Science.gov

Sample records for acid hdac inhibitor

  1. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo

    PubMed Central

    Segura-Pacheco, Blanca; Avalos, Berenice; Rangel, Edgar; Velazquez, Dora; Cabrera, Gustavo

    2007-01-01

    Background The presence of CAR in diverse tumor types is heterogeneous with implications in tumor transduction efficiency in the context of adenoviral mediated cancer gene therapy. Preliminary studies suggest that CAR transcriptional regulation is modulated through histone acetylation and not through promoter methylation. Furthermore, it has been documented that the pharmacological induction of CAR using histone deacetylase inhibitor (iHDAC) compounds is a viable strategy to enhance adenoviral mediated gene delivery to cancer cells in vitro. The incorporation of HDAC drugs into the overall scheme in adenoviral based cancer gene therapy clinical trials seems rational. However, reports using compounds with iHDAC properties utilized routinely in the clinic are pending. Valproic acid, a short chained fatty acid extensively used in the clinic for the treatment of epilepsy and bipolar disorder has been recently described as an effective HDAC inhibitor at therapeutic concentrations. Methods We studied the effect of valproic acid on histone H3 and H4 acetylation, CAR mRNA upregulation was studied using semiquantitative PCR and adenoviral transduction on HeLa cervical cancer cells, on MCF-7 breast cancer cells, on T24 transitional cell carcinoma of the bladder cells. CAR mRNA was studied using semiquantitative PCR on tumor tissue extracted from patients diagnosed with cervical cancer treated with valproic acid. Results CAR upregulation through HDAC inhibition was observed in the three cancer cell lines with enhancement of adenoviral transduction. CAR upregulation was also observed in tumor samples obtained from patients with cervical cancer treated with therapeutic doses of valproic acid. These results support the addition of the HDAC inhibitor valproic acid to adenoviral mediated cancer gene therapy clinical trials to enhance adenoviral mediated gene delivery to the tumor cells. PMID:17892546

  2. Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties.

    PubMed

    Ali, Amna; Burns, Timothy J; Lucrezi, Jacob D; May, Sheldon W; Green, George R; Matesic, Diane F

    2015-08-01

    4-Phenyl-3-butenoic acid (PBA) is an inhibitor of peptidylglycine alpha-amidating monooxygenase with anti-inflammatory properties that has been shown to inhibit the growth of ras-mutated epithelial and human lung carcinoma cells. In this report, we show that PBA also increases the acetylation levels of selected histone subtypes in a dose and time dependent manner, an effect that is attributable to the inhibition of histone deacetylase (HDAC) enzymes. Comparison studies with the known HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) using high resolution two-dimensional polyacrylamide gels and Western analysis provide evidence that PBA acts as an HDAC inhibitor within cells. PBA and a more potent amidation inhibitor, 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me), inhibit HDAC enzymes in vitro at micromolar concentrations, with IC50 values approximately 30 fold lower for AOPHA-Me than PBA for selected HDAC isoforms. Overall, these results indicate that PBA and AOPHA-Me are novel anti-tumorigenic HDAC inhibitors. PMID:26065689

  3. Inside HDACs with more selective HDAC inhibitors.

    PubMed

    Roche, Joëlle; Bertrand, Philippe

    2016-10-01

    Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets. PMID:27318122

  4. Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.

    PubMed

    Tabackman, Alexa A; Frankson, Rochelle; Marsan, Eric S; Perry, Kay; Cole, Kathryn E

    2016-09-01

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. PMID:27374062

  5. Biphenyl-4-yl-acrylohydroxamic acids: Identification of a novel indolyl-substituted HDAC inhibitor with antitumor activity.

