SO2 and simulated oxyfuel gas (Ar–CO2–H2O–O2–SO2) was compared with the behavior in selected SO2?free gases. The oxidation kinetics were estimated by a number of methods such as optical microscopy, scanning electron microscopy with energy and wave length dispersive X?ray analysis, glow discharge optical emission spectroscopy, X?ray diffraction as well as transmission electron microscopy. The experimental results revealed that the effect of SO2 addition on the materials behavior substantially differed, depending on the prevailing base gas atmosphere. The various types of corrosion attack affected by SO2 could not be explained by solely comparing equilibrium activities of the gas atmospheres with thermodynamic stabilities of possible corrosion products. The results were found to be strongly affected by relative rates of reactions of the various gas species occurring within the frequently porous corrosion scales as well as at the scale/gas?and scale/alloy interfaces.Whereas SO2 addition to Ar–CO2 resulted in formation of an external mixed oxide/sul?de layer, the presence of SO2 in oxyfuel gas and in Ar–H2O–SO2 resulted in Fe?sul?de formation near the interface between inner and outer oxide layer as well as Cr?sul?de formation in the alloy. In the latter gases, the presence of SO2 seemed to have no dramatic effect on oxide scale growth rates.

  9. Reactive and nonreactive quenching of O(1D) by the potent greenhouse gases SO2F2, NF3, and SF5CF3

    PubMed Central

    Zhao, Zhijun; Laine, Patrick L.; Nicovich, J. Michael; Wine, Paul H.

    2010-01-01

    A laser flash photolysis–resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O(1D) deactivation by three potent greenhouse gases, SO2F2(k1), NF3(k2), and SF5CF3(k3). In excellent agreement with one published study, we find that k1(T) = 9.0 × 10-11 exp(+98/T) cm3 molecule-1 s-1 and that the reactive quenching rate coefficient is k1b = (5.8 ± 2.3) × 10-11 cm3 molecule-1 s-1 independent of temperature. We find that k2(T) = 2.0 × 10-11 exp(+52/T) cm3 molecule-1 s-1 with reaction proceeding almost entirely (?99%) by reactive quenching. Reactive quenching of O(1D) by NF3 is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF3. Deactivation of O(1D) by SF5CF3 is slow enough (k3 < 2.0 × 10-13 cm3 molecule-1 s-1 at 298 K) that reaction with O(1D) is unimportant as an atmospheric removal mechanism for SF5CF3. The kinetics of O(1D) reactions with SO2 (k4) and CS2 (k5) have also been investigated at 298 K. We find that k4 = (2.2 ± 0.3) × 10-10 and k5 = (4.6 ± 0.6) × 10-10 cm3 molecule-1 s-1; branching ratios for reactive quenching are 0.76 ± 0.12 and 0.94 ± 0.06 for the SO2 and CS2 reactions, respectively. All uncertainties reported above are estimates of accuracy (2?) and rate coefficients ki(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of ± 15% (2?). PMID:20133693

  10. MULTIPOLLUTANT MERCURY AND ACID GASES CONTROL TECHNOLOGY

    EPA Science Inventory

    Plans are to continue testing for acid gas, mercury and NOx removal on baseline CFB operation with lime slurry, then use modified lime hydrates and slurries, and modified calcium silicates as additives for enhanced mercury and SO2 removal. Also, data from a coal-fired utility b...

  11. Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I., Jr.; Gerlach, T.M.; Briggs, P.H.; Harmon, R.S.

    1990-01-01

    After the March-April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380??45 metric tons/day (T/D) on 7/24/86 to 27??6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870??C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870??C with an oxygen fugacity near the Ni-NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3-6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9-84.8 mol% H2O). Values of ??D and ??18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390??-642??C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%-97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107-102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200??-650??C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock. ?? 1990 Springer-Verlag.

  12. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  13. Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Shen, Zhenxing; Cao, Junji; Zhang, Renjian; Zhang, Leiming; Huang, R.-J.; Zheng, Chenjia; Wang, Linqing; Liu, Suixin; Xu, Hongmei; Zheng, Chunli; Liu, Pingping

    2015-07-01

    To investigate chemical profiles and formation mechanisms of aerosol particles in winter haze events, daily PM2.5 and TSP, 5-min BC, and 15-min trace gases (SO2, NO2, and O3) were measured continuously during Dec. 1-31, 2012 in Xi'an. Chemical analysis was also conducted for nine water-soluble inorganic ions (Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, and SO42-), organic carbon (OC), elemental carbon (EC), and eight carbon fractions (OC1, OC2, OC3, OC4, EC1, EC2, EC3, and OP) in both PM2.5 and TSP samples. Higher levels of TSP, PM2.5, BC, SO2, and NO2, and lower levels of O3 were observed during haze periods in comparison with non-haze days. The sum of the major secondary ionic species (NH4+, NO3-, and SO42-) in PM2.5 or TSP during haze periods was about 3 times of that during non-haze days. Ion balance calculations showed that PM2.5 samples were acidic during haze periods and were close to neutral during non-haze days. The mean carbon levels were 52.9 ?g m-3 and 82.1 ?g m-3 in PM2.5 and TSP, respectively, during haze events, which were ?1.5 times of those during non-haze days. The diurnal variations of BC during non-haze days showed a bimodal distribution with two peaks coincided with traffic rush hours. This was not the case during haze periods, which exhibited a relatively smooth pattern but with high concentration levels, providing evidence of particle accumulation. The ratios of SO42 - /EC, NO3-/EC, and NH4+/EC sharply increased during haze periods, indicating the important pathway of secondary inorganic species formation through aqueous-phase transformation under high relative humidity condition. This study also highlights that wintertime secondary organic carbon (SOC) formation can be an important contributor to carbonaceous aerosol, especially during haze periods.

  14. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger (El Cerrito, CA)

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  15. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ? 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other megacities around the world. PMID:26270804

  16. Emissions of Volatile Inorganic Halogens, Carboxylic Acids, NH3, and SO2 From Experimental Burns of Southern African Biofuels

    NASA Astrophysics Data System (ADS)

    Keene, W. C.; Lobert, J. M.; Lobert, J. M.; Maben, J. R.; Scharffe, D. H.; Crutzen, P. J.; Crutzen, P. J.

    2001-12-01

    As part of SAFARI 2000, biofuels (savanna grasses, shrubs, woody plants, litter, agricultural waste, and charcoal) were sampled during late summer and early autumn in the savannah of Kruger National Park, the Kalahari of Etosha National Park, and the Miombo woodlands in Zambia and Malawi. Sixty subsamples were experimentally burned under semi-controlled conditions at the Max Planck Institute for Chemistry in Mainz, Germany. Emissions were sampled with tandem mist chambers to quantify HCl, CH3COOH, HCOOH, NH3, and SO2 and with a high-volume filter pack to quantify volatile inorganic Cl, Br, and I. The elemental compositions of the fuel and ash from each burn were also analyzed. Molar emission ratios of these species relative to CO, CO2, and the elemental composition of the fuel will be calculated and used to estimate regional emissions from biomass burning over southern Africa. The relative contributions of each species to elemental mass balances during burns will also be assessed. >http://jurgenlobert.org/projects/mpi_safari/ and

  17. SENSITIVITY OF IMPORTANT WESTERN CONIFER SPECIES TO SO2 AND SEASONAL INTERACTION OF ACID FOG AND OZONE

    EPA Science Inventory

    The increased concern for forest health and the role of anthropogenic deposition, including acidic/wet deposition and gaseous air pollutants, has led to the need to understand which forest species face the highest risk from atmospheric deposition. n order to address this issue fo...

  18. Influence of cathode on the electro-generation of peroxydisulfuric acid oxidant and its application for effective removal of SO2 by room temperature electro-scrubbing process.

    PubMed

    Balaji, Subramanian; Muthuraman, Govindan; Moon, Il Shik

    2015-12-15

    Peroxydisulfuric acid oxidant (H2S2O8) was electro-generated using boron doped diamond (BDD) anode in an undivided electrolytic cell under the optimized conditions and used for the oxidative removal of gaseous SO2. The influence of the nature of cathode material on the formation yield of H2S2O8 was investigated with Ti, Pt, Zr and DSA electrodes in a flow type electrolytic cell under batch recirculation mode. Among the various cathodes employed Ti exhibited a good performance and the formation yield was nearly doubled (0.19M) compared to the reported value of 0.07M. The optimization of electrode area ratio between the anode and cathode brought out the fact that for nearly 8 times smaller Ti cathode (8.75:1) the achieved yield was ?65% higher than the 1:1 ratio of anode and cathode. The highest concentration of 6.8% (0.48M) H2S2O8 was seen for 35cm(2) BDD anode with 4cm(2) Ti at 20°C with the measured redox potential value of +1200mV. The oxidative removal of SO2 in an electro-scrubbing column attached to the online production of peroxydisulfuric acid under the optimized conditions of cell parameters shows that SO2 removal efficiency was nearly 100% for 25 and 50ppm inlet concentrations and 96% for 100ppm at the room temperature of 25°C. PMID:26208110

  19. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Crisp, David; Schmidt, Sarah J.; Bailey, Jeremy; Robinson, Tyler

    2014-08-01

    We observed Venus with the Apache Point Observatory 3.5 m telescope TripleSpec spectrograph (R = 3500, ? = 0.96-2.47 µm) on 1-3 March 2009 and on 25, 27, and 30 November and 2-4 December 2010. With these observations and synthetic spectra generated with the Spectral Mapping and Atmospheric Radiative Transfer model, we produce the first simultaneous maps of cloud opacity, acid concentration, water vapor (H2O), hydrogen chloride (HCl), carbon dioxide (CO), carbonyl sulfide (OCS), and sulfur dioxide (SO2) abundances in the Venusian lower atmosphere. Water measured at wavelengths near 1.18 µm (near-surface) averages 29 ± 2ppm (2009) and 27 ± 2 ppm (2010) and measured near 1.74 µm (15-30 km) averages 33 ± 2 ppm (2009) and 32 ± 2 ppm (2010). Water in both these altitude ranges is spatially homogeneous. Water measured near 2.4 µm (30-45 km) averages 34 ± 2 ppm (2009) and 33 ± 3 ppm (2010) and is spatially inhomogeneous and variable. HCl is measured near 1.74 µm to be 0.41 ± 0.04 ppm (2009) and 0.42 ± 0.05 ppm (2010). CO and OCS (2.3-2.5 µm; 30-45 km in altitude) are spatially inhomogeneous and show anticorrelation. CO (35 km) averages 25 ± 3 ppm (2009) and 22 ± 2 ppm (2010). OCS (36 km) averages 0.44 ± 0.10 ppm (2009) and 0.57 ± 0.12 ppm (2010). SO2 measurements average 140 ± 37 ppm (2009) and 126 ± 32 ppm (2010). Many species display a hemispherical dichotomy in their distribution. We find considerable spatial variability suggesting active processes with conservation between species. The most variable regions are just below the Venus cloud deck, and these may be related to changes in atmospheric circulation or virga events.

  20. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-08-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenates, halocarbons, and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Methane, CO, CO2, NO, NO2, NOy, SO2 and 53 VOCs (e.g., halocarbons, sulphur species, NMHCs) showed clear statistical enhancements (up to 1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were higher over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (< 10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their mutual correlations, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C4-C9 alkanes, C5-C6 cycloalkanes, C6-C8 aromatics), together with CO; and (2) emissions associated with the mining effort (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C2-C4 alkanes, C2-C4 alkenes, C9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO2 and NO were remarkably enhanced over the oil sands, with maximum enhancements of 38.7 and 5.0 ppbv, or 383 and 319× the local background, respectively. The SO2 enhancements are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4 ethane and propane suggest low natural gas leakage despite its heavy use at the surface mining sites. In addition to the emission of many trace gases, the natural drawdown of OCS by vegetation was absent above the surface mining operations, presumably because of the widespread land disturbance. Unexpectedly, the mixing ratios of ?- and ?-pinene were much higher over the oil sands (up to 217 and 610 pptv, respectively) than over vegetation in the background boundary layer (20±7 and 84±24 pptv, respectively), and the pinenes correlated well with several industrial tracers that were elevated in the oil sands plumes. Because so few independent measurements from the oil sands mining industry exist, this study provides an important initial characterization of trace gas emissions from oil sands surface mining operations.

  1. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. PMID:25465511

  2. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (<10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their correlations with one another, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C4-C9 alkanes, C5-C6 cycloalkanes, C6-C8 aromatics), together with CO; and (2) emissions associated with the mining effort, such as upgraders (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C2-C4 alkanes, C2-C4 alkenes, C9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO2 and NO were remarkably enhanced over the oil sands, with maximum mixing ratios of 38.7 ppbv and 5.0 ppbv, or 383× and 319× the local background, respectively. These SO2 levels are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4, ethane and propane suggest low levels of natural gas leakage despite its heavy use at the surface mining sites. Instead the elevated CH4 levels are attributed to methanogenic tailings pond emissions. In addition to the emission of many trace gases, the natural drawdown of OCS by vegetation was absent above the surface mining operations, presumably because of the widespread land disturbance. Unexpectedly, the mixing ratios of ?-pinene and ?-pinene were much greater over the oil sands (up to 217 pptv and 610 pptv, respectively) than over vegetation in the background boundary layer (20±7 pptv and 84±24 pptv, respectively), and the pinenes correlated well with several industrial tracers that were elevated in the oil sands plumes. Because so few independent measurements from the oil sands mining industry exist, this study provides an important initial characterization of trace gas emissions from oil sands surface mining operations.

  3. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  4. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  5. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  6. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...metals, acid gases, organics, and nitrogen oxides. (a) The emission limits...affected facility any gases that contain nitrogen oxides in excess of the emission...

  8. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...stationary combustion turbine any gases which contain SO2 ...input. (b) If your turbine is located in a noncontinental...have access to natural gas and that the removal...stationary combustion turbine any gases which contain SO2...

  9. Reactive Uptake of Acidic Gases On Mineral Aerosols

    NASA Astrophysics Data System (ADS)

    Adams, J.; Cox, R.; Griffiths, P.; Stewart, D.

    A significant proportion of tropospheric aerosols are mineral in nature. These aerosols are emitted into the atmosphere by the action of surface winds on dry soils in arid regions, by human disturbance of the earth's surface and by industrial processes, e.g. fly ash. In providing a surface for heterogeneous reactions, mineral aerosols play a role in tropospheric oxidative cycles and also affect the atmospheric radiation balance, both directly through scattering and absorption of radiation and indirectly by providing condensation and ice nuclei. Calcite (CaCO3) is an important component of mineral aerosols, for instance, forming up to 30% of Saharan dust. We have investigated three aspects of the interaction of tropospheric trace gases with Calcite surfaces, using a suite of experimental techniques. These aspects are: 1) The amount of water present on the aerosols surface may affect its reactivity. We have determined the surface loading of water on a Calcite surface as a function of relative humidity, using a surface acoustic wave sensor. 2) The scavenging of SO2 by mineral aerosols could lead to a significant repartitioning of tropospheric sulphate. We have investigated the uptake and reaction of SO2 onto CaCO3 surfaces at various relative humidities, using a coated-wall flow -tube interfaced to a electron impact mass spectrometer. 3) The heterogeneous conversion of N2O5 to HNO3 forms a step in the process, which ultimately facilitates the conversion of NOx to NO3. We- have investigated the uptake and reaction of N2O5 onto Calcite aerosols, in an atmospheric-pressure flow-tube interfaced to a NOx detector. The results of these measurements will be presented.

  10. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  11. Annular denuders for use in global climate and stratospheric measurements of acidic gases and particles

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.

    1991-02-01

    Measurements of acidic and basic gases that coexist with fine particle (less than 2.5 micron) may be useful for determining the impact of these species on global climate changes and determining species that influence stratospheric ozone levels. Annular denuders are well suited for this purpose. A new concentric annular denuder system, consisting of a three channel denuder, a Teflon coated cyclone preseparator, and a multistage filter pack was developed, evaluated, and shown to provide reliable atmospheric measurements of SO2, HNO2, HNO3, NH3, SO4(=), NH4(+), NO3(-), and H(+). For example, the precision of the annular denuder for the ambient measurements of HNO3 and nitrates at concentrations between 0.1 to 3 microgram/cu m was + or - 12 and 16 pct., respectively. The 120 x 25 mm three channel denuder is encased in a stainless steel sheath and has annular spaces that are 1 mm wide. This design was shown to have nearly identical capacity for removal of SO2 as conventional 210 x 25 mm single channel denuder configurations. The cyclone preseparator was designed and tested to have a D sub 50 cutoff diameter of 2.5 micron and minimal retention of HNO3.

  12. CO2-SO2 clathrate hydrate formation on early Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Dartois, E.; Herri, J.; Tian, F.; Schmidt, F.; Mousis, O.; Lakhlifi, A.

    2013-12-01

    It is generally agreed that a dense CO2-dominant atmosphere was necessary in order to keep early Mars warm and wet. However, current models have not been able to produce surface temperature higher than the freezing point of water. Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian, despite likely much stronger volcanic activities and more substantial release of sulfur-bearing gases into Martian atmosphere during the Noachian. Here we show, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ~2 bar and maintained a global average surface temperature ~230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2-rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. A lower value of the pressure threshold, down to ~0.5 bar, could have been sufficient to maintain middle and high latitude regions below the clathrate formation temperature during the Noachian and to make the trapping of SO2 in clathrates efficient. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.

  13. Volcanological applications of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Burton, M. R.; Prata, F.; Platt, U.

    2015-07-01

    Ground-based volcanic gas and ash imaging has the potential to revolutionise the way in which volcanoes are monitored and studied. The ability to track and quantify volcanic emissions in space and time with unprecedented fidelity opens the door to integration with geophysical measurements, allowing breakthroughs in our understanding of the physical processes driving volcanic activity. In May 2013 a European Science Foundation funded Plume Imaging workshop was conducted in Stromboli, Italy, with the objective of bringing the ground-based volcanic plume imaging community together in order to examine the state of the art, and move towards a 'best-practice' for volcanic ash and gas imaging techniques. A particular focus was the development of SO2 imaging systems, or SO2 cameras, with six teams deploying and testing various designs of ultraviolet and infrared-based imaging systems capable of imagining SO2. One conclusion of the workshop was that the term 'SO2 camera' should be applied to any SO2 imaging system, regardless of wavelength of radiation used. This Special Issue on Volcanic Plume Imaging is the direct result of the Stromboli workshop, and together the papers presented here represent the state of the art of ground-based volcano plume imaging science and technology. In this work, we examine in detail the volcanological applications of the SO2 camera, reviewing previous works and placing the new research contained in this Special Issue in context. The development of the SO2 camera, and future developments extending imaging to other volcanic gases, is one of the most exciting and novel research frontiers in volcanology today.

  14. Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.

    2014-12-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.

  15. SO2 SCRUBBING TECHNOLOGIES: A REVIEW

    EPA Science Inventory

    Electricity generating units may use sulfur dioxide (SO2) scrubbers to meet the requirements of Phase II of the Acid Rain S02 Reduction Program. Additionally, the use of scrubbers can result in reduction of mercury emissions. It is timely, therefore, to review the commercially av...

  16. DETERMINATION OF 2-METHYL TETROLS AND 2-METHYLGLYCERIC ACID IN SECONDARY ORGANIC AEROSOL FROM LABORATORY IRRADIATED ISOPRENE/NO X/SO 2/AIR MIXTURES

    EPA Science Inventory

    This presentation addresses recent work performed at EPA to evaluate the potential for the photooxidation of isoprene to produce secondary organic aerosol. Analysis of the samples for methyl tetrols and 2-methylglyceric acid were performed at EPA and the University of Antwerp. T...

  17. Validation of the SO2 camera for high temporal and spatial resolution monitoring of SO2 emissions

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-François; Burton, Michael R.; Clarke, Amanda B.

    2015-07-01

    Ground-based measurements of sulfur dioxide (SO2) are a key part of monitoring networks at many volcanic centers. SO2 camera systems represent an attractive addition to conventional spectroscopic methods such as COSPEC or DOAS, because they offer higher sampling rates (up to 1 Hz) and two-dimensional concentration mapping which provides additional contextual information for emission rate calculation and interpretation. Here we present the results of an SO2 camera development project and corresponding validation experiment conducted at a coal-burning power plant in Arizona (USA), where the emissions are independently measured. Emissions of SO2 and other acid gases are regulated in the United States, and hourly data are publicly reported by the US Environmental Protection Agency (EPA). We measured the emissions from two exhaust stacks that had an average combined rate of 8.2 ± 2.1 × 10- 2 kg s- 1 (7 ± 1.8 t d- 1) over a period of 3 h. Masses integrated from our dataset are within 10-20% of the emissions reported by the EPA. The contextual information contained in the images allowed the identification and measurement of the individual plumes from each stack. Measured emission rates decrease with increasing distance from the source, pointing to an apparent loss of SO2 primarily by gas dilution processes, with SO2 concentrations dropping below the detection limit at the edge of the plume at distances > 200 m from the source. Cross-sections very close to the vent (within 50 m; ~ 2 vent diameters), through the optically thick condensing part of the plume, yielded emission rates lower than those reported to the EPA. This near-vent discrepancy is interpreted to be the result of light dilution effects due to attenuation and reflections off the surface of the condensing plume. This work is the first reported validation of emission rate measurements produced by an SO2 camera in a volcano-like geometry, and demonstrates that reliable emission rates can be measured, but also emphasizes the importance of the selection of the cross-section locations.

  18. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission...

  19. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen...Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen...emission limits for municipal waste combustor metals are specified in paragraphs...

  20. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen...guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen...emission limits for municipal waste combustor metals are specified in paragraphs...

  1. A thermodynamic analysis of the SO2/H2SO4 system in SO2-depolarized electrolysis

    E-print Network

    Weidner, John W.

    ­OLI Mixed solvent electrolyte model Reversible potential SO2 solubility Sulfuric acid a b s t r a c, the resulting operating potential will depend on the concentrations of dissolved SO2 and sulfuric acid in conjunction with the Nernst equation to determine the reversible cell potential as a function of sulfuric acid

  2. Measurement and Analysis of the Relationship between Ammonia, Acid Gases, and Fine Particles in Eastern North

    E-print Network

    Aneja, Viney P.

    nitric acid (SD 0.81 g/m3 ), and 1.61 g/m3 sulfuric acid (SD 1.58 g/m3 ). The citric acid denudersMeasurement and Analysis of the Relationship between Ammonia, Acid Gases, and Fine Particles, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric

  3. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  4. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  5. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  6. Episodic vs. epochal release of SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.; Zent, A. P.

    1987-01-01

    Erosion of the Martian surface by the flow of liquid water has apparently taken place at different times and locations on the planet. Many attempts were made to explain the valley networks by invoking a strong atmospheric CO2/H2O greenhouse early in the history of the planet. It was assumed that the large amounts of CO2 necessary to cause the greenhouse would have disappeared due to carbonate formation. Carbonates have yet to be positively identified. Volcanism has occurred throughout much of the history of Mars. Presumably gases such as SO2 were released along with CO2 and H2O. Estimates of amounts and rates with which SO2 were released into the Martian atmosphere, and how this would effect the global climate were made. Studies are continuing on the effects of SO2 and other volcanic gases on Martian climatic history.

  7. MODELING OF SO2 OXIDATION IN SMOG

    EPA Science Inventory

    Smog chamber experiments were conducted to investigate the (1) kinetics of free radical reactions of SO2 in smog and (2) SO2 transformation to sulfate for atmospheric simulations. Rate constants were derived for the following reactions: SO2+HO+M yields sulfate (60), SO2+HO2 yield...

  8. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  9. Aura OMI Observations of Global SO2 and NO2 Pollution from 2005 to 2013

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Li, Can; Lamsal, Lok; Celarier, Edward; Marchenko, Sergey; Swartz, William H.; Bucsela, Eric; Fioletov, Vitali; McLinden, Chris; Joiner, Joanna; Bhartia, Pawan K.; Duncan, Bryan; Dickerson, Russ

    2014-01-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the NASA Aura satellite and uses reflected sunlight to measure the two critical atmospheric trace gases: nitrogen dioxide (NO2) and sulfur dioxide (SO2) characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage and reduced visibility). Our group at NASA GSFC has developed and maintained OMI standard SO2 and NO2 data products. We have recently released an updated version of the standard NO2 L2 and L3 products (SP v2.1) and continue improving the algorithm. We are currently in the process of releasing next generation pollution SO2 product, based on an innovative Principal Component Analysis (PCA) algorithm, which greatly reduces the noise and biases. These new standard products provide valuable datasets for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed changes in air quality over several regions. Over the US average NO2 and SO2 pollution levels had decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in pollution over Europe. Over China OMI observed an increase of about 60 percent in NO2 pollution between 2005 and 2013, despite a temporal reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of large new coal power plants had been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in global air quality.

  10. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  11. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson (Kensington, CA); MacKenzie, Patricia D. (Berkeley, CA)

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  12. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  13. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  14. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  15. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  16. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  17. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  18. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  19. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  20. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  1. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  2. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  3. STATUS OF SO2 SCRUBBING TECHNOLOGIES

    EPA Science Inventory

    The paper presents the extent of current sulfur dioxide (SO2) scrubber applications on electricity generating units in the U.S. and abroad. The technical performance of recent SO2 scrubber installations is discussed. Recently reported technical innovations to SO2 scrubbing tech...

  4. Co-Sequestration Geochemical Modeling: Simple Brine Solution + CO2-O2-SO2

    NASA Astrophysics Data System (ADS)

    Verba, C.; Kutchko, B. G.; Reed, M. H.

    2012-12-01

    Class H well cement (LaFarge) was exposed to supercritical CO2 to evaluate the impact of brine chemistry on the well cement. Simulated experimental downhole conditions include a pressure of 28.6 MPa and a temperature of 50oC. Brine composition was formulated from the NETL NATCARB database, resulting in a simple solution of 1 M (NaCl, MgCl2, CaCl2). It was determined that the brine chemistry plays a vital role in determining the degree and type of alteration of cement in carbon sequestration conditions. The implications of co-sequestration (CO2/O2/SO2 mixtures) from of oxy-fueled combustion, coal gasification and sour gas have been considered. Geochemical modeling was conducted to understand the interaction between formation brine, cement and co-contaminant gases, using a gas composition of 95.5% CO2, 4% O2, and 1.5% SO2. The modeling results are significant in determining the validity of co-sequestering coal flue gas containing SOx gases or sour hydrocarbon gas which could potentially produce pyrite or other sulfur-bearing species in the cement via mineralization trapping. Thermodynamic components of aqueous species, gases, and minerals were used to calculate the pH and mineral saturation indices using CHIM-XPT. The computed pH of the solution is 4.34. The total sulfate molality within the brine is 0.0095 M. In experimental conditions of 600 mL of brine, 0.0057 moles of sulfate will be converted into 5.7 mL of sulfuric acid. The modeling shows that an excess of 31% O2 forms, indicating that H2S from SO2 disporportionation is oxidized to sulfate, thus no gaseous H2S will form. Remaining SO2 in the experimental headspace has a predicted mole fraction is 10-46. Additional SO2 gas added to the system produces the reaction to precipitate gypsum. Additional gas reactions precipitate gypsum, anhydrite, calcite, and dolomite.

  5. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  6. Soluble species in the Arctic summer troposphere - acidic gases, aerosols, and precipitation

    SciTech Connect

    Talbot, R.W.; Vijgen, A.S.; Harriss, R.C. Old Dominion Univ., Norfolk, VA )

    1992-10-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions. 61 refs.

  7. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 ?g m(-3)) was 2.7 times higher than nitrous acid (1.0 ?g m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 ?g m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

  8. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  9. New developments to improve SO2 cameras

    NASA Astrophysics Data System (ADS)

    Luebcke, P.; Bobrowski, N.; Hoermann, C.; Kern, C.; Klein, A.; Kuhn, J.; Vogel, L.; Platt, U.

    2012-12-01

    The SO2 camera is a remote sensing instrument that measures the two-dimensional distribution of SO2 (column densities) in volcanic plumes using scattered solar radiation as a light source. From these data SO2-fluxes can be derived. The high time resolution of the order of 1 Hz allows correlating SO2 flux measurements with other traditional volcanological measurement techniques, i.e., seismology. In the last years the application of SO2 cameras has increased, however, there is still potential to improve the instrumentation. First of all, the influence of aerosols and ash in the volcanic plume can lead to large errors in the calculated SO2 flux, if not accounted for. We present two different concepts to deal with the influence of ash and aerosols. The first approach uses a co-axial DOAS system that was added to a two filter SO2 camera. The camera used Filter A (peak transmission centred around 315 nm) to measures the optical density of SO2 and Filter B (centred around 330 nm) to correct for the influence of ash and aerosol. The DOAS system simultaneously performs spectroscopic measurements in a small area of the camera's field of view and gives additional information to correct for these effects. Comparing the optical densities for the two filters with the SO2 column density from the DOAS allows not only a much more precise calibration, but also to draw conclusions about the influence from ash and aerosol scattering. Measurement examples from Popocatépetl, Mexico in 2011 are shown and interpreted. Another approach combines the SO2 camera measurement principle with the extremely narrow and periodic transmission of a Fabry-Pérot interferometer. The narrow transmission window allows to select individual SO2 absorption bands (or series of bands) as a substitute for Filter A. Measurements are therefore more selective to SO2. Instead of Filter B, as in classical SO2 cameras, the correction for aerosol can be performed by shifting the transmission window of the Fabry-Pérot interferometer towards the SO2 absorption cross section minima. A correction of ash and aerosol influences with this technique can decrease deviation from the true column by more than 60%, since the wavelength difference between the two measurement channels is much smaller than in classical SO2 cameras. While the implementation of this approach for a 2D camera encompasses many challenges, it gives the possibility to build a relatively simple and robust scanning instrument for volcanic SO2 distributions. A second problem of the SO2 camera technique is the relatively high price, which prevents its use in many volcano observatories in developing countries. Most SO2 cameras use CCDs that were originally designed for astronomical purposes. The large pixel size and low noise of these detectors compensates for the low intensity of solar radiation in the UV and the low quantum efficiency of the detector in this spectral range. However, the detectors used cost several thousand US dollars. We present results from test measurements using a consumer DSLR camera as a detector of an SO2 camera. Since the camera is not sensitive in the UV, the incoming radiation is first imaged onto a screen that is covered with a suitable fluorescent dye converting the UV radiation to visible light.

  10. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  11. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L. (Fayetteville, AR)

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  12. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,SO2...n and ,,SO2...n,,H2O...m

    E-print Network

    Rocca, Jorge J.

    that return to earth in the form of acid depositions or "acid rain." Acid rain is one of the biggest environmental problems at present. Sulfur dioxide is the major contributor to acid rain and a generator of soot. The process of SO2 and water form- ing acid rain has been studied for some time in order to determine

  13. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  14. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  15. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  16. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  17. Interspecific Variation in SO2 Flux 1

    PubMed Central

    Olszyk, David M.; Tingey, David T.

    1985-01-01

    The objective of this study was to clarify the relationships among stomatal, residual, and epidermal conductances in determining the flux of SO2 air pollution to leaves. Variations in leaf SO2 and H2O vapor fluxes were determined using four plant species: Pisum sativum L. (garden pea), Lycopersicon esculentum Mill. flacca (mutant of tomato), Geranium carolinianum L. (wild geranium), and Diplacus aurantiacus (Curtis) Jeps. (a native California shrub). Fluxes were measured using the mass-balance approach during exposure to 4.56 micromoles per cubic meter (0.11 microliters per liter) SO2 for 2 hours in a controlled environmental chamber. Flux through adaxial and abaxial leaf surfaces with closed stomata ranged from 1.9 to 9.4 nanomoles per square meter per second for SO2, and 0.3 to 1.3 millimoles per square meter per second for H2O vapor. Flux of SO2 into leaves through stomata ranged from ?0 to 8.5 (dark) and 3.8 to 16.0 (light) millimoles per square meter per second. Flux of H2O vapor from leaves through stomata ranged from ?0 to 0.6 (dark) to 0.4 to 0.9 (light) millimole per square meter per second. Lycopersicon had internal flux rates for both SO2 and H2O vapor over twice as high as for the other species. Stomatal conductance based on H2O vapor flux averaged from 0.07 to 0.13 mole per square meter per second among the four species. Internal conductance of SO2 as calculated from SO2 flux was from 0.04 mole per square meter per second lower to 0.06 mole per square meter per second higher than stomatal conductance. For Pisum, Geranium, and Diplacus stomatal conductance was the same or slightly higher than internal conductance, indicating that, in general, SO2 flux could be predicted from stomatal conductance for H2O vapor. However, for the Lycopersicon mutant, internal leaf conductance was much higher than stomatal conductance, indicating that factors inside leaves can play a significant role in determining SO2 flux. PMID:16664551

  18. Mineral dust photochemistry induces nucleation events in the presence of SO2

    PubMed Central

    Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian

    2012-01-01

    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230

  19. Contribution of SO2 to antioxidant potential of white wine.

    PubMed

    Abramovi?, Helena; Košmerl, Tatjana; Poklar Ulrih, Nataša; Cigi?, Blaž

    2015-05-01

    The reactivity of SO2 with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and in Folin Ciocalteu (FC) assays was analysed under different experimental conditions. There was significantly higher reactivity between SO2 and DPPH in buffered methanol than in methanol alone. When DPPH and FC assays were performed in a mixture of caftaric acid and SO2, there were synergistic effects that were more pronounced with the FC assay. Phenolics are an important parameter of wine quality, and their accurate characterisation in wine is essential. Analysis of white wines with DPPH and FC assays overestimates the contribution of phenolics to the antioxidant potential (AOP). SO2 contributes (from 20% to 45%) to the AOP of the white wines analysed. As SO2 reactivity depends highly on buffer composition, pH, time of incubation and other compounds, e.g. phenolics and aldehydes, different experimental protocols can produce large variations in AOPs, and therefore control of experimental conditions is extremely important. PMID:25529664

  20. Chemical coupling between ammonia, acid gases, and fine particles Bok Haeng Baek, Viney P. Aneja*, Quansong Tong

    E-print Network

    Aneja, Viney P.

    .77)Â10À3 sÀ1 . The rate constant was found to increase as ambient temperature, wind speed, and solar examined the com- plex reversible chemical reactions between nitric acid gas and ammonium salts (StelsonChemical coupling between ammonia, acid gases, and fine particles Bok Haeng Baek, Viney P. Aneja

  1. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  2. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  3. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  4. Soluble species in the Arctic summer troposphere: Acidic gases, aerosols, and precipitation

    NASA Astrophysics Data System (ADS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-10-01

    We report here the distribution of selected acidic gases and aerosol species in the North American Arctic and sub-Arctic summer troposphere. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases and acidic sulfate aerosols dominating the particulate phase. Our data show that the acidic gas and aerosol composition is uniform on a large spatial scale. There appears to be a surface source of NH4+ over the Arctic Ocean pack ice which may reflect release of NH3 from decay of dead marine organisms on the ice surface near ice leads, release from rotting sea ice, or an upward flux from surface ocean waters in open ice leads. This NH3 appears to partially neutralize aerosol acidity in the boundary layer. Over sub-Arctic tundra in southwestern Alaska inputs of marine biogenic sulfur from the nearby Bering Sea appear to be an important source of boundary layer aerosol SO42-. While there were only minor effects on aerosol chemistry over the tundra from sea salt, the rainwater chemistry showed influence from marine aerosols which were apparently incorporated into air masses during frontal passages moving inland from the Bering Sea. The rainwater acidity over the tundra (pH 4.69) is typical of remote regions. The principal acidity components are H2SO4 and carboxylic acids, especially HCOOH. The carboxylic acids appear to have a strong continental biogenic source, but hydrocarbons of marine origin and emissions from forest fires may also be important. The wet deposition fluxes of NO3--N and SO42--S over sub-Arctic tundra during July-August 1988 were 2.1 and 2.4 mmol m-2 yr-1. Wet deposition of NO3- was nearly 3 times higher than the average NOy deposition flux, which is believed to represent primarily dry deposition of HNO3 (Bakwin et al., this issue). Our measurements indicate that the mid-troposphere in the Arctic is generally contaminated with low levels of anthropogenic pollutants even in summer when direct atmospheric coupling with mid-latitude source regions was previously believed to be minimal. Stratospheric inputs may also be important as a source of Arctic tropospheric SO42-. On several occasions we sampled directly within plumes or highly contaminated air masses representing various anthropogenic sources. The composition of these pollution sources suggested that they were important in determining the large-scale distribution of acidic gases and aerosol species in the Arctic summer troposphere. Outside the plumes the anthropogenic influences are chemically diffuse and variable, making it very difficult to quantitatively ascertain the magnitude of the effects. Present-day "background" air during summertime in the North American Arctic and sub-Arctic mid-troposphere appears to have the following average composition (parts per trillion by volume): HCOOH (70), CH3COOH (70), HNO3 (40), NO3- (10), SO42- (25), and NH4+ (55). These concentrations which were observed on only a few isolated days can be compared to the grand average (Arctic and sub-Arctic) mid-tropospheric levels during July-August 1988: HCOOH (166 ± 81), CH3COOH (215 ± 90), HNO3 (48 ± 29), NO3- (22 ± 17), SO42- (61 ± 30), and NH4+ (68 ± 30). A "first-look" comparison of the large-scale mid-tropospheric composition in a remote area of the northern hemisphere with that over a remote region of the southern hemisphere, the Amazon Basin, suggests no identifiable difference in the levels of NH4+ but possibly twofold and fivefold enhancement of NO3- and SO42- in "background" air for North America.

  5. ADVANCED CONCEPTS: SO2 REMOVAL PROCESS IMPROVEMENTS

    EPA Science Inventory

    The report gives results of a study of a potassium scrubbing system that recovers useful forms of sulfur from pollutants while using a low-energy process to regenerate the absorbing medium. The report also describes two versions of a new, regenerable process for SO2 scrubbing tha...

  6. The atmospheric chemistry of SO2 over the eastern US

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Allen, D.; Chin, M.; Doddridge, B. G.; Hains, J. C.; Li, C.; Marufu, L. T.; Stehr, J. W.; Taubman, B. F.

    2008-05-01

    Sulfur dioxide, an EPA-designated criteria pollutant, also has an impact on climate through radiative balance and cloud microphysics. For the past ten years, we have been measuring atmospheric trace gases including SO2 from an instrumented aircraft. The altitude soundings of SO2 accumulated over the eastern US (35.6oN to 42.9oN and 73.2oW to 80.3oW) reveal a typical summer profile with mixing ratios decreasing smoothly from about 3.5 ppb near the surface to 0.2 ppb at 2400 m. Comparison with chemical transport models CMAQ and GOCART reveals that observations show smaller concentrations than those simulated. This suggests a short lifetime (~20 hr) for SO2 under daytime conditions of pervasive photochemical smog. Cloud processes appear to play a major role. This rapid conversion of gaseous sulfur to particulate sulfur implies an impact on climate stronger than current estimates.

  7. Fabry-Perot interferometer-based remote sensing of SO2

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonas; Bobrowski, Nicole; Lübcke, Peter; Pöhler, Denis; Tirpitz, Jan-Lukas; Vogel, Leif; Platt, Ulrich

    2015-04-01

    We studied SO2 degassing from volcanoes and monitored the corresponding SO2 fluxes. Besides the effect on climate and the hazardous effects at a local scale, the absolute magnitude of SO2 fluxes or ratios of SO2 with other volcanic gases can be an indicator for volcanic activity and even help to understand and model processes in the interior of volcanoes. Due to its characteristic absorption structure, high abundance in the volcanic plume and low atmospheric background, SO2 can be easily identified and quantified by remote sensing techniques. DOAS and FTIR became standard techniques for volcanic SO2 measurements. Along with the development of portable devices they offer the advantage of simultaneous measurements of multiple gas species. However, both techniques often need complex data evaluation and observations are usually limited to a single viewing direction. Spatially resolved measurements, which are for instance required to determine gas fluxes, frequently have to be obtained sequentially leading to a relatively low time resolution. A further, today nearly established method to determine SO2 emission fluxes is the "SO2 camera". The SO2 camera has the advantage of a high spatial and temporal resolution, but is very limited in spectral information using only two wavelength channels and thus being less selective. Cross-interferences with volcanic plume aerosol, the ozone background, and other trace gases frequently cause problems in SO2 camera measurements. Here we introduce a novel passive remote sensing method for SO2 measurements in the atmosphere using a Fabry-Perot interferometer (FPI) setup. The transmission profile of this FPI consists of periodic transmission peaks that match the periodic SO2 absorption bands in the UV. In principle, this method allows imaging of two-dimensional SO2 distributions similarly to SO2 cameras. Interferences of standard SO2 cameras are greatly reduced with the FPI method. In addition, this technique can also be applied to other trace gases (like BrO, OClO, or HCl) and allows the construction of small, robust devices, delivering accurate measurements without intricate data evaluation. We present calculations on the FPI system and first laboratory measurements with a one pixel prototype of a FPI SO2 device. These findings demonstrate the advantages of our novel approach.

  8. Mineral dust photochemistry induces nucleation events in the presence of SO2

    NASA Astrophysics Data System (ADS)

    George, C.; Dupart, Y.; D'anna, B.; Nekat, B.; Herrmann, H.; Rairoux, P.; Miffre, A.; David, G.; Thomas, B.

    2012-12-01

    Every year, approximately 2000 Tg of mineral dust particles are released into the Earth's atmosphere. The surfaces of these particles act as a sink for many atmospheric gases, such as sulphur dioxide, which is believed to undergo reactions on the dust surface producing sulphate ions. However, flow tube experiments performed in the present study show that, under ultraviolet light, this reaction proceeds through a different pathway, producing gaseous sulphuric acid rather than surface-bound sulphate. We suggest that the metal oxides present in mineral dust serve as photocatalysts that promote the formation of OH radicals, which diffuse to the gas phase where they initiate the conversion of SO2 to H2SO4. These experiments suggest a revision of current knowledge : the chemical interactions of SO2 in the presence of mineral dust and solar illumination may lead to the nucleation of new particles in the atmosphere. These laboratory findings are supported by recent field observations near Beijing (China) and Lyon (France).

  9. Wind tunnel experiments on the retention of trace gases during riming: nitric acid, hydrochloric acid, and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    von Blohn, N.; Diehl, K.; Mitra, S. K.; Borrmann, S.

    2011-06-01

    Laboratory experiments were carried out in a vertical wind tunnel to study the retention of different atmospheric trace gases during riming. In the experiments, the rimed ice particles floated in a laminar air stream carrying a cloud of supercooled droplets with radii between 10 and 20 ?m. Ice particles, dendritic ice crystals, and snow flakes with diameters between 6 mm and 1.5 cm were allowed to rime at temperatures between -5 and -12 °C where riming mainly proceeds in the atmosphere and with cloud liquid water contents between 1 and 1.5 g m-3 which are values typically found in atmospheric mixed phase clouds. Three trace species were investigated, nitric and hydrochloric acid, and hydrogen peroxide. They were present in the supercooled liquid droplets in concentrations from 1 to 120 ppmv, i.e. similar to the ones measured in cloud drops. The chemical analyses of the rimed ice particles allow to determine the trace species concentration in the ice phase. Together with the known liquid phase concentration the retention coefficients were calculated in terms of the amount of the species which remained in the ice phase after freezing. It was found that the highly soluble trace gases nitric and hydrochloric acid were retained nearly completely (98.6 ± 8 % and 99.7 ± 9 %, respectively) while for hydrogen peroxide a retention coefficient of 64.3 ± 11 % was determined. No influence of the riming temperature on the retention was found which can be explained by the fact that in the observed range of temperature and liquid water content riming proceeded in the dry growth regime.

  10. Wind tunnel experiments on the retention of trace gases during riming: nitric acid, hydrochloric acid, and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    von Blohn, N.; Diehl, K.; Mitra, S. K.; Borrmann, S.

    2011-11-01

    Laboratory experiments were carried out in a vertical wind tunnel to study the retention of different atmospheric trace gases during riming. In the experiments, the rimed ice particles floated in a laminar air stream carrying a cloud of supercooled droplets with radii between 10 and 20 ?m. Ice particles, dendritic ice crystals, and snow flakes with diameters between 6 mm and 1.5 cm were allowed to rime at temperatures between -5 and -12 °C where riming mainly proceeds in the atmosphere and with cloud liquid water contents between 1 and 1.5 g m-3 which are values typically found in atmospheric mixed-phase clouds. Three trace species were investigated, nitric and hydrochloric acid, and hydrogen peroxide. They were present in the supercooled liquid droplets in concentrations from 1 to 120 ppmv, i.e. similar to the concentrations measured in cloud drops. The chemical analyses of the rimed ice particles allow one to determine the trace species concentration in the ice phase. Together with the known liquid phase concentration the retention coefficients were calculated in terms of the amount of the species which remained in the ice phase after freezing. It was found that the highly soluble trace gases, nitric and hydrochloric acid, were retained nearly completely (98.6±8% and 99.7±9%, respectively) while for hydrogen peroxide a retention of 64.3±11% was determined. No influence of the riming temperature on the retention was found which can be explained by the fact that in the observed range of temperature and liquid water content, riming proceeded in the dry growth regime.

  11. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  12. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.; Franco, A.; von Glasow, R.; Allen, A. G.; D'Alessandro, W.; Mather, T. A.; Pyle, D. M.; Valenza, M.

    2006-11-01

    Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 ?g/m3 at 0.1 km from Etna's vents down to ~7 ?g/m3 at ~10 km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.

  13. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.; Franco, A.; von Glasow, R.; Allen, A. G.; D'Alessandro, W.; Mather, T. A.; Pyle, D. M.; Valenza, M.

    2007-03-01

    Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 ?g/m3at 0.1 km from Etna's vents down to ~7 ?g/m3 at ~10 km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.

  14. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential role of the dolomitic sorbent in enhancing the electric energy production efficiency of the plant, thanks to the better cleaning of the heat exchange surface that can be achieved. If such improvement is accounted for, all the potential impacts are considerably decreased (e.g. the Climate change by 28%), and in the comparison with the traditional operation 17 impact categories out of 19 are reduced. PMID:25465510

  15. High-surface-area hydrated lime for SO2 control

    SciTech Connect

    Rostam-Abadi, M.; Moran, D.L. . Minerals Engineering Section)

    1993-03-01

    Since 1986, the Illinois State Geological Survey (ISGS), has been developing a process to produce high-surface-area hydrated lime (HSAHL) with more activity for adsorbing SO2 than commercially available hydrated lime. HSAHL prepared by the ISGS method as considerably higher surface area and porosity, and smaller mean particle diameter and crystallite size than commercial hydrated lime. The process has been optimized in a batch, bench-scale reactor and has been scaled-up to a 20--100 lb/hr process optimization unit (POU). Experiments have been conducted to optimize the ISGS hydration process and identify key parameters influencing hydrate properties for SO2 capture (surface area, porosity, particle size, and crystallite size). The known how is available to tailor properties of hydrated limes for specific SO2 removal applications. Pilot-scale tests conducted with the HSAHL under conditions typical of burning high-sulfur coals have achieved up to 90% SO2 capture in various DSI systems. The removal results are enough to bring most high-sulfur coals into compliance with acid rain legislation goals for the year 2000. The focus of the POU program is to generate critical engineering data necessary for the private sector to scale-up the process to a commercial level and provide estimates of the optimal cost of construction and operation of a commercial plant. ISGS is currently participating in a clean coal technology program (CCT-1) by providing 50 tons of HSAHL for a demonstration test at Illinois Power's Hennepin station in January 1993.

  16. Correlations between stream sulphate and regional SO2 emissions

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.

    1986-01-01

    The relationship between atmospheric SO2 emissions and stream and lake acidification has been difficult to quantify, largely because of the limitations of sulphur deposition measurements. Precipitation sulphate (SO4) records are mostly <5 yr in length and do not account for dry sulphur deposition. Moreover, a variable fraction of wet- and dry-deposited sulphur is retained in soils and vegetation and does not contribute to the acidity of aquatic systems. We have compared annual SO2 emissions for the eastern United States from 1976 to 1980 with stream SO4 measurements from fifteen predominantly undeveloped watersheds. We find that the two forms of sulphur are strongly correlated on a regional basis and that streams in the southeastern United States (SE) receive a smaller fraction (on average, 16%, compared with 24%) of regional sulphur emissions than do streams in the northeastern United States (NE). In addition to providing direct empirical evidence of a relationship between sulphur emissions and aquatic chemistry, these results suggest that there are significant regional differences in the fraction of deposited sulphur retained in basin soils and vegetation.The relationship between atmospheric SO//2 emissions and stream and lake acidification has been difficult to quantify, largely because of the limitations of sulphur deposition measurements. The authors have compared annual SO//2 emissions for the eastern United States from 1967 to 1980 with stream SO//4 measurements from fifteen predominantly undeveloped watersheds. They found that both the wet - and dry-deposited forms of sulphur are strongly correlated on a regional basis and that streams in the southeastern United States receive a smaller fraction (on average, 16%, compared with 24%) of regional sulphur emissions than do streams in the northeastern United States. In addition to providing direct empirical evidence of a relationship between sulphur emissions and aquatic chemistry, these results suggest that there are significant regional differences in the fraction of deposited sulphur retained in basin soils and vegetation.

  17. CONTROLLING SO2 EMISSIONS: A REVIEW OF TECHNOLOGIES (EPA/600/R-00/093)

    EPA Science Inventory

    Sulfur dioxide (SO2) scrubbers may be used by electricity generating units to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program.Additionally, the use of scrubbers can result in reduction of mercury and particulate matter emissions. It is timely, therefore...

  18. PROJECT SUMMARY: CONTROLLING SO2 EMISSIONS: A REVIEW OF TECHNOLOGIES (EPA/600/SR-00/093)

    EPA Science Inventory

    Sulfur dioxide (SO2) scrubbers may be used by electricity generating units to meet the requirements of Phase II of the Acid Rain SO2Reduction Program. Additionally, the use of scrubbers can result in reduction of mercury and particulate matter emissions. It is timely,therefore,...

  19. SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane

    SciTech Connect

    She, Xiaoyan; Flytzani-Stephanopoulos, Maria; Wang, Chong M.; Wang, Yong; Peden, Charles HF

    2009-04-29

    We report on a stabilization effect on the structure and activity of Ag/Al2O3 for the selective catalytic reduction (SCR) of NOx with CH4 imparted by the presence of SO2 in the exhaust gasmixture. The reaction is carried out at temperature above 600 8C to keep the surface partially free of sulfates. In SO2-free gases, catalyst deactivation is fast and measurable at these temperatures. Time-resolved TEM analyses of used samples have determined that deactivation is due to sintering of silver from well-dispersed clusters to nanoparticles to micrometer-size particles with time-on-stream at 625 8C. However, sintering of silver was dramatically suppressed by the presence of SO2 in the reaction gas mixture. The structural stabilization by SO2 was accompanied by stable catalyst activity for the NO reduction to N2. The direct oxidation of methane was suppressed, thus the methane selectivity was improved in SO2-laden gas mixtures. In tests with high-content silver alumina with some of the silver present in metallic form, an increase in the SCR activity was found in SO2-containing gas mixtures. This is attributed to redispersion of the silver particles by SO2, an unexpected finding. The catalyst performance was reversible over many cycles of operation at 625 8C with the SO2 switched on and off in the gas mixture.

  20. Dissociation dynamics of the methylsulfonyl radical and its photolytic precursor CH3SO2Cl

    E-print Network

    Butler, Laurie J.

    concern due to the latter's role in acid rain and its effect on global climate. While the major anthro oxidation mechanism.2,3 Two possible adducts formed in collisions of methyl radicals and SO2 are methyl

  1. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  2. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days

    PubMed Central

    He, Hong; Wang, Yuesi; Ma, Qingxin; Ma, Jinzhu; Chu, Biwu; Ji, Dongsheng; Tang, Guiqian; Liu, Chang; Zhang, Hongxing; Hao, Jiming

    2014-01-01

    Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated. PMID:24566871

  3. THE SO2 ALLOWANCE TRADING SYSTEM: THE IRONIC HISTORY OF A GRAND POLICY EXPERIMENT

    E-print Network

    Ford, Andrew

    to curb acid rain, the government did the right thing for the wrong reason. Second, a substantial source-based instruments, cap-and-trade, Clean Air Act amendments of 1990, sulfur dioxide, acid rain JEL Classification that acid precipitation ­ the result of sulfur dioxide (SO2) and, to a lesser extent, nitrogen oxides (NOx

  4. Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the soft-SAFT approach.

    PubMed

    Llovell, F; Marcos, R M; MacDowell, N; Vega, L F

    2012-07-01

    In this work, the solubility of three common pollutants, SO(2), NH(3), and H(2)S, in ionic liquids (ILs) is studied using the soft-SAFT equation of state with relatively simple models. Three types of imidazolium ionic liquids with different anions are described in a transferable manner using the recently published molecular models (Andreu, J. S.; Vega, L. F. J. Phys. Chem. C 2007, 111, 16028; Llovell et al. J. Phys. Chem. B 2011, 115, 4387), whereas new models for SO(2), NH(3), and H(2)S are proposed here. Alkyl-imidazolium ionic liquids with the [PF(6)](-) and [BF(4)](-) anions are considered to be Lennard-Jones chainlike molecules with one associating site in each molecule describing the specific cation-anion interactions. Conversely, the cation and anion forming the imidazolium [Tf(2)N](-) ionic liquids are modeled as a single molecule with three associating sites, taking into account the delocalization of the anion electric charge due to the presence of oxygen groups surrounding the nitrogen of the anion. NH(3) is described with four associating sites: three sites of type H mimicking the hydrogen atoms and one site of type e representing the lone pair of electrons. H(2)S is modeled with three associating sites: two for the sites of type H for the hydrogen atoms and one site of type e for the electronegativity of the sulfur. SO(2) is modeled with two sites, representing the dipole moment of the molecule as an associative interaction. Soft-SAFT calculations with the three models for the pollutants provide very good agreement with the available phase equilibria, enthalpy of vaporization, and heat capacity experimental data. Then, binary mixtures of these compounds with imidazolium-based ionic liquids were calculated in an industrially relevant temperature range. Unlike association interactions between the ionic liquids and the pollutant gases have been explicitly accounted for using an advanced association scheme. A single temperature independent energy binary parameter is sufficient to describe every family of mixtures in good agreement with the available data in the literature. In addition, a vapor-liquid-liquid equilibrium (VLLE) region, never measured experimentally, has been identified for mixtures of hydrogen sulfide + imidazolium ionic liquids with the [PF(6)](-) anion at high H(2)S concentrations. This work illustrates that relatively simple models are able to capture the phase absorption diagram of different gases in ionic liquids, provided accurate models are available for the pure components as well as an accurate equation of state to model the behavior of complex systems. PMID:22663142

  5. Adsorption and dissociation of acidic trace gases on ice surfaces - caught in the act with core level spectroscopy

    NASA Astrophysics Data System (ADS)

    Waldner, Astrid; Orlando, Fabrizio; Ammann, Markus; Kleibert, Armin; Huthwelker, Thomas; Peter, Thomas; Bartels-Rausch, Thorsten

    2015-04-01

    Chemistry and physical processes in Earth's ice and snow cover can change the composition of the atmosphere and the contaminant content of the cryosphere. They have thus direct impacts on geochemical cycles and the climate system. Our ability to predict the fate of chemicals in snow or air masses in exchange with the cryosphere on a regional scale or to model those in snow chemistry models is currently hampered by our limited understanding of the underlying mechanisms on a molecular level. So far, direct experimental observations under environmentally relevant conditions of the ice surface and of the adsorption of trace gases to it are very limited. The unique approach of this study is to combine two surface sensitive spectroscopic methods to directly probe the hydrogen-bonding network at the ice surface ( ~1 nm depth) and the concentration, depth profile (~1 to 10 nm), and dissociation degree of the dopant. We present first core-electron photoemission (XPS) and partial electron yield X-ray absorption (NEXAFS) measurements of formic acid adsorbed to ice at 240 K. The analysis of oxygen NEXAFS spectra reveals information on changes in the hydrogen-bonding network of the ice surface upon adsorption of formic acid. Depth profiles based on XPS measurements indicate that the adsorbed acid stays at the ice surface. Furthermore we obtained a preliminary estimation of the degree of formic acid dissociation at the ice surface. Results are compared to earlier core-electron studies of several trace gases adsorbed to ice at 240 K and compared to results from more traditional method to and snow to reveal fundamental aspects of the ice surface and how it interacts with dopants. Even with the focus on adsorption of acidic trace gases to ice, results of this study will thus be of high relevance also for other chemical processes in ice and snow. This is of interest not only in environmental science but also in material science, cryobiology, and astrophysics.

  6. Satellite-based constraints on tropospheric volcanic emissions of SO2 and CO2

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Schwandner, F. M.

    2012-12-01

    There is considerable motivation to improve constraints on global volcanic CO2 emissions, and their partitioning between summit plumes and diffuse flank degassing; both for volcano monitoring and to better understand the role of volcanism in the global carbon cycle. One approach to refining plume CO2 degassing budgets for persistently degassing volcanoes is to obtain more accurate constraints on SO2 emissions and SO2/CO2 ratios in volcanic gases. The current generation of space-borne, hyperspectral ultraviolet (UV) nadir mapping instruments have afforded tremendous insights into the spatial and temporal variability of global, subaerial volcanic degassing of SO2. We use ~8 years of daily SO2 measurements by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite to identify and rank the strongest volcanic SO2 sources of the past decade, and compare the results to existing emissions inventories. Major SO2 sources include Ambrym (Vanuatu), Nyiragongo (DR Congo) and several volcanoes in Indonesia and Kamchatka that are largely absent from existing inventories. Typical SO2 emission rates are estimated based on the SO2 column amounts measured in the volcanic plumes. Based on this improved satellite-derived SO2 emissions inventory and existing data on SO2/CO2 ratios, we can refine estimates of plume CO2 emissions for the most prominent volcanic gas emitters. We have also used the OMI SO2 measurements to select volcanic targets for special 'stare-mode' observations of the Japanese Greenhouse Gases Observing Satellite (GOSAT) since summer 2010, to assess the potential of GOSAT shortwave-infrared (SWIR) reflectance data for detection of volcanic CO2 emissions. GOSAT measures the column-average CO2 mixing ratio (or CO2 total column) with a spatial resolution of 10 km, and hence the signal is dominated by ambient atmospheric CO2 and any seasonal cycle thereof. Further complications for volcano monitoring are that GOSAT SWIR measurements are subject to interference by clouds and aerosol (ubiquitous at most active volcanoes) and mostly collected over land under clear sky conditions. By repeatedly pointing the GOSAT FOV at known, strong point sources of volcanic degassing, we are accumulating a statistically significant dataset to evaluate whether space-based detection of volcanic CO2 is feasible using current assets, to provide data for further, detailed spectral analysis, and to assess the potential of future satellite missions such as the Orbiting Carbon Observatory-2 (OCO-2) for volcanic CO2 detection.

  7. New discoveries enabled by OMI SO2 measurements and future missions

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay

    2010-05-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. This talk highlights most recent science results enabled by using OMI SO2 data. OMI daily contiguous volcanic SO2 data continue 25+ climatic record by its predecessors (Total Ozone mapping Spectrometers 1978-2005), but higher SO2 sensitivity allows measuring volcanic plumes for a longer time as well as measuring passive volcanic degassing from space. New algorithm development allows direct estimating of SO2 plume heights to refine SO2 tonnages in largest volcanic plumes important for climate applications. Quantitatively, anthropogenic SO2 is more difficult to measure from space, since ozone absorption and Rayleigh scattering reduce sensitivity to pollutants in the lower troposphere. OMI data first enabled daily detection of SO2 burdens from individual smelters as well as observed SO2 pollution lofting from boundary layer and long-range transport in free troposphere. Interplay between volcanic and anthropogenic SO2 emissions resulted in highly variable SO2 pollution levels in Peru and Mexico City. We have updated our copper smelter analysis, which showed interesting new trends. Combining OMI data with trajectory models and aerosol/cloud measurements by A-train sensors (MODIS, CALIPSO) allowed tracking long-range transport of volcanic and anthropogenic aerosol/SO2 plumes. These studies placed new constraints on conversion rates of SO2 to sulfate at different heights from free troposphere to the lower stratosphere. We describe new techniques for spatial and time averaging that have been used to determine the global distribution of anthropogenic SO2 burdens, and the efficacy of abatement strategies. OMI seasonal to multi-year average images clearly show the world-highest consistent SO2 pollution in eastern China, mostly due to the burning of high-sulfur coal in its many coal-fired power plants. Recently, China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology (FGD) on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. We demonstrate that the OMI can pick up both SO2 and NO2 emissions from large point sources in northern China, where large increases in both gases were observed from 2005 to 2007, over areas with newly established power plants. The OMI SO2/NO2 ratio generally agrees with the estimated emission factors for coal-fired power plants based on a bottom-up approach. Between 2007 and 2008, OMI detected little change in NO2 but dramatic decline in SO2 over the same areas. While the almost constant NO2 levels between the two years imply steady electricity generation from the power plants, the large reduction in SO2 confirms the effectiveness of the FGD units, which likely became operational between 2007 and 2008. Further development of satellite detection and monitoring of point pollution sources requires better than 10km ground resolution. We show how planned Dutch /ESA TROPOMI and NASA GEOCape missions will advance the art of measuring point source emissions in coming decade.

  8. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    PubMed

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. PMID:26456606

  9. Adsorption and Reaction of CO2 and SO2 at a Water Surface Teresa L. Tarbuck and Geraldine L. Richmond*

    E-print Network

    Richmond, Geraldine L.

    trapping, radiation scattering, and the formation of cloud condensation nuclei and acid rain. The uptake (acid-base equilibria). The dominant reaction product (SO2(aq), HSO3 -, or SO3 2-) depends on the p

  10. SO(2N) and SU(N) gauge theories

    E-print Network

    Richard Lau; Michael Teper

    2013-11-06

    We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit. SO(2N) theories may help us to understand QCD at finite chemical potential since there is an orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing them to their corresponding SU(N) theories.

  11. SO2 measurements at a high altitude site in the central Himalayas: Role of regional transport

    NASA Astrophysics Data System (ADS)

    Naja, Manish; Mallik, Chinmay; Sarangi, Tapaswini; Sheel, Varun; Lal, Shyam

    2014-12-01

    Continuous measurements of a climatically important acidic gas, SO2, were made over Nainital (29.37°N, 79.45°E; 1958 m amsl), a regionally representative site in the central Himalayas, for the first time during 2009-2011. Unlike many other sites, the SO2 levels over Nainital are higher during pre-monsoon (345 pptv) compared to winter (71 pptv). High values during pre-monsoon are attributed to the transport of air masses from regions viz. Indo-Gangetic Plain (IGP), northern India and north-East Pakistan, which are dotted with numerous industries and power plants, where coal burning occurs. Transport from the polluted regions is evinced from good correlations of SO2 with wind speed, NOy and UV aerosol index during these periods. Daytime elevations in SO2 levels, influenced by 'valley winds' and boundary layer evolution, is a persistent feature at Nainital. SO2 levels are very much lower during monsoon compared to pre-monsoon, due to oxidation losses and wet scavenging. Despite this, SO2/NOy slopes are high (>0.4) both during pre-monsoon and monsoon, indicating impacts of point sources. The SO2 levels during winter are lower as the measurement site is cut off from the plains due to boundary layer dynamics. Further, the SO2 levels during winter nights are the lowest (lesser than 50 pptv) and resemble free tropospheric conditions.

  12. 40 CFR 96.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... period in 2015 and thereafter for which the CAIR SO2 opt-in unit is to be allocated CAIR SO2 allowances... authority to the CAIR SO2 opt-in unit under paragraph (a)(1) of this section. (2) By December 1 of the... December 1 of each year thereafter, the Administrator will record, in the compliance account of the...

  13. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M. (New Milford, CT); Brown, Duncan W. (Wilton, CT)

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  14. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  15. Procedures for safe handling of off-gases from electric vehicle lead-acid batteries during overcharge

    SciTech Connect

    LaBelle, S.J.; Bhattacharyya, M.H.; Loutfy, R.O.; Varma, R.

    1980-01-25

    The potential for generation of toxic gases from lead-acid batteries has long been recognized. Prior to the current interest in electric vehicles, there were no studies specificaly oriented to toxic gas release from traction batteries, however. As the Department of Energy Demonstration Project (in the Electric and Hybrid Vehicle Program) progresses, available data from past studies and parallel health effects programs must be digested into guidance to the drivers and maintenance personnel, tailored to their contact with electric vehicles. The basic aspects of lead-acid battery operation, vehicle use, and health effects of stibine and arsine to provide electric vehicle users with the information behind the judgment that vehicle operation and testing may proceed are presented. Specifically, it is concluded that stibine generation or arsine generation at rapid enough rates to induce acute toxic response is not at all likely. Procedures to guard against low-level exposure until more definitive data on ambient concentrations of the gases are collected are presented for both charging the batteries and driving the vehicles. A research plan to collect additional quantitative data from electric traction batteries is presented.

  16. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  17. Vertical distribution of volcanic SO2 retrieved from IASI.

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Grainger, Roy; Mather, Tamsin; Payle, David; Birch, Charlotte; Dudhia, Anu; Ventress, Lucy; Smith, Andy; Hayer, Caterine

    2014-05-01

    Sulphur dioxide (SO2) is an important atmospheric constituent that plays a rucial role in many atmospheric processes and its effect and lifetime are dependent on the SO2 injection altitude. In the troposphere SO2 production leads to the acidification of rainfall while in the stratosphere it oxidises to form a stratospheric H2SO4 haze that can affect climate for several years. We report applications of IASI high resolution infrared spectra to study volcanic emission of sulphur dioxide (SO2). IASI is a Fourier transform spectrometer that covers the spectral range 645 to 2760 cm-1 (3.62-15.5 um). The IASI field of view consists of four circles of 12 km inside a square of 50 x 50 km, and nominally it can achieve global coverage in 12 hours. From 2013 there were 2 IASI instruments on board both METOP A and B giving up to 4 overpasses a day. The SO2 retrieval algorithm uses measurements from 1000 to 1200 cm-1 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 um SO2 bands) made by IASI on the MetOp satellite. The SO2 retrieval follows the method of Carboni et al. (2012) and retrieves SO2 amount and altitude together with a pixel by pixel comprehensive error budget analysis. It permits the quantification of SO2 amount and estimation of plume altitude, even for small eruptions in the lower troposphere (e.g. Etna lava fountains in 2011 and 2013). We present the SO2 amount described as a function of altitude, and the time evolution of SO2 burden for recent volcanic eruptions. Quantification of the total amount of SO2 over several days allows estimation of daily emission rates, and decay factors.

  18. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the strongest volcanic SO2 sources between 2004 and 2015. OMI measurements are most sensitive to SO2 emission rates on the order of ~1000 tons/day or more, and thus the satellite data provide new constraints on the location and persistence of major volcanic SO2 sources. We find that OMI has detected non-eruptive SO2 emissions from at least ~60 volcanoes since 2004. Results of our analysis reveal the emergence of several major tropospheric SO2 sources that are not prominent in existing inventories (Ambrym, Nyiragongo, Turrialba, Ubinas), the persistence of some well-known sources (Etna, Kilauea) and a possible decline in emissions at others (e.g., Lascar). The OMI measurements provide particularly valuable information in regions lacking regular ground-based monitoring such as Indonesia, Melanesia and Kamchatka. We describe how the OMI measurements of SO2 total column, and their probability density function, can be used to infer SO2 emission rates for compatibility with existing emissions data and assimilation into chemical transport models. The satellite-derived SO2 emission rates are in good agreement with ground-based measurements from frequently monitored volcanoes (e.g., from the NOVAC network), but differ for other volcanoes. We conclude that some ground-based SO2 measurements may be biased high if collected during periods of elevated unrest, and hence may not be representative of long-term average emissions.

  19. The atmospheric abundance of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Ballester, Gilda E.; Strobel, Darrell F.; Moos, H. Warren; Feldman, Paul D.

    1990-01-01

    The IUE satellite has obtained near-UV spectra of Io with sufficient resolution to ascertain the east, or leading and west, or trailing hemispheres' dayside atmosphere SO2 abundance. The derived geometric albedos are compared with various model albedos that might result from proposed SO2 atmospheres, as well as from localized, sublimation- or volcanism-generated atmospheres. A homogeneous-layer alternative atmosphere is introduced whose upper limit on the average SO2 column density for both hemispheres implies that a collisionally thick SO2 atmosphere of intermediate density may have been present on Io's dayside during the present observations.

  20. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  1. A Balloon Sounding Technique for Measuring SO2 Plumes

    NASA Technical Reports Server (NTRS)

    Morris, Gary A.; Komhyr, Walter D.; Hirokawa, Jun; Lefer, Barry; Krotkov, Nicholay; Ngan, Fong

    2010-01-01

    This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in -1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with Cr03 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 X 10(exp 16) molecules of SO2 [equivalent to a column approximately 150 DU (1 DU = 2.69 X 10(exp 20) molecules m(exp -2))]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of approximately 3 pbb with profiles valid from the surface to the ozonopause [i.e., approximately (8-10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

  2. Partial discharge early-warning through ultraviolet spectroscopic detection of SO2

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Xianpei; Dai, Dangdang; Dong, Zhengcheng; Huang, Yunguang

    2014-03-01

    Surveillance of SF6 decomposition products is significant for detection of partial discharge (PD) in gas insulation switchgear (GIS). As a basis in on-site detection and diagnosis, PD early-warning aims to quickly find the abnormalities using a simple and cheap device. In this paper, SO2 is chosen as a feature product and detected through ultraviolet spectroscopy. The derivative method is employed for baseline correction and spectral enhancement. The standard gases of the main decomposition products are qualitatively and quantitatively detected. Then decomposition experiments with different defects are designed to further verify the feasibility. As a stable decomposition product under PD, SO2 is proved to be applicable for PD early-warning in the field. By selecting the appropriate wavelength range, namely 290-310 nm, ultraviolet derivative spectroscopy is sensitive enough to the trace SO2 in the decomposed gas and the interference of other products can be avoided. Fast Fourier transform could be used for feature extraction in qualitative detection. Concentrations of SO2 and other by-products increase with increasing discharge time and could be affected by the discharge energy and PD type. Ultraviolet detection based on SO2 is effective for PD early-warning but the threshold should still be carefully selected in practice.

  3. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS)

    USGS Publications Warehouse

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    A series of activated carbon fibers (ACFs) and heat-treated oxidized ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore surface chemistry and pore volume for the adsorption of SO2 and its catalytic conversion to H2SO4. For untreated ACFs, the initial rate of SO2 adsorption from flue gas was shown to be inversely related to pore size. At longer times, the amount of SO2 adsorbed from flue gas was dependent on both the pore size and pore volume. Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper. ?? 1997 Elsevier Science Ltd. All rights reserved.

  4. Effect of plasma treatment on multi-walled carbon nanotubes for the detection of H2S and SO2.

    PubMed

    Zhang, Xiaoxing; Yang, Bing; Wang, Xiaojing; Luo, Chenchen

    2012-01-01

    H(2)S and SO(2) are important characteristic gases of partial discharge (PD) generated by latent insulated defects in gas insulated switchgear (GIS). The detection of H(2)S and SO(2) is of great significance in the diagnosis and assessment of the operating status of GIS. In this paper, we perform experiments on the gas sensitivity of unmodified multi-walled carbon nanotubes (MWNTs) and those modified by atmospheric pressure dielectric barrier discharge (DBD) air plasma at different times (30, 60 and 120 s) for H(2)S and SO(2), respectively. The results show that the sensitivity and response time of modified MWNTs to H(2)S are both improved, whereas the opposite effects are observed for SO(2). The modified MWNTs have almost zero sensitivity to SO(2). Thus, the MWNTs modified by atmospheric pressure DBD air plasma present good selectivity to H(2)S, and have great potential in H(2)S detection. PMID:23012548

  5. Blood Gases Test

    MedlinePLUS

    ... used to evaluate a person's lung function and acid/base balance . They are typically ordered if someone is ... therapy. Blood gases are used to detect an acid-base imbalance, such as can occur with kidney failure , ...

  6. 40 CFR 97.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,000 lb/ton. (2) For each control period in 2015 and thereafter for which the CAIR SO2 opt-in unit is... under paragraph (a)(1) of this section. (2) By December 1 of the control period in which a CAIR SO2 opt-in unit enters the CAIR SO2 Trading Program under § 97.284(g) and December 1 of each year...

  7. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  8. AN ADVANCED FLUE GAS MONITOR FOR SO2 - PHASE I

    EPA Science Inventory

    The development of an instrument for continuously monitoring SO2 levels in flue gas is proposed. The SO2 will be detected by means of an electrochemical sensor cell, which operates in a three-electrode potentiostatic mode. The proposed innovation is develop-ment of an advan...

  9. ACCURACY OF REMOTELY SENSED SO2 MASS EMISSION RATES

    EPA Science Inventory

    Remote sensing data of single-stack power plant emissions and local wind speed have been analyzed to determined SO2 mass flux for comparison with EPA referenced methods. Four days of SO2 data were gathered from a moving platform by three upward-viewing remote sensors -- two ultra...

  10. JAPANESE ACTIVITIES IN SO2 AND NOX CONTROL

    EPA Science Inventory

    The paper reviews Japanese activities in SO2 and NOx control. From 1970 to 1985, energy use in Japan increased by 25%, and annual coal consumption rose from virtually nothing to 20 million tons, yet emissions of SO2 declined by 75% and NOx by 40%. While increases in hydroelectric...

  11. On solvable potentials related to SO(2,2)

    NASA Astrophysics Data System (ADS)

    Baran, S. A.; Dalgic, A.; Kerimov, G. A.

    2001-02-01

    Scattering problems in one dimension associated with the SO(2,2) group are studied. The S matrices for the systems under consideration are calculated by using the theory of intertwining operators for semisimple Lie groups. The wave functions are expressed in terms of matrix elements of principal series representation of the SO(2,1) group.

  12. STATUS OF DRY SO2 CONTROL SYSTEMS: FALL 1983

    EPA Science Inventory

    The report, on the status of dry SO2 control for utility and industrial boilers in the U.S., reviews curent and recently completed research, development, and commercial activities. Dry SO2 control systems covered include: (1) spray dryers with a fabric filter or an electrostatic ...

  13. FORMATION OF 2-METHYL TETROLS AND 2-METHYLGLYCERIC ACID IN SECONDARY ORGANIC AEROSOL FROM LABORATORY IRRADIATED ISOPRENE/NO X/SO 2/AIR MIXTURES AND THEIR DETECTION IN AMBIENT PM 2.5 SAMPLES COLLECTED IN THE EASTERN UNITED STATES

    EPA Science Inventory

    A series of isoprene/NOx/air irradiation experiments, carried out in both the absence and presence of SO2, were conducted to assess whether isoprene contributes to secondary organic aerosol (SOA) formation. In the absence of SO2 , the SOA yield of 0.002 was low. However, in th...

  14. Flux calculation using CARIBIC DOAS aircraft measurements - SO2 emission of Norilsk

    NASA Astrophysics Data System (ADS)

    Walter, D.; Heue, K.-P.; Rauthe-Schöch, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-04-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic.de) observes physical and chemical processes in the atmosphere using a fully automated measurement container aboard a Lufthansa Airbus 340-600. A special inlet system is mounted on the aircraft with probes for trace gases, water vapor and aerosol particles. The inlet system also includes DOAS (Differential Optical Absorption Spectroscopy) telescopes for remote sensing. In October 2010, enhanced NO2 and high SO2 Slant Column Densities up to 6 · 1017 molec/cm2 were detected near Norilsk with the nadir channel of the DOAS instrument. The retrieved column densities were combined with ECMWF wind data to derive the SO2 flux crossing the vertical plane of the flight route. With that, the SO2 output of the Norilsk industrial complex is estimated to be ~1 Mt per year, which is in agreement with various independent estimates. We also compare our value to results obtained using data from satellite remote sensing (GOME-2, OMI). The validity of the assumptions we used to obtain our estimate is discussed. We also discuss the adaption of our method to other gases and sources like the NO2 emissions of industrial complexes or major cities.

  15. Synergistic effects between SO2 and HCOOH on ?-Fe2O3.

    PubMed

    Wu, Ling-Yan; Tong, Sheng-Rui; Zhou, Li; Wang, Wei-Gang; Ge, Mao-Fa

    2013-05-16

    Heterogeneous reactions on mineral aerosols remain an important subject in atmospheric chemistry because of their role in altering the properties of particles and the budget of trace gases. Yet, the role of coadsorption of trace gases onto mineral aerosols and potential synergistic effects are largely uncertain, especially synergistic effects between inorganic and organic gas-phase pollutants. In this study, synergistic effects between HCOOH and SO2 were investigated for the first time using in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS). It was found that the heterogeneous reaction of HCOOH is hindered significantly by coexisting SO2. The total amount of formate decreased, whereas the total amount of sulfate was not affected during coadsorption on the surface of ?-Fe2O3. Futhermore, part of the formate on the surface was catalytically decomposed to CO2 by ?-Fe2O3 with the help of SO2. These results suggest a possible mechanism for the observed correlations between sulfate and carboxylate in the atmosphere. PMID:23600701

  16. Evaluation of the Giggenbach bottle method using artificial fumarolic gases

    NASA Astrophysics Data System (ADS)

    Lee, S.; Jeong, H. Y.

    2013-12-01

    Volcanic eruption is one of the most dangerous natural disasters. Mt. Baekdu, located on the border between North Korea and China, has been recently showing multiple signs of its eruption. The magmatic activity of a volcano strongly affects the composition of volcanic gases, which can provide a useful tool for predicting the eruption. Among various volcanic gas monitoring methods, the Giggenbach bottle method involves the on-site sampling of volcanic gases and the subsequent laboratory analysis, thus making it possible to detect a range of volcanic gases at low levels. In this study, we aim to evaluate the effectiveness of the Giggenbach bottle method and develop the associated analytical tools using artificial fumarolic gases with known compositions. The artificial fumarolic gases are generated by mixing CO2, CO, H2S, SO2, Ar, and H2 gas streams with a N2 stream sparged through an acidic medium containing HCl and HF. The target compositions of the fumarolic gases are selected to cover those reported for various volcanoes under different tectonic environments as follows: CO2 (2-12 mol %), CO (0.3-1 mol %), H2S (0.7-2 mol %), SO2 (0.6-4 mol %), Ar (0.3-0.7 mol %), H2 (0.3-0.7 mol %), HCl (0.2-1 mol %), and HF (< 0.015 mol %). The artificial fumarolic gases are collected into an evacuated bottle partially filled with 4 M NaOH solution containing 0.5 mM Cd(CH3COO)2. While non-condensable components such as CO, Ar, H2, and N2 accumulate in the headspace of the bottle, acidic components including CO2, SO2, HCl, and HF dissolve into the alkaline solution. In case of H2S, it reacts with dissolved Cd2+ to precipitate as CdS(s). The gas accumulated in the headspace can be analyzed for CO, Ar, H2, and N2 on a gas chromatography. The alkaline solution is first separated from yellowish CdS precipitates by filtration, and then pretreated with hydrogen peroxide to oxidize dissolved SO2 (H2SO3) to SO42-. The resultant solution can be analyzed for SO2 as SO42-, HCl as Cl-, and HF as F- on an ion chromatography and CO2 on an ionic carbon analyzer. Also, the amount of H2S can be determined by measuring the remaining dissolved Cd2+ on an inductively coupled plasma-mass spectrometry.

  17. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gases from other sources. Heat input shall be calculated in accordance with 40 CFR part 75. Owner or...; and Units 1 and 2 of the Oklahoma Gas and Electric Sooner plant in accordance with 40 CFR 60.8 and 60... assurance procedures for CEMS found in 40 CFR part 75. Compliance with the emission limits for SO2 shall...

  18. Measurements of SO2 in the Mount St. Helens debris

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, F. J.; Mateer, C. L.

    1982-01-01

    Routine measurements of ozone and SO2 are made with the Dobson and Brewer spectrophotometers at the Atmospheric Environment Service in Downsview Ontario. On May 20 and 21, 1980, large values of column SO2 were observed with both spectrophotometers at the time of passage of the Mount St. Helens debris. Enhanced SO2 values were first observed at 1800Z on May 20. The maximum column amount of SO2 measured was 0.06 cm at 2200 Z. On May 21, SO2 values slowly decreased from 0.03 cm at 1100 Z cm to 0.01 cm at 2000Z. Typical SO2 amounts due to pollution at the Downsview site are approximately 0.003 to 0.005 cm. At the same time of maximum SO2 enhancement, both Dobson and Brewer spectrophotometers measured a 0.040 cm decrease of total ozone. It is not clear whether the decrease of total ozone was caused by the volcanic cloud or natural ozone variability. Air mass trajectories indicate that the altitude of the debris cloud, which passed over Downsview at the time, was between 10 km and 12 km.