    PubMed

    Cincinelli, Raffaella; Zwick, Vincent; Musso, Loana; Zuco, Valentina; De Cesare, Michelandrea; Zunino, Franco; Simoes-Pires, Claudia; Nurisso, Alessandra; Giannini, Giuseppe; Cuendet, Muriel; Dallavalle, Sabrina

    2016-04-13

    Modification of the cap group of biphenylacrylohydroxamic acid-based HDAC inhibitors led to the identification of a new derivative (3) characterized by an indolyl-substituted 4-phenylcinnamic skeleton. Molecular docking was used to predict the optimal conformation in the class I HDACs active site. Compound 3 showed HDAC inhibitory activity and antiproliferative activity against a panel of tumor cell lines, in the low μM range. The compound was further tested in vitro for acetylation of histone H4 and other non-histone proteins, and in vivo in a colon carcinoma model, showing significant proapoptotic and antitumor activities. PMID:26890116

  6. Novel cinnamohydroxamic acid derivatives as HDAC inhibitors with anticancer activity in vitro and in vivo.

    PubMed

    Wang, Lihui; Bao, Xuefei; Yang, Jingyu; Li, Huahuan; Zhou, Qifan; Jiang, Xiaorui; Li, Meng; Liu, Xing; Yuan, Xiangzhong; Sun, Yuhong; Chen, Junli; Zhang, Jingyuan; Chen, Guoliang; Wu, Chunfu

    2016-04-01

    A novel series of cinnamohydroxamic acid derivatives were synthesized and their biological activities against HDAC were assessed. Our results showed that the compound with more strong inhibitory activity to HDAC would exhibited more significant anti-proliferative effect on tumor cells. Among these compounds, 7e displayed clearly inhibitory effects on HDAC and tumor cell growth. Furthermore, HDAC isoforms enzyme data indicated that, compared to HDAC pan-inhibitor SAHA, 7e owned an enhanced inhibitory effect on HDAC1, 3 and 6 isoforms. Meanwhile, it also significantly suppressed cell growth of lung cancer cells compared to SAHA, but with lower toxicity in normal cells. Mechanistically, 7e prompted acetylation of histone3 and histone4, led to up-regulation of p21, and then mediated cell cycle arrest and pro-apoptosis. Moreover, the in vivo study indicated that compound 7e could retard tumor growth of A549 xenograft models. These findings support the further investigation on the anti-tumor potential of this class of compounds as HDAC inhibitor. PMID:26944433

  7. Quinolone-based HDAC inhibitors.

    PubMed

    Balasubramanian, Gopalan; Kilambi, Narasimhan; Rathinasamy, Suresh; Rajendran, Praveen; Narayanan, Shridhar; Rajagopal, Sridharan

    2014-08-01

    HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a-4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM. PMID:25019596

  8. Valproic Acid and Other HDAC Inhibitors Induce Microglial Apoptosis and Attenuate Lipopolysaccharide- induced Dopaminergic Neurotoxicity

    PubMed Central

    Chen, Po See; Wang, Chao-Chuan; Bortner, Carl D.; Peng, Giia-Sheun; Wu, Xuefei; Pang, Hao; Lu, Ru-Band; Gean, Po-Wu; Chuang, De-Maw; Hong, Jau-Shyong

    2009-01-01

    Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation. Other HDAC inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinson’s disease. PMID:17850978

  9. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer.

    PubMed

    Seidel, Carole; Schnekenburger, Michael; Mazumder, Aloran; Teiten, Marie-Hélène; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc

    2016-01-01

    Histone deacetylase (HDAC)6 is a unique isoenzyme targeting specific substrates including α-tubulin and heat shock protein (HSP)90. HDAC6 is involved in protein trafficking and degradation, cell shape and migration. Deregulation of HDAC6 activity is associated with a variety of diseases including cancer leading to a growing interest for developing HDAC6 inhibitors. Here, we identified two new structurally related 4-hydroxybenzoic acids as selective HDAC6 inhibitors reducing proliferation, colony and spheroid formation as well as viability of prostate cancer cells. Both compounds strongly enhanced α-tubulin acetylation leading to remodeling of microtubular organization. Furthermore, 4-hydroxybenzoic acids decreased HSP90α regulation of the human androgen receptor in prostate cancer cells by increasing HSP90α acetylation levels. Collectively, our data support the potential of 4-hydroxybenzoic acid derivatives as HDAC6-specific inhibitors with anti-cancer properties. PMID:26549368

  10. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC)