  19. Thermodynamic state of SO2 on Io's surface

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Fanale, F. P.

    1987-05-01

    It has been suggested that surface conditions on Io might be conducive to significant SO2 adsorption on sulfur or alkali sulfides. A number of spectroscopic arguments for and against the high abundance of a SO2 adsorbate (versus frost) on Io have been made. SO2 absorption isotherms on particulate sulfur are measured, and the question of SO2 adsorbate/ice is approached from a thermodynamic perspective. Because of formidable experimental difficulties, data were not obtained at the very low temperatures and P(SO2) characteristics of Io; however, data were obtained over a wide range of pressures and temperatures somewhat higher than Io's and extrapolated to Io surface conditions. Errors in estimating adsorptive capacity accrue through extrapolation of the adsorption isotherms; however, more significant is the addition of the solid SO2 equilibrium vapor pressure curve to the phase diagram. The formation of ice places a strict upper limit on adsorptive coverage at any temperature. The limit for Io based upon the data is calculated, and it is shown that no more than 0.014 monolayers of SO2 can adsorb on sulfur at Io temperatures. Given the assumption that sulfur forms the primary adsorbent on Io's surface, or the assumption that the adsorptive capacity of the other adsorbents is not substantially greater than that of sulfur, this explains the fact that the nu(1) + nu(3) band center position is in better agreement with that of frost than adsorbate.

  20. Performance Model of the Fluidized Bed Copper Oxide Process for SO2/NOx Control

    E-print Network

    Frey, H. Christopher

    , sulfur recovery, and sulfuric acid recovery plant models are described elsewhere.8,10 The models technology for controlling SO2 and NOx emissions from coal-fired power plants. The development strategies for coal-fired power plants. Details of the IECM's copper oxide process, power plant air preheater

  1. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    NASA Technical Reports Server (NTRS)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  2. Model simulations of the competing climatic effects of SO2 and CO2

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Chou, Ming-Dah

    1993-01-01

    Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO2 effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Using a conservative approach, results show that the cooling induced by the SO2 emission can presently counteract 50 percent of the CO2 greenhouse warming. Since 1980, a strong warming trend has been predicted by the model: 0.15 C during the 1980-1990 period alone. The model predicts that by the year 2060 the SO2 cooling reduces climate warming by 0.5 C or 25 percent for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2 C or 20 percent for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere and the Southern Hemisphere can be used to validate the presence of the SO2-induced cooling.

  3. Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk

    NASA Technical Reports Server (NTRS)

    Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-01-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  4. Flux calculation using CARIBIC DOAS aircraft measurements: SO2 emission of Norilsk

    NASA Astrophysics Data System (ADS)

    Walter, D.; Heue, K.-P.; Rauthe-SchöCh, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-06-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  5. SO2-flux measurements and BrO/SO2 ratios at Guallatiri volcano, Altiplano, northern Chile

    NASA Astrophysics Data System (ADS)

    Gliss, Jonas; Stebel, Kerstin; Thomas, Helen

    2015-04-01

    Sulphur dioxide (SO2) fluxes were measured recently at Guallatiri volcano using two UV SO2-cameras and one IR SO2-camera. Furthermore, measurements of reactive halogens (e.g. BrO, OClO) were investigated using a high performance DOAS (Differential Optical Absorption Spectroscopy) instrument. Guallatiri (18° 25' 00? S, 69° 5' 30? W, 6.071 m a.s.l.) is situated in the Altiplano in northern Chile, close to the Bolivian border. The last known eruption of Guallatiri was in 1960. The measurements were performed during a short-term field trip on three days in November 2014 (20.11.-22.11.2014). During that time, the volcano showed a quiescent degassing behaviour from the summit crater and from a fumarolic field on the southern flank. A preliminary evaluation of the spectra recorded with the DOAS instruments showed SO2 column amounts (SCDs) up to 3 - 1017 molec/cm2 and BrO-SCDs of the order of several 1013 molec/cm2. This corresponds to BrO/SO2-ratios of the order of 10-4 which is a typical order of magnitude for volcanic emissions. We will present SO2-flux estimates for Guallatiri volcano during these three days as well as BrO/SO2-ratio estimates in dependence of different plume ages. Furthermore, we will compare the results retrieved with the two UV-cameras with the data recorded simultaneously with the IR-camera.

  6. Field measurement of acid gases and soluble anions in atmospheric particulate matter using a parallel plate wet denuder and an alternating filter-based automated analysis system.

    PubMed

    Boring, C Bradley; Al-Horr, Rida; Genfa, Zhang; Dasgupta, Pumendu K; Martin, Michael W; Smith, William F

    2002-03-15

    We present a new fully automated instrument for the measurement of acid gases and soluble anionic constituents of atmospheric particulate matter. The instrument operates in two independent parallel channels. In one channel, a wet denuder collects soluble acid gases; these are analyzed by anion chromatography (IC). In a second channel, a cyclone removes large particles and the aerosol stream is then processed by another wet denuder to remove potentially interfering gases. The particles are then collected by one of two glass fiber filters which are alternately sampled, washed, and dried. The washings are preconcentrated and analyzed by IC. Detection limits of low to subnanogram per cubic meter concentrations of most gaseous and particulate constituents can be readily attained. The instrument has been extensively field-tested; some field data are presented. Results of attempts to decipher the total anionic constitution of urban ambient aerosol by IC-MS analysis are also presented. PMID:11922292

  7. Desulfurization of CO:SO2 contaminated gases by manganous oxide

    NASA Astrophysics Data System (ADS)

    Ahmadzai, H.; Staffansson, L. I.

    1987-03-01

    To contribute to the curtailment of anthropogenic emission of sulfurous compounds, the susceptibility of manganous oxide for sulfur under reducing atmospheres (C-O-S system) has been investigated over the temperature range 700 to 900°C (973 to 1173 K). A thermodynamic evaluation of the Mn-S-O system and the C-O-S system was undertaken and the basic, bivariant, and univariant equilibria in the Mn-S-O system over the temperature range 700 to 1100°C are listed. The kinetic investigation employed thermogravimetry and an in situ solid electrolyte oxygen probe to follow the sulfidization reaction of spherical MnO pellets under various experimental conditions. The kinetic evaluation was complemented by X-ray diffraction and krypton B.E.T. surface area analyses. Apparent activation energy of sulfidization of manganous oxide, under measured oxygen potentials in the C-O-S system, was determined to be 6.26 (±2.0) kcal/gmol (26.2 (±8.4) kJ/gmol), and a comparison with some alternative desulfurization agents in the H-O-S system is included.

  8. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2013-03-01

    Sulphur dioxide emission rate measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 300 and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. One important step for correct SO2 emission rate measurements that can be compared with other measurement techniques is a correct calibration. This requires conversion from the measured optical density to the desired SO2 column density (CD). The conversion factor is most commonly determined by inserting quartz cells (cuvettes) with known amounts of SO2 into the light path. Another calibration method uses an additional narrow field-of-view Differential Optical Absorption Spectroscopy system (NFOV-DOAS), which measures the column density simultaneously in a small area of the camera's field-of-view. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatépetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s-1 were observed.

  9. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; McLinden, C. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W. H.; Bucsela, E. J.; Joiner, J.; Duncan, B. N.; Boersma, K. F.; Veefkind, J. P.; Levelt, P. F.; Fioletov, V. E.; Dickerson, R. R.; He, H.; Lu, Z.; Streets, D. G.

    2015-10-01

    The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for the different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2014, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012-2014, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2014. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved to be very valuable in documenting rapid changes in air quality over different parts of the world during the last decade. The baseline established during the first 10 years of OMI is indispensable for the interpretation of air quality measurements from current and future satellite atmospheric composition missions.

  10. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  11. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...contained in the gases discharged to the atmosphere from a designated facility is 27 milligrams...contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams...exhibited by the gases discharged to the atmosphere from a designated facility is 10...

  12. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...contained in the gases discharged to the atmosphere from a designated facility is 27 milligrams...contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams...exhibited by the gases discharged to the atmosphere from a designated facility is 10...

  13. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...contained in the gases discharged to the atmosphere from a designated facility is 27 milligrams...contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams...exhibited by the gases discharged to the atmosphere from a designated facility is 10...

  14. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2012-09-01

    Sulphur dioxide emission flux measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 305 nm and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. While this approach is simple and delivers valuable insights into the two-dimensional SO2 distribution, absolute calibration has proven to be difficult. An accurate calibration of the SO2 camera (i.e., conversion from optical density to SO2 column density, CD) is crucial to obtain correct SO2 CDs and flux measurements that are comparable to other measurement techniques and can be used for volcanological applications. The most common approach for calibrating SO2 camera measurements is based on inserting quartz cells (cuvettes) containing known amounts of SO2 into the light path. It has been found, however, that reflections from the windows of the calibration cell can considerably affect the signal measured by the camera. Another possibility for calibration relies on performing simultaneous measurements in a small area of the camera's field-of-view (FOV) by a narrow-field-of-view Differential Optical Absorption Spectroscopy (NFOV-DOAS) system. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (IDOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an IDOAS to verify the calibration curve over the spatial extend of the image. Our results show that calibration cells can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. These effects can lead to an even more significant overestimation or, depending on the measurement conditions, an underestimation of the true CD. Previous investigations found that possible errors can be more than an order of magnitude. However, the spectral information from the DOAS measurements allows to correct for these radiative transfer effects. The measurement presented in this work were taken at Popocatépetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 kg s-1 and 14.34 kg s-1 were observed.

  15. Oxidation of SO2 by NO2 and air in an aqueous suspension of carbon

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Schryer, D. R.; Cofer, W. R., III; Edahl, R. A., Jr.; Munavalli, S.

    1982-01-01

    A series of experiments has been performed using carbon black as a surrogate for soot particles. Carbon black was suspended in water and gas mixtures were bubbled into the suspensions to observe the effect of carbon particles on the oxidation of SO2 by air and NO2. Identical gas mixtures were bubbled into a black containing only pure water. After exposure each solution was analyzed for pH and sulfate. It was found that NO2 greatly enhances the oxidation of SO2 to sulfate in the presence of carbon black. The amount of sulfate in the blanks was significantly less. Under the conditions of the experiments no saturation of the reaction was observed and SO2 was converted to sulfate even in a highly acid medium (pH not less than 1.5).

  16. Carbon-catalyzed oxidation of SO2 by NO2 and air

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Schryer, D. R.; Cofer, W. R., III; Edahl, R. A., Jr.; Munavalli, S.

    1982-01-01

    A series of experiments was performed using carbon particles (commercial furnace black) as a surrogate for soot particles. Carbon particles were suspended in water, and gas mixtures were bubbled into the suspensions to observe the effect of carbon particles on the oxidation of SO2 by air and NO2. Identical gas mixtures were bubbled into a blank containing only pure water. After exposure each solution was analyzed for pH and sulfate. It was found that NO2 greatly enhances the oxidation of SO2 to sulfate in the presence of carbon particles. The amount of sulfate found in the blanks was significantly less. Under the conditions of these experiments no saturation of the reaction was observed and SO2 was converted to sulfate even in a highly acid medium (pH or = 1.5).

  17. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    USGS Publications Warehouse

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability tocause jet engines to fail. Other risks include the possibility of abrasion ofwindshields and potentially serious damage to avionic systems. These hazardshave been widely recognized since the early 1980s, when volcanic ash provokedseveral incidents of engine failure in commercial aircraft. In addition tovolcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulativeexposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4)aerosols potentially affects e.g. windows, air frame and may cause permanentdamage to engines. SO2 receives most attention among the gas speciescommonly found in volcanic plumes because its presence above the lowertroposphere is a clear proxy for a volcanic cloud and indicates that fine ashcould also be present. Up to now, remote sensing of SO2 via Differential Optical AbsorptionSpectroscopy (DOAS) in the ultraviolet spectral region has been used tomeasure volcanic clouds from ground based, airborne and satellite platforms.Attention has been given to volcanic emission strength, chemistry insidevolcanic clouds and measurement procedures were adapted accordingly. Here wepresent a set of experimental and model results, highlighting the feasibilityof DOAS to be used as an airborne early detection system of SO2 intwo spatial dimensions. In order to prove our new concept, simultaneousairborne and ground-based measurements of the plume of Popocat??petlvolcano, Mexico, were conducted in April 2010. The plume extended at analtitude around 5250 m above sea level and was approached and traversed at thesame altitude with several forward looking DOAS systems aboard an airplane.These DOAS systems measured SO2 in the flight direction and at?? 40 mrad (2.3??) angles relative to it in both, horizontal andvertical directions. The approaches started at up to 25 km distance to theplume and SO2 was measured at all times well above the detectionlimit. In combination with radiative transfer studies, this study indicatesthat an extended volcanic cloud with a concentration of 1012 molecules cm-3 at typical flight levels of 10 km can be detectedunambiguously at distances of up to 80 km away. This range provides enoughtime (approx. 5 min) for pilots to take action to avoid entering avolcanic cloud in the flight path, suggesting that this technique can be usedas an effective aid to prevent dangerous aircraft encounters with potentiallyash rich volcanic clouds. ?? Author(s) 2011.

  18. A simulation of the Cerro Hudson SO2 cloud

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Doiron, Scott D.; Lait, Leslie R.; Newman, Paul A.; Krueger, Arlin J.

    1993-01-01

    An isentropic trajectory model is used to simulate the evolution of the southern hemisphere SO2 cloud associated with the eruption of Cerro Hudson. By matching the parcel trajectories with total ozone mapping spectrometer SO2 retrievals, the principal stratospheric injection region is determined to be between 11 and 16 km in altitude. This region is characterized by weak wind shears and is located just poleward of the subtropical jet in the outer fringe of the stratospheric polar vortex. The lack of wind shear in the injection region explains the slow zonal dispersal of the SO2 cloud which was still clearly observed 19 days after the eruption. The trajectory model simulation of the SO2 cloud shows good agreement with observations for 7 days after the eruption. Using the potential vorticity and potential temperature estimates of the initial eruption cloud, the cloud position relative to the polar night jet is shown to be nearly fixed up to September 2, 1991, which was as long as the cloud was observed. This result suggests that the lower stratospheric polar and midlatitude regions are nearly isolated from each other during the late August period.

  19. The role of SO2 in volcanism on Io

    USGS Publications Warehouse

    Smith, B.A.; Shoemaker, E.M.; Kieffer, S.W.; Cook, A.F., II

    1979-01-01

    Io and Earth are the only planetary bodies known to be volcanically active; the energetics of the eruptive plumes on Io have important structural implications and are closely linked with the presence of sulphur and SO 2. ?? 1979 Nature Publishing Group.

  20. BOILER SIMULATOR STUDIES ON SORBENT UTILIZATION FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of a program to provide process design information for sorbent utilization as applied to EPA's LIMB process. Specifically, the program was designed to investigate the role of boiler thermal history, sorbent injection location, Ca/S molar ratio, and SO2 pa...

  1. EVALUATION OF SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGY

    EPA Science Inventory

    The report gives results of work concentrating on characterizing three process operational parameters of a technology that combines sorbent injection and selective non-catalytic reduction for simultaneous sulfur dioxide/nitrogen oxide (SO2/NOx) removal from coal-fired industrial ...

  2. BENCH SCALE STUDIES OF LIMESTONE INJECTION FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of experiments in a boiler simulator furnace, indicating that the parameters of major importance to SO2 capture are thermal environment, calcium/sulfur ratio, and sorbent composition. Thermal environment (local temperature) had a strong effect on the util...

  3. SO2 SCRUBBING TECHNOLOGIES: A REVIEW: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P-585 Srivastava*, R.K., Jozewicz, W., and Singer, C. SO2 Scrubbing Technologies: a Review. Environmental Progress 20 (4):219-227 (2001). EPA/600/J-02/022, Available: Environmental Progress (journal), http://www.aiche.org/publications/tocs/issuedtl.asp, [NET]. 03...

  4. Uptake of SO(2) by Polycrystalline Water Ice.

    PubMed

    Huthwelker, Thomas; Lamb, Dennis; Baker, Marcia; Swanson, Brian; Peter, Thomas

    2001-06-01

    We have investigated two previous experimental studies (Clapsaddle and Lamb, 1989; Conklin et al. 1989) of SO(2) uptake into polycrystalline ice the results of which seem to conflict. Both studies employed porous packed beds prepared by freezing 200-&mgr;m-diameter water drops in liquid nitrogen followed by aging. In the absence of oxidation, uptake was measured via frontal chromatography at various temperatures between -60 and -1 degrees C, with SO(2) mixing ratios between 15 and 100 ppb. The experiments differed primarily in the ice surface areas and exposure times, yielding purportedly equilibrium surface coverages that differed by more than a factor of 50. The uptake increased with temperature and with a less than linear dependence on partial pressure. Our comparison shows that a kinetic model is needed for interpretation partly explaining the apparent discrepancy between the two investigated uptake experiments. The uptake rates, its amount, and its temperature dependence suggest that SO(2) dissociates and diffuses into an internal reservoir for example comprised of veins and nodes, but not into a surface layer as previously hypothesized. Whereas slow diffusion may remain undetected during the relatively short time scales of laboratory experiments, it may dominate trace gas uptake by natural ice. We suggest that dry deposition schemes of SO(2) onto snowpacks in climate models should include the kinetics of uptake and account for the temperature and pressure dependencies found in the laboratory studies reviewed here. Copyright 2001 Academic Press. PMID:11350148

  5. One-Dimensional SO2 Predictions for Duct Injection

    Energy Science and Technology Software Center (ESTSC)

    1993-10-05

    DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.

  6. HEMATOLOGIC AND IMMUNOLOGIC STUDIES OF HUMANS EXPOSED TO SO2

    EPA Science Inventory

    Immunologic and hematologic parameters were used to evaluate the effects in humans of a single 2 hour exposure to either clean air or 0.75 ppm SO2. Venous blood Samples were obtained before, immediately after, and 24, 48, and 72 hours following the end of exposure. Parameters stu...

  7. SO2 AND NOX CONTROL TECHNOLOGY RESEARCH, DEVELOPMENT, AND DEMONSTRATION

    EPA Science Inventory

    The paper describes EPA work in several areas relating to reducing SO2 and NOx emissions from coal-fired utility boilers, and provides an overview of objectives, approach, current status, and plans for each. In addition, it describes plans for a small-scale selective catalytic re...

  8. DEVELOPMENT OF AN SO2 MONITOR FOR MOBILE SOURCES

    EPA Science Inventory

    An instrument has been designed and built to monitor the concentration of SO2 in the exhaust of mobile sources. A grating assembly disperses the ultraviolet energy from a deuterium-arc source and passes five narrow spectral intervals. Three of the intervals (set A) coincide with ...

  9. STATUS OF DRY SO2 CONTROL SYSTEMS: FALL 1982

    EPA Science Inventory

    The report, updating the status of dry SO2 control systems for coal-fired utility and industrial boilers in the U.S. through the Fall of 1982, is based on current and recent research, research and development, and commercial activities. Systems addressed include: (1) spray dryer/...

  10. CHARACTERIZATION OF ADVANCED SORBENTS FOR DRY SO2 CONTROL

    EPA Science Inventory

    The paper discusses the development of new flyash/lime sorbents for removing SO2 from coal-fired flue gas. Flyash/lime weight ratios of 1:1 to 10:1 and several additives to these sorbents for promoting their reactivity were evaluated in a bench-scale reactor simulating conditions...

  11. COMBUSTION ENGINEERING'S FURNACE SORBENT INJECTION PROGRAMS FOR SO2 CONTROL

    EPA Science Inventory

    The paper discusses three Combustion Engineering programs relating to the furnace sorbent injection process, a low-cost method for controlling sulfur dioxide (SO2) emissions from tangentially fired, coal burning boilers. The programs are: (1) pilot-scale investigations in the lab...

  12. Solubility and Diffusivity of SO2 for Co-injection With CO2 in Geological Sequestration

    NASA Astrophysics Data System (ADS)

    Crandell, L.; Ellis, B.; Peters, C.

    2008-12-01

    There are potential economic benefits to the co-injection of SO2 with CO2 in the context of geological sequestration, but the impact of this co-injection on the fate and migration of SO2 and CO2 is poorly understood. Previous modeling studies have shown that injection of SO2 with CO2 would create highly acidic conditions due to formation of sulfuric acid. However, little is known regarding the solubility of SO2 under high pressure, high salinity conditions, and the kinetic limitations of SO2 diffusion in a CO2 phase. A method to estimate the phase partitioning of SO2 under geological storage conditions was developed in this study. The method uses the Krichevsky-Ilinskaya equation to correct for high pressures and the Schumpe model for mixed electrolyte solutions. Henry's constants for a broad range of brine solutions were calculated at storage conditions of 100 bar pressure. The Henry's constant for SO2 is 1.5 M/atm at 40°C and is 0.86 M/atm at 60°C. Under these same conditions, the Henry's constant for CO2 is much smaller, roughly 0.01 M/atm (40°C to 60°C). Henry's constants increase with increasing pressure but decrease with increasing temperature. These effects can be observed by comparing the SO2 Henry's constants under storage conditions with the value under ambient temperature and pressure conditions in pure water, 1.2 M/atm. To simulate diffusion through stationary CO2, a non- steady state two-dimensional model of SO2 diffusion through supercritical CO2 was also created. A binary diffusion coefficient of 5×10-8 m2/sec was estimated based on the Takahashi correlation to account for high pressures, where a low pressure coefficient was determined using the Fuller estimation. Binary diffusion coefficients for polar compounds in supercritical CO2 have been previously studied and are on the same order of magnitude as the binary diffusion coefficient estimated in this study. The system that was modeled is a cone-shaped system representing separate-phase CO2 confined in a formation after injection. Boundary conditions consisted of a no-flux boundary at the top of the cone to account for the impermeable confining caprock, and a zero concentration boundary at the cone edge to simulate a worst case scenario for dissolution. The initial conditions considered a uniform concentration of one percent SO2 everywhere in the cone. To numerically simulate the concentration profile throughout the cone, a time-split explicit difference method was applied. The diffusion modeling results show that contact between SO2 and formation brine will be diffusion limited; after 3000 years approximately 75% of sulfur remains in the cone. In summary, while SO2 is highly soluble in water, its slow diffusion through a supercritical CO2 phase will likely inhibit its mass transfer.

  13. Greenhouse Gases

    MedlinePLUS

    ... effects. More about how greenhouse gases affect the climate » Also on Energy Explained Energy and the Environment Where Greenhouse Gases ... 44&aid=8 Last reviewed: September 25, 2015 « Energy and the Environment Greenhouse Gases’ Effect on the Climate »

  14. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  15. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

    PubMed

    Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min

    2015-09-01

    Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10(-16) cm(3) s(-1)) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near-gas-kinetic-limit rate (kSO2 = 1.3 × 10(-10) cm(3) s(-1)). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere. PMID:26283390

  16. Examination of CO2-SO2 solubility in water by SAFT1. Implications for CO2 transport and storage.

    PubMed

    Miri, R; Aagaard, P; Hellevang, H

    2014-08-28

    Removal of toxic gases like SO2 by cosequestration with CO2 in deep saline aquifers is a very attractive suggestion from environmental, human health and economic point of view. Examination of feasibility of this technique and forecasting the underlying fluid-rock interactions requires precise knowledge about the phase equilibria of the ternary mixture of SO2-CO2-H2O at conditions relevant to carbon capture and storage (CCS). In this study, a molecular-based statistical association fluid theory (SAFT1) model is applied to estimate the phase equilibria and aqueous phase density of mixtures. The molecules are modeled as associating segments while self-association is not allowed. The model is tested for different SO2 concentrations and for temperatures and pressures varying between 30-100 °C and ?6-30 MPa, respectively. Comparison of the results of this model against the available experimental data of binary systems demonstrates the capability of this equation of state, although, in contrast to the previous works, no temperature dependent binary interaction coefficient is applied. The results show that the total solubility of SO2 + CO2 in water varies exponentially with respect to SO2 concentrations, i.e., at low concentrations of SO2, total changes in solubility of the CO2 in water is negligible. PMID:25026002

  17. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any...

  18. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any...

  19. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any...

  20. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any...

  1. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any gases...shall cause to be discharged into the atmosphere from that affected facility any...

  2. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility shall cause to be discharged into the atmosphere from that affected facility any gases that... operator of an affected facility shall cause to be discharged into the atmosphere from that affected... atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified...

  3. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... contained in the gases discharged to the atmosphere from a designated facility is 25 milligrams per dry... the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average)....

  4. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lübcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s?1 were observed.

  5. Water independent SO2 oxidation by Stabilised Criegee Intermediates from Biogenic Alkenes

    NASA Astrophysics Data System (ADS)

    Newland, Mike; Rickard, Andrew; Vereecken, Luc; Evans, Mat; Muñoz, Amalia; Ródenas, Milagros; Bloss, William

    2015-04-01

    Biogenic VOCs account for about 90% of global VOC emissions and these are dominated by the unsaturated hydrocarbons: isoprene (600 Tg yr-1) and monoterpenes (100 Tg yr-1). Stabilized Criegee Intermediates (SCI) are thought to be formed in the atmosphere mainly from reactions of unsaturated hydrocarbons with ozone. SCI have been shown in laboratory experiments to rapidly oxidise SO2 (k > 2x10-11 cm3 s-1) and NO2 (k = 7x10-12 cm3 s-1), providing a potentially important gas phase oxidation route for these species in the atmosphere. The importance of the SCI reaction with traces gases has been shown in modelling work to be critically dependent on the ratio of the rate constants for the reaction of the SCI with these trace gases and with H2O. Such modelling work has suggested that the SCI + SO2 reaction is only likely to be important in regions with high alkene emissions, e.g. forests, and that elsewhere SCI are likely to be almost entirely quenched by reaction with water, thus negating their importance as trace gas oxidants. However, it has been shown in laboratory experiments with small SCI that the reaction rate of SCI with water is structure dependent, with anti-CH3CHOO reacting fast with H2O (k > 1x10-14 cm3 s-1), and syn-CH3CHOO reacting orders of magnitude slower (k < 2x10-16 cm3 s-1). Here we present results from a series of ozonolysis experiments performed at the EUPHORE atmospheric simulation chamber in Valencia. These experiments measure the loss of SO2, in the presence of various biogenic alkenes (isoprene and three monoterpenes: ?-pinene, ?-pinene and limonene), as a function of water vapour. The SO2 loss shows a dependence on relative humidity for all systems studied, decreasing with increasing relative humidity. However, for all species, there also appears to be a fraction of the SO2 loss that shows a much lower sensitivity to relative humidity. We quantify the relative rates of reaction of the SCI produced in the ozonolysis of these biogenics with water and SO2, and their decomposition rates. The results suggest that the alkenes studied produce a mixture of SCIs with widely varying reactivity towards H2O under atmospheric conditions. This behaviour is likely dependent on structure, in agreement with direct observations of the small SCI CH3CHOO, and suggests that different SCIs have different fates in the atmosphere. The impact of these observations for the identity, abundance and behaviour of SCIs expected to predominate in regions dominated by biogenic emissions, and their scope to act as atmospheric oxidants for other trace gases, is discussed.

  6. Flue gas SO 2/NO x control by combination of dry scrubber and electron beam

    NASA Astrophysics Data System (ADS)

    Helfritch, D. J.; Feldman, P. L.

    This study examines the feasibility of adding an electron beam between the spray dryer and the fabric filter of "dry scrubber" flue gas desulfurization (FGD) systems. The beam promises effective removal of nitrogen oxides (NO x) and sulfur dioxide (SO 2), even at higher coal-sulfur levels than usually economic for dry scrubbers. The beam excites gas molecules, promoting reactions that convert SO 2 and NO x to acids that then react with calcium compounds and are removed by the filter. The cost findings are promising for both manufacture and operation. The system uses commercially available components. The relatively low temperatures and high humidity downstream of the spray dryer favor economic beam operation. The beam removes SO 2, so the dryer can be run for economy, not high removal. Pilot scale tests will soon be carried out which are designed to verify earlier bench scale test results and to serve as the next step to full commercialization. It is expected that better than 90% SO 2 and NO x removal will be achieved.

  7. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan; Cen, Wanglai; Liu, Jie; Guo, Jiaxiu; Yin, Huaqiang; Ning, Ping

    2015-01-01

    Carbon materials have been used for low temperature (20-150 °C) catalytic removal of SO2 from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO2 on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO2 through H-bonding interaction and reducing the reaction barrier for its oxidation to SO3. The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation.

  8. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream.

    PubMed

    Lin, Jian; Li, Lin; Ding, Wenjie; Zhang, Jingying; Liu, Junxin

    2015-11-01

    Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds. PMID:26574096

  9. Seasonal characteristics of SO2, NO2, and CO emissions in and around the Indo-Gangetic Plain.

    PubMed

    Mallik, C; Lal, S

    2014-02-01

    Anthropogenic emissions of sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) exert significant influence on local and regional atmospheric chemistry. Temporal and spatial variability of these gases are investigated using surface measurements by the Central Pollution Control Board (India) during 2005-2009 over six urban locations in and around the Indo-Gangetic Plain (IGP) and supported using the satellite measurements of these gases. The stations chosen are Jodhpur (west of IGP), Delhi (central IGP), Kolkata and Durgapur (eastern IGP), Guwahati (east of IGP), and Nagpur (south of IGP). Among the stations studied, SO2 concentrations are found to be the highest over Kolkata megacity. Elevated levels of NO2 occur over the IGP stations of Durgapur, Kolkata, and Delhi. Columnar NO2 values are also found to be elevated over these regions during winter due to high surface concentrations while columnar SO2 values show a monsoon maximum. Elevated columnar CO over Guwahati during pre-monsoon are attributed to biomass burning. Statistically significant correlations between columnar NO2 and surface NO2 obtained for Delhi, Kolkata, and Durgapur along with very low SO2 to NO2 ratios (?0.2) indicate fossil fuel combustion from mobile sources as major contributors to the ambient air over these regions. PMID:24097012

  10. The enhanced oxidation of SO2 by NO2 on carbon particulates

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Schryer, D. R.; Rogowski, R. S.

    1980-01-01

    The oxidation of SO2 on carbon particles in dry air and in air at 65% relative humidity (RH) was found to be greatly enhanced by the presence of gaseous NO2. Exposures of 20-80ppm SO2 + 10ppm NO2 on 1-mg samples of commercial carbon black were found to produce both sorption and desorption coverages (weight retained after desorption into N2) of over one order of magnitude greater than for corresponding SO2 exposures. Significant agglomeration and wetting were observed to occur progressively during exposures at 65% RH, and samples, even after 150-h exposure, rarely reached steady-state weight gain. The wetting may have regenerated fresh reactive carbon surface. Sorptions conducted in nitrogen atmospheres, rather than in air, appeared to produce slightly higher sorptions and weight retentions for equivalent exposure concentrations and times, indicating that NO2 served as the oxidizer and that molecular oxygen, or some trace constitutents in air, may have weakly inhibited the oxidation by NO2. Wet chemical analysis of the desorbed phase indicated that sulfate, presumably H2SO4 accounted for over half of the retained weight. Measurements of pH from water-quenched samples indicated a highly acidic surface phase, and suggested the oxidation process could proceed in an acidic environment.

  11. Aqueous phase oxidation of SO2 by O3 measured at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher; Fuchs, Claudia; Gysel, Martin; Troestl, Jasmin; El Haddad, Imad; Frege, Carla; Dommen, Josef; Dias, Antonio; Jaervinen, Emma; Moehler, Ottmar; Baltensperger, Urs

    2015-04-01

    Measurements of aerosol growth due to the oxidation of SO2 by O3 in cloud droplets at temperatures of 10° C and -10° C are presented. Although this reaction has been well studied in bulk solutions at temperatures above 0° C, this is, to the best of our knowledge, the first time the reaction rate has been studied in laboratory formed, super-cooled cloud droplets. These experiments were made possible by utilising the adiabatic expansion system in the 27 m3 CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN. Experiments were performed on both acidic (sulphuric acid) and neutral (ammonium sulphate) seed aerosol. During 6 minute cloud cycles, droplets of approximately 10?m diameter were formed, and the growth of the aerosol due to the uptake and oxidation of SO2 was measured with a scanning mobility particle sizer (SMPS). A microphysical model was developed to simulate the cloud droplet activation and growth as well as the aqueous phase chemistry. The ability of the model to accurately represent the observed aerosol growth is assessed, and the implications for the extrapolation of the SO2+O3oxidation rates to sub-zero temperatures are discussed.

  12. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOEpatents

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  13. Soil acidification in China: Is controlling SO2 emissions enough?

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J.

    2009-12-01

    Facing challenges of regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector, in order to achieve the national goal of 10% reduction in sulfur dioxide (SO2) emissions from 2005 to 2010. In this study, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO2, oxides of nitrogen (NOX), particulate matter (PM), and ammonia (NH3) in 2005 were estimated to be 30.7, 19.6, 31.3 and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO2 and PM emissions, while those of NOX and NH3 will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur deposition (indicated by CLmax(S)) was exceeded in 28% of the country’s territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (combining effects of eutrophication and acidification, indicated by CL(N)) will double from 2005 to 2020 due to increased NOX and NH3 emissions. Combining the acidification effects of S and N(indicated by CL(S)), the benefits of SO2 reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (both NOX and NH3) and deposition will be a major challenge to China, requiring both policy development and technology investments. To mitigate acidification in the future, China needs a multi-pollutant control strategy that integrates measures to reduce S, N and PM. Exceedances of critical loads for acidification and nutrient nitrogen in 2005, 2010, and 2020. Critical load exceedance in 2005, 2010 and 2020

  14. Modeling of SO2 dispersion from the 2014 Holuhraun eruption in Iceland using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Arnason, Gylfi; Palsson, Thorgeir; Eliasson, Jonas; Weber, Konradin; Böhlke, Christoph; Thorsteinsson, Throstur; Tirpitz, Lukas; Platt, Ulrich; Smith, Paul D.; Jones, Roderic L.

    2015-04-01

    The fissure eruption in Holuhraun in central Iceland is the country's largest lava and gas eruption since 1783 but has produced very little volcanic ash. The eruption started in late August 2014 and is still ongoing as of January 2015. The main threat from this event has been atmospheric pollution of SO2 that is carried by wind to all parts of the country and produces elevated concentrations of SO2 that have frequently violated National Air Quality Standards (NAQS) in many population centers. The Volcanic Ash Research (VAR) group in Iceland is focused on airborne measurement of ash contamination to support safe air travel, as well as various gas concentrations. In relation to the Holuhraun eruption the VAR group has organized an investigation campaign including 10 measurement flights and performed measurements of both the source emissions and the plume distribution. SO2 concentrations measured at the source showed clear potential for creating pollution events in the toxic range and contamination of surface waters. The data obtained in the measurement campaign was used for calibration of the WRF-chem model of the dispersion of SO2 and volcanic ash concentration. The model has both been run in operational forecast mode (since mid October) as well as in a dynamical downscaling mode, to estimate the dispersion and fallout of SO2 from the plume. The model results indicate that a large part of the sulphur was precipitated in the Icelandic highlands. The first melt waters during the spring thaw are likely to contain acid sulphur compounds that can be harmful for vegetation, with the highland vegetation being the most vulnerable. These results will be helpful to estimate the pollution load on farmlands and pastures of farmers.

  15. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...gases, expressed as sulfur dioxide and hydrogen chloride, are specified in paragraphs...plan shall include emission limits for hydrogen chloride at least as protective as the emission limits for hydrogen chloride specified in paragraphs...

  16. Influence of Tropospheric SO2 Emissions on Particle Formation and the Stratospheric Humidity

    NASA Technical Reports Server (NTRS)

    Notholt, J.; Luo, B. P.; Fueglistaler, S.; Weisenstein, D.; Rex, M.; Lawrence, M. G.; Bingemer, H.; Wohltmann, I.; Corti, T.; Warneke, T.; vonKuhlmann, R.; Peters, T.

    2005-01-01

    Stratospheric water vapor plays an important role in the chemistry and radiation budget of the stratosphere. Throughout the last decades stratospheric water vapor levels have increased and several processes have been suggested to contribute to this trend. Here we present a mechanism that would link increasing anthropogenic SO2 emissions in southern and eastern Asia with an increase in stratospheric water. Trajectory studies and model simulations suggest that the SO2 increase results in the formation of more sulfuric acid aerosol particles in the upper tropical troposphere. As a consequence, more ice crystals of smaller size are formed in the tropical tropopause, which are lifted into the stratosphere more readily. Our model calculations suggest that such a mechanism could increase the amount of water that entered the stratosphere in the condensed phase by up to 0.5 ppmv from 1950-2000.

  17. Photothermal beam deflection applied to SO2 trace detection

    NASA Astrophysics Data System (ADS)

    Manzano, Francisco A.; D'Accurso, V.; Radulovich, O.

    2004-10-01

    We present the application to environmental monitoring of a compact setup for in situ trace gas detection based on photothermal beam deflection (mirage effect) spectroscopy. Gas traces measurements are performed by detecting the time-varying component of the photothermal deflection of a red diode laser beam, propagating inside the region where a pollutant is excited by another laser. In this work, detection of traces of SO2 in a mixture with Nitrogen at atmospheric pressure enclosed in a glass cell, was performed using the fourth-harmonic pulses of a 10 Hz Nd:YAG laser. It was verified by FTIR spectroscopy that negligible SO2 destruction was produced after irradiation of high pressure mixtures with 105 UV pulses. Several beam sizes and propagating angles for the UV and visible laser were tested and evaluated in order to overcome parasitic signals due to unwanted absorption in optical elements. With this setup we reached a detection limit of 5 ppbV in a hundred-second averaging time span but we estimate sub-ppbV levels can be reached by simple changes in the geometry for improving the signal to noise ratio.

  18. The ground state rotational spectrum of SO 2F 2

    NASA Astrophysics Data System (ADS)

    Rotger, M.; Boudon, V.; Loëte, M.; Margulès, L.; Demaison, J.; Mäder, H.; Winnewisser, G.; Müller, H. S. P.

    2003-12-01

    The analysis of the ground state rotational spectrum of SO 2F 2 [K. Sarka, J. Demaison, L. Margulès, I. Merke, N. Heineking, H. Bürger, H. Ruland, J. Mol. Spectrosc. 200 (2000) 55] has been performed with the Watson's Hamiltonian up to sextic terms but shows some limits due to the A and S reductions. Since SO 2F 2 is a quasi-spherical top, it can also be regarded as derived from an hypothetical XY 4 molecule. Thus we have developed a new tensorial formalism in the O(3)? Td? C2 v group chain (M. Rotger, V. Boudon, M. Loëte, J. Mol. Spectrosc. 216 (2002) 297]. We test it on the ground state of this molecule using the same experimental data (10 GHz-1 THz region, J up to 99). Both fits are comparable even if the formalisms are slightly different. This paper intends to establish a link between the classical approach and the tensorial formalism. In particular, our tensorial parameters at a given order of the development are related to the usual ones. Programs for spectrum simulation and fit using these methods are named C2 vTDS. They are freely available at the URL: http://www.u-bourgogne.fr/LPUB/c2vTDS.html.

  19. Supersite synergies improve volcanic SO2 flux monitoring

    NASA Astrophysics Data System (ADS)

    Burton, Michael; Di Muro, Andrea

    2014-05-01

    Both the Etna, Italy, volcano and Piton de la Fournaise (PdF), France, volcano Supersites are monitored with networks of scanning UV spectrometers. An ongoing collaboration between INGV and IPGP researchers has led to a dynamic technology transfer of novel new data analysis procedures to both networks. This new approach has been custom built to account for the particularities of both Supersites. For the Etna Supersite, the large, continuous gas emission, wide plumes and high plume height produce significant challenges for automatic networks of scanning UV spectrometers, due to the lack of a clear sky spectrum and light dilution effects. The novel approach presented here addresses both these issues. In the case of the PdF Supersite, negligible SO2 efflux is observed apart from immediately before, during and after volcanic eruptions. This necessitates a very sensitive and precise automatic analysis in order to detect the first whiffs of SO2 which act as a precursor to eruptive activity. Exactly such a solution has been developed and is demonstrated here. The technology transfer between these two Supersites promotes synergistic advantages, improving the monitoring capacity at both sites. However, until now such synergies have come about exclusively through local support from each site and the initiative of individual researchers. The full potential of such synergies can be greatly enhanced in the future if they are fully recognised and supported within the context of the Supersite initiative.

  20. forced overdischarge related safety aspects of Li/SO2 and Li/SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    Results of an experiment investigating overdischarge behavior of two types of Li/SO2 cells are presented. Forced overdischarges of the Li/LiBr, CH3CN/SO2 cell can result in unsafe behavior such as venting with fire and release of toxic gases. The hazards may be minimized or eliminated by careful cell design considerations and practice of high standards of quality contol in cell manufacture. Seemingly safe cells at 25 C when forced overdischarged at -25 C, even at low currents, exhibited incipient signs of hazards. Their cathodes indicated signs of shock sensitivity. Cathode limited Li/SOCl2 cells were safe during forced overdischarge for long periods of time. Lithium limited Li/SOCl2 cells in which practically all Li had been used up before cell reversal did not exhibit hazardous behavior. Anode limited Li/SOCl2 cells, but not Li limited, exhibited detonations, all during overdischarges at relatively low current densities of or = 1 mA/sq cm 2. Anode potentials 4v with large oscillations preceeded the events. The events were confined to the anode and the temperature rose high enough to melt Ni grids.

  1. Mapping the BrO/SO2 ratio in the plume of Popocatépetl, Mexico with Imaging-DOAS

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Luebcke, Peter; Vogel, Leif; Bobrowski, Nicole; Platt, Ulrich

    2015-04-01

    Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet and visible wavelength region has become a widespread tool, not only to study the chemistry of trace gases such as sulphur dioxide (SO2) and halogen oxides (e.g. BrO, OClO) in volcanic plumes. It can also be used for volcano monitoring by observing SO2 fluxes and the molar ratio of BrO to SO2, which is a possible precursor for dynamic changes in the shallow part of a volcanic system like other halogen/sulfur ratios. This acquisition of this ratio is convenient as it can be measured with comparatively simple UV DOAS instruments. Imaging-DOAS (IDOAS) utilizes the push-broom or whisk-broom technique to create a hyperspectral image of a section of the sky, then the DOAS evaluation is applied to each pixel to derive trace gas slant column densities (SCDs). Hereby images of the SO2 and BrO distribution can be created, allowing to study the chemistry in different parts of the plume. This is especially interesting for the case of BrO, which is produced in the atmosphere and not directly emitted by volcanoes. Here we present IDOAS measurements carried out at Popocatépetl volcano, Mexico, during April 2010 and 2011. SO2 SCDs of up to 2 - 1018 molecules cm-2 and BrO SCDs of up to 7 - 1013 molecules cm-2 were detected. The determined BrO/SO2 ratios range around 3 - 10-5, comparable to several other volcanoes in the Americas. An increase in the determined BrO/SO2 ratios with distance from the vent, i.e. plume age, can be observed.

  2. Quantifying HCl and SO2 adsorption by tephra in volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Ayris, Paul Martin; Delmelle, Pierre; Maters, Elena; Dingwell, Donald Bruce

    2013-04-01

    Tephra-gas interaction in eruption plumes leads to scavenging of volatiles (SO2, HCl, HF) and forms soluble salts and aqueous acids on tephra surfaces. The presence of these compounds may induce a number of environmental effects upon tephra emission and deposition. These may range from acid damage to vegetation surfaces, to the release of key nutrients or toxic metals into lake or surface ocean waters. It has also been suggested that alterations to tephra surface chemistry imparted by volatile scavenging may contribute to in-plume particle aggregation, so influencing tephra dispersal and fallout. Gaining further insight into the possible effects associated with, or indirectly resulting from, gas-tephra interaction necessitates a renewed mechanistic investigation of the latter. Such an undertaking must expand upon the three stage, 'solid aerosol adhesion / volatile adsorption / acid condensation' scavenging model proposed by Oskarsson in 1980. We present the results of SO2 and HCl uptake experiments on tephrite, phonolite, dacite and rhyolite glass powders conducted over a range of in-plume temperatures (100-800° C). Using a suite of analytical techniques, we identified coupled adsorption-diffusion mechanisms driving the scavenging of SO2 and HCl. These volatiles reacted with Ca- and Na-bearing surface sites to form CaSO4, Na2SO4 and NaCl deposits; uptake is thought to be sustained respectively by near-surface co-diffusion of O2- with Ca2+ or Na+, and interdiffusion between H+ and Na+. The scavenging of SO2 and HCl was also subject to complex thermal, temporal and compositional controls which were strongly influenced by the chemical composition of the glass. By reference to our experimental findings and to current plume evolution and conduit flow models, we are able to estimate the potential for SO2 and HCl uptake by direct adsorption onto tephra particles within the eruption plume. Our findings therefore highlight those eruptive environments where in-plume gas adsorption may significantly alter tephra surface chemistry, and in doing so, may dictate the intensity of any induced chemical effects in the plume or in receiving environments.

  3. The sensitivity of regionally averaged O 3 and SO 2 concentrations to ADOM dry deposition velocity parameterizations

    NASA Astrophysics Data System (ADS)

    Padro, J.; Puckett, K. J.; Woolridge, D. N.

    The influence of three different surface resistance formulations upon the resulting grid-averaged dry deposition velocity and the concentrations of O 3 and SO 2 calculated using the Acid Deposition and Oxidant Model (ADOM) has been investigated. Four ADOM simulations of the O 3 and SO 2 concentrations were compared with each other and the observations. The results show that two of the resistance formulations can decrease the original ADOM area-averaged dry deposition velocity by as much as 50% and increase the corresponding concentration by as much as 37% for O 3 and SO 2. However, all versions of the ADOM considerably underpredict the concentrations, implying weaknesses in ADOM that are not related to dry deposition. Wet surfaces appeared to have little influence on the estimated dry deposition velocity and concentration of O 3 but had a strong influence on those for SO 2.

  4. SORPTION OF MERCURY SPECIES BY ACTIVATED CARBONS AND CALCIUM-BASES SORBENTS: EFFECT OF TEMPERATURE, MERCURY CONCENTRATION AND ACID GASES

    EPA Science Inventory

    Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...

  5. ASSESSING THE EFFECT OF SO2 EMISSION CHANGES ON VISIBILITY

    EPA Science Inventory

    During the 1970s the effect of acid rain on the environment became a growing concern to scientists, public policy officials, interest groups, and the general population. he United States Congress mandated a 10-year study, National Acid Precipitation Assessment Program (NAPAP), to...

  6. Io's Thermal Regions and Non-SO2 Spectral Features

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Soderblom, L. A.; Lopes, R. M. C.

    2003-01-01

    Several absorptions have been identified in the Galileo NIMS spectra of Io that are not related to SO2. [1,2]. These absorptions have band centers at 2.97, 3.15, 3.85, and 3.91 microns. There are also broad absorptions in the regions 1-1.3 and 3- 3.4 microns. Patterning noise in wavelength registration, arising from the pushbroom imaging and grating motion of the NIMS instrument have previously inhibited reliable mapping of weak absorptions. Recent improvements in techniques to remove the coherent pattern noise from the NIMS dataset have been made by Soderblom. This greatly improves the signal to noise ratio and enables mapping of weak spectral signatures such as the 3.15 micron absorption on Io.

  7. Reaction of cobalt in SO2 atmospheric at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1983-01-01

    The reaction rate of cobalt in SO2 argon environments was measured at 650 C, 700 C, 750 C and 800 C. Product scales consist primarily of an interconnected sulfide phase in an oxide matrix. At 700 C to 800 C a thin sulfide layer adjacent to the metal is also observed. At all temperatures, the rapid diffusion of cobalt outward through the interconnected sulfide appears to be important. At 650 C, the reaction rate slows dramatically after five minutes due to a change in the distribution of these sulfides. At 700 C and 750 C the reaction is primarily diffusion controlled values of diffusivity of cobalt (CoS) calculated from this work show favorable agreement with values of diffusivity of cobalt (CoS) calculated from previous sulfidation work. At 800 C, a surface step becomes rate limiting.

  8. Reaction of cobalt in SO2 atmospheres at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Worrell, W. L.

    1984-01-01

    The reaction rate of cobalt in SO2 argon environments was measured at 650 C, 700 C, 750 C and 800 C. Product scales consist primarily of an interconnected sulfide phase in an oxide matrix. At 700 C to 800 C, a thin sulfide layer adjacent to the metal is also observed. At all temperatures, the rapid diffusion of cobalt outward through the interconnected sulfide appears to be important. At 650 C, the reaction rate slows dramatically after five minutes due to a change in the distribution of these sulfides. At 700 C and 750 C, the reaction is primarily diffusion controlled; values of diffusivity of cobalt (CoS) calculated from this work show favorable agreement with values of diffusivity of cobalt (CoS) calculated from previous sulfidation work. At 800 C, a surface step becomes rate limiting. Previously announced in STAR as N83-35104

  9. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  10. 77 FR 26444 - Revisions to Final Response To Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ...with maintenance of the 1- hour sulfur dioxide (SO 2 ) national ambient...the Act) that emissions of sulfur dioxide (SO 2 ) from the Portland...the Act) that emissions of sulfur dioxide (SO 2 ) from the...

  11. 76 FR 79541 - Revisions to Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...with maintenance of the 1- hour sulfur dioxide (SO 2 ) national ambient...the Act) that emissions of sulfur dioxide (SO 2 ) from the Portland...the Act) that emissions of sulfur dioxide (SO 2 ) from the...

  12. 76 FR 79574 - Revisions to Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...with maintenance of the 1- hour sulfur dioxide (SO 2 ) national ambient...the Act) that emissions of sulfur dioxide (SO 2 ) from the Portland...the Act) that emissions of sulfur dioxide (SO 2 ) from the...

  13. Two years of MAXDOAS measurements of NO2, HONO, SO2 and HCHO at SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Van Roozendael, Michel; Hendrick, Francois; Shen, Yicheng; Valks, Pieter

    2015-04-01

    The Yangtze River Delta (YRD) region includes the mega-city Shanghai and the well-industrialized and urbanized areas of Zhejiang Province and Jiangsu Province, with over ten large cities, such as Hangzhou, Suzhou and Nanjing. Covering only 2% land area, this region produces over 20% of China's Gross Domestic Product (GDP) which makes it the most densely populated region and one of the most polluted regions in China. In the YRD region, knowledge gaps still exist in the understanding of the source and transport of air pollutants because only few measurement studies have been conducted. This work presents two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been used to provide information on trace gases vertical profiles and vertical column densities (VCDs). The seasonal and diurnal cycles of trace gases have been studies and compared with in situ measurements. The retrieved tropospheric NO2, HCHO and SO2 VCDs were compared to satellite measurements, while the NO2 and SO2 near surface concentrations (0-200 m layer) were compared to measurements from in situ instruments at SORPES.

  14. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  15. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  16. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... operator of an affected facility must not cause to be discharged into the atmosphere from that affected... discharged into the atmosphere from that affected facility any gases that contain mercury in excess of...

  17. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly high concentrations of Pb-210 in the combustion plumes to estimate their ages and mixing along the transport route to the South Pacific basin. The final paper in the group (Tropospheric reactive-odd nitrogen over the South Pacific in austral springtime). This paper provides a summary of reactive nitrogen during PEM-Tropics A, with HNO3 and PAM showing the most impact from combustion emission.

  18. Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2, and SO3 on Pt(111)

    E-print Network

    Lin, Xi

    Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2 to be an effective SO2 oxidation and reduction catalyst. Interest in the chemistry of sulfur oxides on transition that underlies NOx storage also operate on the sulfur oxides, so that NOx storage activity is readily poisoned

  19. COMPARISON OF THE 1985 NAPAP EMISSIONS INVENTORY WITH THE 1985 EPA TRENDS ESTIMATE FOR INDUSTRIAL SO2 SOURCES

    EPA Science Inventory

    The report gives results of analysis of 1985 industrial sulfur dioxide (SO2) emissions from two data sources: the National Acid Precipitation Assessment Program (NAPAP) inventory and the EPA TRENDS report. These analyses conclude that the two data sources estimate comparable emis...

  20. Subminute measurements of SO2 at low parts per trillion by volume mixing ratios in the atmosphere

    NASA Astrophysics Data System (ADS)

    Nicks, Dennis K., Jr.; Benner, Richard L.

    2001-11-01

    The continuous sulfur dioxide detector (CSD) is a sensitive instrument for reliable measurements at high time resolution in the atmosphere. This new instrument is based on a SO2 measurement technique utilizing the sulfur chemiluminescence detector, previously validated in a rigorously blind experiment sponsored by the National Science Foundation. Simplified sample handling, dénuder separation technology, and the intrinsic sensitivity and fast response of the detector permit measurement at levels below 100 parts per trillion by volume in tens of seconds with the CSD. The CSD provides a differential measurement where response from ambient SO2 is determined by the difference between air containing SO2 and air scrubbed of SO2, where both air samples contain other detectable sulfur species. Digital signal post processing with phase-locked amplification of the detector signal enhances the precision and temporal resolution of the CSD. Oversampling of the detector signal at 10 Hz permits subsequent data retrieval to be adapted to changing ambient levels by either enhancing signal to noise when sulfur dioxide levels are low or by maximizing temporal resolution of derived data when levels are high. he instrument has advantages over existing instruments based on Chromatographie separation in that the CSD provides accurate and reliable measurements at low parts per trillion by volume sulfur dioxide with high time resolution. The CSD is compact and automated and does not require cryogenic materials, making this instrument suitable for remote field locations. The high temporal resolution, specificity for SO2, and sensitivity of the CSD make it a good candidate for installation on an aircraft. Airborne studies of SO2 with a sensitive, fast time response instrument may offer new insight into the understanding of phenomena such as gas-to-particle conversion, long-range transport of pollutants, and the oxidation of biogenically produced sulfur gases.

  1. Broadband UV spectroscopy system used for monitoring of SO 2 and NO emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.; Wang, H. S.; Somesfalean, G.; Wang, Z. Y.; Lou, X. T.; Wu, S. H.; Zhang, Z. G.; Qin, Y. K.

    2010-11-01

    A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO 2) and nitric oxide (NO) from a 220-ton h -1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO 2 and NO from the CFB boiler fluctuated in the range of 750-1300 mg m -3 and 100-220 mg m -3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO 2 and lower for NO. The relatively high emission concentrations of SO 2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.

  2. Simultaneous removal of SO2, NO and Hg(0) through an integrative process utilizing a cost-effective complex oxidant.

    PubMed

    Zhao, Yi; Hao, Runlong; Yuan, Bo; Jiang, Jiajun

    2016-01-15

    A novel process of pre-oxidation combining with post-absorption to simultaneously remove SO2, NO and Hg(0) from flue gas was proposed. A vaporized complex oxidant (CO) consisted of cost-effective H2O2 and NaClO2 was prepared to oxidize Hg(0) and NO, then the oxidation products were absorbed by the Ca(OH)2 solution that was followed. For the establishment of the optimal reaction conditions, the influences of various reaction factors on the simultaneous removal of SO2, NO and Hg(0) were investigated, i.e., the molar ratio of H2O2 to NaClO2 in CO, the adding rate of CO, the pH of CO, the reaction temperature, the flue gas residence time and the coexistence gases. The experimental results indicated that the desulfurization was constant in all tests, whereas the removal of NO and Hg(0) was primarily affected by the NaClO2 addition, the adding rate of CO, the pH of CO, and the reaction temperature. Meanwhile, NO and SO2 were characterized as the promoters for the Hg(0) removal. Under the optimal reaction conditions, the best simultaneous removal efficiencies were 100% for SO2, 87% for NO and 92% for Hg(0). According to the characterizations of removal products by UV-vis, EDX, XRD, AFS and XPS, the reaction mechanism was speculated. PMID:26342578

  3. Effects of O3 and SO2 on leaf characteristics in soybeans grown under ambient- and enriched-carbon dioxide atmosphere

    NASA Astrophysics Data System (ADS)

    Rudorff, Bernardo F.; Mulchi, Charles L.; Lee, Edward H.; Rowland, Randy A.; Daughtry, Craig S. T.

    1995-09-01

    The effects of two air pollutant gases (SO2 and O3) on leaf photosynthesis (PS), leaf chlorophyll (Chl), chlorophyll fluorescence transients (CFTs), leaf reflectance (LR) and canopy reflectance (CR) in soybeans (Glycine max L. Merr.) were studied under both ambient- and elevated-atmospheric (CO2) using open-top chambers. In the CO2 vs. O3 experiment, soybeans 'Clark' were exposed to charcoal filtered air (low-O3) or ambient air + 40 nL L-1(O3) (high O3) during 7 h day-1, 5 days week-1 having (CO2) of 350 (mu) L L-1 CO2 (ambient-CO2) or 500 (mu) L L-1 (enriched-CO2) for 12 h day-1. In the CO2 vs. SO2 experiment, soybeans 'Essex' were exposed to charcoal filtered air (low-SO2) or + 120 nL L-1 SO2 (high-SO2) during 5 hr day-1, 5 days week-1 having the same (CO2) as for the CO2 vs. O3 experiment. Plants were exposed to treatment gases from early growth until maturity. In the CO2 vs. O3 experiment, leaf PS, leaf Chl, and CR showed trends of reduced values under high-O3, while LR was largely unchanged. Leaf PS and CR had increased values under enriched CO2. Leaf Chl and LR were not affected by CO2 enrichment. In the CO2 vs. SO2 experiment, CFTs values indicated that the gases has no impact on the light reactions of photosynthesis. Reduction in leaf PS, leaf Chl, and CR were observed under high-SO2 while LR was unchanged. The enriched CO2 environment increased leaf PS rates but had no effect on LR and leaf Chl.

  4. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  5. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  6. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  7. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  8. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... contains total potential sulfur emissions in excess of 26 ng SO2/J (0.060 lb SO2/MMBtu) heat input. If...

  9. SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, spacebased

    E-print Network

    Dickerson, Russell R.

    SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, spacebased 18 March 2011. [1] Topdown constraints on global sulfur dioxide (SO2) emissions are inferred through of GEOSChem for inversion of SO2 columns to emissions. The seasonal mean SO2 lifetime calculated with the GEOS

  10. LABORATORY INVESTIGATION OF THE PHOTOOXIDATION AND CATALYTIC OXIDATION OF SO2

    EPA Science Inventory

    The photooxidation of SO2 in irradiated auto exhaust + SO2 systems, the catalytic oxidation of SO2 in the solution droplets of hazes, clouds and fogs containing several concentrations of heavy metals (Mn(+2) and Fe(+3)), and the oxidation of SO2 in irradiated hazes and fogs conta...

  11. Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust.

    PubMed

    Yang, Weiwei; He, Hong; Ma, Qingxin; Ma, Jinzhu; Liu, Yongchun; Liu, Pengfei; Mu, Yujing

    2016-01-14

    The heterogeneous reactions of SO2 and NH3 on typical mineral oxides were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A new sulfate formation pathway was proposed where NH3 accelerated the formation of sulfate species. The results revealed that surface hydroxyls and oxygen played principal roles in the conversion of SO2 to sulfate. It was proposed that NH3 adsorbed onto Lewis acid sites, and hydroxyls and water molecules adsorbed on the surfaces of mineral dust. The enhancement of surface Lewis basicity by NH3 induced more SO2 molecules to adsorb on the surface, which were further oxidized to sulfate by interacting with surface hydroxyls and oxygen atoms. The formation of sulfate, in turn, contributed to the adsorption of NH3, mainly as NH4(+) due to enhanced Brønsted acid sites. The IC results showed that the synergistic effect between SO2 and NH3 was more significant on acidic oxides like ?-Al2O3 and ?-Fe2O3 compared to basic oxides like MgO. PMID:26650181

  12. Effect of Water on the Electrochemical Oxidation of Gas-Phase SO2 in a PEM Electrolyzer for H2 Production

    E-print Network

    Weidner, John W.

    hydrated, but it is also a reactant. One way to supply water is to dissolve SO2 in sulfuric acid and feed with water crossing the membrane to produce sulfuric acid. There was concern that the diffusion resistance, and the sulfuric acid concentration by varying the diffusion resistance of the membrane via thickness or tem

  13. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Luebcke, P.; Alvarez Nieves, J.; Cárdenas Gonzáles, L.; Platt, U.

    2010-12-01

    Volcanic ash is a hazard to aviation mainly due to its threat to jet engines with the risk of total engine failure. Other hazards consist of abrasion of windshields and damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ashes provoked severe incidents of engine failure of jet aircrafts (e.g. Mt. St. Helens, USA, 1980; Mt. Galunggung, Indonesia, 1982 and Redoubt volcano, USA, 1989). In addition to volcanic ash, also volcanic gases pose a threat. Prolonged and/or cumulative exposure of sulfur dioxide (SO2) or sulfuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and provokes damage to engines. SO2 receives most attention because its presence above the lower troposphere atmosphere is a clear proxy for a volcanic plume and indicates that fine ash could also be present. One of the most recent examples of volcanic ash impairing aviation is the eruption of Eyjafjallajoküll, Iceland, between March and May 2010, which lead to temporal closure of the European air space. Although no severe incidents were reported, it affected an unprecedented number of people and had a considerable negative economic impact on carriers. Up to now, remote sensing of SO2 via Differential Optical Spectroscopy (DOAS) in the ultraviolet spectral region has primarily been used to measure volcanic clouds from satellites and ground-based platforms. Here we present a set of experimental and model data, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 distributions in two spatial dimensions. In order to prove the concept, simultaneous airborne and ground-based measurements were conducted at Popocatépetl volcano, Mexico, in April 2010. These observations were combined with radiative transfer studies modelling the conditions at hand. The ground based measurements were made by two stationary instruments, a further, mobile instrument was used to perform vehicle traverses below the plume. From these data, plume height and wind direction relative to the source were retrieved. The plume of Popocatépetl extended at an altitude around 5000m a.s.l. and was approached and passed through at the same flight level with forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40mrad angles in both horizontal and vertical directions relative to it. The approaches were started at up to 25km distance to the plume and SO2 was measured at all times well above the detection limit. The experimental data validate the radiative transfer modelling results. They indicate that a volcanic plume with a slant column density of 1018 molecules/cm2 as viewed from the outside can be detected unambiguously at distances up to 80km away.

  14. Oxidation of SO2 and formation of water droplets under irradiation of 20 MeV protons in N2/H2O/SO2

    NASA Astrophysics Data System (ADS)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei; Tanikawa, Hideomi; Harayama, Isao; Kobara, Hitomi; Sasa, Kimikazu; Pedersen, Jens Olaf Pepke; Hvelplund, Preben

    2015-12-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20 MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both droplet number and droplet size increased with SO2 consumption for the proton irradiation. The total charged droplet numbers entering the differential mobility analyzer per unit time were proportional to the 0.68 power of the SO2 consumption. These two findings suggest that coagulation among the small droplets contributes to the formation of the droplets. The charged droplet volume detected per unit time is proportional to the SO2 consumption, which indicates that a constant amount of sulfur atoms is contained in a unit volume of droplet, regardless of different droplet-size distributions depending on the SO2 consumption.

  15. Reactions of acetone oxide stabilized Criegee intermediate with SO2, NO2, H2O and O3

    NASA Astrophysics Data System (ADS)

    Kukui, Alexandre; Chen, Hui; Xiao, Shan; Mellouki, Wahid; Daële, Veronique

    2015-04-01

    Atmospheric aerosol particles represent a critical component of the atmosphere, impacting global climate, regional air pollution, and human health. The formation of new atmospheric particles and their subsequent growth to larger sizes are the key processes for understanding of the aerosol effects. Sulphuric acid, H2SO4, has been identified to play the major role in formation of new atmospheric particles and in subsequent particle growth. Until recently the reaction of OH with SO2 has been considered as the only important source of H2SO4 in the atmosphere. However, recently it has been suggested that the oxidation of SO2 by Criegee biradicals can be a significant additional atmospheric source of H2SO4 comparable with the reaction of SO2 with OH. Here we present some results about the reactions of the acetone oxide stabilized Criegee intermediate, (CH3)2=OO, produced in the reaction of 2,3-dimethyl-butene (TME) with O3. The formation of the H2SO4 in the reaction of acetone oxide with SO2 was investigated in the specially constructed atmospheric pressure laminar flow reactor. The Criegee intermediate was generated by ozonolysis of TME. The H2SO4, generated by addition of SO2, was directly monitored with Chemical Ionization Mass Spectrometer (SAMU, LPC2E). Relative rates of reactions of acetone oxide with SO2, NO2, H2O and ozone were determined from the dependencies of the H2SO4 yield at different concentrations of the reactants. Atmospheric applications of the obtained results are discussed in relation to the importance of this additional H2SO4 formation pathway compared to the reaction of OH with SO2.

  16. Heterogeneous Reaction of SO2 on Authentic Mineral Dusts: Effects of Relative Humidity and H2O2

    NASA Astrophysics Data System (ADS)

    Huang, L.; Li, H.; Zhao, Y.; Chen, Z.

    2014-12-01

    Sulfur dioxide (SO2) is a significant precursor of sulfuric acid and sulfate aerosols in the atmosphere. Field and model studies have revealed that heterogeneous reaction on mineral dusts seem to be an important sink for SO2. However, available kinetic data about heterogeneous reaction of SO2 on authentic mineral dusts are scarce and are mainly limited at low humidity relative (RH). In addition, hydrogen peroxide (H2O2), which is the predominant oxidant of SO2 in the aqueous phase, may be able to promote the heterogeneous oxidation of SO2 on mineral dusts, but little is known about this role that H2O2 may play. In this study, we investigated the uptake kinetics of SO2 on authentic mineral dusts in the absence and presence of H2O2 at different RHs using a filter-based reactor. Three different authentic mineral dusts, i.e., Asian dust storm particles (ADS), Arizona test dust (ATD) and Tengger Desert sand (TDS), were used. The initial gas phase concentration of SO2 and H2O2 is about 5 ppbv and 0.8 ppbv, respectively, the typical concentration in the atmosphere. The values of uptake coefficients, ?BET, on these particles are on the order of 10-5 under dry condition. Interestingly, with increasing RH, the ?BET decreases on ADS particles, but increases on ATD and TDS particles. The difference in the mineralogy composition of these dust samples seems to rationalize the discrepancy in SO2 uptake. Furthermore, it is found that the presence of H2O2 increases the ?BET by 45-90% on ADS, 45-150% on ATD and 40%-105% on TDS as RH increases 0 to 90%. One possible explanation for the observed behavior are that H2O2 can immediately react with SO2 on the surface of mineral dusts. Our results suggest that the role of heterogeneous reaction on mineral dusts as a sink of SO2 or a source of sulfate in the atmosphere may be underestimated due to the excluding of the enhancement effect of H2O2 in current atmospheric models.

  17. ADIPIC ACID-ENHANCED LIME AND LIMESTONE TESTING AT THE EPA ALKALI SCRUBBING TEST FACILITY. VOLUME 2: APPENDICES

    EPA Science Inventory

    The report gives results of an advanced test program on a prototype lime/limestone wet-scrubbing test facility for removing SO2 and particulates from coal-fired boiler flue gases. Major effort during the tests was concentrated on evaluating adipic acid as an additive for enhancin...

  18. ADIPIC ACID-ENHANCED LIME AND LIMESTONE TESTING AT THE EPA ALKALI SCRUBBING TEST FACILITY. VOLUME 1

    EPA Science Inventory

    The report gives results of an advanced test program on a prototype lime/limestone wet-scrubbing test facility for removing SO2 and particulates from coal-fired boiler flue gases. Major effort during the tests was concentrated on evaluating adipic acid as an additive for enhancin...

  19. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization

    PubMed Central

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-01-01

    Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652

  20. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...gases from other sources, such as gas turbines, internal combustion engines...gases from other sources, such as gas turbines, internal combustion engines...gases from other sources, such as gas turbines, internal combustion...

  1. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator.

    PubMed

    Park, Hyun-Woo; Choi, Sooseok; Park, Dong-Wha

    2015-03-21

    NO and SO2 gases that are generally produced in thermal power plants and incinerators were simultaneously removed by using a wet scrubber combined with a plasma electrostatic precipitator. The wet scrubber was used for the absorption and oxidation of NO and SO2, and non-thermal plasma was employed for the electrostatic precipitation of aerosol particles. NO and SO2 gases were absorbed and oxidized by aerosol particles of NaClO2 solution in the wet scrubber. NO and SO2 reacted with the generated NaClO2 aerosol particles, NO2 gas, and aqueous ions such as NO2(-), NO3(-), HSO3(-), and SO4(2-). The aerosol particles were negatively charged and collected on the surface of grounded anode in the plasma electrostatic precipitator. The NO and SO2 removal efficiencies of the proposed system were 94.4% and 100% for gas concentrations of 500 mg/m(3) and a total gas flow rate of 60 Nm(3)/h, when the molar flow rate of NaClO2 and the gas-liquid contact time were /min and 1.25 s, respectively. The total amount and number of aerosol particles in the exhaust gas were reduced to 7.553 ?g/m(3) and 210/cm(3) at the maximum plasma input power of 68.8 W, which are similar to the values for clean air. PMID:25497024

  2. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST): VOLUME 2. POWER PLANT INTEGRATION, ECONOMICS, AND FULL-SCALE EXPERIENCE

    EPA Science Inventory

    The proceedings document the First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held November 13-16, 1984, in San Diego, CA. The symposium, sponsored jointly by EPRI and EPA, was the first meeting of its kind devoted solely to the discussion of emissi...

  3. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1986). VOLUME 1. SORBENTS, PROCESS RESEARCH, AND DISPERSION

    EPA Science Inventory

    The proceedings document the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held in Raleigh, NC, June 2-6, 1986. Fortynine papers were presented by EPA and EPRI staff members representing utility companies, equipment manufacturers, sorbent supplier...

  4. Infrared absorption of CH3SO2 observed upon irradiation of a p-H2 matrix containing CH3I and SO2

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Lee, Yuan-Pern

    2011-03-01

    Irradiation with a mercury lamp at 254 nm of a p-H2 matrix containing CH3I and SO2 at 3.3 K, followed by annealing of the matrix, produced prominent features at 633.8, 917.5, 1071.1 (1072.2), 1272.5 (1273.0, 1273.6), and 1416.0 cm-1, attributable to ?11 (C-S stretching), ?10 (CH3 wagging), ?8 (SO2 symmetric stretching), ?7 (SO2 antisymmetric stretching), and ?4 (CH2 scissoring) modes of methylsulfonyl radical (CH3SO2), respectively; lines listed in parentheses are weaker lines likely associated with species in a different matrix environment. Further irradiation at 365 nm diminishes these features and produced SO2 and CH3. Additional features at 1150.1 and 1353.1 (1352.7) cm-1 are tentatively assigned to the SO2 symmetric and antisymmetric stretching modes of ISO2. These assignments are based on comparison of observed vibrational wavenumbers and 18O- and 34S-isotopic shifts with those predicted with the B3P86 method. Our results agree with the previous report of transient IR absorption bands of gaseous CH3SO2 at 1280 and 1076 cm-1. These results demonstrate that the cage effect of solid p-H2 is diminished so that CH3 radicals, produced via UV photodissociation of CH3I in situ, might react with SO2 to form CH3SO2 during irradiation and upon annealing. Observation of CH3SO2 but not CH3OSO is consistent with the theoretical predictions that only the former reactions proceed via a barrierless path.

  5. EXPERIMENTAL AIR EXCLUSION SYSTEM FOR FIELD STUDIES OF SO2 EFFECTS ON CROP PRODUCTIVITY

    EPA Science Inventory

    The Tennessee Valley Authority (TVA) characterized and quantified relationships among sulfur dioxide (SO2) exposure, symptomatology of injury, and yield of soybean crops, which are sensitive to SO2 and economically important to the southeastern United States. Characterization inc...

  6. Recent SO2 camera and OP-FTIR field measurements in Mexico and Guatemala

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Salerno, Giuseppe; Burton, Michael

    2013-04-01

    Between 22 and 30 November 2012 a field campaign was carried out at Mexico and Guatemala with the objectives of state the volcanic gas composition and flux fingerprints of Popocatepetl, Santiaguito, Fuego and Pacaya by exploiting simultaneously UV-camera and FTIR measurements. Gases were measured remotely using instruments sensitive to ultraviolet and infrared radiation (UV spectrometer, SO2-camera and OP-FTIR). Data collection depended on the requirements of the methodology, weather condition and eruptive stage of the volcanoes. OP-FTIR measurements were carried out using the MIDAC interferometer with 0.5 cm-1 resolution. Spectra were collected in solar occultation mode in which the Sun acts as an infrared source and the volcanic plume is interposed between the Sun and the spectrometer. At Santiaguito spectra were also collected in passive mode using the lava flow as a radiation source. The SO2-camera used for this study was a dual camera system consisting of two QS Imaging 640s cameras. Each of the two cameras was outfitted with two quartz 25mm lens, coupled with two band-pass filters centred at 310nm and at 330nm. The imaging system was managed by a custom-made software developed in LabView. The UV-camera system was coupled with a USB2000+ spectrometer connected to a QP1000-2-SR 1000 micron optical fiber with a 74-UV collimating lens. For calibration of plume imagery, images of five quartz cells containing known concentration path-lengths of SO2 were taken at the end of each sampling. Between 22 and 23 November 2012 UV-camera and FTIR observations were carried out at Popocatepetl. During the time of our observation, the volcano was characterised by pulsing degassing from the summit crater forming a whitish plume that dispersed rapidly in the atmosphere according to wind direction and speed. Data were collected from the Observatorio Atmosférico Altzomoni (Universidad Nacional Autónoma de México) at 4000 metre a.s.l. and at a distance of ~12 km from the volcano summit. SO2 camera observations were made for ~30 and 130 minutes on the 22 and 23 November, respectively, with a sampling rate of ~7 seconds. FTIR measurements were carried out for 20 and 15 minutes on 22 and 23 November. At Santiaguito volcano, we carried out volcanic gas measurements on 27 and 28 November 2012. During the period of our observations the volcano activity was characterised by lava flow extrusion on the S flank of dome edifice. Occasionally, incandescent blocks detached from the lava flow front rolling onto the dome flanks. During the time of our survey the explosive activity was low frequency (every ~5 - 6 hours). We observed a persistent and sustained degassing plume was observed occasionally polluted by ash. However, on 28 November at 5:25 local time, a violent pyroclastic flow occurred generating an ash-plume that rose ~5 km passing Santa Maria's summit and spreading ~30 km south. SO2 camera and FTIR data were simultaneously collected on 27 November from El Mirador at a distance of ~2 Km from the lava-dome. Data were collected for ~75 and ~90 minutes for SO2-camera and FTIR, respectively. On 28 November, due to the pyroclastic flow event, only distal solar occultation FTIR measurements and open-path UV spectra (using a USB spectrometer) were collected from the west flank of Santa Maria volcano. Both UV and IR spectra were recorded for ~60 minutes Ash released by the pyroclastic flow was sampled from a distance of 6.5 km from the volcano collecting the fallout products along a 60 minute time interval Data from the volcanic plumes of Pacaya and Fuego were collected on 29 and 30 November 2012. During our survey the eruptive activity of Pacaya consisted of weak puffing from the summit crater, while Fuego showed a weak outgassing occasionally interrupted by explosion from its summit crater. In both days, we carried out only SO2 camera measurements due to the poor weather conditions which prevented solar FTIR measurments. At both volcanoes, UV images were taken for a period of ~45 minutes from a distance of ~ 3 km and ~ 10 km, respectively. In th

  7. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  8. JOINT ACTION OF O3 AND SO2 IN MODIFYING PLANT GAS EXCHANGE

    EPA Science Inventory

    The joint action of O3 and SO2 stress on plants was investigated. Gas exchange measurements of O3, SO2, and H2O vapor were made for garden pea. Plants were grown under controlled environments; O3, SO2, H2O vapor fluxes were evaluated with a whole-plant gas exchange chamber using ...

  9. 40 CFR 96.253 - Recordation of CAIR SO2 allowances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR SO2 allowances. 96... CAIR SO2 Allowance Tracking System § 96.253 Recordation of CAIR SO2 allowances. (a)(1) After a..., after Administrator has completed all deductions under § 96.254(b), the Administrator will record in...

  10. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  11. OH- Initiated Heterogeneous Oxidation of Saturated Organic Aerosols in the Presence of SO2: Uptake Kinetics and Product Identification.

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.

    2014-12-01

    Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.

  12. Variability of SO2, CO and light hydrocarbons over a megacity in Eastern India: effects of emissions and transport

    NASA Astrophysics Data System (ADS)

    Mallik, C.; Ghosh, D.; Sarkar, U.; Lal, S.; Venkataramani, S.

    2013-12-01

    Continuous measurements of SO2 during March 2012 - February 2013 along with sampling based measurements of CO, CH4 and C2-C5 NMHCs were made over Kolkata (the world's 16th largest megacity in terms of population) to study emission characteristics over this South Asian megacity. The observed SO2 concentrations are comparable to several Asian sites but higher than American/European sites. Further, C3H8 and C4H10 are substantially higher over the study region compared to many other Asian cities. The mean SO2 and C2H6 concentrations during winter and post-monsoon periods were 5 and 3 times higher compared to pre-monsoon and monsoon. High levels of SO2 during winter (>6 ppbv) are attributed to regional emissions and subsequent trapping of these air masses favored by a stable atmosphere with low ventilation coefficient. Coal burning in industrial areas and power plants in eastern Indo-Gangetic Plains (IGP) are identified as potential source regions for SO2 during winter. Daytime elevations in SO2 during summer seem to be related to photo-oxidation of RSCs from a nearby landfill region. Early morning enhancements during winter for several trace gases indicate the role of boundary layer dynamics. Interspecies correlations show the dominant influence of LPG leakage and petrochemical industries to local air quality during winter apart from vehicular traffic. Correlation analysis shows that CO is dominated by biofuel combustions. Positive matrix factorization is used to identify different emission sources influencing the air quality over the study region. The concentrations over Kolkata may be interpreted as the end point of anthropogenic inputs to the IGP outflow into the Bay of Bengal (BoB) and subsequently the Indian Ocean during winter. Usefulness of these measurements (e.g. C2H2 to CO ratios) as initial values in calculating photochemical processing of air masses over the BoB will be discussed during the presentation. From the point of view of emission inventories, these measurements over Kolkata can have important implications towards characterizing urban Indian emissions and potentially also represent South Asia.

  13. Regeneration performance and carbon consumption of semi-coke and activated coke for SO2 and NO removal.

    PubMed

    Ding, Song; Li, Yuran; Zhu, Tingyu; Guo, Yangyang

    2015-08-01

    To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid-base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount. PMID:26257344

  14. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  15. Abundant SO2 release from the 2014 Holuhraun eruption (Bárðarbunga, Iceland) and its impact on human health

    NASA Astrophysics Data System (ADS)

    Barsotti, Sara; Jóhannsson, Thorsteinn; Hellsing, Vanda Ú.; Pfeffer, Melissa A.; Guðnason, Thórólfur; Stefánsdottir, Gerdur

    2015-04-01

    The ongoing eruption in Holuhraun is significantly rich in gases and its prolonged duration probably makes it one of the largest natural source of SO2 in Iceland since the Laki eruption in 1783-84. Since its beginning, on the 31st of August 2014, the eruption has been releasing into the atmosphere an amount of SO2 at a rate of 400 kg/s with peaks larger than 1,000 kg/s. This quantity already exceeds the SO2 fluxes coming from some well-known degassing volcanoes, such as Masaya (Nicaragua) and Etna (Italy); and it is comparable with the prolonged degassing event at Miyjakejima volcano (Japan) in 2000-2004. Low injection velocities and a predominant buoyant style at the source imply quite low plume heights which have been in average between 2-3 km and never exceeded 5 km above sea level. This fact, together with the high SO2 fluxes, is the reason for the high SO2 concentrations measured at ground level all over Iceland in the last months. The air quality monitoring network, operated by the Environment Agency of Iceland (EAI), has been improved and extended since the beginning of the eruption to allow for a near-real time coverage of SO2 measurements across most of the country. Since then, high values have been recorded in many inhabited locations more than 100 km far from the eruption site. For example on October 26th values up to 21,000 µg/m3 were measured in Höfn in the South-East of Iceland, while in the North the town of Akureyri experienced concentrations higher than 2,000 µg/m3 for about 10 hours on October 31st. Due to the large variability in wind direction and wind speed, typical for the Icelandic meterology, almost every town has been affected by the gas cloud and many locations have exceeded the health safety limit of 350 µg/m3 per hour more than 20 times. Such prolonged exposure and acute short-lived concentrations of SO2 can have adverse effects on human health especially in individuals with underlying pulmonary diseases. In Iceland the Chief Epidemiologist at the Directorate of Health (DoH) is responsible for monitoring the health effects of volcanic activities but yet no severe health effects have been noted due to the SO2 contamination. In addition Civil Protection together with UST, DoH and IMO, has been very active in providing information and recommendations to the public through their websites, official communications and open face-to-face meetings. Here an overview of SO2 ground concentration time series along the duration of the eruption and an evaluation of the potential long-term impact on human health is shown and discussed.