    PubMed Central

    2011-01-01

    Background The cervical cancer is the second most prevalent cancer for the woman in the world. It is caused by the oncogenic human papilloma virus (HPV). The inhibition activity of histone deacetylase (HDAC) is a potential strategy for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is widely known as a low toxicity HDAC inhibitor. This research presents in silico SAHA modification by utilizing triazole, in order to obtain a better inhibitor. We conducted docking of the SAHA inhibitor and 12 modified versions to six class II HDAC enzymes, and then proceeded with drug scanning of each one of them. Results The docking results show that the 12 modified inhibitors have much better binding affinity and inhibition potential than SAHA. Based on drug scan analysis, six of the modified inhibitors have robust pharmacological attributes, as revealed by drug likeness, drug score, oral bioavailability, and toxicity levels. Conclusions The binding affinity, free energy and drug scan screening of the best inhibitors have shown that 1c and 2c modified inhibitors are the best ones to inhibit class II HDAC. PMID:22373132

  11. Valproic Acid as a Potential Inhibitor of Plasmodium falciparum Histone Deacetylase 1 (PfHDAC1): An in Silico Approach

    PubMed Central

    Elbadawi, Mohamed A. Abdallah; Awadalla, Mohamed Khalid Alhaj; Abdel Hamid, Muzamil Mahdi; Mohamed, Magdi Awadalla; Awad, Talal Ahmed

    2015-01-01

    A new Plasmodium falciparum histone deacetylase1 (PfHDAC1) homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1. PMID:25679451

  12. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases

    PubMed Central

    Yoon, Somy

    2016-01-01

    Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction, and even transcription. HDACs are also post-transcriptional modifiers that regulate the protein acetylation implicated in several pathophysiologic states. HDAC inhibitors have been highlighted as a novel category of anti-cancer drugs. To date, four HDAC inhibitors, Vorinostat, Romidepsin, Panobinostat, and Belinostat, have been approved by the United States Food and Drug Administration. Principally, these HDAC inhibitors are used for hematologic cancers in clinic with less severe side effects. Clinical trials are continuously expanding to address other types of cancer and also nonmalignant diseases. HDAC inhibition also results in beneficial outcomes in various types of neurodegenerative diseases, inflammation disorders, and cardiovascular diseases. In this review, we will briefly discuss 1) the roles of HDACs in the acquisition of a cancer's phenotype and the general outcome of the HDAC inhibitors in cancer, 2) the functional relevance of HDACs in cardiovascular diseases and the possible therapeutic implications of HDAC inhibitors in cardiovascular disease. PMID:26865995

  13. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    PubMed

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-01

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. PMID:25108044

  14. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  15. Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay.

    PubMed

    Hsu, Chia-Wen; Shou, David; Huang, Ruili; Khuc, Thai; Dai, Sheng; Zheng, Wei; Klumpp-Thomas, Carleen; Xia, Menghang

    2016-07-01

    Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries. PMID:26858181

  16. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3

    PubMed Central

    Wang, Junyu; Wang, Zhifei; Liao, Hsiao-Mei; Wei, Monica; Leeds, Peter

    2016-01-01

    Background: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. Methods: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. Results: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. Conclusions: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth

  17. Potent, Selective, and CNS-Penetrant Tetrasubstituted Cyclopropane Class IIa Histone Deacetylase (HDAC) Inhibitors.

    PubMed

    Luckhurst, Christopher A; Breccia, Perla; Stott, Andrew J; Aziz, Omar; Birch, Helen L; Bürli, Roland W; Hughes, Samantha J; Jarvis, Rebecca E; Lamers, Marieke; Leonard, Philip M; Matthews, Kim L; McAllister, George; Pollack, Scott; Saville-Stones, Elizabeth; Wishart, Grant; Yates, Dawn; Dominguez, Celia

    2016-01-14

    Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models. PMID:26819662

  18. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors.

    PubMed

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-05-01

    Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE(-/-)) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE(-/-) mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  19. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors

    PubMed Central

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-01-01

    ABSTRACT Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  20. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation.

    PubMed

    Rettig, I; Koeneke, E; Trippel, F; Mueller, W C; Burhenne, J; Kopp-Schneider, A; Fabian, J; Schober, A; Fernekorn, U; von Deimling, A; Deubzer, H E; Milde, T; Witt, O; Oehme, I

    2015-01-01

    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents. PMID:25695609

  1. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    PubMed Central

    Rettig, I; Koeneke, E; Trippel, F; Mueller, W C; Burhenne, J; Kopp-Schneider, A; Fabian, J; Schober, A; Fernekorn, U; von Deimling, A; Deubzer, H E; Milde, T; Witt, O; Oehme, I

    2015-01-01

    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents. PMID:25695609

  2. The Class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction

    PubMed Central

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong inhibitor of HDAC3, does not significantly enhance consolidation of cued fear extinction. These data extend previous evidence that demonstrate the Class I HDACs play a role in the consolidation of long-term memory, suggesting that HDAC1 and/or HDAC2, but less likely HDAC3, may function as negative regulators of extinction retention. The development of specific HDAC inhibitors, such as RGFP963, will further illuminate the role of specific HDACs in various types of learning and memory. Moreover, HDAC inhibitors that enhance cued fear extinction may show translational promise for the treatment of fear-related disorders, including post-traumatic stress disorder (PTSD). PMID:25776040

  3. Identification of HDAC Inhibitors with Benzoylhydrazide scaffold that Selectively Inhibit Class I HDACs

    PubMed Central

    Wang, Yunfei; Stowe, Ryan L.; Pinello, Christie E.; Tian, Guimei; Madoux, Franck; Li, Dawei; Zhao, Lisa Y.; Li, Jian-Liang; Wang, Yuren; Wang, Yuan; Ma, Haiching; Hodder, Peter; Roush, William R.; Liao, Daiqing

    2015-01-01

    SUMMARY Inhibitors of histone deacetylases (HDACi) hold a considerable therapeutic promise as clinical anticancer therapies. However, currently known HDACi exhibit limited isoform specificity, off-target activity, and undesirable pharmaceutical properties. Thus, HDACi with new chemotypes are needed to overcome these limitations. Here, we identify a class of HDACi with a previously undescribed benzoylhydrazide scaffold that is selective for the class I HDACs. These compounds are competitive inhibitors with a fast-on/slow-off HDAC-binding mechanism. We show that the lead compound, UF010, inhibits cancer cell proliferation via class I HDAC inhibition. This causes global changes in protein acetylation and gene expression resulting in activation of tumor suppressor pathways and concurrent inhibition of several oncogenic pathways. The isotype selectivity coupled with interesting biological activities in suppressing tumor cell proliferation support further preclinical development of the UF010 class of compounds for potential therapeutic applications. PMID:25699604

  4. Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release

    PubMed Central

    2016-01-01

    Histone deacetylase inhibitors (HDACi) target abnormal epigenetic states associated with a variety of pathologies, including cancer. Here, the development of a prodrug of the canonical broad-spectrum HDACi suberoylanilide hydroxamic acid (SAHA) is described. Although hydroxamic acids are utilized universally in the development of metalloenzyme inhibitors, they are considered to be poor pharmacophores with reduced activity in vivo. We developed a prodrug of SAHA by appending a promoiety, sensitive to thiols, to the hydroxamic acid warhead (termed SAHA-TAP). After incubation of SAHA-TAP with an HDAC, the thiol of a conserved HDAC cysteine residue becomes covalently tagged with the promoiety, initiating a cascade reaction that leads to the release of SAHA. Mass spectrometry and enzyme kinetics experiments validate that the cysteine residue is covalently appended with the TAP promoiety. SAHA-TAP demonstrates cytotoxicity activity against various cancer cell lines. This strategy represents an original prodrug design with a dual mode of action for HDAC inhibition. PMID:25974739

  5. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization.

    PubMed

    Kattar, Solomon D; Surdi, Laura M; Zabierek, Anna; Methot, Joey L; Middleton, Richard E; Hughes, Bethany; Szewczak, Alexander A; Dahlberg, William K; Kral, Astrid M; Ozerova, Nicole; Fleming, Judith C; Wang, Hongmei; Secrist, Paul; Harsch, Andreas; Hamill, Julie E; Cruz, Jonathan C; Kenific, Candia M; Chenard, Melissa; Miller, Thomas A; Berk, Scott C; Tempest, Paul

    2009-02-15

    The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models. PMID:19138845

  6. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  7. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  8. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?