  16. Meteorological influence on predicting surface SO2 concentration from satellite remote sensing in Shanghai, China.

    PubMed

    Xue, Dan; Yin, Jingyuan

    2014-05-01

    In this study, we explored the potential applications of the Ozone Monitoring Instrument (OMI) satellite sensor in air pollution research. The OMI planetary boundary layer sulfur dioxide (SO2_PBL) column density and daily average surface SO2 concentration of Shanghai from 2004 to 2012 were analyzed. After several consecutive years of increase, the surface SO2 concentration finally declined in 2007. It was higher in winter than in other seasons. The coefficient between daily average surface SO2 concentration and SO2_PBL was only 0.316. But SO2_PBL was found to be a highly significant predictor of the surface SO2 concentration using the simple regression model. Five meteorological factors were considered in this study, among them, temperature, dew point, relative humidity, and wind speed were negatively correlated with surface SO2 concentration, while pressure was positively correlated. Furthermore, it was found that dew point was a more effective predictor than temperature. When these meteorological factors were used in multiple regression, the determination coefficient reached 0.379. The relationship of the surface SO2 concentration and meteorological factors was seasonally dependent. In summer and autumn, the regression model performed better than in spring and winter. The surface SO2 concentration predicting method proposed in this study can be easily adapted for other regions, especially most useful for those having no operational air pollution forecasting services or having sparse ground monitoring networks. PMID:24362515

  17. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-print Network

    Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling Filter-Bioreactor System L I G Y P H of California, Riverside, California 92521 Complete treatment of sulfur dioxide (SO2) from flue gases in a two effectively treat the biotrickling filter effluent and produce elemental sulfur. The sulfur production

  18. SO2 flux monitoring at Stromboli with the new permanent INGV SO2 camera system: A comparison with the FLAME network and seismological data

    NASA Astrophysics Data System (ADS)

    Burton, M. R.; Salerno, G. G.; D'Auria, L.; Caltabiano, T.; Murè, F.; Maugeri, R.

    2015-07-01

    We installed a permanent SO2 camera system on Stromboli, Italy, in May 2013, in order to improve our capacity to monitor the SO2 emissions from this volcano. The camera collects images of SO2 concentrations with a period of ~ 10 s, allowing quantification of short-term processes, such as the gas released during the frequent explosions which are synonymous with Stromboli. It also allows quantification of the quiescent gas flux, and therefore comparison with the FLAME network of scanning ultraviolet spectrometers previously installed on the island. Analysis of results from the SO2 camera demonstrated a good agreement with the FLAME network when the plume was blown fully into the field of view of the camera. Permanent volcano monitoring with SO2 cameras is still very much in its infancy, and therefore this finding is a significant step in the use of such cameras for monitoring, whilst also highlighting the requirement of a favourable wind direction and strength. We found that the explosion gas emissions are correlated with seismic events which have a very long period component. There is a variable time lag between event onset time and the increase in gas flux observed by the camera as the explosion gas advects into the field of view of the camera. This variable lag is related to the plume direction, as shown by comparison with the plume location detected with the FLAME network. The correlation between explosion gas emissions and seismic signal amplitude show is consistent with a gas slug-driven mechanism for seismic event production. Comparison of the SO2 camera measurements of the quiescent gas flux shows a fair quantitative agreement with the SO2 flux measured with the FLAME network. Overall, the SO2 camera complements the FLAME network well, as it allows frequent quantification of the explosion gas flux produced by Stromboli, whose signal is in general too brief to be measured with the FLAME network. Further work is required, however, to fully automate the calculation of SO2 flux from the SO2 images captured with the camera, and to adequately account for scattering effects.

  19. Synthesis and antimycobacterial activity of prodrugs of sulfur dioxide (SO2).

    PubMed

    Malwal, Satish R; Sriram, Dharmarajan; Yogeeswari, Perumal; Chakrapani, Harinath

    2012-06-01

    Here, we synthesized and studied a library of 2,4-dinitrophenylsulfonamides that closely resembled N-benzyl-2,4-dinitrophenylsulfonamide (1), a thiol-activated prodrug of sulfur dioxide (SO(2)) which has shown high potency as a Mycobacterium tuberculosis (Mtb) inhibitory agent. The ability of these compounds to generate SO(2) in the presence of a thiol was evaluated. A good correlation between pK(aH) of the corresponding amine and reactivity with thiols to generate SO(2) was found suggesting that the rate determining step of SO(2) generation involved protonation of the amine. Amongst analogues with measurable MICs, we also found a correlation between ability to generate SO(2) and Mtb growth inhibitory activity. Together, we report several thiol-mediated prodrugs of SO(2) which strongly inhibited Mtb growth (MIC <1 ?g mL(-1)) with potential for further development as tuberculosis drug candidates. PMID:22572576

  20. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    USGS Publications Warehouse

    Spiker, E. C.; Hosker, R.P., Jr.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.

  1. Volcanic SO2 - The disparity between satellite observations and the AeroCOM database

    NASA Astrophysics Data System (ADS)

    Telling, J. W.; Carn, S. A.; Huang, Y.; Krotkov, N. A.

    2014-12-01

    Volcanoes are the largest natural source of SO2 in the world and volcanic SO2 is an important aerosol precursor in many atmospheric composition and climate simulations. The current AeroCOM database for volcanic SO2 has been compiled from both publications and assumptions about volcanic degassing behavior and includes over 36,000 named and unnamed volcanic sources. However, satellite observations compiled from the Ozone Monitoring Instrument (OMI), aboard NASA's Aura satellite, the Ozone Mapping Profiler Suite (OMPS), aboard NOAA/NASA's Suomi NPP satellite, and other satellite based SO2 observing instruments do not support many of the estimates made for volcanic SO2 in the current database. For example, the current database significantly overestimates SO2 from Barren Island in December 2008 and significantly underestimates the SO2 erupted from Ambrym during the same month. Additionally, all of the volcanoes in the database are assumed to be degassing continually to some extent, an assumption that is not supported by satellite observations. We present three CTM GEOS-Chem simulations, run from 2007 to 2008, in order to highlight these issues. The first simulation includes the existing AeroCOM SO2 database and a few select eruptions from this simulation will be compared in detail to satellite observations made over the same period of time. The second simulation will be run with all of the volcanic SO2 removed in order to examine the sensitivity of the global SO2 budget to volcanic contributions. Finally, the third simulation will be run with updated values of volcanic SO2 at specific sources that are based on satellite observations during the corresponding time period. The existing AeroCOM volcanic SO2 database is robust but, in many cases, is also based on outdated degassing estimates and assumptions that do not agree with our increasing body of satellite observations. Improving the database has the potential to improve model chemistry for a wide community of users.

  2. The vertical distribution of volcanic SO2 plumes measured by IASI

    NASA Astrophysics Data System (ADS)

    Carboni, E.; Grainger, R. G.; Mather, T. A.; Pyle, D. M.; Thomas, G.; Siddans, R.; Smith, A.; Dudhia, A.; Koukouli, M. L.; Balis, D.

    2015-09-01

    Sulphur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Instrument (IASI) on the Metop satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 cm-1 and from 1300 to 1410 (the 7.3 and 8.7 ?m SO2 bands). The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for fourteen explosive eruptions from 2008 to 2012. The work includes a comparison with independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors) with the other measurements. The series of analysed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to be injected to the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).

  3. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics

    PubMed Central

    Reno, Anita L; Brooks, Edward G; Ameredes, Bill T

    2015-01-01

    Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body’s response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction. PMID:25922579

  4. Oxidation of SO2 by NO2 and O3 on carbon - Implications to tropospheric chemistry

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Schryer, D. R.; Rogowski, R. S.

    1984-01-01

    The oxidation of SO2 to sulfate in air at 65 percent relative humidity on carbon particles was investigated gravimetrically in the presence of NO2 and O3. Approximately 1 mg samples of carbon black were exposed to continuously flowing ppbv mixtures of SO2, SO2 + NO2 and SO2 + O3 for prescribed periods of time before desorption into dry N2. Wet chemical analysis of the particles followed desorption. NO2 and O3 were found to have little, if any, effect relative to air on sulfate yields at the concentrations studied.

  5. SO2 Over China Detected With EOS Aura Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Bhartia, P.; Yang, K.; Carn, S. A.; Krueger, A. J.; Dickerson, R. R.; Hains, J.; Li, C.; Li, Z.; Marufu, L.; Stehr, J.; Levelt, P. F.

    2006-12-01

    The Ozone Monitoring Instrument (OMI) on EOS/Aura offers unprecedented spatial and spectral resolution, coupled with global coverage, for space-based UV measurements of sulfur dioxide (SO2). Publicly released SO2 pollution data are processed with the Band Residual Difference (BRD) algorithm that uses calibrated residuals at SO2 absorption band centers produced by the NASA operational ozone algorithm (OMTO3). By using optimum wavelengths for retrieval of SO2, the retrieval sensitivity is improved over NASA predecessor Total Ozone Mapping Spectrometer (TOMS) by factors of 10 to 20, depending on location. The ground footprint of OMI is 8 times smaller than TOMS. These factors produce a two orders of magnitude improvement in the minimum detectable mass of SO2. The improved sensitivity now permits daily global measurement of heavy anthropogenic SO2 pollution. Anthropogenic SO2 emissions have been measured by OMI over known sources of air pollution, such as eastern China, Eastern Europe, and from individual copper smelters in South America and elsewhere. Here we present data from a case study conducted over Shenyang in NE China as part of EAST-AIRE in April 2005. SO2 observations from instrumented aircraft flights are compared with OMI SO2 maps. The OMI SO2 algorithm was improved to account for the known altitude profile of SO2, and the comparison demonstrates that this algorithm can distinguish between background SO2 conditions and heavy pollution on a daily basis. Between 5 and 7 April 2005 a cold front traveled from continental China, over Korea and on to the Sea of Japan. The satellite-derived measurements of SO2 confirm the in situ aircraft observations of high concentrations of SO2 (ca 4 DU) ahead of the front and lower concentrations behind it and provide evidence for a large-scale impact of pollutant emissions. The BRD algorithm sensitivity does not represent the maximum sensitivity theoretically achievable with OMI, and hence future improvements in instrument calibration and the algorithm should allow even weaker SO2 sources to be monitored routinely. Such measurements are essential given the growing concern over the effects of anthropogenically-forced climate change and intercontinental transport of air pollution. http://www.knmi.nl/omi/research/product/so2/introduction.html

  6. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, J.A.; Lizzio, A.A.; Daley, M.A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700-925 ??C to remove carbon-oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  7. The 2014 Holuhraun volcanic eruption gas emission: a case study of an extreme SO2 concentration event

    NASA Astrophysics Data System (ADS)

    Björk Jónasdóttir, Elín; Nína Petersen, Guðrún; Björnsson, Halldór; Pfeffer, Melissa Anne; Barsotti, Sara; Jóhannsson, Þorsteinn; Dürig, Tobias

    2015-04-01

    The ongoing fissure eruption in Holuhraun associated with the volcanic unrest in Bárðarbunga, is unique among recent eruptions in Iceland for its high emission rates of volcanic gases. The plume is relatively ash free, but predominantly a bent over vapour plume and its height depends mainly on the atmospheric conditions at the eruption site. CO2 and SO2 are abundant in the primarily water vapor plume with lower concentrations of H2S, HCl and HF. During the first month and a half the preliminary SO2 flux was ~400 kg/s with some days greater than 1000 kg/s. The gas is dispersed from the eruption and transported by wind, and can lead to high pollution levels in exposed populated areas in Iceland. During high wind events and when nearby weather systems lead to rapid change in wind directions the local population has not been much affected by the emission, as the gas is transported off land and/or the pollution plume is narrow and moves around. However, during certain conditions, usually light winds and low-level temperature inversions, the concentration of gas builds up at the eruption site and then either flows down from the highlands with katabatic wind or is advected from the eruption site when the synoptic situation changes. Depending on the atmospheric conditions, high concentrations of SO2 can be transported in the boundary layer and have been detected at ground level in populated areas. Here we describe one such event, the event of 26 and 27 October 2014, when the village Höfn, in southeast-Iceland, experienced gas concentrations exceeding 14000 µg/m3, a concentration considered hazardous to health. We describe the weather conditions prior and during the event as well as the gas dispersion.

  8. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question,

  9. MODELING OF SO2 REMOVAL IN SPRAY-DRYER FLUE-GAS DESULFURIZATION SYSTEM

    EPA Science Inventory

    The report presents a comprehensive mathematical model of the SO2 removal process in a spray-dryer flue-gas desulfurization system. Simultaneous evaporation of a sorbent droplet and absorption/reaction of SO2 in the droplet are described by the corresponding heat- and mass-transf...

  10. FUNDAMENTAL STUDIES OF SORBENT CALCINATION AND SULFATION FOR SO2 CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a laboratory-scale investigation of the reactivity of calcium-based sorbents for SO2 capture after calcination at furnace operating temperatures (1200-1950 C). This work was undertaken to provide fundamental information for developing SO2 emission cont...

  11. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60.43 Section 60.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... sulfur dioxide (SO2). (a) Except as provided under paragraph (d) of this section, on and after the...

  12. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  13. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... sulfur. The percent reduction requirements are not applicable to affected facilities under this...

  14. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520...

  15. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... sulfur oil. Percent reduction requirements are not applicable to affected facilities under paragraphs...

  16. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under...

  17. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... sulfur oil. Percent reduction requirements are not applicable to affected facilities under paragraphs...

  18. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide (SO2). 60.43 Section 60.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...-Fired Steam Generators § 60.43 Standard for sulfur dioxide (SO2). (a) Except as provided under...

  19. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... sulfur oil. Percent reduction requirements are not applicable to affected facilities under paragraphs...

  20. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide (SO2). 60.43 Section 60.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...-Fired Steam Generators § 60.43 Standard for sulfur dioxide (SO2). (a) Except as provided under...

  1. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide (SO2). 60.43 Section 60.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... sulfur dioxide (SO2). (a) Except as provided under paragraph (d) of this section, on and after the...

  2. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed... reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions are limited to 520...

  3. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  4. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under...

  5. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... percent sulfur. The percent reduction requirements are not applicable to affected facilities under...

  6. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  7. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... sulfur oil. Percent reduction requirements are not applicable to affected facilities under paragraphs...

  8. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide (SO2). 60.43 Section 60.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...-Fired Steam Generators § 60.43 Standard for sulfur dioxide (SO2). (a) Except as provided under...

  9. 40 CFR 60.43Da - Standards for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for sulfur dioxide (SO2). 60... Steam Generating Units § 60.43Da Standards for sulfur dioxide (SO2). (a) On and after the date on which... the percent reduction requirement is determined on a 24-hour basis. (d) Sulfur dioxide emissions...

  10. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for sulfur dioxide (SO2). 60...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... sulfur oil. Percent reduction requirements are not applicable to affected facilities under paragraphs...

  11. INTERSPECFIC VARIATION IN SO2 FLUX - LEAF SURFACE 'VERSUS' INTERNAL FLUX, AND COMPONENTS OF LEAF CONDUCTANCE

    EPA Science Inventory

    The object of the study was to clarify the relationships among stomatal, residual, and epidermal conductances in determining the flux of SO2 air pollution to leaves. Variations in leaf SO2 and H2O vapor fluxes were determined using four plant species: Pisum sativum L. (garden pea...

  12. 40 CFR 73.19 - Certain units with declining SO2 rates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Certain units with declining SO2 rates. 73.19 Section 73.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.19 Certain units with declining SO2 rates. (a) Eligibility. A unit...

  13. 40 CFR 97.253 - Recordation of CAIR SO2 allowances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR SO2 allowances. 97... Tracking System § 97.253 Recordation of CAIR SO2 allowances. (a)(1) After a compliance account is... or subpart D of part 73 of this chapter. (2) In 2011 and each year thereafter, after...

  14. Uptake of SO2 to Aqueous Formaldehyde Surfaces Stephanie T. Ota and Geraldine L. Richmond*

    E-print Network

    Richmond, Geraldine L.

    in the presence of SO2. INTRODUCTION Formaldehyde (CH2O) and sulfur dioxide (SO2) are gaseous pollutants. But it is difficult to anticipate their effect on the migration of gaseous species through the interfacial region with both natural and industrial sources. These primary pollutants can accumulate in fogwater and cloud

  15. PHYTOTOXICITY OF AIR POLLUTANTS. EVIDENCE FOR THE PHOTODETOXIFICATION OF SO2 BUT NOT O3

    EPA Science Inventory

    Pisum sativum L. cv Alsweet (garden pea) and Lycopersicon esculentum flacca Mill. (tomato) were used to evaluate the phytotoxicity of SO2 and O3 in the light and dark. Plants were grown in controlled environment chambers and exposed to SO2 or O3 in the light or dark at the same e...

  16. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Standard for sulfur dioxide (SO2). 60.42b Section...Generating Units § 60.42b Standard for sulfur dioxide (SO2 ). (a) Except...facility combusts oil other than very low sulfur oil. Percent reduction...

  17. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Standard for sulfur dioxide (SO2). 60.42b Section...Generating Units § 60.42b Standard for sulfur dioxide (SO2 ). (a) Except...facility combusts oil other than very low sulfur oil. Percent reduction...

  18. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Standard for sulfur dioxide (SO2). 60.42b Section...Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except...facility combusts oil other than very low sulfur oil. Percent reduction...

  19. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Standard for sulfur dioxide (SO2). 60.42b Section...Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except...facility combusts oil other than very low sulfur oil. Percent reduction...

  20. 76 FR 69051 - Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...Final Response to Petition From New Jersey Regarding SO 2 Emissions From...2060-AQ69 Final Response to Petition From New Jersey Regarding SO 2 Emissions From...ambient air quality standard (NAAQS) in New Jersey. This finding is made in...

  1. 76 FR 19661 - Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ...40 CFR Part 52 Response to Petition From New Jersey Regarding SO 2 Emissions From...RIN 2060-AQ69 Response to Petition From New Jersey Regarding SO 2 Emissions From...ambient air quality standard (NAAQS) in New Jersey. This finding is proposed in...

  2. Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.

    2014-01-01

    We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.

  3. LONG-RANGE TRANSPORT AND TRANSFORMATION OF SO2 AND SULFATE

    EPA Science Inventory

    Technical descriptions and computer programs are presented for two models that calculate long-range transport, diffusion, transformation of SO2 to sulfate, and dry and precipitation deposition of initially emitted SO2. One model treats the mixing layer height as constant; the oth...

  4. GROWTH RESPONSE IN SPINACH TO SEQUENTIAL AND SIMULTANEOUS EXPOSURE TO NO2 AND SO2

    EPA Science Inventory

    Spinach (Spinacia oleracea) was exposed intermittently to NO2 and SO2 (2 hours/week; 0.8 or 1.5ppm) in a simultaneous or sequential fashion over the 42-day growth period. Nighttime simultaneous exposure to NO2 and SO2 reduced growth and altered assimilate partitioning to the root...

  5. USE OF COAL CLEANING FOR COMPLIANCE WITH SO2 EMISSION REGULATIONS

    EPA Science Inventory

    The report gives results of an evaluation of coal cleaning as a means of controlling SO2 emissions from coal-fired stationary sources. Coal cleaning was examined in the light of various existing and proposed SO2 emissions regulations to determine applications in which the technol...

  6. 77 FR 26444 - Revisions to Final Response To Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Portland Generating Station'' published on November 7, 2011. See 76 FR 69052. We initially proposed this... Regarding SO 2 Emissions From the Portland Generating Station'' published on December 22, 2011. See 76 FR... Jersey Regarding SO 2 Emissions From the Portland Generating Station'' (76 FR 69052) contain...

  7. CALCINATION OF CALCIUM HYDROXIDE SORBENT IN THE PRESENCE OF SO2 AND ITS EFFECT ON REACTIVITY

    EPA Science Inventory

    The paper discusses the calcination of Ca(OH)2 sorbent in the presence of SO2 and its effect on reactivity. When Ca(0H)2 is calcined in an isothermal flow reactor with 300 ppm or less SO2, the structure of the sorbent is characterized by retention of higher pore volumes and surfa...

  8. Carbon catalyzed SO2 oxidation by NO2 and O3

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Schryer, D. R.; Rogowski, R. S.

    1982-01-01

    The oxidation of SO2 to sulfate on carbon particles by trace quantities of NO2 and O3 was studied. Particulate carbon black was either: (1) directly exposed on the pan of a microbalance to various humidified mixtures of SO2 and oxidant gas and the resultant weight gains monitored, or (2) the gas mixtures were bubbled through aqueous suspensions of carbon black and pure water blanks. In each set of experiments the run times were varied appropriately and the yields of sulfate were determined analytically. Conversion of SO2 to sulfate was thus characterized as a function of exposure time and of oxidant gas. Carbon black was determined to be an excellent catalyst for SO2 oxidation to sulfate by both NO2 and O3. No saturation effects were observed in either experimental approach. Conversions of SO2 to sulfate did not appear pH dependent.

  9. Improved retrieval of SO2 from Ozone Monitoring Instrument: residual analysis and data noise correction

    NASA Astrophysics Data System (ADS)

    Yan, H.; Chen, L.; Tao, J.; Su, L.; Han, D.

    2012-01-01

    In this study, based on Ozone Monitoring Instrument (OMI) observation data and considering the shortage of current Band Residual Difference algorithm (BRD) algorithm in data noise correction since late 2008, we make a detailed analysis of OMI SO2 main noise sources and determine the best residual adjustment area by analyzing the different residual correction effects. After such modification, the OMI SO2 PBL results noise which use BRD retrieval algorithm is largely reduced, the precision of the SO2 results is improved, and the optimization of the BRD algorithm for data noise is realized. We select China as our study area and compare the results between the optimized results and the OMI SO2 PBL products. Results show that they are consistent with each other in January 2008; however, our modified algorithm results have higher precision and more reliable SO2 spatial distribution in January 2009. Finally, other current retrieval error sources are discussed, and further research is needed on these areas.

  10. Plasma Chemistry and Plasma Processing, Vol. 12, No. 4, 1992 Removal of SO2 and the Simultaneous Removal of SO2

    E-print Network

    Kushner, Mark

    for decades. They have adverse effects on human health, I~ damage vegetation,(2) and degrade materials. (31 SO-scale fossil fuel combustors. KEY WORDS: Dielectric barrier discharge; SO2 removal; NO removal; gas- phase offossil fuels. SO, and NO removal efficiencies are evaluated as a function of applied voltage, temperature

  11. SO(2N)/U(N) Riccati-Hartree-Bogoliubov Equation Based on the SO(2N) Lie Algebra of the Fermion Operators

    E-print Network

    Nishiyama, Seiya

    2014-01-01

    In this paper we present the induced representation of SO(2N) canonical transformation group and introduce SO(2N)/U(N) coset variables. We give a derivation of the time dependent Hartree-Bogoliubov (TDHB) equation on the Kaehler coset space G/H=SO(2N)/U(N) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of TDRHB equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Moebius transformation together with the geodesic flow on the manifold.

  12. $\\frac{{\\rm SO}(2N)}{U(N)}$ Riccati-Hartree-Bogoliubov equation based on the SO(2N) Lie algebra of the fermion operators

    NASA Astrophysics Data System (ADS)

    Nishiyama, Seiya; da Providência, João

    2015-02-01

    In this paper we present the induced representation of SO(2N) canonical transformation group and introduce (SO(2N))/(U(N)) coset variables. We give a derivation of the time-dependent Hartree-Bogoliubov (TDHB) equation on the Kähler coset space (G)/(H) = (SO(2N))/(U(N)) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of time-dependent Riccati-Hartree-Bogoliubov equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Möbius transformation together with the geodesic flow on the manifold.

  13. SO(2N)/U(N) Riccati-Hartree-Bogoliubov Equation Based on the SO(2N) Lie Algebra of the Fermion Operators

    E-print Network

    Seiya Nishiyama; Joao da Providencia

    2015-02-09

    In this paper we present the induced representation of SO(2N) canonical transformation group and introduce SO(2N)/U(N) coset variables. We give a derivation of the time dependent Hartree-Bogoliubov (TDHB) equation on the Kaehler coset space G/H=SO(2N)/U(N) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of TDRHB equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Moebius transformation together with the geodesic flow on the manifold.

  14. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  15. SO2 over Central China: Measurements, Numerical Simulations and the Tropospheric Sulfur Budget

    NASA Technical Reports Server (NTRS)

    He, Hao; Li, Can; Loughner, Christopher P.; Li, Zhangqing; Krotkov, Nickolay A.; Yang, Kai; Wang, Lei; Zheng, Youfei; Bao, Xiangdong; Zhao, Guoqiang; Dickerson, Russell R.

    2012-01-01

    SO2 in central China was measured in situ from an aircraft and remotely using the Ozone Monitoring Instrument (OMI) from the Aura satellite; results were used to develop a numerical tool for evaluating the tropospheric sulfur budget - sources, sinks, transformation and transport. In April 2008, measured ambient SO2 concentrations decreased from approx.7 ppbv near the surface to approx. 1 ppbv at 1800 m altitude (an effective scale height of approx.800 m), but distinct SO2 plumes were observed between 1800 and 4500 m, the aircraft's ceiling. These free tropospheric plumes play a major role in the export of SO2 and in the accuracy of OMI retrievals. The mean SO2 column contents from aircraft measurements (0.73 DU, Dobson Units) and operational OMI SO2 products (0.63+/-0.26 DU) were close. The OMI retrievals were well correlated with in situ measurements (r = 0.84), but showed low bias (slope = 0.54). A new OMI retrieval algorithm was tested and showed improved agreement and bias (r = 0.87, slope = 0.86). The Community Multiscale Air Quality (CMAQ) model was used to simulate sulfur chemistry, exhibiting reasonable agreement (r = 0.62, slope = 1.33) with in situ SO2 columns. The mean CMAQ SO2 loading over central and eastern China was 54 kT, approx.30% more than the estimate from OMI SO2 products, 42 kT. These numerical simulations, constrained by observations, indicate that ",50% (35 to 61 %) of the anthropogenic sulfur emissions were transported downwind, and the overall lifetime of tropospheric SO2 was 38+/-7 h.

  16. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    USGS Publications Warehouse

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-01-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  17. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  18. Electrochemical sensor monitoring of volcanic gases

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Freshwater, Ray; Oppenheimer, Clive; Saffell, John; Jones, Rod; Griffiths, Paul; Braban, Christine; Mead, Iqbal

    2010-05-01

    Advances in instrumentation have fuelled a recent growth of interest in using portable sensor systems for environmental monitoring of pollution. Developments in wireless technology are enabling such systems to operate remotely and autonomously, generating a wealth of environmental data. We report here on the application of miniature Alphasense electrochemical sensors to the detection and characterisation of gases in volcanic plumes. A highly portable sensor system was developed to operate an array of 6 low cost electrochemical sensors to detect CO, H2, HCl, SO2, H2S and NO2 at 1 Hz. A miniature pump draws air over all sensors simultaneously (i.e. sensors arranged in parallel). The sensor output in these campaigns was logged on PDAs for real-time viewing, and later download (with a view to future data-streaming). The instrument was deployed at a number of volcanoes and was subject to extremely harsh conditions including highly acidic environments, low (Antarctic) temperatures, and transport over rough terrain. Analysis methods are demonstrated that consider calibration, cross-sensitivities of the sensors to multiple gases, differing sensor response times, temperature dependence, and background sensor drift with time. The analysis is applied to a range of plume field-measurements to extract gas concentrations ranging from 100's ppmv to sub-ppmv and to characterise the individual volcano emissions. Applications of similar sensor systems for real-time long-term monitoring of volcanic emissions (which may indicate and ultimately predict eruptive behavior), and UAV and balloon-borne plume sampling are now already being realised. This work focused on demonstrating the application of electrochemical sensors to monitoring of environmental pollution from volcanoes. Other applications for similar sensors include the near-source monitoring of industrial emissions, and of pollutant levels enhanced by traffic emissions in the urban environment.

  19. The vertical distribution of volcanic SO2 plumes measured by IASI

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Grainger, Roy; Mather, Tamsin A.; Pyle, David M.; Thomas, Gareth; Siddans, Richard; Smith, Andrew; Dudhia, Anu; Koukouli, MariLiza; Balis, Dimitris

    2015-04-01

    Sulphur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. For example the current hiatus in global warming has been suggested to be caused by low level (< 15 km) volcanic activity (Ridley et al., 2014). Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. In the troposphere SO2 injection leads to the acidification of rainfall while in the stratosphere it oxidises to form a stratospheric H2SO4 haze that can affect climate for several years. The Infrared Atmospheric Sounding Instrument (IASI) on the Metop satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 cm-1 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 ?m SO2 bands). The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights have been compared with CALIPSO backscatter profile. The results of the comparisons show that IASI SO2 measurements are not affected by underling cloud and are consistent (within the retrieved errors) with the other measurements considered. The series of analysed eruptions (2008 to 2012) show that the biggest contributor of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency of the volcanic SO2 to be injected to the level of tropopause during many explosive eruptions. For the eruptions observed, this tendency was independent of the maximum amount of SO2 erupted (e.g., 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).

  20. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Xie, Y.; He, K.

    2015-02-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim at reducing the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current 12th FYP (2011-2015), but differ in the spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of three impact metrics: surface sulfate concentration, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the Western Pacific. The efficiency of SO2 control (?) is defined as the relative change of each impact metric to a 1% reduction of SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction of SO2 emissions in China, gives a ? of 0.71, 0.83, and 0.67 for sulfate concentration, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national-mean surface sulfate concentrations and sulfur export fluxes, with ? being 0.76 and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest ? in reducing PWC (? = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit within-region benefit. The difference in ? by scenario is attributable to regional differences in SO2 oxidation pathways and source-receptor relationships. Among the three regions examined here, NC shows the largest proportion of sulfate formation from gas phase oxidation, which is more sensitive to SO2 emission change than aqueous oxidation. In addition, NC makes the largest contribution to inter-regional transport of sulfur within China and to the transport fluxes to Western Pacific. The policy implication is that China needs to carefully design a regionally specific implementation plan of realizing its SO2 emissions reduction target in order to maximize the resulting air quality benefits not only for China but for the downwind regions, with emphasis on reducing emissions from NC.

  1. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Zelenski, Michael; Taran, Yuri; Galle, Bo

    2015-09-01

    High concentrations of primary sulfuric acid (H2SO4) in fumarolic gases and high emission rate of sulfuric acid aerosol in the plume were measured at Bezymianny volcano, an active dome-growing andesitic volcano in central Kamchatka. Using direct sampling, filter pack sampling, and differential optical absorption spectroscopy measurements, we estimated an average emission of H2SO4 at 243 ± 75 t/d in addition to an average SO2 emission of 212 ± 65 t/d. The fumarolic gases of Bezymianny correspond to arc gases released by several magma bodies at different stages of degassing and contain 25-92% of entrained air. H2SO4 accounts for 6-87 mol% of the total sulfur content, 42.8 mol% on average, and SO2 is the rest. The high H2SO4 in Bezymianny fumaroles can be explained by catalytic oxidation of SO2 inside the volcanic dome. Because sulfate aerosol is impossible to measure remotely, the total sulfur content in a plume containing significant H2SO4 may be seriously underestimated.

  2. Blood gases

    MedlinePLUS

    ... The test also provides information about the body's acid/base balance, which can reveal important clues about lung ... Effros RM, Swenson ER. Acid-base balance. In: Mason RJ, Broaddus CV, ... Textbook of Respiratory Medicine . 5th ed. Philadelphia, PA: ...

  3. SO2 removal with coal slurry in a double-stirred vessel.

    PubMed

    Sun, Wenshou; Wang, Liang; Liu, Jingchun; Wang, Lichao; Zhang, Ying

    2013-01-01

    In the coal slurry scrubbing process, SO2 can be removed through both the coal pyrite leaching reaction and the oxidation reactions catalysed by Fe2+/Fe3+ produced in situ. In the present study, experiments of SO2 removal with coal slurry (particle size fraction 65-150 microm) were carried out using a double-stirred vessel to investigate the effects of temperature, coal particle size and pulp density on SO2 absorption rate and on the proportion of SO2 removed through the leaching reaction. Results show that the SO2 absorption rate can be increased by decreasing particle size and increasing pulp density, but it is relatively less affected by temperature. Although decreasing coal particle size and pulp density can increase coal pyrite conversion, the effectiveness is limited and the proportion of SO2 removed through the leaching reaction is little affected. Increasing temperature can evidently increase the proportion, but there also exists the problem of energy expenditure; satisfactory coal pyrite conversion during SO2 removal could not be achieved economically by such measures. In addition, the apparent rate constant has a linear relationship with the reciprocal of the coal particle diameter. PMID:24527610

  4. Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight

    USGS Publications Warehouse

    Elias, T.; Sutton, A.J.; Oppenheimer, C.; Horton, K.A.; Garbeil, H.; Tsanev, V.; McGonigle, A.J.S.; Williams-Jones, G.

    2006-01-01

    The correlation spectrometer (COSPEC), the principal tool for remote measurements of volcanic SO2, is rapidly being replaced by low-cost, miniature, ultraviolet (UV) spectrometers. We compared two of these new systems with a COSPEC by measuring SO2 column amounts at Ki??lauea Volcano, Hawaii. The two systems, one calibrated using in-situ SO2 cells, and the other using a calibrated laboratory reference spectrum, employ similar spectrometer hardware, but different foreoptics and spectral retrieval algorithms. Accuracy, signal-to-noise, retrieval parameters, and precision were investigated for the two configurations of new miniature spectrometer. Measurements included traverses beneath the plumes from the summit and east rift zone of Ki??lauea, and testing with calibration cells of known SO2 concentration. The results obtained from the different methods were consistent with each other, with <8% difference in estimated SO2 column amounts up to 800 ppm m. A further comparison between the COSPEC and one of the miniature spectrometer configurations, the 'FLYSPEC', spans an eight month period and showed agreement of measured emission rates to within 10% for SO2 column amounts up to 1,600 ppm m. The topic of measuring high SO2 burdens accurately is addressed for the Ki??lauea measurements. In comparing the foreoptics, retrieval methods, and resultant implications for data quality, we aim to consolidate the various experiences to date, and improve the application and development of miniature spectrometer systems. ?? Springer-Verlag 2006.

  5. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    NASA Technical Reports Server (NTRS)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  6. 40 CFR Appendix D to Part 75 - Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Peaking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow rate in the common pipe, and combine SO2 mass emissions (Acid Rain Program units only) for the.... The baseline value of the GHR, GHRbase, shall be determined as follows: ER26MY99.015 Where: (GHR)base... (c) of this section may be used to determine a value of (GHR)base, as follows. Derive the...

  7. The global distribution, abundance, and stability of SO2 on Io

    USGS Publications Warehouse

    McEwen, A.S.; Johnson, T.V.; Matson, D.L.; Soderblom, L.A.

    1988-01-01

    Sulfur dioxide distribution and abundances, bolometric hemispheric albedos, and passive surface temperatures on Io are modeled and mapped globally from Voyager multispectral mosaics, Earth-based spectra, and photometric descriptions. Photometric models indicate global average values for regolith porosity of 75-95% and macroscopic roughness with a mean slope angle of ~30??. Abundances of SO2 suggested by observations at uv-visible wavelengths and at 4.08 ??m are partially reconciled by intimate-mixing models; 30-50% SO2 coverage of the integral disk is indicated. Three major spectral end members, with continuous mixing, are recognized from the Voyager multispectral mosaics; one of these end members is identified as SO2. Intimate-mixing models with the three spectal end members are used to produce abundance maps for the optical surface; ~30% of Io's total optical surface consists of SO2. The SO2 is concentrated in the bright equatorial band and is relatively deficient in the region of Pele-type volcanic reuptions (long 240??-360??) and the polar regions. Temperatures are computed to vary over a 40??K range, at the same illumination angle, according to variations in surface bolometric hemispheric albedo. The brightest (and locally coldest) areas correspond to areas rich in SO2 and are concentrated in an equatorial band (??30?? lat), but many small cold patches occur elsewhere. These cold patches have radiative equilibrium temperatures ???120??K at the subsolar point, resulting in SO2 saturation vapor pressures ???10-8 bar. Midlatitude areas and the region of Pele-type plume eruptions are generally warmer (due to lower albedos). These results for surface temperatures and SO2 abundances and distribution support the regional coldtrapping model for the surface and atmospheric SO2 presented by F.P. Fanale, W.B. Banerdt, L.S. Elson, T.V. Johnson, and R.W. Zurek (1982, In Satellites of Jupiter (D. Morrison, Ed.), pp. 756-781, Univ. of Arizona Press, Tucson), although the region of Pele-type volcanic eruptions may be better characterized by the regolith condtrapping/volcanic-venting model of D.L. Matson and D.B. Nash (1983, J. Geophys. Res. 88, 4771-4783). The bright equatorial band is especially effective at slowing the formation of polar caps of SO2, both by reducing the sublimation rate near the subsolar point and by coldtrapping the SO2 in the equatorial region, so that competing processes of sputtering and volcanic resurfacing may prevent the formation of polar SO2 caps.

  8. Measurements of SO2 concentration and atmospheric structure in Delta and Breton wildlife refuges

    SciTech Connect

    Hsu, S.A.

    1995-04-01

    A field program designed to measure the ambient concentrations of SO2 as well as pertinent meteorological parameters was conducted during the summer of 1993. Three stations were established in the EPA Class 1 areas of Breton and Delta Wildlife Refuges near the mouth of the Mississippi River. It was found that the SO2 concentration measured throughout the monitoring duration was only 2% of the National maximum allowable once per year. The passage of a weak cold front in September showed that the SO2 concentrations were higher when the wind blew from land to the Gulf than under normal summer conditions when the wind blew from the Gulf toward land.

  9. Validation of satellite SO2 observations in northern Finland during the Icelandic Holuhraun fissure eruption

    NASA Astrophysics Data System (ADS)

    Ialongo, Iolanda; Hakkarainen, Janne; Kivi, Rigel; Anttila, Pia; Krotkov, Nickolay; Yang, Kai; Li, Can; Tukiainen, Simo; Hassinen, Seppo; Tamminen, Johanna

    2015-04-01

    This paper shows the validation results of the satellite SO2 observations from OMI (Ozone Monitoring Instrument) and OMPS (Ozone Mapping Profiler Suite) during the Icelandic Holuhraun fissure eruption in September 2014. The volcanic plume reached Finland on several days during the month of September. The SO2 total columns from the Brewer direct sun (DS) measurements in Sodankylä (67.42°N, 26.59°E), northern Finland, are compared to the satellite data. Challenging retrieval conditions at high latitudes (like large solar zenith angle, SZA) are considered in the comparison. The results show that the best agreement can be found for small SZAs, close-to-nadir satellite pixels, cloud fraction below 0.3 and small distance between the station and the centre of the pixel. Under good retrieval conditions, the difference between satellite data and Brewer measurements remains mostly below the uncertainty on the satellite SO2 retrievals (up to about 2 DU at high latitudes). The satellite products assuming a priori profile with SO2 predominantly in the planetary boundary layer give total column values close to the ground-based data, suggesting that the volcanic SO2 plume was located at particularly low altitudes. This is connected to the fact that this was a fissure eruption and most of the SO2 was emitted into the troposphere. The analysis of the SO2 surface concentrations at four air quality stations in northern Finland supports the hypothesis that the volcanic plume coming from Iceland was located very close to the surface. The time evolution of the SO2 concentrations peaks during the same days when large SO2 total column values are measured by the Brewer in Sodankylä and enhanced SO2 signal is visible over northern Finland from the satellite maps. This is an exceptional case because the SO2 volcanic emission directly affect the air quality levels at surface in an otherwise pristine environment like northern Finland. OMI and OMPS SO2 retrievals from direct-broadcast measurements are validated for the first time in this paper.

  10. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.

    PubMed

    Sun, Ping; Grace, John R; Lim, C Jim; Anthony, Edward J

    2007-04-15

    Four FBC-based processes were investigated as possible means of sequentially capturing SO2 and CO2. Sorbent performance is the key to their technical feasibility. Two sorbents (a limestone and a dolomite) were tested in a pressurized thermogravimetric analyzer (PTGA). The sorbent behaviors were explained based on complex interaction between carbonation, sulfation, and direct sulfation. The best option involved using limestone or dolomite as a SO2-sorbent in a FBC combustor following cyclic CO2 capture. Highly sintered limestone is a good sorbent for SO2 because of the generation of macropores during calcination/carbonation cycling. PMID:17533862

  11. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Yao, Y.; Xie, Y.; He, K.