    PubMed

    Whittle, Nigel; Singewald, Nicolas

    2014-04-01

    A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy

  9. Synthesis and biological evaluation of novel FK228 analogues as potential isoform selective HDAC inhibitors.

    PubMed

    Narita, Koichi; Matsuhara, Keisuke; Itoh, Jun; Akiyama, Yui; Dan, Singo; Yamori, Takao; Ito, Akihiro; Yoshida, Minoru; Katoh, Tadashi

    2016-10-01

    Novel C4- and C7-modified FK228 analogues were efficiently synthesized in a highly convergent and unified manner. This synthesis features the amide condensation of glycine-d-cysteine-containing segments with d-valine-containing segments for the direct assembly of the corresponding seco-acids, which are key precursors of macrolactones. The HDAC inhibition assay and cell-growth inhibition analysis of the synthesized analogues revealed novel aspects of their structure-activity relationship. This study demonstrated that simple modification at the C4 and C7 side chains in FK228 is effective for improving both HDAC inhibitory activity and isoform selectivity; moreover, potent and highly isoform-selective class I HDAC1 inhibitors were identified. PMID:27318982

  10. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  11. The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction

    ERIC Educational Resources Information Center

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…

  12. HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL.

    PubMed

    Pathil, Anita; Armeanu, Sorin; Venturelli, Sascha; Mascagni, Paolo; Weiss, Thomas S; Gregor, Michael; Lauer, Ulrich M; Bitzer, Michael

    2006-03-01

    Hepatocellular carcinoma (HCC) displays a striking resistance to chemotherapeutic drugs or innovative tumor cell apoptosis-inducing agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Recently, we found 2 histone deacetylase inhibitors (HDAC-I), valproic acid and ITF2357, exhibiting inherent therapeutic activity against HCC. In TRAIL-sensitive cancer cells, the mechanism of HDAC-I-induced cell death has been identified to be TRAIL-dependent by inducing apoptosis in an autocrine fashion. In contrast, in HCC-derived cells, a prototype of TRAIL-resistant tumor cells, we found a HDAC-I-mediated apoptosis that works independently of TRAIL and upregulation of death receptors or their cognate ligands. Interestingly, TRAIL resistance could be overcome by a combinatorial application of HDAC-I and TRAIL, increasing the fraction of apoptotic cells two- to threefold compared with HDAC-I treatment alone, whereas any premature HDAC-I withdrawal rapidly restored TRAIL resistance. Furthermore, a tumor cell-specific downregulation of the FLICE inhibitory protein (FLIP) was observed, constituting a new mechanism of TRAIL sensitivity restoration by HDAC-I. In contrast, FLIP levels in primary human hepatocytes (PHH) from different donors were upregulated by HDAC-I. Importantly, combination HDAC-I/TRAIL treatment did not induce any cytotoxicity in nonmalignant PHH. In conclusion, HDAC-I compounds, exhibiting a favorable in vivo profile and inherent activity against HCC cells, are able to selectively overcome the resistance of HCC cells toward TRAIL. Specific upregulation of intracellular FLIP protein levels in nonmalignant hepatocytes could enhance the therapeutic window for clinical applications of TRAIL, opening up a highly specific new treatment option for advanced HCC. PMID:16583461

  13. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism

    PubMed Central

    Buglio, Daniela; Mamidipudi, Vidya; Khaskhely, Noor M.; Brady, Helen; Heise, Carla; Besterman, Jeffrey; Martell, Robert E.; MacBeth, Kyle; Younes, Anas

    2011-01-01

    Summary Inhibition of histone deacetylase 6 (HDAC6)-dependent aggresome function by pan HDAC inhibitors was recently reported to be a key mechanism underlying the synergistic activity between proteasome inhibitors and HDAC inhibitors in a variety of tumour types. Because these combinations induce significant thrombocytopenia in vivo, we examined whether less toxic, isotype-selective HDAC inhibitors may still synergize with proteasome inhibitors, and if so, by what mechanisms. Here, we showed that the class I HDAC inhibitor, MGCD0103, has a potent antiproliferative activity in Hodgkin lymphoma (HL) cell lines. Furthermore, MGCD0103 induced tumour necrosis factor α (TNF-α) expression and secretion, which was associated with nuclear factor (NF)-κB activation. Selective inhibition of TNF- α expression by short interfering mRNA, or inhibition of MGCD0103-induced NF-kB activation by proteasome inhibitors enhanced MGCD0103-induced cell death. Thus, our results demonstrate that MGCD0103 may synergize with proteasome inhibitors by HDAC6-independent mechanisms, providing mechanistic rationale for exploring this potentially less toxic combination for the treatment of lymphoma. PMID:20880107

  14. The therapeutic hope for HDAC6 inhibitors in malignancy and chronic disease.

    PubMed

    Batchu, Sri N; Brijmohan, Angela S; Advani, Andrew

    2016-06-01

    Recent years have witnessed an emergence of a new class of therapeutic agents, termed histone deacetylase 6 (HDAC6) inhibitors. HDAC6 is one isoform of a family of HDAC enzymes that catalyse the removal of functional acetyl groups from proteins. It stands out from its cousins in almost exclusively deacetylating cytoplasmic proteins, in exerting deacetylation-independent effects and in the success that has been achieved in developing relatively isoform-specific inhibitors of its enzymatic action that have reached clinical trial. HDAC6 plays a pivotal role in the removal of misfolded proteins and it is this role that has been most successfully targeted to date. HDAC6 inhibitors are being investigated for use in combination with proteasome inhibitors for the treatment of lymphoid malignancies, whereby HDAC6-dependent protein disposal currently limits the cytotoxic effectiveness of the latter. Similarly, numerous recent studies have linked altered HDAC6 activity to the pathogenesis of neurodegenerative diseases that are characterized by misfolded protein accumulation. It seems likely though that the function of HDAC6 is not limited to malignancy and neurodegeneration, the deacetylase being implicated in a number of other cellular processes and diseases including in cardiovascular disease, inflammation, renal fibrosis and cystogenesis. Here, we review the unique features of HDAC6 that make it so appealing as a drug target and its currently understood role in health and disease. Whether HDAC6 inhibition will ultimately find a clinical niche in the treatment of malignancy or prevalent complex chronic diseases remains to be determined. PMID:27154743

  15. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention?

    PubMed Central

    H.Dashwood, Roderick; C.Myzak, Melinda; Ho, Emily

    2008-01-01

    There is growing interest in the various mechanisms that regulate chromatin remodeling, including modulation of histone deacetylase (HDAC) activities. Competitive HDAC inhibitors disrupt the cell cycle and/or induce apoptosis via de-repression of genes such as P21 and BAX, and cancer cells appear to be more sensitive than non-transformed cells to trichostatin A and related HDAC inhibitory compounds. This apparent selectivity of action in cancer cells makes HDAC inhibitors an attractive avenue for drug development. However, in the search for potent HDAC inhibitors with cancer therapeutic potential there has been a tendency to overlook or dismiss weak ligands that could prove effective in cancer prevention, including agents present in the human diet. Recent reports have described butyrate, diallyl disulfide and sulforaphane as HDAC inhibitors, and many other dietary agents will be probably discovered to attenuate HDAC activity. Here we discuss ‘pharmacologic’ agents that potently de-repress gene expression (e.g. during therapeutic intervention) versus dietary HDAC inhibitors that, as weak ligands, might subtly regulate the expression of genes involved in cell growth and apoptosis. An important question is the extent to which dietary HDAC inhibitors, and other dietary agents that affect gene expression via chromatin remodeling, modulate the expression of genes such as P21 and BAX so that cells can respond most effectively to external stimuli and toxic insults. PMID:16267097

  16. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    PubMed

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. PMID:26199860

  17. Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts.

    PubMed

    Kachhadia, Virendra; Rajagopal, Sridharan; Ponpandian, Thanasekaran; Vignesh, Radhakrishnan; Anandhan, Karnambaram; Prabhu, Daivasigamani; Rajendran, Praveen; Nidhyanandan, Saranya; Roy, Anshu Mittal; Ahamed, Fakrudeen Ali; Surendran, Narayanan; Rajagopal, Sriram; Narayanan, Shridhar; Gopalan, Balasubramanian

    2016-01-27

    Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles. PMID:26689485

  18. Histone Deacetylase (HDAC) Inhibitors - Emerging Roles in Neuronal Memory, Learning, Synaptic Plasticity and Neural Regeneration

    PubMed Central

    Ahmad Ganai, Shabir; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed. PMID:26487502

  19. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    PubMed

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed. PMID:26487502

  20. Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling.