    2015-06-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim to reduce the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current twelfth Five-Year Plan (FYP; 2011-2015), but differ in spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of four impact metrics: surface SO2 and sulfate concentrations, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the western Pacific. The efficiency of SO2 control (?) is defined as the relative change of each impact metric to a 1% reduction in SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction in SO2 emissions in China, gives a ? of 0.99, 0.71, 0.83, and 0.67 for SO2 and sulfate concentrations, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national mean surface SO2 and sulfate concentrations and sulfur export fluxes, with ? being 1.0, 0.76, and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest ? in reducing PWC (? = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit with large benefits within the region. The difference in ? by scenario is attributable to the regional difference in SO2 oxidation pathways and the source-receptor relationship. Among the three regions examined here, NC shows the largest proportion of sulfate formation through gas-phase oxidation, which is more sensitive to SO2 emissions change than aqueous oxidation. In addition, NC makes the largest contribution to inter-regional transport of sulfur within China and to the transport fluxes to the western Pacific. The policy implication of this is that China needs to carefully design a regionally specific implementation plan of realizing its SO2 emissions reduction target in order to maximize the resulting air quality benefits, not only for China but for the downwind regions, with emphasis on reducing emissions from NC, where SO2 emissions have decreased at a slower rate than national total emissions in the previous FYP period.

  12. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.

    PubMed

    Shemwell, Brooke E; Ergut, Ali; Levendis, Yiannis A

    2002-05-01

    An integrated approach for the simultaneous reduction of major combustion-generated pollutants from power plants is presented along with a simplified economic analysis. With this technology, the synergistic effects of high-temperature sorbent/coal or sorbent/natural gas injection and high-temperature flue gas filtration are exploited. Calcium-based (or Na-based, etc.) sorbents are sprayed in the post-flame zone of a furnace, where they react with S- and Cl-containing gases to form stable salts of Ca (or Na, etc.). The partially reacted sorbent is then collected in a high-temperature ceramic filter, which is placed downstream of the sorbent injection point, where it further reacts for a prolonged period of time. With this technique, both the likelihood of contact and the length of time of contact between the solid sorbent particles and the gaseous pollutants increase, because reaction takes place both in the furnace upstream of the filter and inside the filter itself. Hence, the sorbent utilization increases significantly. Several pollutants, such as SO2, H2S, HCl, and particulate (soot, ash, and tar), may be partially removed from the effluent. The organic content of the sorbents (or blends) also pyrolyzes and reduces NOx. Unburned carbon in the ash may be completely oxidized in the filter. The filter is cleaned periodically with aerodynamic regeneration (back pulsing) without interrupting furnace operation. The effectiveness of this technique has been shown in laboratory-scale experiments using either rather costly carboxylic salts of Ca or low- to moderate-cost blends of limestone, lime, or sodium bicarbonate with coal fines. Injection occurred in the furnace at 1150 degrees C, while the filter was maintained at 600 degrees C. Results showed that 65 or 40% SO2 removal was obtained with calcium formate or a limestone/coal blend, respectively, at an entering calcium-to-sulfur molar ratio of 2. A sodium bicarbonate/coal blend resulted in 78% SO2 removal at a sodium-to-sulfur molar ratio of 2. HCl removal efficiencies have been shown to be higher than those for SO2. NOx reductions of 40% have been observed with a fuel (coal)-to-air equivalence ratio, phi, around 2. The filter has been shown to be 97-99% efficient in removing PM2.5 particulates. Calculations herein show that this integrated sorbent/filter method is cost-effective, in comparison with current technologies, on both capital cost ($/kW) and levelized cost ($/ton pollutant removed) bases, if a limestone/coal mixture is used as the sorbent for fossil fuel plants. Capital costs for the filter/sorbent combination are estimated to be in the range of $61-$105/kW for a new plant. Because current technologies are designed for removing one pollutant at a time, both their cost and space requirements are higher than those of this integrated technique. At the minimum projected removal efficiencies for HCl/SO2/NOx of about 40%, the levelized costs are projected to be $203-$261/ton of combined pollutant SO2/HCl/NOx and particulates removed from coal-fired power plants. PMID:12022692

  13. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area

    NASA Astrophysics Data System (ADS)

    Khezri, Bahareh; Mo, Huan; Yan, Zhen; Chong, Shey-Ling; Heng, Aik Kian; Webster, Richard D.

    2013-12-01

    The automatic MARGA (monitor for aerosols and gases in ambient air) sampling system was used to measure the inorganic ions Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+ in the PM2.5 aerosol phase and the corresponding inorganic gases HCl, HNO2, SO2, HNO3 and NH3 present in the gas phase. Samples were collected and analyzed hourly for 3 months between April and June, 2011, from a sampling site in Singapore close to a heavy industrial area containing extensive petrochemical refineries. The data (hourly and daily average) were analyzed, compared and discussed based on the ratios of HNO2/HNO3 and NH3/NH4+, the levels of nitrate and sulfate, the total nitrogen, the distribution of particulate matter and gaseous compounds, and the acidity of the aerosols. SO2 was the most abundant gas that appeared in an order of magnitude higher concentration than the other trace gases, and correspondingly SO42- was found to be at least 3-10 times higher than other anionic aerosol species. The concentration of major ions in aerosol samples and the related gaseous compounds followed the order of: SO42- > NH4+ > NO3- > K+ > Na+ > Cl- > Ca2+ > Mg2+ and SO2 > NH3 > HNO2 > HNO3, respectively. The maximum values for many of the target analytes occurred during the hazy period in May when there was significant contamination from regional fires. The elevated levels of HNO2 compared to HNO3 and high levels of HNO3 were rationalized based on artifacts in the denuder sampling methodology.

  14. Climate Co-benefits of Tighter SO2 and NOx Regulations in China

    E-print Network

    Nam, Kyung-Min

    2012-10-01

    Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those ...

  15. 40 CFR 73.19 - Certain units with declining SO2 rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...73.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.19 Certain units with declining SO2 rates. (a)...

  16. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...74.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.24 Current allowable SO2 emissions rate....

  17. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. C Appendix C to Part 72—Actual 1985 Yearly SO2... emissions (in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1?scrb. effic. %/100) × (units...

  18. FACTORS AFFECTING DRY DEPOSITION OF SO2 ON FORESTS AND GRASSLANDS

    EPA Science Inventory

    Deposition velocities for SO2 over forests and grasslands are derived through a mass conservation approach using established empirical relations descriptive of the atmospheric transport of a gaseous contaminant above and within a vegetational canopy. Of particular interest are si...

  19. Efficacy and cloud impacts of SO2 injections in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    English, J. M.; Toon, O. B.; Yu, P.; Mills, M. J.; Bardeen, C.

    2014-12-01

    Injection of sulfur dioxide (SO2) in the stratosphere to form reflective sulfate aerosols has been suggested as a leading solar radiation management idea to cool the planet. Studies with sectional aerosol models suggest limited efficacy due to aerosol growth; and studies with coupled models suggest possible impacts on stratospheric dynamics and chemistry. Modeling simulations to date have specified tropical SO2 injections at 18 km altitude or higher, which is above the flying ceiling of most existing aircraft. We simulate tropical SO2 injections at 13 km altitude (160 mb) and 20 km altitude (50 mb) and mid-latitude injections at 13 km altitude using the 60-level CAM5/CARMA model, which allows for detailed vertical resolution of the stratosphere, sectional aerosol bin representation, and interactions between aerosols, chemistry, radiation, and clouds. We quantify the resulting aerosol evolution, radiative effects, and surface temperature effects, as well as the impacts of SO2 injections on tropospheric clouds.

  20. The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment

    E-print Network

    Schmalensee, Richard

    Two decades have passed Two decades have passed since the Clean Air Act Amendments of 1990 launched a grand experiment in market-based environmental policy: the SO2 cap-and-trade system. That system performed well but ...

  1. Changes in SO2 flux degassing regime prior to the 2014 Stromboli eruption

    NASA Astrophysics Data System (ADS)

    Tamburello, Giancarlo; Delle Donne, Dario; Ripepe, Maurizio; Bitetto, Marcello; Cosenza, Paolo; Giudice, Gaetano; Riccobono, Giuseppe; Aiuppa, Alessandro

    2015-04-01

    Volcanic eruptions are often accompanied by release of huge amounts of magmatic SO2. Capturing sizeable precursory SO2 flux variations prior to eruption has revealed far more challenging, instead, in spite of the recent progresses in instrumental gas monitoring. Here, we report on the SO2 fluxes variations we detected at Stromboli volcano prior to the effusive eruption started on the 6th August 2014. The SO2 fluxes were regularly quantified at high-rate (0.5 Hz) using two fully autonomous permanent SO2 camera devices installed - within the framework the ERC-FP7 project "Bridge"- at two sites located at 0.5 km (Roccette) and 1.75 km (Sciara del Fuoco rim) distance from the crater terrace. This system provided sufficient spatial resolution, (~0.4 m) to allow for separate evaluation of gas emissions from the centrals/NE craters (CC and NEC, ~150 t/d on average) and from the northern hornitos (NH, ~15 t/d on average) that was active in summer 2014. Notwithstanding its marginal contribution to the total SO2 flux, the NH was vigorously active before the effusive eruption onset, and produced a large number of ash-free explosions, which individual SO2 output was easily measurable at high sampling rate with the SO2 cameras. From the beginning of June 2014, the NH exhibited a progressive increase of its explosive SO2 release (from ~1 t/d up to ~5 t/d) which culminated in correspondence with a sequence of lava overflows on the beginning of July 2014. A notable correlation between the explosive degassing pattern and co-acquired acoustic pressure and satellite-derived Volcanic Radiative Power was observed. The relative contributions of the individual degassing craters to the total gas emissions varied in response to the displacement of the magma level within the conduits, with the largest SO2 fluxes being observed during lava overflows. Our results here indicate detectable changes in the relative gas contribution from the different craters and in their degassing modes, although in the absence of sizeable pre-eruptive variations of the total SO2 output. Our observations offer new insights for the understanding of degassing dynamics within shallow conduit systems.

  2. Yield response curves of crops exposed to SO 2 time series

    NASA Astrophysics Data System (ADS)

    Male, Larry; Preston, Eric; Neely, Grady

    Six species (alfalfa, onion, lettuce, radish, red clover, Douglas fir) were exposed in field growth chambers to both constant concentration and stochastic SO 2 time series. Yield response curves were generated with median concentrations ranging from 0 to 20 pphm. Constant concentration treatments were found to underestimate yield loss compared with the pollutant time series treatments. An heuristic model of plant assimilation of SO 2 is presented to explain this result.

  3. SO2 in the Fall in the Arctic: Source Identification Using Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Norman, A. L.; Seguin, A.; Rempillo, O. T.

    2011-12-01

    The Arctic atmosphere, although far from industrial sources, has a large anthropogenic SO2 load. Sulfur dioxide can have other sources including from dimethylsulphide (DMS) oxidation. One way to distinguish between these two types of SO2 is through sulfur isotope apportionment. During the Fall seasons of 2007 and 2008 aerosol sulfate and SO2 were measured at two sites in the Arctic. One site was on board the Canadian Coast Guard Ship, The Amundsen, as it traveled throughout the Arctic and the other site was at Alert, Nunavut, Canada. Sulfur dioxide concentrations at Alert varied between 0.02 and 18 nmol/m3 throughout the study with a median of 0.4 nmol/m3. ?34S values ranged between 0 and +11%. Concentrations and ?34S values aboard the Amundsen were much more diverse with concentrations ranging between 0.09 and 134 nmol/m3 (2007 median = 9.4 nmol/m3; 2008 median = 2.0 nmol/m3) and ?34S values ranging between -15 and +18%. High concentrations of SO2 on board the Amundsen were not directly from the Amundsen itself as there was no correlation with peaks in coincident CO2 measurements. Low concentrations of SO2 may, in a few instances, be associated with DMS oxidation. Negative ?34S values were present for samples collected near the Amundsen Gulf and are consistent with a third source of SO2 in the Arctic. This is likely the local source of SO2 from the Smoking Hills in the North West Territories. Distinguishing between these sources of SO2 in the Arctic and the importance of local verses regional sources will be discussed.

  4. Comments on D-Brane and $SO(2N)$ Enhanced Symmetry in Type II String

    E-print Network

    H. B. Gao

    1996-07-07

    We propose a configuration of D-branes welded by analogous orbifold operation to be responsible for the enhancement of $SO(2N)$ gauge symmetry in type II string compactified on the $D_n$-type singular limit of K3. Evidences are discussed from the $D_n$-type ALE and D-manifold point of view. A subtlety regarding the ability of seeing the enhanced $SO(2N)$ gauge symmetry perturbatively is briefly addressed.

  5. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...neither: cause to be discharged into the atmosphere from the affected facility any gases...nor cause to be discharged into the atmosphere from the affected facility any gases...neither: cause to be discharged into the atmosphere from the affected facility any...

  6. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...neither: cause to be discharged into the atmosphere from the affected facility any gases...nor cause to be discharged into the atmosphere from the affected facility any gases...neither: cause to be discharged into the atmosphere from the affected facility any...

  7. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...neither: cause to be discharged into the atmosphere from the affected facility any gases...nor cause to be discharged into the atmosphere from the affected facility any gases...neither: cause to be discharged into the atmosphere from the affected facility any...

  8. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...neither: cause to be discharged into the atmosphere from the affected facility any gases...nor cause to be discharged into the atmosphere from the affected facility any gases...neither: cause to be discharged into the atmosphere from the affected facility any...

  9. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...neither: cause to be discharged into the atmosphere from the affected facility any gases...nor cause to be discharged into the atmosphere from the affected facility any gases...neither: cause to be discharged into the atmosphere from the affected facility any...

  10. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    NASA Technical Reports Server (NTRS)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  11. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  12. Effect of SO2 and Photolysis on Photooxidized Diesel Fuel Secondary Organic Aerosol Composition

    NASA Astrophysics Data System (ADS)

    MacMillan, A. C.; Blair, S. L.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S.

    2014-12-01

    Diesel fuel (DSL) and sulfur dioxide (SO2) are important precursors to secondary organic aerosol (SOA) formation. DSL is often co-emitted with SO2 and NO2, thus it is important to understand the possible effects of SO2 on DSL SOA composition. Additionally, DSL SOA composition can be affected by photochemical aging processes such as photolysis. In this study, DSL SOA was first prepared under dry, high-NOx conditions with various concentrations of SO2 by photooxidation in a smog chamber. The SOA was then stripped of excess oxidants and gaseous organics with a denuder train and the resulting particles were photolyzed at various photolysis times in a quartz flow tube. The SOA composition, photochemical aging, properties, and mass concentration, before and after direct photolysis in the flow tube, were examined using several techniques. High-resolution mass spectrometry (HR-MS) was performed on DSL SOA samples to investigate the effect of SO2 on molecular level composition. SOA composition as a function of photolysis time was measured with an aerosol mass spectrometer (AMS). HR-MS results show that organosulfates are produced in DSL SOA. Both AMS and HR-MS results show that photolysis also has an effect on composition; though, this is more apparent in the HR-MS results than in the AMS results. In summary, both the presence of SO2 and solar radiation has an effect on DSL SOA composition.

  13. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA.

    PubMed

    Yi, Honghong; Deng, Hua; Tang, Xiaolong; Yu, Qiongfen; Zhou, Xuan; Liu, Haiyan

    2012-02-15

    In order to develop a single-step process for removing SO(2), NO, CO(2) in flue gas simultaneously by co-adsorption method. Pure component adsorption equilibrium and kinetics of SO(2), NO, and CO(2) on zeolite NaY, NaX, CaA were obtained respectively. Equilibrium data were analyzed by equilibrium model and Henry's law constant. The results suggest that Adsorption affinity follows the trend SO(2)>CO(2)>NO for the same adsorbent. Zeolite with stronger polar surface is a more promising adsorbent candidate. Kinetics behavior was investigated using the breakthrough curve method. The overall mass transfer coefficient and diffusivity factor were determined by a linear driving force model. The results are indicative of micropore diffusion controlling mechanism. NaY zeolite has the minimum resistance of mass transfer duo to the wide pore distribution and large pore amount. CaA zeolite exhibits the highest spatial hindered effect. Finally, co-adsorption effect of SO(2), NO, and CO(2) were investigated by multi-components breakthrough method. SO(2) and NO may form new adsorbed species, however, CO(2) presents a fast breakthrough. Chemical adsorption causes SO(2) transforms to SO(4)(2-), however, element N and C are not detected in adsorbed zeolites. PMID:22209321

  14. SO2 and NO(X) conversion rates in the Kuwait oil fire smoke plume

    SciTech Connect

    Smyth, S.B.; Peters, L.K.; Berkowitz, C.M.; Daum, P.H.; Rodgers, M.O. |||

    1994-08-01

    Aircraft measurements of the Kuwait oil fire smoke plumes during August 1991 are examined to estimate the conversion rates SO2 and NO(X) (NO+NO2) to sulfate and nitrate, respectively. A method based on evaluating a Lagrangian mass conservation equation for the ratios of SO2 and NO(X) to CO2 is used to estimate plume dilution and conversion rates. The loss process is expressed as first and second order, and NO(X) concentration serves as a surrogate for the oxidizing species in the second-order reaction. Continuous measurements of SO2 and NO(X) within the smoke plume indicate that SO2 and NO(X) conversion rates were approximately 1%/h and 2%/h, respectively, 100 km from the sources; further downwind, both conversion rates decreased. A box model is used to simulate the chemistry in the plume; SO2 and NO(X) conversion rates predicted by the box model were less than or equal to 1%/h and 2% to 30%/h, respectively, depending on time of day and distance from the source. The dependence of the modeled conversion rate on the time of day suggests that the conversion of SO2 and NO(X) calculated from the field data may be the average conversion rate associated with nighttime and early-morning chemistry.

  15. Identification of Large Emission Sources of SO2 in Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Garcia-reynoso, J.; Resendiz-Martinez, C.; Delgado Granados, H.

    2011-12-01

    Successful actions for reducing SO2 concentrations in the Mexico Megacity such as changes in fuel composition for industry and cars, closure of large emitters and the setup of a measuring network of criteria pollutants, took place in the last 15 years. Specifically SO2 has been measured systematically since 1986. However there are still some periods of high SO2 concentrations, exceeding the recommended World Health Organization levels. Using a coupled air quality model and back trajectories analysis, it was possible to identify the large SO2 emissions sources that influence the air quality of Mexico Megacity for the years 2007 to 2009. Two large sources were identified in previous studies: The Tula industrial area and the Popocatepetl volcano. However those only explain only around 70% of the high SO2 concentrations modeled episodes. An additional source has been identified to explain this missing contribution. It is the Tuxpan power plant located in the coast of the Gulf of Mexico. This shows that near and distant regional sources should be involved to explain the increment of atmospheric SO2 concentrations for Mexico Megacity and other areas were so far no measurements are available. A control policy should be at a national level

  16. Adsorption, Desorption, Dissoziation und Rekombination von SO2 an einer Palladium(111)-Oberfläche

    NASA Astrophysics Data System (ADS)

    Kölzer, J. G.; Wassmuth, H.-W.

    Die Adsorption, Desorption sowie Zerfalls- uud Aufbaureaktionen von SO2 an Pd(1 1 1) wurden mit LEED, AES, Thermischer Desorptions-Massenspektrometrie und Molekularstrahlstreuung im Temperaturbereich 160-1200 K untersucht. Bei 160 K adsorbiert SO2 molekular und ungeordnet; die Precursor-gesteuerte Adsorption mit einem Anfangshaftkoeffizienten s0 = 1 führt bei Sättigung zu einem Bedeckungsgrad SO2 0,3. Beim Hochheizen der Adschicht desorbiert ausschließlich SO2, und zwar im -Peak (Tmax = 240 K) direkt aus dem Zustand (SO2)ad und im ?-Peak (Tmax = 330-370 K) als Produkt der Rekombination von (SO)ad und Oad. Ein großer Teil des bei der SO2-Dissoziation freiwerdenden Sauerstoffs wird in den Subsurface-Bereich inkorporiert, so daß eine atomare S-Bedeckung mit S = 1/7 zurückbleibt, die eine () +/- 19,1°-Überstruktur ausbildet. Diese Struktur wird auch nach Hochheizen einer bei 320 K hergestellten (2 × 2)-SO-Sättigungsbedeckung mit SO = 0,5 sowie nach SO2-Exposition bei T > 500 K beobachtet, wo sie Bedeckungsgraden S von 3/7 und 2/7 entspricht. Weiterhin wurden der Vergiftungseffekt durch adsorbierten Schwefel auf die dissoziative Adsorption von Sauerstoff und die S-Oxidation durch Hochheizen einer OS-Koadsorptionsphase untersucht. Insgesamt wurden folgende reaktionskinetische Parameter (Aktivierungsenergien und Vorfaktoren) bestimmt: [Normal View 6K | Magnified View 15K].Translated AbstractAdsorption, Desorption, Dissociation and Recombination of SO2 on a Palladium (111) SurfaceThe adsorption, desorption as well as decomposition- and recombination-reactions of SO2 on Pd(1 1 1) were studied for temperatures T = 160-1200 K using LEED, AES, thermal desorption-mass-spectrometry and molecular beam techniques. At 160 K SO2 adsorption with an initial sticking coefficient s0 = 1 is molecular and non-ordered; it is characterized by a precursor state and leads to a saturation coverage SO2 0,3. Heating up the adlayer SO2 is the only desorption product, namely directly from (SO2)ad in the ?-peak (Tmax = 240 K) and as the product of recombination of (SO)ad and Oad in the ?-peak (Tmax = 330-370 K). A great part of the oxygen originating from SO2-dissociation is incorporated into the subsurface region, resulting in an atomic S-adlayer with S = 1/7 which exhibits a () R +/- 19,1°-superstructure. This structure is also observed, if a 320 K-SO2-exposure induced (2 × 2)-SO saturation layer with SO = 0,5 is heated up or if SO, is exposed at T > 500 K, where it corresponds to S, values of 3/7 and 2/7, respectively. Furthermore the poisoning effect of adsorbed sulfur on the dissociative O2,-adsorption and the oxidation of sulfur by heating up an OS-coadsorption layer were studied. As a result the following kinetic parameters (activation energies and frequency factors) were determined: [Normal View 6K | Magnified View 14K].

  17. Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation

    SciTech Connect

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral-trapping capability can reach 80 kg per cubic meter of medium. Most sulfur is trapped through alunite precipitation, although some is trapped by anhydrite precipitation and minor amount of pyrite. The addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.

  18. Effect of the volcanic ash type uncertainties on ash and SO2 retrievals from satellite multi-spectral measurements in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Merucci, Luca; Campion, Robin; Carboni, Elisa

    2013-04-01

    After the Eyjafjallajokull 2010 eruption the quantitative determination of the volcanic ash present in ash clouds has become more important because of the policy change from the previous zero tolerance to the new ash threshold based approach in the aviation hazard management. Volcanic SO2 has an impact on the environment and when injected at high altitudes can be oxidized to form sulphates capable of reflecting solar radiation then causing surface cooling. Observations of the volcanic degassing also yield insights into the magmatic processes which control volcanic activity during both quiescent and eruptive phases. During volcanic eruptions ash and gases are often emitted simultaneously. The plume ash particles reduce the top of atmosphere radiance in the entire thermal infrared (TIR) spectral range causing a significant SO2 columnar abundance overestimation. The ash optical properties are among the most critical parameters to set, their uncertainties cause meaningful errors on both ash and SO2 retrievals. In this work the effect effect of the volcanic ash type uncertainties on ash and SO2 retrievals from MODIS measurements in the TIR spectral range have been quantified. As test case some events of the 2010 Eyjafjallajokull (Iceland) eruption has been considered. The ash optical properties derive from the ARIA database of the Oxford University, while the MODIS SO2 and ash retrievals strategies are based on the BTD and minimization approaches using the channels centered at 8.7, 11 and 12 micron. The radiative transfer model simulations, needed for the retrievals schemes, are carried out by using MODTRAN [Corradini et al., 2009]. The MODIS SO2 retrievals have been also compared with the retrievals obtained by using IASI hyper-spectral and ASTER high spatial resolution data. The two procedures are considered less sensitive to the ash type: the ASTER retrieval scheme [Campion et al. 2010] consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations, while the IASI retrieval [Carboni et al. 2012] is an optimal estimation scheme that exploit the high resolution spectrometer measurements of the two SO2 absorption bands around 7.3 and 8.7 micron.

  19. Heterogeneous reactions of SO2 with HOCl and HOBr on ice surfaces.

    PubMed

    Jin, Ronghua; Chu, Liang T

    2006-07-20

    The heterogeneous reactions of SO2 + HOX (X = Cl or Br) --> products on ice surfaces at low temperature have been investigated in a flow reactor coupled with a differentially pumped quadrupole mass spectrometer. Pseudo-first-order loss of SO2 over the ice surfaces has been measured under the conditions of concurrent HOX flow. The initial uptake coefficient of SO2 reaction with HOX has been determined as a function of HOX surface coverage, theta(HOX), on the ice. The initial uptake coefficients increase as the HOX coverage increases. The uptake coefficient can be expressed as gamma(t) = k(h)theta(HOX), where k(h) is an overall rate constant of SO2 + HOCl, which was determined to be (2.3 +/- 0.6) x 10(-19) and (1.7 +/- 0.5) x 10(-19) molecules(-1) x cm2 at 190 and 210 K, and k(h) of SO2 + HOBr is (6.1 +/- 2.0) x 10(-18) molecules(-1) x cm2 at 190 K. theta( HOX) is in the range 8.1 x 10(13)-9.1 x 10(14) molecules x cm(-2). The kinetic results of the heterogeneous reaction of SO2 + HOX on ice surface are interpreted using the Eley-Rideal mechanism. The activation energy of the heterogeneous reaction of SO2 with HOCl on ice surface was determined to be about -37 +/- 10 kJ/mol in the 190-238 K range. PMID:16836433

  20. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-07-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer-Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  1. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  2. Corrections for OMI SO2 BRD retrievals influenced by row anomalies

    NASA Astrophysics Data System (ADS)

    Yan, H.; Chen, L.; Tao, J.; Su, L.; Huang, J.; Han, D.; Yu, C.

    2012-11-01

    Since June 2007, the Ozone Monitoring Instrument (OMI) Earth radiance data at specific viewing angles have been affected by the row anomaly, which causes large biases in sulfur dioxide (SO2) columns retrieved using the band residual difference (BRD) algorithm. To improve global measurements of atmospheric SO2 from OMI, we developed two correction approaches for the row anomaly effects in the northern latitudes and along the full orbit. Firstly the residual correction approach with median residual from a sliding 10° latitude range, and with that near the Equator was used to remove the anomalous high SO2 columns in the northern latitudes. Secondly, in the case of the row anomaly along the full orbit, the SO2 biases caused by the anomalous ozone (O3) column and underestimated Lambertian effective reflectivity (LER) were reduced, respectively, by using unaffected adjacent O3 column and residual correction with median residual from a sliding 10° latitude range. Comparisons with the OMI SO2 columns processed with median residual from a sliding 30° latitude range have illustrated the drastic improvements of our correction approaches under row anomaly conditions. The consistencies among the SO2 columns inside and outside the row anomaly areas have also demonstrated the effectiveness of our correction approaches under row anomaly conditions. The analyses of the underestimation and the errors caused by the O3 column and LER were conducted to understand the limitations of our correction approaches. The proposed approaches for the row anomaly effects can extend the valid range of OMI SO2 Planetary Boundary Layer (PBL) data produced using the BRD algorithm.

  3. Validation of SO2 Retrievals from the Ozone Monitoring Instrument over NE China

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; McClure, Brittany; Dickerson, Russell R.; Carn, Simon A.; Li, Can; Bhartia, Pawan K.; Yang, Kai; Krueger, Arlin J.; Li, Zhanqing; Levelt, Pieternel F.; Chen, Hongbin; Wang, Pucai; Lu, Daren

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation,sigma) is approximately 1.5 DU (Dobson units; 1 DU = 2.69 10 (exp 16) molecules/cm (exp 2)) for instantaneous field of view boundary layer (PBL) SO2 data. Temporal and spatial averaging can reduce the noise to sigma approximetly 0.3 DU over a remote region of the South Pacific; the long-term average over this remote location was within 0.1 DU of zero. Under polluted conditions collection 2 OMI data are higher than aircraft measurements by a factor of two. Improved calibrations of the radiance and irradiance data (collection 3) result in better agreement with aircraft measurements on polluted days. The air mass corrected collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to approximately 5 ppb from 0 to 3000 m altitude. Quantifying the SO2 and aerosol profiles and spectral dependence of aerosol absorption between 310 and 330 nm are critical for an accurate estimate of SO2 from satellite UV measurements.

  4. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; McClure, Brittany; Dickerson, Russell R.; Carn, Simon A.; Li, Can; Bhartia, Pawan K.; Yang, Kai; Krueger, Arlin J.; Li, Zhanqing; Levelt, Pieternel F.; Chen, Hongbin; Wang, Pucai; Lu, Daren

    2008-08-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation, ?) is ˜1.5 DU (Dobson units; 1 DU = 2.69 · 1016 molecules/cm2) for instantaneous field of view boundary layer (PBL) SO2 data. Temporal and spatial averaging can reduce the noise to ? ˜ 0.3 DU over a remote region of the South Pacific; the long-term average over this remote location was within 0.1 DU of zero. Under polluted conditions collection 2 OMI data are higher than aircraft measurements by a factor of two. Improved calibrations of the radiance and irradiance data (collection 3) result in better agreement with aircraft measurements on polluted days. The air mass-corrected collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to ˜5 ppb from 0 to 3000 m altitude. Quantifying the SO2 and aerosol profiles and spectral dependence of aerosol absorption between 310 and 330 nm are critical for an accurate estimate of SO2 from satellite UV measurements.

  5. Satellite monitoring of volcanic SO2 emissions within the Volcano Fast Response System (Exupéry)

    NASA Astrophysics Data System (ADS)

    Rix, Meike; Maerker, Cordelia; Valks, Pieter; Erbertseder, Thilo

    2010-05-01

    Volcanic eruptions are a major hazard to the local population near large volcanoes and to aviation. They also play an important role in global climate change. Atmospheric SO2 is an important indicator for volcanic eruptions and volcanic activity like passive degassing. Space based atmospheric sensors such as GOME-2 on MetOp and OMI on EOS-Aura make it possible to detect the emissions of volcanic SO2 in near-real time (NRT) and monitor volcanic activity and eruptions on a global scale. The GOME-2 instrument provides operational measurements of the SO2 columns with a spatial resolution of 80x40 km² and a global coverage within about one day. Volcanic sulfur dioxide emissions are determined from solar backscatter measurements in the ultra-violet spectral range between 315 - 326 nm, applying the Differential Optical Absorption Spectroscopy (DOAS) method. This retrieval technique uses the high spectral resolution of the instrument to determine the total column density of SO2. The ability to monitor changes in volcanic degassing behavior is of great importance for early warning of volcanic activity, as large increases in SO2 fluxes are often an indicator for new episodes of volcanic unrest. Ensembles of backward trajectories using the FLEXTRA model are applied to relate exceptional SO2 values to particular sources or regions and hence attribute them to a volcanic or anthropogenic origin. Trajectory density maps give an overview of the most probable location of the emission source. Additionally, the moment of the eruption as well as the emission and the plume height can be estimated. Hypothetical forward trajectories starting at potentially active volcanoes allow forecasting the dispersion of volcanic SO2 and ash depending on the emission height in case of an eruption. For validation purposes the dispersion model FLEXPART provides a three dimensional forecast of the plume motion and the transport of SO2 for several days. The GOME-2 observations of volcanic SO2 are used in a new Volcano Fast Response System (Exupéry) developed within the framework of the German Geotechnology Program that includes both ground-based and space-based measurements of different volcanic parameters. The daily GOME-2 SO2 data as well as hypothetical trajectories and probability density maps are supplied to a database approximately 7 hours after the measurement and displayed in a GIS system that can be accessed by local authorities and observatories to provide additional information in the case of volcanic unrest. In this contribution we present exemplary results of GOME-2 SO2 observations and the trajectory matching technique for recent volcanic eruptions. Further we will present initial validation results for GOME-2 SO2 data using ground-based measurements in combination with other satellite observations, as well as dispersion modeling. We will focus on the use of the GOME-2 SO2 data and model results within the Exupéry project.

  6. Improved modelling of ship SO 2 emissions—a fuel-based approach

    NASA Astrophysics Data System (ADS)

    Endresen, Øyvind; Bakke, Joachim; Sørgård, Eirik; Flatlandsmo Berglen, Tore; Holmvang, Per

    Significant variations are apparent between the various reported regional and global ship SO 2 emission inventories. Important parameters for SO 2 emission modelling are sulphur contents and marine fuel consumption. Since 1993, the global average sulphur content for heavy fuel has shown an overall downward trend, while the bunker sale has increased. We present an improved bottom up approach to estimate marine sulphur emissions from ship transportation, including the geographical distribution. More than 53,000 individual bunker samples are used to establish regionally and globally (volume) weighted average sulphur contents for heavy and distillate marine fuels. We find that the year 2002 sulphur content in heavy fuels varies regionally from 1.90% (South America) to 3.07% (Asia), with a globally weighted average of 2.68% sulphur. The calculated globally weighted average content for heavy fuels is found to be 5% higher than the average (arithmetic mean) sulphur content commonly used. The reason for this is likely that larger bunker stems are mainly of high-viscosity heavy fuel, which tends to have higher sulphur values compared to lower viscosity fuels. The uncertainties in SO 2 inventories are significantly reduced using our updated SO 2 emission factors (volume-weighted sulphur content). Regional marine bunker sales figures are combined with volume-weighted sulphur contents for each region to give a global SO 2 emission estimate in the range of 5.9-7.2 Tg (SO 2) for international marine transportation. Also taking into account the domestic sales, the total emissions from all ocean-going transportation is estimated to be 7.0-8.5 Tg (SO 2). Our estimate is significantly lower than recent global estimate reported by Corbett and Koehler [2003. Journal of Geophysical Research: Atmospheres 108] (6.49 Tg S or about 13.0 Tg SO 2). Endresen et al. [2004. Journal of Geophysical Research 109, D23302] claim that uncertainties in input data for the activity-based method will give too high emission estimates. We also indicate that this higher estimate will almost give doubling of regional emissions, compared to detailed movement-based estimates. The paper presents an alternative approach to estimate present overall SO 2 ship emissions with improved accuracy.

  7. Observing the plume of Popocatepetl with a novel SO2-Camera

    NASA Astrophysics Data System (ADS)

    Luebcke, P.; Zielcke, J.; Vogel, L.; Kern, C.; Bobrowski, N.; Platt, U.

    2010-12-01

    Sulfur dioxide flux emission measurements can be an important tool for monitoring volcanoes and eruption risk assessment. For instance hanges in the SO2 flux have been recorded prior to volcanic eruptions. The SO2 camera is a novel technique for the remote sensing of volcanic emissions based on measuring the ultra-violet absorption of SO2 in a narrow wavelength window around 310 nm by employing band-pass interference filters and a 2-D UV-sensitive CCD detector. Solar radiation scattered in the atmosphere is used as a light source for the measurements. The effect of aerosol scattering can be eliminated by additionally measuring the incident radiation around 325 nm where the absorption of SO2 is no longer significant, thus rendering the method applicable to optically opaque plumes. The ability to deliver spatially resolved images of volcanic SO2 distributions at a frame rate on the order of 1 Hz makes the SO2 camera a very promising technique for volcanic monitoring. The high time resolution allows the calculation of the wind-speed directly from the measurements, thus largely eliminating the main error source of flux measurements. Another advantage of the high time resolution is the possibility to correlate the gas flux with other data sets on shorter timescales. Here we present results of a measurement campaign conducted at Popocatepetl, Mexico in April 2010, which were performed with a new prototype of a SO2 camera incorporating an additional Differential Optical Absorption Spectroscopy (DOAS) system. The DOAS system was used to test a new calibration method, besides that it allows to correct for radiative transfer effects. The built in DOAS system carried out point measurements of the volcanic plume in a region that corresponds to the center of the SO2 camera images. This yields column density / apparent absorption pairs that can be used to determine the calibration curve for the SO2 camera images. In order to test and validate this approach simultaneous measurements with an imaging-DOAS, were conducted. The imaging-DOAS two dimensional trace gas distributions were used to verify the camera calibration.

  8. Sulphur dioxide (SO2) emissions during the 2014-15 Fogo eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Dionis, Samara; Quevedo, Roberto; Fernandes, Paulo; Rodríguez, Fátima; Pérez, Nemesio M.; Silva, Sónia; Cardoso, Nadir; Hernández, Pedro A.; Melián, Gladys V.; Padrón, Eleazar; Padilla, Germán; Asensio-Ramos, María; Calvo, David; Semedo, Helio; Alfama, Vera

    2015-04-01

    A new eruption started at Fogo volcanic island on November 23, 2014, an active stratovolcano, located in the SW of the Cape Verde Archipelago; rising over 6 km from the 4000m deep seafloor to the Pico do Fogo summit at 2829m above sea level (m.a.s.l.). Since settlement in the 15th century, 27 eruptions have been identified through analysis of incomplete written records (Ribeiro, 1960), with average time intervals of 20 yr and average duration of two months. The eruptions were mostly effusive (Hawaiian to Strombolian), with rare occurrences of highly explosive episodes including phreatomagmatic events (Day et al., 1999). This study reports sulphur dioxide (SO2) emission rate variations observed throughout the 2014-15 Fogo eruption, Cape Verde. More than 100 measurements of SO2 emission rate have been carried out in a daily basis by ITER/INVOLCAN/UNICV/OVCV/SNPC research team since November 28, 2014, five days after the eruption onset, by means of a miniDOAS using the traverse method with a car. The daily deviation obtained of the data is around 15%. Estimated SO2 emission rates ranged from 12,476 ± 981 to 492 ± 27 tons/day during the 2014-15 Fogo eruption until January 1, 2015. During this first five days of measurements, the observed SO2 emission rates were high with an average rate of 11,100 tons/day. On December 3, 2014 the SO2 emission rate dropped to values close to 4,000 tons/day, whereas few days later, on December 10, 2014, an increase to values close to 11,000 tons/day was recorded. Since then, SO2 emission rate has shown decrease trend to values close to 1,300 tons/day until December 21, 2014. The average of the observed SO2 emission rate was about 2,000 tons/day from December 21, 2014 to January 1, 2015, without detecting a specific either increasing or decreasing trend of the SO2 emission rate. The objective of this report is to clarify relations between the SO2 emission rate and surface eruptive activity during the 2014-15 Fogo eruption. Day, S. J., Heleno da Silva, S. I. N., and Fonseca, J. F. B. D.: A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands, J. Volcanol. Geotherm. Res., 94, 191-218, 1999. Ribeiro, O.: A ilha do Fogo e as suas erupções, 12a edição, Memórias, Série Geográfica, J. Inv. Ultramar, 1960.

  9. TiO2-based gas sensor: a possible application to SO2.

    PubMed

    Nisar, Jawad; Topalian, Zareh; De Sarkar, Abir; Österlund, Lars; Ahuja, Rajeev

    2013-09-11

    Fixation of SO2 molecules on anatase TiO2 surfaces with defects have been investigated by first-principles density functional theory (DFT) calculations and in situ Fourier transform infrared (FTIR) surface spectroscopy on porous TiO2 films. Intrinsic oxygen-vacancy defects, which are formed on TiO2(001) and TiO2(101) surfaces by ultraviolet (UV) light irradiation and at elevated temperatures, are found to be most effective in anchoring the SO2 gas molecules to the TiO2 surfaces. Both TiO2(101) and TiO2(001) surfaces with oxygen vacancies are found to exhibit higher SO2 adsorption energies in the DFT calculations. The adsorption mechanism of SO2 is explained on the basis of electronic structure, charge transfer between the molecule and the surface, and the oxidation state of the adsorbed molecule. The theoretical findings are corroborated by FTIR experiments. Moreover, the (001) surface with oxygen vacancies is found to bind SO2 gas molecules more strongly, as compared to the (101) surface. Higher concentration of oxygen vacancies on the TiO2 surfaces is found to significantly increase the adsorption energy. The results shed new insight into the sensing properties of TiO2-based gas sensors. PMID:23915321

  10. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  11. High-precision measurements of (33)S and (34)S fractionation during SO2 oxidation reveal causes of seasonality in SO2 and sulfate isotopic composition.

    PubMed

    Harris, Eliza; Sinha, Bärbel; Hoppe, Peter; Ono, Shuhei

    2013-01-01

    This study presents high-precision isotope ratio-mass spectrometric measurements of isotopic fractionation during oxidation of SO2 by OH radicals in the gas phase and H2O2 and transition metal ion catalysis (TMI-catalysis) in the aqueous phase. Although temperature dependence of fractionation factors was found to be significant for H2O2 and TMI-catalyzed pathways, results from a simple 1D model revealed that changing partitioning between oxidation pathways was the dominant cause of seasonality in the isotopic composition of sulfate relative to SO2. Comparison of modeled seasonality with observations shows the TMI-catalyzed oxidation pathway is underestimated by more than an order of magnitude in all current atmospheric chemistry models. The three reactions showed an approximately mass-dependent relationship between (33)S and (34)S. However, the slope of the mass-dependent line was significantly different to 0.515 for the OH and TMI-catalyzed pathways, reflecting kinetic versus equilibrium control of isotopic fractionation. For the TMI-catalyzed pathway, both temperature dependence and (33)S/(34)S relationship revealed a shift in the rate-limiting reaction step from dissolution at lower temperatures to TMI-sulfite complex formation at higher temperatures. 1D model results showed that although individual reactions could produce ?(33)S values between -0.15 and +0.2‰, seasonal changes in partitioning between oxidation pathways caused average sulfate ?(33)S values of 0‰ throughout the year. PMID:24079753

  12. Rapid aqueous phase SO2 oxidation in winter fog in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sachan, Himanshu; Sarkar, Chinmoy; Sinha, Baerbel

    2013-04-01

    Sulphate and sulphur dioxide play an important role in environmental chemistry and climate. The majority of anthropogenic sulphur is released directly as SO2, and a significant fraction of biogenic and natural sulphur emissions are also either directly released as SO2 or oxidised to SO2 in the atmosphere (e.g. H2S, OCS, DMS). Around 50% of global atmospheric sulphur dioxide is then oxidised to sulphate, while the rest is lost through dry and wet deposition. The pathway by which SO2 is oxidised to sulphate is critical in determining the climate forcing and environmental effects of sulphate. Gas-phase oxidation of SO2 by OH radicals or criegee intermediates produces H2SO4 (g), which plays an important role in controlling new particle formation in the troposphere and also modifies the surface properties of hydrophobic particles such as soot and mineral dust. Heterogeneous oxidation of SO2 is considered to occur primarily in cloud droplets, although oxidation on sea salt aerosols and mineral dust surfaces are considered to be regionally important. Heterogeneous oxidation leads to the formation of fewer and larger particles with shorter atmospheric lifetime. The major oxidation pathways which are considered to contribute to sulphate formation in the aqueous phase are oxidation by H2O2 and oxidation by O3 and the lifetime of SO2 with respect to all known loss processes combined is considered to be 1-2 days. Here we report measurements of SO2 measurements from IISER Mohali - Ambient Air Quality Station (30.67°N, 76.73°E), a station located at a suburban site in the Indo Gangetic Basin (IGB) during wintertime (10th Dec. 2011 to 29th Feb. 2012). We use a strong point source of SO2 with known SO2/CO emission ratio (brick kiln) located 6.5 km east of our measurement site to estimate the loss rate of SO2 in wintertime fog in the IGB. We consider the transport from the source to the receptor site to be Lagrangian and use the measured CO concentration at the receptors site to account for changes in the emission intensity (activity pattern) and the dilution of the plume during transport. We see a linear correlation between the measured SO2/CO ratio and the transport time. Binning the data on the basis of relative humidity and applying first order kinetics to SO2 loss within each humidity bin we find the SO2 loss rate with respect to aqueous phase oxidation at our sites varies between > 2.2 x 10-3 mol/cm3/s at 96 % RH and 3.8 x 10-4 mol/cm3/s at 47 % RH. Simple box model calculations reveal that neither oxidation by H2O2 nor oxidation by O3 can account for such rapid SO2 oxidation in the fog water. Considering the high mineral dust loadings are our station (PM 10 typically > 300 ?g/m3) we propose that transition metal catalysis by TMI leached from natural mineral dust and resuspended road dust may be responsible for the rapid oxidation of SO2 in the fog water. However, the observed lifetime with respect to aqueous phase oxidation in wintertime fog is a factor 150-800 times shorter than the lifetime of SO2 with respect to TMI catalyzed oxidation currently implemented in global atmospheric chemistry models. During 2012-2013 winter season we will measure TMI concentrations in the fog water and verify the rates coefficients estimated from the ambient observation by conducting controlled experiments both using collected fog water and different TMI mixtures. If confirmed through laboratory studies our findings have major implications for the SO2 lifetime over the IGP (and possibly other regions with high mineral dust loadings) and will significantly alter the regional direct and indirect aerosol forcing estimates due to anthropogenic SO2 emissions. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD), India and IISER Mohali for funding the facility. Himanshu acknowledges the DST-INSPIRE Fellowship program. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding the research.

  13. TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2.

    PubMed

    Zhang, Xiaoxing; Zhang, Jinbin; Jia, Yichao; Xiao, Peng; Tang, Ju

    2012-01-01

    The detection of partial discharge through analysis of SF(6) gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO(2) nanotube array sensor for detecting the SF(6) decomposition product SO(2), and the application of the anodic oxidation method for the directional growth of highly ordered TiO(2) nanotube arrays. The sensor response of 10-50 ppm SO(2) gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO(2) nanotube sensor array has good response to SO(2) gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components. PMID:22737009

  14. Canonical SO(2,4)-invariant quantization in conformally flat spaces

    E-print Network

    Faci, Sofiane

    2015-01-01

    We show how to quantize SO(2,d)-invariant fields in d > 2 dimensional conformally flat spaces (CFS). The Weyl equivalence between CFSs is exploited to perform the quantization process in Minkowski space then transport the entire SO(2,d)-invariant structure to curved CFSs. We make use of the canonical quantization scheme and a special careful is made to specify a scalar product, technically related to a Cauchy surface. The latter is chosen to be common to all globally hyperbolic CFSs in order to relate the different associated Hilbert spaces. The quantum fields are constructed and the two-point functions are given in terms of their minkowskian counterparts. It appears that an SO(2,d)-invariant quantum field does not locally distinguish between two different CFSs.

  15. An upper limit to the global SO2 abundance on Io

    NASA Technical Reports Server (NTRS)

    Butterworth, P. S.; Caldwell, J.; Owen, T.; Rivolo, A. R.; Moore, V.; Lane, A. L.

    1980-01-01

    An upper limit to the global abundance of SO2 gas in the atmosphere of Io has been derived from observations of near-UV reflectivity made from earth orbit. Spectra in the range 2900-3100 A were obtained by the long-wavelength spectrograph of the IUE, and compared with the convolved solar spectrum of Broadfoot (1972). From the apparent solar origin of all the spectral features, an upper limit of 0.008 cm atm was calculated for the abundance of SO2, which was confirmed by ratio spectra of Vesta. Discrepancies between the upper limit obtained and the detection of a column abundance of 0.2 cm atm by the Voyager 1 IRIS experiment have a number of possible explanations, the most likely of which is that the SO2 atmosphere in Io is patchy, being confined to regions over solid deposits and volcanic vents.

  16. Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.

  17. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors.

    PubMed

    Pardeshi, Kundansingh A; Malwal, Satish R; Banerjee, Ankita; Lahiri, Surobhi; Rangarajan, Radha; Chakrapani, Harinath

    2015-07-01

    Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2. PMID:25981687

  18. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.

  19. Thermodynamic models of the chemistry of lunar volcanic gases

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1991-01-01

    Thermodynamic models and mass-balance arguments are used to constrain the chemistry of lunar volcanic gases. The results predict that lunar gases were dominated by reduced C and S gases such as CO, COS, CS2, S2. The more oxidized gases CO2 and SO2 were also important, but only in limited temperature ranges. Gases such as Cl2, CCl4, and CF4 were more abundant than HF and HCl, which were the two major H compounds in the lunar gases. Chlorides and fluorides were important species for transporting many volatile and ore-forming metals, and the implications for fractionating and concentrating metals into lunar ore-deposits merit further study.

  20. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  1. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China

    E-print Network

    Zeng, Ning

    , produced primarily by volcanoes, power plants, refineries, metal smelting and burning of fossil [e.g., Dickerson et al., 2007]. [3] Emission inventories indicate that the largest increases in tropospheric SO2 emissions have occurred in Asia during the last 20 years [Streets and Waldhoff, 2000; Streets

  2. CALCINATION OF CALCIUM-BASED SORBENTS FOR CONTROL OF SO2 EMISSIONS FROM COAL FIRED BOILERS

    EPA Science Inventory

    The paper summarizes the results of an experimental study that focused on the production of high surface area materials from various sorbents. (NOTE: Injecting calcium-based sorbents into coal burning utility boilers to control SO2 emissions is being considered by the EPA as an a...

  3. GROWTH RESPONSE IN RADISH TO SEQUENTIAL AND SIMULTANEOUS EXPOSURES OF NO2 AND SO2

    EPA Science Inventory

    Sequential and simultaneous exposures of radish Raphanus sativus L. cv. Cherry Belle to 0.8 microliters per liter nitrogen dioxide (NO2) and 0.8 microliters per liter sulphur dioxide (SO2) were conducted under both day- and night-time conditions to examine the effects on growth a...

  4. SILICA-ENHANCED SORBENTS FOR DRY INJECTION REMOVAL OF SO2 FROM FLUE GAS

    EPA Science Inventory

    The paper gives results of tests of novel silica-enhanced lime sorbents in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were: 64 C, relative humidity 60% (corresponding to an approach to saturation temperature of 10C), and i...

  5. SILICA-ENHANCED SORBENTS FOR DRY INJECTION REMOVAL OF SO2 FROM FLUE GAS (JOURNAL VERSION)

    EPA Science Inventory

    The paper gives results of tests of novel silica-enhanced lime sorbents in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were: 64 C, relative humidity 60% (corresponding to an approach to saturation temperature of 10 C), and ...

  6. A New Perspective on Li-SO2 Batteries for Rechargeable Systems.

    PubMed

    Lim, Hee-Dae; Park, Hyeokjun; Kim, Hyungsub; Kim, Jinsoo; Lee, Byungju; Bae, Youngjoon; Gwon, Hyeokjo; Kang, Kisuk

    2015-08-10

    Primary Li-SO2 batteries offer a high energy density in a wide operating temperature range with exceptionally long shelf life and have thus been frequently used in military and aerospace applications. Although these batteries have never been demonstrated as a rechargeable system, herein, we show that the reversible formation of Li2S2O4, the major discharge product of Li-SO2 battery, is possible with a remarkably smaller charging polarization than that of a Li-O2 battery without the use of catalysts. The rechargeable Li-SO2 battery can deliver approximately 5400?mAh?g(-1) at 3.1?V, which is slightly higher than the performance of a Li-O2 battery. In addition, the Li-SO2 battery can be operated with the aid of a redox mediator, exhibiting an overall polarization of less than 0.3?V, which results in one of the highest energy efficiencies achieved for Li-gas battery systems. PMID:26140701

  7. REGENERATION OF CALCIUM-BASED SO2 SORBENTS FOR FLUIDIZED-BED COMBUSTION: ENGINEERING EVALUATION

    EPA Science Inventory

    The report gives results of an engineering evaluation of regeneration of calcium-based SO2 sorbents (limestone and dolomite) for application in both atmospheric and pressurized fluidized-bed combustion (FBC) processes. Economics of FBC power plants, operated with regeneration, ar...

  8. Formation of sulfite-like species on Cr 2O 3 after SO 2 chemisorption

    NASA Astrophysics Data System (ADS)

    Ranea, V. A.; Hernandez, S. N.; Medina, S.; Irurzun, I. M.; Coria, I. D.; Mola, E. E.

    2011-03-01

    The adsorption of sulfur dioxide (SO 2) on polycrystalline Cr 2O was experimentally investigated using temperature-programmed desorption (TPD). The chemisorption of SO 2 on the (0001) surface was also studied using theoretical methods. Different adsorption geometries were explored for SO 2 adsorption on the ?-Cr 2O (0001) surface. Two similar adsorption configurations were found to be the most stable with chemisorption energies of - 3.09 and - 2.79 eV/molecule. In both calculated stable adsorption configurations the appearance of sulfite-like species is predicted on the (0001) surface after adsorption. It is important to emphasize that these results are predicted only within the DFT + U framework. Under these conditions and despite great efforts, no stable sulfate-like geometry was found on this surface. The TPD spectrum exhibit a desorption peak at Tp ? 870 °C with a heating rate of ? ? 0.12 °C/s. The desorption energy calculated by the analysis given by Redhead and Adams, assuming the rate of desorption is given by a Polanyi-Wigner equation, is ? - 3.12 eV. This value is in good agreement with the predicted one using DFT + U calculations. To our knowledge, this is the first theoretical study of SO 2 adsorption on the Cr 2O (0001) surface.

  9. ROLE OF POROSITY LOSS IN LIMITING SO2 CAPTURE BY CALCIUM BASED SORBENTS

    EPA Science Inventory

    The extent of high temperature (900-1,300°C), short time (<1 s) SO2 capture was found to be limited by temperature-dependent losses in the porosity of calcium based sorbents. At 970°C these porosity losses were caused by CO2-activated sintering. Sulfation of the sorbents either p...

  10. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 2. SESSIONS 4A, 4B, AND 5A

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  11. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 4. SESSIONS 7, 8A, AND 8B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  12. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 3. SESSIONS 5B, 6A, AND 6B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  13. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 1. SESSIONS 1, 2, 3A, AND 3B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  14. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Actual 1985 Yearly SO2 Emissions Calculation C Appendix C to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. C Appendix C to Part 72—Actual 1985 Yearly...

  15. A kinetics study of the reaction of SO2 with CH3O2

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Watson, R. T.

    1981-01-01

    The reaction of CH3O2 with SO2 has been studied using the flash photolysis/ultraviolet absorption technique. In contrast to previous measurements, no reaction could be detected over the temperature range 298-423 K. An upper limit of 5 x 10 to the -17th cu cm/molecule/sec has been determined for the reaction rate constant.

  16. Adsorption of O2, SO2, and SO3, on nickel oxide - Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1986-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital technique suggest that O2 will adsorb preferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom in a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the preferred orientation in which the SO3 plane is parallel to the surface. The calculations suggest that the strength of adsorption varies as O2 greater than SO2 greater than SO3. On activation, SO3 adsorbed to an O(2-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Alternative mechanisms which require the formation of Ni(3+) or O(-) are discussed. NiSO4 thus formed may play a passivating role for the corrosion of Ni at low temperatures in the SO2 + O2 + SO3 atmospheres and an active role at high temperatures, as discussed in the experimental literature.

  17. Adsorption of O2, SO2, and SO3 on nickel oxide. Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital (ASED-MO) technique suggest that O2 will adsorb perferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom is a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the perferred orientation in which the SO3 plane is parallel to the surface. On activation, SO3 adsorbed to an O2(-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Possibilities for alternative mechanisms which require the formation of Ni3(+) or O2(-) are discussed. NiSO4 thus formed leads to the corrosion of Ni at high temperatures in the SO2+O2/SO3 The SO2+O2/SO3 atmosphere, as discussed in the experimental literature.

  18. UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS: COMBINED PARTICULATE AND SO2 CONTROL

    EPA Science Inventory

    The report gives results of tests of a 1700 a cu m/hr University of Washington electrostatic spray scrubber pilot plant on a coal-fired boiler to demonstrate its effectiveness for controlling fine particle and SO2 emissions. The multiple-pass portable pilot plant operates by comb...

  19. Evidence for S(IV) compounds other than dissolved SO2 in precipitation

    NASA Astrophysics Data System (ADS)

    Chapman, E. G.

    1986-12-01

    Preliminary results from a study characterizing S(IV) compounds in wintertime precipitation samples indicate that bisulfite ion is not the primary form of S(IV), as previously believed. By employing a differencing technique that permits estimation of both SO2 aq and non-SO2 aq compound concentrations, it was found that, on an average, more than 60 percent of the total S(IV) is present in a form other than dissolved SO2. Formaldehyde analyses on selected samples suggest that the most likely form of the S(IV) is hydroxymethanesulfonate, although other aldehyde-S(IV) adducts may also be present. The non-SO2 compounds represented a significant portion of the total sulfur concentrations present in the samples analyzed, with contributions ranging from 1.2 to 27 percent. Because of the stability and oxidation resistance of these S(IV) compounds, sulfur deposition estimates that are based solely on sulfate measurements are undoubtedly low, especially for wintertime events. The study underscores the importance of S(IV) compounds in atmospheric scavenging processes.

  20. Sulfur Dioxide (SO2) Primary NAAQS Review: Integrated Review Plan - Advisory with CASAC

    EPA Science Inventory

    The SO2 Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review, and the key policy-...

  1. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Standard missing data procedures for SO2, NOX, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data...

  2. EVALUATION OF SOLIDS DEWATERING FOR A PILOT-SCALE THIOSORBIC LIME SO2 SCRUBBER

    EPA Science Inventory

    The paper gives results of an evaluation of solids dewatering for a pilot-scale thiosorbic lime SO2 scrubber. Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the ...

  3. Climate Co-benefits of Tighter SO2 Regulations in China

    E-print Network

    pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), ChinaClimate Co-benefits of Tighter SO2 and NOx Regulations in China Kyung-Min Nam, Caleb J. Waugh, Sergey Paltsev, John M. Reilly, and Valerie J. Karplus Report No. 233 October 2012 China Energy & Climate

  4. Mid-Infrared Detection of Large Longitudinal Asymmetries in Io's SO2 Atmosphere

    E-print Network

    Spencer, John

    1 Mid-Infrared Detection of Large Longitudinal Asymmetries in Io's SO2 Atmosphere John R. Spencer1 13th 2005 Accepted, January 28th 2004 Keywords: Io; Atmospheres, Structure; Infrared Observations. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window

  5. ALTERNATIVES TO CALCIUM-BASED SO2 SORBENTS FOR FLUIDIZED-BED COMBUSTION: CONCEPTUAL EVALUATION

    EPA Science Inventory

    The report gives results of a conceptual engineering evaluation to screen supported metal oxides as alternatives to natural calcium-based sorbents (limestones and dolomites) for SO2 control in atmospheric and pressurized fluidized-bed combustion (FBC) processes. Alternative sorbe...

  6. TRANSFERABLE DISCHARGE PERMITS FOR CONTROL OF SO2 EMISSIONS FROM ILLINOIS POWER PLANTS (JOURNAL VERSION)

    EPA Science Inventory

    The paper discusses the use of a large scale simulation model in evaluating various policy alternatives for reducing SO2 emissions from Illinois electric power plants for a broad range of nuclear power capacity addition scenarios. A dynamic simulation of a transferable discharge ...

  7. PROCEEDINGS: FIRST COMBINED FGD AND DRY SO2 CONTROL SYMPOSIUM. VOLUME 2. SESSIONS 5 AND 6

    EPA Science Inventory

    The proceedings document presentations at the First Combined FGD and Dry SO2 Control Symposium, in St. Louis, MO, October 25-28, 1988. The symposium, jointly sponsored by EPA and EPRI, had as its objective the exchange of technical and regulatory information on sulfur oxide contr...

  8. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 4: SESSIONS 7A, 7B, AND POSTERS

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  9. INFLUENCE OF COAL MINERAL MATTER ON THE EFFECTIVENESS OF DRY SORBENT INJECTION FOR SO2 CONTROL

    EPA Science Inventory

    The report describes the use of laboratory-, bench-, and pilot-scale facilities to examine the impact of mineral matter on calcium-based sorbent reactivity toward SO2. Two areas of concern were investigated: (1) deleterious effects of coal ash; and, (2) beneficial (promoter) effe...

  10. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Actual 1985 Yearly SO2 Emissions Calculation C Appendix C to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. C Appendix C to Part 72—Actual 1985 Yearly...

  11. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  12. FUNDAMENTAL PROCESSES INVOLVED IN SO2 CAPTURE BY CALCIUM-BASED ADSORBENTS

    EPA Science Inventory

    The paper discusses the fundamental processes in sulfur dioxide (SO2) capture by calcium-based adsorbents for upper furnace, duct, and electrostatic precipitator (ESP) reaction sites. It examines the reactions in light of controlling mechanisms, effect of sorbent physical propert...

  13. Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.; Nguyen, Hung P.

    1987-01-01

    The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.

  14. Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua

    E-print Network

    Williams-Jones, Glyn

    Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua Glyn Williams (635 m above sea level (a.s.l.)) is a persistently active ba- saltic shield volcano and caldera complex eruptions (8^12 km3 ), Masaya caldera is believed to be underlain by a 10 km3 open-system magma reservoir

  15. SO2 CONCENTRATION ESTIMATES FOR NEW YORK CITY, 1880-1980

    EPA Science Inventory

    The purpose of this investigation was to estimate the yearly ambient concentration of SO2 and SO4 wet deposition from 1880 to 1980 for the greater New York City area. This information was used to reconstruct ambient concentrations at two New York Veterans Administration cemeterie...

  16. Interaction of SO2 and CO with the Ti2O3(101¯2) surface

    NASA Astrophysics Data System (ADS)

    Smith, Kevin E.; Henrich, Victor E.

    1985-10-01

    The interaction of sulfur dioxide with the nearly perfect (101¯2) surface of the corundum transition-metal oxide Ti2O3 has been studied using ultraviolet and x-ray photoemission spectroscopies and low-energy electron diffraction. The reaction of SO2 with Ti2O3 is found to be extremely vigorous, with SO2 adsorbing dissociatively and catalyzing the complete oxidation of the surface to TiO2 and TiS2. This result is significant since exposure to large amounts of O2 does not result in the production of large amounts of TiO2 at the Ti2O3 surface. Dissociative adsorption of SO2 continues for exposures up to at least 104 L (1 L=10-6Torr sec). The reaction is accompanied by large scale surface disorder and by an increase in the work function of 1.32 eV. In contrast, CO adsorbs molecularly for exposures >=105 L, with an extramolecular relaxation-polarization shift of 3.0 eV. For CO exposures <=104 L, the chemisorption mechanism is tentatively identified as dissociative adsorption at defect sites. Inclusive of this study, the interaction of four oxygen-containing molecules (SO2, CO, H2O, and O2) with Ti2O3(101¯2) surfaces has been studied, and their behavior is compared and trends isolated with a view to understanding the oxidation of Ti2O3.

  17. REMOVAL OF SO 2 AND NO FROM GAS STREAMS WITH COMBINED PLASMA PHOTOLYSIS

    E-print Network

    Kushner, Mark

    Concerns over the adverse effects of atmospheric SO, and NO~ (NO and NO2) on human health typically generated by the combustion of fossil fuels. Simultaneous removal efficiencies for SO2 and I to simultaneously remove SO: and NO from gas streams generated by the combustion of fossil fuels. INTRODUCTION

  18. EVALUATION OF SORBENTS AND ADDITIVES FOR DRY SO2 (SULFUR DIOXIDE) REMOVAL (JOURNAL VERSION)

    EPA Science Inventory

    The paper gives results of bench-scale reactivity studies of alkaline sorbents, performed in an integrated fixed-bed reactor, simulating the fabric filter dust layer of dry flue gas desulfurization (FGD) systems. Relative humidity significantly affected SO2 absorption by lime and...

  19. First results from the permanent SO2 Camera system at Stromboli

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Burton, Mike; Caltabiano, Tommaso; D'Auria, Luca; Maugeri, Roberto; Mure, Filippo

    2015-04-01

    Since the 1980's volcano monitoring has undergone stunning changes, evolving from descriptive and sparse observations to a systematic-quantitative approach of science and technology. Surveillance of chemical gas composition and their emission rate is a vital part of efforts in interpreting volcanic activity of observatories since their changes are closely linked with seismicity and deformation swings. In this unruly technology progression, volcanic gas sensing observations have also undergone a profound revolution, for example by increasing observation frequency of SO2 flux from a few samples per day to Hz. In May 2013, a permanent-robotic SO2 dual-camera system was installed by the Istituto Nazionale di Geofisica e Vulcanologia at Stromboli as a part of the ultraviolet scanning spectrometers network FLAME, with the intent to underpin the geochemical surveillance and shed light on degassing and volcanic processes. Here, we present the first results of SO2 flux observed by the permanent SO2 camera system in the period between May 2013 and April 2015. Results are corroborated with the well established FLAME ultraviolet scanning network and also compared with VLP signals from the seismic network.

  20. URBAN AEROSOL MODELING: INCORPORATION OF AN SO2 PHOTOCHEMICAL OXIDATION MODULE IN AROSOL

    EPA Science Inventory

    Modules for the conversion of sulfate has been included in the urban scale K-theory particulate model, AROSOL. Two modules are included: one is an empirical first order SO2 conversion scheme termed EMM and the other is a series of chemical kinetic reactions based on the Carbon Bo...

  1. Regional climate responses to geoengineering with tropical and Arctic SO2 injections

    E-print Network

    Robock, Alan

    Regional climate responses to geoengineering with tropical and Arctic SO2 injections Alan Robock,1 to global warming. While volcanic eruptions have been suggested as innocuous examples of stratospheric depletion and regional hydrologic and temperature responses. To further investigate the climate response

  2. Suppression of dioxins in waste incinerator emissions by recirculating SO2.

    PubMed

    Lin, Xiaoqing; Zhan, Mingxiu; Yan, Mi; Dai, Ahui; Wu, Hailong; Li, Xiaodong; Chen, Tong; Lu, Shengyong; Yan, Jianhua

    2015-08-01

    Sulphur is an effective inhibitor of the formation of Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans (PCDD/Fs), as was proven in laboratory and pilot plant studies. In this study, a pilot-scale system with capacity 300 N m(3) h(-1) was situated at the bypass of an actual hazardous waste incinerator (HWI) and tested to reduce the emission of PCDD/Fs. Activated carbon was used as a medium to adsorb SO2 from flue gas and release it again at the higher temperature of filtered ash detoxification to achieve SO2 circulation in the system. Most PCDD/Fs in the filtered ash are decomposed by thermal treatment. Experimental results indicate that the system is capable of stable operation with SO2 accumulation at a high level of concentration and a high reduction efficiency of PCDD/Fs. A reduction of more than 80% was already achieved without addition of other sulphur compounds. When pyrite (FeS2) was added the reduction of PCDD/Fs could reach 94%, with a residual PCDD/Fs concentration in the flue gas as low as 0.13 ng TEQ N m(-3). This SO2 recirculating and suppression technology potentially provides significant progress for dioxin emission control in waste incineration and could be useful for controlling emissions of PCDD/Fs and other chlorinated organic chemicals in China. PMID:25935497

  3. The Different Impacts of SO2 and SO3 on Cu/Zeolite SCR Catalysts

    SciTech Connect

    Cheng, Yisun; Lambert, Christine; Kim, Do Heui; Kwak, Ja Hun; Cho, Sung June; Peden, Charles HF

    2010-06-19

    The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts were investigated by SCR performance tests and multiple characterization techniques including temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS). The results indicate that a larger amount of highly dispersed CuSO4 formed in the zeolite catalysts (Z-CuSO4) upon SO3 poisoning, explaining the much more significant deactivation of the Cu/zeolite catalysts that were exposed to SO3 compared to poisoning by SO2. This paper provides the first demonstration that active sites of Cu/zeolite SCR catalysts involved in the storage and removal of sulfur can react with SO2 and SO3 in very different ways. In particular, the significant differences in the extent of sulfur uptake account for the considerably different impacts of SO2 and SO3 poisoning on the performance of Cu/zeolite SCR catalysts.

  4. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 3: SESSIONS 6A, 6B, 6C

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  5. PROCEEDINGS: FIRST COMBINED FGD AND DRY SO2 CONTROL SYMPOSIUM. VOLUME 3. SESSIONS 7 AND 8

    EPA Science Inventory

    The proceedings document presentations at the First Combined FGD and Dry SO2 Control Symposium, in St. Louis, MO, October 25-28, 1988. The symposium, jointly sponsored by EPA and EPRI, had as its objective the exchange of technical and regulatory information on sulfur oxide contr...

  6. PERFORMANCE EVALUATION OF AN INDUSTRIAL SPRAY DRYER FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of a test to evaluate the SO2 removal performance of the lime-spray-dryer/fabric-filter system treating flue gas from the stoker-coal-fired boiler at Celanese's Amcelle plant in Cumberland, MD, in August/September 1980. Continuous monitors were used to co...

  7. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 1: SESSIONS 1, 2, 3A, AND 3B

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  8. SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 19992002

    E-print Network

    Rose, William I.

    SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 1999 INSIVUMEH, 7a Avenida 14-57 Zona 13, Ciudad de Guatemala, Guatemala, Central America c Servicio Nacional de-based and aircraft correlation spectrometer (COSPEC) measurements at the principal active volcanoes in Guatemala

  9. 76 FR 79574 - Revisions to Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Petition From New Jersey Regarding SO 2 Emissions From the Portland Generating Station (See 76 FR 69052... Generating Station (See FR 76 69052) contain minor misstatements that the EPA is proposing to revise in this... under Executive Orders 12866 (58 FR 51735, October 4, 1993) and 13563 (76 FR 3821, January 21, 2011)....

  10. DEPOSITION VELOCITIES OF SO2 AND O3 OVER AGRICULTURAL AND FOREST ECOSYSTEMS

    EPA Science Inventory

    The results of field studies that measured the flux and deposition velocity of SO2 and O3 are reported. Three of the studies were over agricultural crops (pasture, corn, and soybean), and two were over forest (a deciduous forest and a mixed coniferous - deciduous forest). In al...

  11. First Observations of SO2 from the Satellite Suomi NPP OMPS: Widespread Air Pollution Events over

    E-print Network

    Dickerson, Russell R.

    First Observations of SO2 from the Satellite Suomi NPP OMPS: Widespread Air Pollution Events over;Severe smog episodes over China in January 2013 received worldwide at- tention. This air pollution. The largest sources of air pollutants in China are coal combustion and motor vehicle exhausts [He et al., 2002

  12. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...of Performance for Stationary Combustion Turbines Emission Limits § 60.4330 What...sulfur dioxide (SO2 )? (a) If your turbine is located in a continental area, you...or (a)(3) of this section. If your turbine is located in Alaska, you do not...

  13. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...of Performance for Stationary Combustion Turbines Emission Limits § 60.4330 What...sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you...or (a)(3) of this section. If your turbine is located in Alaska, you do not...

  14. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...of Performance for Stationary Combustion Turbines Emission Limits § 60.4330 What...sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you...or (a)(3) of this section. If your turbine is located in Alaska, you do not...

  15. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...of Performance for Stationary Combustion Turbines Emission Limits § 60.4330 What...sulfur dioxide (SO2 )? (a) If your turbine is located in a continental area, you...or (a)(3) of this section. If your turbine is located in Alaska, you do not...

  16. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  17. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  18. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... in a fluidized bed combustion steam generating unit shall cause to be discharged into the atmosphere... the heat entering the steam generating unit is from combustion of coal and oil in the duct burner...

  19. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  20. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... in a fluidized bed combustion steam generating unit shall cause to be discharged into the atmosphere... the heat entering the steam generating unit is from combustion of coal and oil in the duct burner...

  1. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  2. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... in a fluidized bed combustion steam generating unit shall cause to be discharged into the atmosphere... the heat entering the steam generating unit is from combustion of coal and oil in the duct burner...

  3. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... in a fluidized bed combustion steam generating unit shall cause to be discharged into the atmosphere... the heat entering the steam generating unit is from combustion of coal and oil in the duct burner...

  4. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42c Standard for sulfur dioxide (SO2). (a) Except as... bed combustion steam generating unit shall neither: (i) Cause to be discharged into the atmosphere... part of a combined cycle system where 30 percent (0.30) or less of the heat entering the...

  5. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Commercial-Institutional Steam Generating Units § 60.42b Standard for sulfur dioxide (SO2). (a) Except as... in a fluidized bed combustion steam generating unit shall cause to be discharged into the atmosphere... the heat entering the steam generating unit is from combustion of coal and oil in the duct burner...

  6. ASSESSMENT OF SO2 AND NOX EMISSION CONTROL TECHNOLOGY IN EUROPE

    EPA Science Inventory

    The report is a compilation of information on the current status of abatement technology used to control major air pollutants, including SO2 and NOx, in Europe. It focuses on flue gas sulfurization (FGD), combustion modification (CM), and selective catalytic reduction (SCR) of NO...

  7. IDENTIFICATION OF CASO4 FORMED BY REACTION OF CAO AND SO2

    EPA Science Inventory

    The injection of calcium-based sorbents into coal-fired boilers for reaction with, and reduction in the levels of, sulfur dioxide (SO2) in the flue gas has undergone considerable research and development. Significant effort has also been made in developing models for the overall ...

  8. The Atmospheric Sulphur Cycle and the role of Volcanic SO2 David S. Stevenson1

    E-print Network

    Stevenson, David

    1 The Atmospheric Sulphur Cycle and the role of Volcanic SO2 David S. Stevenson1 , Colin E. Johnson of Edinburgh, King's Buildings, Edinburgh, EH9 3JZ, UK. 2 Climate Research, Meteorological Office, London Road the atmospheric sulphur cycle, and in particular the volcanic component. The model is in general agreement

  9. The Atmospheric Sulphur Cycle and the Role of Volcanic SO2

    E-print Network

    Stevenson, David

    The Atmospheric Sulphur Cycle and the Role of Volcanic SO2 David Stevenson Institute and biological processes. Many of these processes have been included in the chemistry-climate model used in this study. Results from two model integrations reveal the main features of the S-cycle, and the volcanic

  10. Optical characterization of UV multispectral imaging cameras for SO2 plume measurements

    NASA Astrophysics Data System (ADS)

    Stebel, K.; Prata, F.; Dauge, F.; Durant, A.; Amigo, A.,

    2012-04-01

    Only a few years ago spectral imaging cameras for SO2 plume monitoring were developed for remote sensing of volcanic plumes. We describe the development from a first camera using a single filter in the absorption band of SO2 to more advanced systems using several filters and an integrated spectrometer. The first system was based on the Hamamatsu C8484 UV camera (1344 x 1024 pixels) with high quantum efficiency in the UV region from 280 nm onward. At the heart of the second UV camera system, EnviCam, is a cooled Alta U47 camera, equipped with two on-band (310 and 315 nm) and two off-band (325 and 330 nm) filters. The third system utilizes again the uncooled Hamamatsu camera for faster sampling (~10 Hz) and a four-position filter-wheel equipped with two 10 nm filters centered at 310 and 330 nm, a UV broadband view and a blackened plate for dark-current measurement. Both cameras have been tested with lenses with different focal lengths. A co-aligned spectrometer provides a ~0.3nm resolution spectrum within the field-of-view of the camera. We describe the ground-based imaging cameras systems developed and utilized at our Institute. Custom made cylindrical quartz calibration cells with 50 mm diameter, to cover the entire field of view of the camera optics, are filled with various amounts of gaseous SO2 (typically between 100 and 1500 ppm•m). They are used for calibration and characterization of the cameras in the laboratory. We report about the procedures for monitoring and analyzing SO2 path-concentration and fluxes. This includes a comparison of the calibration in the atmosphere using the SO2 cells versus the SO2 retrieval from the integrated spectrometer. The first UV cameras have been used to monitor ship emissions (Ny-Ålesund, Svalbard and Genova, Italy). The second generation of cameras were first tested for industrial stack monitoring during a field campaign close to the Rovinari (Romania) power plant in September 2010, revealing very high SO2 emissions (> 1000 ppm•m). The second generation cameras are now used by students from several universities in Romania. The newest system has been tested for volcanic plume monitoring at Turrialba, Costa Rica in January, 2011, at Merapi volcani, Indonesia in February 2011, at Lascar volcano in Chile in July 2011 and at Etna/Stromboli (Italy) in November 2011. Retrievals from some of these campaigns will be presented.

  11. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  12. Stratospheric Aerosol Simulated by EMAC Using MIPAS SO2 for Estimate of Volcanic Injections and SAGE and OSIRIS Satellite Data for Evaluation in the Period 2002-2011

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Lelieveld, J.; Hoepfner, M.

    2014-12-01

    Multiyear studies with the chemistry climate model EMAC with the comprehensive aerosol module GMXE for troposphere and stratosphere demonstrate that the sulfur gases COS and SO2, the latter mostly from low-latitude and midlatitude volcanic eruptions, control the formation of stratospheric aerosol. TOMS and OMI satellite data are used to estimate the upper limit of injected SO2-mass and the location of the volcano while the spatial distribution of the SO2 plume some days after the eruption is taken taken from MIPAS on ENVISAT. A comparison of simulated stratospheric optical depth with the timeseries of values observed by SAGE and OSIRIS at different latitudes shows that it is important to include every low latitude volcano that reaches more than about 15km altitude, but also big midlatitude ones where injection heights above about 13km matter for the global stratosphere. Our simulations also show that organic and black carbon from biomass burning contribute significantly to extinction and radiative heating in the lower stratosphere. Despite its optimization for the stratosphere concerning the size distributions, the aerosol module approximately reproduces the observed total optical depth and the distribution of the different aerosol types in the troposphere.This study is part of the SPARC SSIRC activities.

  13. Competitive Adsorption Study of CO2 and SO2 on CoII3[CoIII(CN)6]2 Using DRIFTS

    SciTech Connect

    Windisch, Charles F.; Thallapally, Praveen K.; McGrail, B. Peter

    2010-09-15

    Diffuse reflectance infrared Fourier transform spectroscopy was used to study the competitive adsorption of CO2 and SO2 on the cobalt Prussian blue analogue CoII3[CoIII(CN)6]2 at 298 K. Characteristic peaks for adsorbed CO2 and SO2 species were identified and their relative areas, measured simultaneously as a function of pressure at 298 K, varied in accordance with a Langmuir-Freundlich isotherm fitted to both gases in the low-coverage Henry’s Law limit. Evidence for co-adsorption of trace water was also obtained, as well as the apparent formation of an analogous cobalt nitroprusside compound as a reaction product under certain conditions. The several aspects of the adsorption of CO2 and SO2 on CoCo determined in this work point to an important role for real-time diffuse reflectance infrared measurements in adsorption studies, particularly in the case of competitive adsorption where the occurrence and fate of molecular-level markers arising from more than one adsorbed species can be monitored simultaneously. Depending on the application, this may more than offset certain quantitative limitations of the technique that confine measurements to a relatively narrow set of experimental conditions and demand careful consideration of the effects of sample preparation and treatment.

  14. Modelling of the long-range transport of volcanic SO2 and ash plumes utilising space-based measurements for early warning purposes

    NASA Astrophysics Data System (ADS)

    Maerker, Cordelia; Erbertseder, Thilo; Klueser, Lars; Rix, Meike; Valks, Pieter

    Volcanic eruptions and unrest are among the main natural hazards, which influence nature, human beings and climate and are a hazard to aircraft. Most of the active volcanoes are not monitored regularly yet. The combination of satellite observations and atmospheric transport modelling can provide global information on the emission, dispersion and transport of ash and trace gases. One of these trace gases is sulphur dioxide (SO2 ), which is a good indicator for volcanic unrest and activity. Within the project Exupéry which is a part of the Geotechnology Program a fast response system for volcanic unrest is developed. The program is funded by the German Federal Ministry of Education and Research (BMBF). In case of volcanic unrest a network of relevant instruments (seismicity, ground deformation and gas emissions) can be installed directly at the volcano. In addition to ground-based information space-based data are collected that can be directly forwarded to decision makers and observatories. SO2 total columns are retrieved from GOME-2 on MetOp satellite in near-real time and with a global coverage in about one day. By means of a backward trajectory ensemble matching technique relevant parameters such as the location of the emission source, the moment of the eruption as well as the emission height are estimated. Using these parameters as a first guess of the source term, the Lagrangian particle dispersion model FLEXPART is initialised. The long-range transport of volcanic SO2 for several days can then be modelled. The results have been compared to space-based observations from IASI (Infrared Atmospheric Sounding Interferometer) and AIRS (Atmospheric Infrared Sounder), as well as to ground-based measurements. Furthermore a comparison between the Lagrangian particle dispersion model results and the results of an Eulerian chemical transport model (POLYPHEMUS) using the same source term is shown. SO2 is often used as a marker for volcanic ash dispersion for early warning purposes, because the satellite-based observation of ash particles is complicated and ambiguous. For an investi-gation of this approach the results of a comparison between modelled SO2 transport and ash observations from MODIS and IASI are shown for recent eruptions, such as the eruption of Kasatochi volcano in Alaska in August 2008. The retrieval of a first ash indicator from IASI is based on a principle component analysis (PCA). For the derivation of the ash cloud out of MODIS the Brightness Temperature Differences (BTD) between 11m and 12m bands are used.

  15. CO2, SO2, and H2S Degassing Related to the 2009 Redoubt Eruption, Alaska

    NASA Astrophysics Data System (ADS)

    Werner, C. A.; Kelly, P. J.; Evans, W.; Doukas, M. P.; McGimsey, R. G.; Neal, C. A.

    2012-12-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions with 35 airborne measurements of CO2, SO2, and H2S that span from October 2008 to August 2010. Increases in CO2 degassing were detected up to 5 months prior to the eruption and varied between 3630 and 9020 tonnes per day (t/d) in the 6 weeks prior to the eruption. Increased pre-eruptive CO2 degassing was accompanied by comparatively low S emission, resulting in molar C/S ratios that ranged between 30-60. However, the C/S ratio dropped to 2.4 coincident with the first phreatic explosion on March 15, 2009, and remained steady during the explosive (March 22 - April 4, 2009), effusive dome-building (April 5 - July 1, 2009), and waning phases (August 2009 onward) of the eruption. Observations of ice-melt rates, melt water discharge, and water chemistry in the months leading up to the eruption suggested that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. While the surface waters were capable of scrubbing many thousands of t/d of SO2, sampling of these fluids revealed that only a few hundred tonnes of SO2 was reacting to a dissolved component each day. This is also much less than the ~ 2100 t/d SO2 expected from degassing of magma in the upper crust (3-6.5 km), where petrologic analysis shows the final magma equilibration occurred. Thus, the high pre-eruptive C/S ratios observed could reflect bulk degassing of upper-crustal magma followed by nearly complete loss of SO2 in a magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption; modeling suggests that mixing of this magma with pre-existing high silica andesite magma or mush would have caused a reduction of the C/S ratio to a value consistent with that measured during the eruption. Monitoring emissions regularly throughout the eruptive phases showed that the magmatic system degassed primarily as a closed system with approximately 59 and 66 % of the total CO2 and SO2, respectively, emitted during the explosive and dome growth periods. Maximum emission rates measured with airborne techniques were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Pre-eruptive open system degassing accounted for only 14% of the total CO2 and 4% of total SO2, whereas post-eruptive passive degassing was responsible for 27 and 30 % of the total CO2 and SO2 with measurements extending over one year following the cessation of dome extrusion. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9-2.1 wt. % CO2 and 0.27 - 0.56 wt. % S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt. % CO2 and 0.35 wt. % S. Assuming these values, up to 30% additional unerupted magma degassed in the year following final dome emplacement.

  16. Health risks of NO 2, SPM and SO 2 in Delhi (India)

    NASA Astrophysics Data System (ADS)

    Pandey, Jai Shanker; Kumar, Rakesh; Devotta, Sukumar

    There is increasingly growing evidence linking urban air pollution to acute and chronic illnesses amongst all age groups. Therefore, monitoring of ambient concentrations of various air pollutants as well as quantification of the dose inhaled becomes quite important, specially in view of the fact that in many countries, policy decisions for reducing pollutant concentrations are mainly taken on the basis of their health impacts. The dose when gets combined with the likely responses, indicates the ultimate health risk (HR). Thus, as an extension of our earlier studies, HR has been estimated for three pollutants, namely, suspended particulate matter (SPM), nitrogen dioxide (NO 2) and sulfur dioxide (SO 2) for Delhi City in India. For estimation and analyses, three zones have been considered, namely, residential, industrial and commercial. The total population has been divided into three age classes (infants, children and adults) with different body weights and breathing rates. The exercise takes into account age-specific breathing rates, body weights for different age categories and occupancy factors for different zones. Results indicate that health risks due to air pollution in Delhi are highest for children. For all age categories, health risks due to SO 2 (HR_SO 2) are the lowest. Hence, HR_SO 2 has been taken as the reference with respect to which HR values due to SPM and NO 2 have been compared. Taking into account all the age categories and their occupancy in different zones, average HR values for NO 2 and SPM turn out to be respectively 22.11 and 16.13 times more than that for SO 2. The present study can be useful in generating public awareness as well as in averting and mitigating the health risks.

  17. HDO and SO2 thermal mapping on Venus above and within the clouds

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T.; Richter, M.; Lacy, J.; Widemann, T.; Bézard, B.; Fouchet, T.; de Witt, C.; Atreya, S.

    2014-04-01

    Sulfur dioxide and water vapor, two key species of Venus photochemistry, are known to exhibit significant spatial and temporal variations above the cloud top. We have started an observing campaign using the TEXES high-resolution imaging spectrometer at the NASA InfraRed Telescope Facility to map sulfur dioxide over the disk of Venus at two different wavelengths, 7 ?m (probing atop the H2SO4 cloud) and 19 ?m (probing a few kilometers below within the clouds). Observations took place on January 10-12, 2012 (evening terminator) and October 4-5, 2012 (morning terminator). Both HDO and SO2 lines are identified in our 7-?m spectra and SO2 is also easily identified at 19 ?m. The CO2 lines at 7 and 19 ?m are used to infer the thermal structure.An isothermal/inversion layer is present at high latitudes (above 60N and S) in the polar collars, much more visible when the morning terminator is observed; such an effect was not detected in October 2012. The HDO map is relatively uniform over the disk of Venus, with a mean mixing ratio of about 1 ppm above the clouds (P < 100 mbars. In contrast, the SO2 maps at 19 ?m show intensity variations by a factor of about 2 over the disk within the cloud, less patchy than observed above the cloud top at 7 ?m. In addition, the SO2 maps seem to indicate significant temporal changes within an hour. There is evidence for a cutoff in the SO2 vertical distribution several kilometers above the cloud top, also previously observed by SPICAV/SOIR aboard Venus Express and predicted by photochemical models. New observations have been obtained on February 26 -March 1, 2014, when the diameter of Venus was 34 arcsec. Another run is planned on July 6-9, 2014.

  18. Extending the long-term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Yang, K.; Prata, A. J.; Krotkov, N. A.

    2015-02-01

    Uninterrupted, global space-based monitoring of volcanic sulfur dioxide (SO2) emissions is critical for climate modeling and aviation hazard mitigation. We report the first volcanic SO2 measurements using ultraviolet (UV) Ozone Mapping and Profiler Suite (OMPS) nadir mapper data. OMPS was launched on the Suomi National Polar-orbiting Partnership satellite in October 2011. We demonstrate the sensitivity of OMPS SO2 measurements by quantifying SO2 emissions from the modest eruption of Paluweh volcano (Indonesia) in February 2013 and tracking the dispersion of the volcanic SO2 cloud. The OMPS SO2 retrievals are validated using Ozone Monitoring Instrument and Atmospheric Infrared Sounder measurements. The results confirm the ability of OMPS to extend the long-term record of volcanic SO2 emissions based on UV satellite observations. We also show that the Paluweh volcanic SO2 reached the lower stratosphere, further demonstrating the impact of small tropical volcanic eruptions on stratospheric aerosol optical depth and climate.

  19. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-06-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18 and 18-22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16-18 km, enhanced mixing ratios of SO2 can be found in the regions of the Asian and the North American monsoons in summer - a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.

  20. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-02-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~ 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3-5 km. Comparison with ACE-FTS observations revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18, and 18-22 km are 13.3±2.1, 23.6±1.2, and 32.3±5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16-18 km enhanced mixing ratios of SO2 can be found in the region of the Asian and the North-American monsoon in summer - a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.

  1. Online Analysis of H2S and SO2 via Advanced Mid-Infrared Gas Sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-01

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit of detection (LOD) at 77 ppbv for SO2 and 207 ppbv for H2S were established after 20 min of sampling time at 200 mL min(-1). Taking advantage of the device flexibility in terms of sampling time, flow-rate, and iHWG design facilitates tailoring the developed Preconcentrator-UV-device-iHWG device toward a wide variety of application scenarios ranging from environmental/atmospheric monitoring to industrial process monitoring and clinical diagnostics. PMID:26369419

  2. Long range transport and air quality impacts of SO2 emissions from Holuhraun (Bárdarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire; Leadbetter, Susan; Theys, Nicholas; Hort, Matthew; Thordarson, Thorvaldur; Stevenson, John; Shepherd, Janet; Sinnott, Richard; Kenny, Patrick; Barsotti, Sara

    2015-04-01

    Gas emissions from the Holuhraun eruption site in Iceland resulted in increases in observed ground level concentrations of sulphur dioxide (SO2) in the UK and Ireland during two occasions in September 2014. We present data from the Irish and UK monitoring networks along with satellite imagery which describes the temporal and spatial evolution of these pollution episodes. During both events increases in concentration were significant compared to ambient levels. The peaks were short lived, 6-12 hours, and below the World Health Organisation's 10-minute air quality standard for SO2 of 500 µg/m3, but these events show that gas from relatively low altitude volcanic emissions in Iceland can pose a hazard to north west Europe. The two pollution events serve as excellent case studies and observations from the events provide us with a unique dataset for the verification of atmospheric dispersion models. We use the atmospheric dispersion model NAME to simulate the long-range transport, removal and chemical conversion of the volcanic SO2 during September 2014. We evaluate a range of model simulations, using varying model input and physical parameters, against ground based measurements and satellite retrievals of SO2. Simulations demonstrate that the long-range ground concentrations are strongly dependent on the emission flux and the height of emission at source. This relationship is well known from similar studies of other pollution events. However this work also demonstrates a dependence on the model's vertical turbulence parameterisation and the height of the boundary layer determined from the input Numerical Weather Prediction meteorological data. For the pollution events in September 2014, we find that using a mass flux of 40 kilotons per day of SO2 gives best agreement with vertical column retrievals of SO2 from the Ozone Monitoring Instrument, which is in good agreement with initial estimates made by the Icelandic Meteorological Office. "This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright."

  3. Absolute rate coefficient and mechanism of gas phase reaction of ketenyl radical and SO2.

    PubMed

    Du, Lin; Carl, Shaun A

    2012-10-18

    The kinetics of the gas phase reaction of the ketenyl radical with SO(2) was investigated over the temperature range 296-568 K using a laser-photofragment/laser-induced fluorescence technique (LP/LIF). The reactor pressure was 10 Torr N(2) or He. Pulsed photolysis of ketene (CH(2)CO) at 193 nm was used as the source of HCCO radicals. The rate coefficient for the title reaction was determined to be described by k(T) = (1.05 ± 0.33) × 10(-12) exp[(690 ± 98)K/T] cm(3) s(-1) molecule(-1) (2? error). We applied the coupled cluster and density functional theory to explore the mechanism of the title reaction. The dominant reaction pathway begins with a barrierless association of the C of the CH group of HCCO and the O atom of SO(2). PMID:23020066

  4. Lifetime assessment analysis of Galileo Li/SO2 cells: Final report

    SciTech Connect

    Levy, S.C.; Jaeger, C.D.; Bouchard, D.A.

    1988-12-01

    Galileo Li/SO2 cells from five lots and five storage temperatures were studied to establish a database from which the performance of flight modules may be predicted. Nondestructive tests consisting of complex impedance analysis and a 15-s pulse were performed on all cells. Chemical analysis was performed on one cell from each lot/storage group, and the remaining cells were discharged at Galileo mission loads. An additional number of cells were placed on high-temperature accelerated aging storage for 6 months and then discharged. All data were statistically analyzed. Results indicate that the present Galileo design Li/SO2 cell will satisfy electrical requirements for a 10-year mission. 10 figs., 4 tabs.

  5. Photon-induced oxidation of graphene/Ir(111) by SO2 adsorption

    NASA Astrophysics Data System (ADS)

    Böttcher, Stefan; Vita, Hendrik; Horn, Karsten

    2015-11-01

    We prepare a single layer of graphene oxide by adsorption and subsequent photo-dissociation of SO2 on graphene/Ir(111). Epoxidic oxygen is formed as the main result of this process on graphene, as judged from the appearance of characteristic spectroscopic features in the C 1s and O 1s core level lines. The different stages of decomposition of SO2 into its photo-fragments are examined during the oxidation process. NEXAFS at the carbon K edge reveals a strong disturbance of the graphene backbone after oxidation and upon SO adsorption. The oxide phase is stable up to room temperature, and is fully reversible upon annealing at elevated temperatures. A band gap opening of 330 ± 60 meV between the valence and conduction bands is observed in the graphene oxide phase.

  6. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte

    NASA Astrophysics Data System (ADS)

    Jeong, Goojin; Kim, Hansu; Sug Lee, Hyo; Han, Young-Kyu; Hwan Park, Jong; Hwan Jeon, Jae; Song, Juhye; Lee, Keonjoon; Yim, Taeeun; Jae Kim, Ki; Lee, Hyukjae; Kim, Young-Jun; Sohn, Hun-Joon

    2015-08-01

    Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153?mAh g-1 based on the mass of catholyte and carbon electrode with an operating voltage of 3?V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na-SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system.

  7. Kinetics of SO(2)-ethanol-water (SEW) fractionation of hardwood and softwood biomass.

    PubMed

    Yamamoto, Minna; Iakovlev, Mikhail; van Heiningen, Adriaan

    2014-03-01

    SO(2)-ethanol-water (SEW) fractionation of forest residues (tree tops, stumps, branches) was investigated to demonstrate the potential of this method for forest biorefineries. The effect of fractionation time on dissolution of wood components was studied. Total mass balances of fractionation show that lignin and hemicelluloses are rapidly dissolved in the spent fractionation liquor whereas cellulose is fully preserved in the solid residue throughout the fractionation treatment. Within 20min treatment at 150°C (SO(2):EtOH:H2O=12:43.5:44.5, by weight, L:W ratio 6Lkg(-1)), 89% of hardwood lignin and 74% of hemicelluloses are dissolved. The corresponding values for softwood biomass are 64% and 74%, respectively, indicating slower delignification but equal hemicellulose removal. Additionally, sulfur content of the feedstocks, solid fractionation residues and spent liquors were analyzed to determine the degree of lignin sulfonation. The obtained results are compared with the stem wood fractionation results. PMID:24463411

  8. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., CO2, and H2O **, the greater of: Average HB/HA. 90th percentile 720 hours. * For O2 and H2OX, the... SO2, CO2, and H2O **, the greater of: Average HB/HA. 95th percentile 720 hours. * For O2 and H2OX, the... H2O **, Maximum value1 720 hours. * For O2 and H2OX: Minimum value1 720 hours. * Below 80 N >...

  9. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., CO2, and H2O**, the greater of: Average HB/HA. 90th percentile 720 hours.* For O2 and H2OX, the lesser..., CO2, and H2O **, the greater of: Average HB/HA. 95th percentile 720 hours.* For O2 and H2OX, the lesser of: Average HB/HA. 5th Percentile 720 hours.* 80 or more, but below 90 N > 0 For SO2, CO2, and...

  10. The synergism between SO2 oxidation and manganese leaching on spruce needles--a chamber experiment.

    PubMed

    Burkhardt, J; Drechsel, P

    1997-01-01

    Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems. PMID:15093468

  11. RATE CONTROLLING PROCESSES AND ENHANCEMENT STRATEGIES IN HUMIDIFICATION FOR DUCT SO2 CAPTURE

    EPA Science Inventory

    The report gives results of an investigation of the fundamental rate processes that govern sulfur capture in power plant ducts during humidification of flue gases. The specific application was the reactivation of partially sulfated calcium-based sorbents from in-furnace injection...

  12. SOSpin, a C++ library for Yukawa decomposition in $\\mathsf{SO}(2N)$ models

    E-print Network

    Cardoso, Nuno; Gonçalves, Nuno; Simoes, C

    2015-01-01

    We present in this paper the SOSpin library, which calculates an analytic decomposition of the Yukawa interactions invariant under any $\\mathsf{SO}(2N)$ group in terms of an $\\mathsf{SU}(N)$ basis. We make use of the oscillator expansion formalism, where the $\\mathsf{SO}(2N)$ spinor representations are expressed in terms of creation and annihilation operators of a Grassmann algebra. These noncommutative operators and their products are simulated in SOSpin through the implementation of doubly-linked-list data structures. These data structures were determinant to achieve a higher performance in the simplification of large products of creation and annihilation operators. We illustrate the use of our library with complete examples of how to decompose Yukawa terms invariant under $\\mathsf{SO}(2N)$ in terms of $\\mathsf{SU}(N)$ degrees of freedom for $N=2$ and $5$. We further demonstrate, with an example for $\\mathsf{SO}(4)$, that higher dimensional field-operator terms can also be processed with our library. Finall...

  13. SOSpin, a C++ library for Yukawa decomposition in SO(2N) models

    E-print Network

    Nuno Cardoso; David Emmanuel-Costa; Nuno Gonçalves; C. Simoes

    2015-10-21

    We present in this paper the SOSpin library, which calculates an analytic decomposition of the Yukawa interactions invariant under any SO(2N) group in terms of an SU(N) basis. We make use of the oscillator expansion formalism, where the SO(2N) spinor representations are expressed in terms of creation and annihilation operators of a Grassmann algebra. These noncommutative operators and their products are simulated in SOSpin through the implementation of doubly-linked-list data structures. These data structures were determinant to achieve a higher performance in the simplification of large products of creation and annihilation operators. We illustrate the use of our library with complete examples of how to decompose Yukawa terms invariant under SO(2N) in terms of SU(N) degrees of freedom for N=2 and 5. We further demonstrate, with an example for SO(4), that higher dimensional field-operator terms can also be processed with our library. Finally, we describe the functions available in SOSpin that are made to simplify the writing of spinors and their interactions specifically for SO(10) models.

  14. Middle UV to Near-IR Spectrum of Electron-Excited SO2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Aguilar, Alejandro; Mangina, Rao S.; James, Geoffrey K.; Geissler, Paul; Trafton, Laurence

    2008-01-01

    We investigated the electron impact-induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's mission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 A at a resolution of (Delta)(lamda) approximately 2.5 A full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 A consists entirely of S I, II and O I, II multiplets for electron impact energies above approximately 15 eV. Between 2000 and 6000 A, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 A FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 A . On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.

  15. Middle UV to near-IR spectrum of electron-excited SO2

    USGS Publications Warehouse

    Ajello, J.M.; Aguilar, A.; Mangina, R.S.; James, G.K.; Geissler, P.; Trafton, L.

    2008-01-01

    We investigated the electron impact-induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's emission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum Of SO2 gas was geperated in the laboratory and studied from 2000 to 11,000 A?? at a resolution of ???? ???2.5 A?? full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 A?? consists entirely of S I, II and O I, II multiplets for electron impact energies above ???15 eV. Between 2000 and 6000 A??, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 A?? FWHM. From a measurement of the medium-resolution spectrurn, we provide qetailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 A??. On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere. Copyright 2008 by the American Geophysical Union.

  16. SO2 on Venus: A final cross-calibration with Pioneer Venus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The three observing programs under NASA Grant NAG5-1913 are described. They are NSOSS, VEOEB, and PCOEB. The scientific objectives for the IUE observation program NSOSS were to: make the first ever UV observations of a near-earth asteroid (4179 Toutatis), an irregular satellite of Jupiter (Himalia), and the Saturnian satellite Hyperion; obtain the first radially-dependent information on the UV color of Saturn's rings; gather the uncontaminated UV spectra of Iapetus's bright and dark hemispheres; and obtain a spectrum of Titania to initiate the comparitive study of UV photometric properties in Uranian system. The VEOEB program studied Venus SO2, an important indicator of key processes in the Venus atmosphere and perhaps Venus surface. Based on past Pioneer Venus and IUE observations, significant SO2 variations have been interpreted as indicating that the long term atmospheric SO2 abundance may be related to large, episodic injections from the surface or interior of Venus. The PCOEB program studied the Pluto-Charon system, for which evidence of a variable UV light curve has been presented. This program is to complete the coverage of that UV light curve, since only approximately 26% has been observed.

  17. Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone

    PubMed Central

    Li, Bo; Zhao, Jinyang; Lu, Junfu

    2015-01-01

    This study used two kinetic mechanisms to evaluate the oxidation processes of NO and SO2 by ozone. The performance of the two models was assessed by comparisons with experimental results from previous studies. The first kinetic mechanism was a combined model developed by the author that consisted of 50 species and 172 reactions. The second mechanism consisted of 23 species and 63 reactions. Simulation results of both of the two models show under predictions compared with experimental data. The results showed that the optimized reaction temperature for NO with O3 ranged from 100~200 °C. At higher temperatures, O3 decomposed to O2 and O, which resulted in a decrease of the NO conversion rate. When the mole ratio of O3/NO was greater than 1, products with a higher oxidation state (such as NO3, N2O5) were formed. The reactions between O3 and SO2 were weak; as such, it was difficult for O3 to oxidize SO2. PMID:25642689

  18. The parafermion Fock space and explicit \\mathfrak{so}(2n+1) representations

    NASA Astrophysics Data System (ADS)

    Stoilova, N. I.; Van der Jeugt, J.

    2008-02-01

    The defining relations (triple relations) of n pairs of parafermion operators f±j (j = 1, ..., n) are known to coincide with a set of defining relations for the Lie algebra \\mathfrak{so}(2n+1) in terms of 2n generators. With the common Hermiticity conditions, this means that the 'parafermions of order p' correspond to a finite-dimensional unitary irreducible representation W(p) of \\mathfrak{so}(2n+1) , with highest weight \\big(\\frac{p}{2}, \\frac{p}{2},\\ldots,\\frac{p}{2}\\big) . Although the dimension and the character of W(p) is known by classical formulae, there is no explicit basis of W(p) available in which the parafermion operators have a natural action. In this paper we construct an orthogonal basis for W(p), and present the explicit actions of the parafermion generators on these basis vectors. We use group theoretical techniques, in which the \\mathfrak{u}(n) subalgebra of \\mathfrak{so}(2n+1) plays a crucial role: a set of Gelfand-Zetlin patterns of \\mathfrak{u}(n) will be used to label the basis vectors of W(p), and also in the explicit action (matrix elements) certain \\mathfrak{u}(n) Clebsch-Gordan coefficients are essential.

  19. What is the limit of climate engineering by stratospheric injection of SO2?

    NASA Astrophysics Data System (ADS)

    Niemeier, U.; Timmreck, C.

    2015-08-01

    The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. The related reduction of radiative forcing depends upon the injected amount of sulfur dioxide, but aerosol model studies indicate a decrease in forcing efficiency with increasing injection rate. None of these studies, however, consider injection rates greater than 20 Tg(S) yr-1. But this would be necessary to counteract the strong anthropogenic forcing expected if "business as usual" emission conditions continue throughout this century. To understand the effects of the injection of larger amounts of SO2, we have calculated the effects of SO2 injections up to 100 Tg(S) yr-1. We estimate the reliability of our results through consideration of various injection strategies and from comparison with results obtained from other models. Our calculations show that the efficiency of such a geoengineering method, expressed as the ratio between sulfate aerosol forcing and injection rate, decays exponentially. This result implies that the sulfate solar radiation management strategy required to keep temperatures constant at that anticipated for 2020, while maintaining business as usual conditions, would require atmospheric injections of approximately 45 Tg(S) yr-1 (±15 % or 7 Tg(S) yr-1) at a height corresponding to 60 hPa. This emission is equivalent to 5 to 7 times the Mt. Pinatubo eruption each year.

  20. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  1. Contributions of Asian SO2 Pollution to the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Neely, R. R.; Yu, P.; Rosenlof, K. H.; Toon, O. B.; Daniel, J. S.; Solomon, S.; Miller, H. L.

    2013-12-01

    Recent observations reveal a seasonally occurring layer of aerosol located from 0° to 100°E, 20°N to 45°N and extending vertically from about 13 km to 18 km. Termed the Asian Tropopause Aerosol Layer (ATAL), its existence is closely associated with the Asian monsoonal circulation. Recent observational studies argued that the source of the ATAL must be anthropogenic, as the layer was not observed by satellite prior to 1998. Here we test this hypothesis using a global climate model coupled to an aerosol microphysical model. The model examines the impact of global and regional sulfur dioxide (SO2) sources on the ATAL and the importance of non-sulfate constituents in its composition. We conclude that while the ATAL is of anthropogenic origin, it is not solely due to emissions from Asia. We find that model results of the ATAL match well with current satellite observations of backscatter and extinction, and the vertical distribution of composition agrees with in situ measurements at other locations. Further model experiments indicate that the ATAL is not created solely from emissions near the monsoon region as previously suggested but likely originates from a wider range of source regions. At year 2000 levels, Chinese and Indian SO2 emissions contribute only 30% of the sulfate aerosol extinction in the ATAL during volcanically quiescent periods. This is proportional to the emissions from this region compared to the total global emission of SO2 . The remaining contribution of sulfate aerosol originates from anthropogenic SO2 emissions in other regions. Curiously, we also find that the sulfate in the North American Tropopause Aerosol Layer (NATAL) may have a modest (15%) contribution from Asian emissions. The model results also suggest that sulfates are more important in the stratospheric part of the ATAL than particles coming from other sources, such as BC, SOA and dust, as sulfates make up over 70% of the aerosol extinction burden above the tropopause while the opposite is true in the upper troposphere. Modeled representation of ATAL. Panels a) and b) are the JJA mean 1020 nm extinction ratio averaged from 15 N to 45 N to match the representation of SAGE II observations in Figures 9 and 10 in Thomason and Vernier [2013]. Panel a represents the baseline model run with year 2000 levels of global SO2 emissions. Panel b is the exact same as Panel a) but excludes emissions from China and India. The white line in each panel represents the mean model tropopause over the same region.

  2. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2011-10-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships has been developed in a Swedish national project using optical remote sensing. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The system was able to detect plumes of SO2 in 60% of the measurements when the described method was used. The optical measurement carried out on a passenger ferry on two consecutive days was compared to onboard emission data obtained from analysed fuel content and power consumption. The comparison shows agreement of (-30 ± 14) % and (-41 ± 11) %, respectively, for two days, with equal measurement precision of about 20%, this indicates the presence of systematic error sources that are yet unaccounted for when deriving the flux. Two such error sources are the difficulty in estimating the optical path of the ocean scattered light due to waves, and direct and multiple scattering in the exhaust plume. Rough estimates of these sources have been accounted for in the total uncertainty, 30-45 %. A ship emission model, FMI-STEAM, has been compared to the optical measurements showing a 18% overestimation and a correlation coefficient (R2) of 0.6. It is shown that a combination of the optical method with modelled power consumption can estimate the sulphur fuel content within 40%, which would be sufficient to detect the difference between ships running at 1% and at 0.1%, limits applicable within the IMO regulated areas.

  3. Atmospheric SO2 Emissions Since the Late 1800s Change Organic

    E-print Network

    Lehmann, Johannes

    - and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain emissions on inorganic S cycles in terrestrial ecosystems include acid rain, resultant forest decline

  4. Meeting NSPI's 2010 SO2 emission reduction cap Larry Hughes, Mandeep Dhaliwal, and Nikita Sheth

    E-print Network

    Hughes, Larry

    The Canada-Wide Acid Rain Strategy for Post-2000. One of the objectives of the strategy is "to meet 141,750 108,750 2010 94,500 72,500 1 In the 2003 Annual Progress Report for The Canada-Wide Acid Rain the environmental threshold of critical loads for acid position across Canada" through a number of actions

  5. Study on terahertz spectra of SO2 and H2S

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, Dong; Shen, JingLing

    2013-04-01

    The spectral characteristics of air pollution gas sulfur dioxide and hydrogen sulfide has been studied experimentally and theoretically in the range of 0.2-2.6 THz. The gases absorption spectra of sulfur dioxide and hydrogen sulfide, as measured by terahertz Time-Domain Spectroscopy (THz-TDS) technique, show equi-spaced absorption peaks. The peak intervals are varied for different gas and may relate with the molecule structures and rotation modes. We have calculated the intervals of rotational transition frequency according to the gases molecule structure and the rotational modes. The results are consistent with experimental results which confirm the suggestion that the absorption is coming from the molecular rotational transition. The study suggests a technique to detect air pollutants by THz-TDS and the rotational modes of gas molecules.

  6. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-? reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-?, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-? wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-?, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-? brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from absorption. Also, the radiation-induced noise is lower at Europa, permitting longer exposure times and imaging at closer range. This is a very simple instrument with no moving parts, a mass of 4 kg (plus 1.7 kg radiation shielding), and it needs 4 W power. It has no special accommodation requirements and would simply collect data in ride-along mode during point-and-stare sequences. Feaga, L.M., et al. (2009) Io's dayside SO2 atmosphere, Icarus 201, 570-584 (2009). Feldman, P.D., et al., (2000) Lyman-? imaging of the SO2 distribution on Io, Geophys. Res. Lett., 27, 1787-1790. McEwen, A.S. et al. (2014) Io Volcano Observer (IVO): Budget travel to the outer Solar System. Acta Astronautica 93, 539-544. Roth, L. et al. (2014) Transient water vapor at Europa's south pole. Science 343, 171. Sandel, B., et al. (2000) The Extreme Ultraviolet Imager investigation for the IMAGE mission. Space Sci. Rev. 91, 197-242.

  7. Preliminary comparison of OMI PBL SO2 data to in-situ measurements in Beijing

    NASA Astrophysics Data System (ADS)

    Cai, Zhaonan; Liu, Yi; Wang, Pucai; Meng, Xiaoyan; Xia, Junrong

    2008-12-01

    Planet Boundary Layer sulfur dioxide (PBL-SO2) derived from Ozone Monitoring Instrument (OMI) are compared with in-situ measurements from Differential Optical Absorption Spectroscopy (DOAS) and gas analyzer observations at three sites in Beijing (Jan-Dec, 2007) and Hebei province (Jan-May, 2007). We use an Air Mass Factor (AMF) lookup table, which was calculated via Linearized Discrete Ordinate Radiative Transfer (LIDORT) model, to convert OMI PBL-SO2 slant column density to vertical column density. Co-locate Lidar (UV) aerosol extinction profiles are used to correct the effect of aerosol. Results show that, AMF decreases less than 3% with the increasing solar zenith angle from 0° to 45°, AMF is more sensitive to surface albedo and the viewing zenith angle. AMF reduces by 6% with the increasing Ozone density from 275DU to 325DU. Normally, absorption aerosol reduces AMF and scattering aerosol increases AMF, aerosol profiles are critical to AMF estimation. Under very clear conditions, from winter to later spring, OMI observed SO2 values are underestimated by 3.6ppbv to 20ppbv, but in reasonable agreement with in-situ measurements. Because of the effects of Sub-pixel cloud contamination, long slant path (higher solar zenith angles or viewing zenith angles), differences in aerosol types and large Aerosol Optical Depth (AOD), direct comparisons between the OMI retrieval and the in situ measurements show that the correlation is low and the differences vary with months, while averaging over half a month can significantly reduces the bias.

  8. Detection of the SO2 atmosphere on Io with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ballester, G. E.; Mcgrath, M. A.; Stobel, D. F.; Zhu, Xun; Feldman, P. D.; Moos, H. W.

    1994-01-01

    Observations of the trailing hemisphere of Io made with the Faint Object Spectrograph of the Hubble Space Telescope (HST) in March 1992 have resulted in the first detection of atmospheric SO2 absorption bands in the ultraviolet. These observations represent only the third positive means of detection of what is widely believed to be Io's primary atmospheric constituent. Below approximately 2130 A the geometric albedo of the satellite is dominated by SO2 gas absorption band signatures, which have been analyzed using models that include the effects of optical thickness, temperature, and spatial distribution. The disk-intergrated HST data cannot resolve the spatial distribution, but it is possible to define basic properties and set constraints on the atmosphere at the time of the observations. Hemispheric atmospheres with average column density N = 6 - 10 x 10(exp 15)/sq sm and T(gas) = 110 - 500 K fit the data, with preference for temperatures of approximately 200 - 250 K. Better fits are found as the atmosphere is spatially confined, with a limit of approximately 8% hemispheric areal coverage and N approximately equal to 3 x 10(exp 17)/sq cm with colder 110 - 250 K temepratures. A dense (N greater than or equal to 10(exp 16)/sq cm), localized component of SO2 gas, such as that possibly associated with active volcanoes, can generate the observed spectral constrast only when the atmosphere is cold (110 K) and an extended component such as Pele is included. The combination of a dense, localized atmosphere with a tenuous component (N less than 10(exp 16)/sq cm, either patchy or extended) also fits the data. In all cases the best fit models imply a disk-averaged column density larger than exospheric but approximately 10 - 30 times less than the previous upper limit from near-UV observations.

  9. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  10. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  11. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  12. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  13. First-principles study of SO2 molecule adsorption on the pristine and Mn-doped boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Deng, Zun-Yi; Zhang, Jian-Min; Xu, Ke-Wei

    2015-08-01

    To exploit the potential application of nitride nanotube (BNNT), the adsorption of sulfur dioxide (SO2) on pristine and Mn-doped BNNT was theoretically studied using first-principles approach based on density functional theory (DFT). The most stable adsorption geometry, adsorption energy, magnetic moment, charge transfer and density of states of these systems are discussed. SO2 molecule is weakly adsorbed on the pristine BNNT. The Mn-doped BNNT show high reactivity toward SO2 regardless of the MnB site or MnN site adsorption. The larger formation energies and analysis of density of states show the SO2 molecules are chemically bonded to Mn-doped BNNT and the covalent interaction between the SO2 molecule and Mn atom can be formed. Therefore, the Mn-doped BNNT can be used as SO2 gas sensor manufacturing raw materials, and it may be a potential material for nanodevice applications.

  14. Information on the sulfur content of bark and its contribution to SO2 emissions when burned as a fuel

    SciTech Connect

    Oglesby, H.S.; Blosser, R.O.

    1980-07-01

    The sulfur dioxide content of bark and wood residues that are used in wood energy boilers was analyzed. About 5% of the sulfur found in bark and wood is released into the atmosphere as SO2 during combustion; the 5% amounts to an emission rate of 0.001-0.02 lb SO2/million Btu energy. Sulfur content in wood is not stoichiometrically converted to SO2. (14 references, 2 tables)

  15. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  16. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.

    PubMed

    Jeong, Goojin; Kim, Hansu; Lee, Hyo Sug; Han, Young-Kyu; Park, Jong Hwan; Jeon, Jae Hwan; Song, Juhye; Lee, Keonjoon; Yim, Taeeun; Kim, Ki Jae; Lee, Hyukjae; Kim, Young-Jun; Sohn, Hun-Joon

    2015-01-01

    Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153?mAh g(-1) based on the mass of catholyte and carbon electrode with an operating voltage of 3?V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na-SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system. PMID:26243052

  17. Correlation of SO2 Gas Emissions, Seismicity and Thermal Signals at Santiaguito, Guatemala

    NASA Astrophysics Data System (ADS)

    Branan, Y. K.; Watson, I.; Harris, A. J.; Rose, W.; Bluth, G. J.; Chigna, G.; Mota, M.

    2003-12-01

    With vertical explosions occurring approximately every 40-50 minutes, the Santiaguito dome at Santa Maria Volcano is an ideal system for examining short-term data patterns. A 3-week long field experiment was performed in January 2003 at the Santiaguito Volcano Observatory in order to record high temporal resolution measurements of volcanic activity. We collected digital seismic data from a single vertical component seismometer located approximately 4 km southeast of the active Caliente vent. A portable infrared thermal monitoring unit was deployed daily to record the temperature of the plume as it left the vent at an acquisition rate of 300 measurements per minute. A miniature ultraviolet spectrometer (MUSE) was also deployed daily to measure the SO2 gas emissions just above the vent. This instrument is based on the differential optical absorption spectroscopy (DOAS) technique and allowed for continuous readings at a rate of 36 measurements per minute from approximately 6.5 km south of the Caliente vent. At abstract time, the seismic data is not analyzed, but there is a strong correlation between the SO2 emission and thermal data showing that the expulsed gas heats the dome extensively as it is emitted, with a possibility of different signatures indicating certain types of activity such as pyroclastic flows. It is expected that, with the addition of seismic data and the application of analysis of periodicity using Fourier Transforms, the data will elucidate conduit processes, providing additional vital constraints to sub-surface models.

  18. SO2 on Venus: A final cross-calibration with Pioneer Venus

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    In the present reporting period we have met with the Pioneer Venus PI to collaborate on the recalibration of the UV spectrometer of Pioneer Venus. The associated data reduction and analysis activities have been completed. The sensitivity of the UV spectrometer has been steadily declining since orbit insertion of Pioneer Venus in 1978 due to aging of the detector tubes. The sensitivity decline is a strong function of wavelength and the rate of decline is also a function of time. Measures were taken to reduce the light dose received by the instrument to slow down the sensitivity decline. The stellar calibration using the bright UV star Hadar in 1990 indicates that the sensitivity decline may have slowed down more than have been previously estimated. The derived amount of SO2 from Pioneer Venus depends on the accuracy of the absolute sensitivity of the UV spectrometer. The previous cross calibration between IUE and Pioneer Venus led to the use of the same solar flux data for reducing and modelling data from both IUE and Pioneer Venus. The comparison between the 1991 IUE results and the Pioneer Venus stellar calibration carried out in 1990 will allow a more accurate determination of sensitivity decline of the PV UV spectrometer. The result of this comparison will be crucial in determining the trend of SO2 in the Venus atmosphere.

  19. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte

    PubMed Central

    Jeong, Goojin; Kim, Hansu; Sug Lee, Hyo; Han, Young-Kyu; Hwan Park, Jong; Hwan Jeon, Jae; Song, Juhye; Lee, Keonjoon; Yim, Taeeun; Jae Kim, Ki; Lee, Hyukjae; Kim, Young-Jun; Sohn, Hun-Joon

    2015-01-01

    Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153?mAh g?1 based on the mass of catholyte and carbon electrode with an operating voltage of 3?V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na–SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system. PMID:26243052

  20. Impact of national NOx and SO2 control policies on particulate matter pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Wang, Jiandong; Fu, Joshua S.; Liu, Tonghao; Xu, Jiayu; Fu, Xiao; Hao, Jiming

    2013-10-01

    China's air pollution control policies during the 12th Five Year Plan (2011-2015) are characterized by the targets of 10% nitrogen oxides (NOx) reduction and 8% sulfur dioxide (SO2) reduction from the 2010 levels. In this study, the Community Multi-scale Air Quality (CMAQ) modeling system was used to evaluate the impact of only SO2, only NOx, and joint SO2/NOx control measures on particulate matter pollution, the greatest concern for urban air quality in China. Four emission scenarios were developed for 2015, including a business-as-usual scenario, a reference NOx control scenario based on the governmental plan, an accelerated NOx control technology scenario, and a scenario assuming joint controls of NOx and SO2 based on the governmental plan. Under the planned NOx control measures, the annual mean concentrations of particulate matter less than or equal to 2.5 ?m (PM2.5) decline by 1.5-6 ?g m-3, i.e. 1.6%-8.5%, in the majority of eastern China. The largest reduction occurs in the middle reach of the Yangtze River. Under accelerated NOx control measures, the annual average PM2.5 concentration reductions (compared with the business-as-usual scenario) in eastern China are 65% higher than the reductions under planned control measures. The unusual increase of PM2.5 concentrations in the North China Plain and the Yangtze River Delta during January after the reductions of NOx emissions was an integrated effect of excessive NOx, the ammonia-rich inorganic aerosol chemistry, and the non-methane volatile organic compounds (NMVOC) sensitive photochemical regime. Under the joint controls of NOx and SO2, the annual mean PM2.5 concentrations decline over 3 ?g m-3, i.e. 3.2%-13%, in the majority of eastern China, and some areas in the middle reach of the Yangtze River have reductions as large as 6-8.3 ?g m-3, i.e. 5.0%-13%. The average PM2.5 concentration reductions in eastern China are 1.20 ?g m-3, 3.14 ?g m-3, 3.57 ?g m-3, 4.22 ?g m-3 in January, May, August, and November, respectively. The corresponding declining rates are 2.3%, 12.2%, 14.3%, and 8.1%, respectively. More stringent policies should be implemented in winter to reduce the heavy pollution periods. The annual average PM2.5 concentration reductions in three major city clusters are comparable with the average reductions of eastern China. Stringent regional control policies are required for the significant improvement of particulate air quality in major city clusters.