    PubMed

    Chen, Ya-Dong; Jiang, Yong-Jun; Zhou, Jian-Wei; Yu, Qing-Sen; You, Qi-Dong

    2008-04-01

    Histone deacetylases (HDACs) enzyme plays a significant role in transcriptional regulation by modifying the core histones of the nucleosome. It has emerged as an important therapeutic target for the treatment of cancer and other diseases. Inhibitors of HDACs become a new class of anticancer agents and have provoked much interest amongst pharmacologists and cancer researchers. To facilitate the discovery of specific HDACs inhibitors, a 3D chemical-feature-based QSAR pharmacophore model was developed and was well consistent with the structure-functional requirements for the binding of the HDAC inhibitors. Using this model, the interactions between the benzamide MS-275 and HDAC were explored. The result showed that the type and spatial location of chemical features encoded in the pharmacophore are in full agreement with the enzyme-inhibitor interaction pattern identified from molecular docking. PMID:18061500

  1. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors

    PubMed Central

    Sacco, Joseph J.; Kenyani, Jenna; Butt, Zohra; Carter, Rachel; Chew, Hui Yi; Cheeseman, Liam P.; Darling, Sarah; Denny, Michael; Urbé, Sylvie; Clague, Michael J.; Coulson, Judy M.

    2015-01-01

    Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors. PMID:25970771

  2. The promise and perils of HDAC inhibitors in neurodegeneration

    PubMed Central

    Didonna, Alessandro; Opal, Puneet

    2015-01-01

    Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain. PMID:25642438

  3. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors.

    PubMed

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-01-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development. PMID:27404291

  4. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    NASA Astrophysics Data System (ADS)

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-07-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.

  5. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    PubMed Central

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-01-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development. PMID:27404291

  6. The Role of Dietary Histone Deacetylases (HDACs) Inhibitors in Health and Disease

    PubMed Central

    Bassett, Shalome A.; Barnett, Matthew P. G.

    2014-01-01

    Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs) remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food. PMID:25322459

  7. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers. PMID:25813246

  8. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy.

    PubMed

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5' adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  9. Differential Anti-inflammatory Activity of HDAC Inhibitors in Human Macrophages and Rat Arthritis.

    PubMed

    Lohman, Rink-Jan; Iyer, Abishek; Fairlie, Thomas J; Cotterell, Adam; Gupta, Praveer; Reid, Robert C; Vesey, David A; Sweet, Matthew J; Fairlie, David P

    2016-02-01

    Vorinostat and other inhibitors of different histone deacetylase (HDAC) enzymes are currently being sought to modulate a variety of human conditions, including chronic inflammatory diseases. Some HDAC inhibitors are anti-inflammatory in rodent models of arthritis and colitis, usually at cytotoxic doses that may cause side effects. Here, we investigate the dose-dependent pro- and anti-inflammatory efficacy of two known inhibitors of multiple HDACs, vorinostat and BML281, in human macrophages and in a rat model of collagen-induced arthritis by monitoring effects on disease progression, histopathology, and immunohistochemistry. Both HDAC inhibitors differentially modulated lipopolysaccharide (LPS)-induced cytokine release from human macrophages, suppressing release of some inflammatory mediators (IL12p40, IL6) at low concentrations (<3 µM) but amplifying production of others (TNF, IL1β) at higher concentration (>3 μΜ). This trend translated in vivo to rat arthritis, with anti-inflammatory activity inversely correlating with dose. Both compounds were efficacious only at a low dose (1 mg⋅kg(-1)⋅day(-1) s.c.), whereas a higher dose (5 mg⋅kg(-1)⋅day(-1) s.c.) showed no positive effects on reducing pathology, even showing signs of exacerbating disease. These striking effects suggest a smaller therapeutic window than previously reported for HDAC inhibition in experimental arthritis. The findings support new investigations into repurposing HDAC inhibitors for anti-inflammatory therapeutic applications. However, HDAC inhibitors should be reinvestigated at lower, rather than higher, doses for enhanced efficacy in chronic diseases that require long-term treatment, with careful management of efficacy and long-term safety. PMID:26660228

  10. Combination therapy for hepatocellular carcinoma: Additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib

    PubMed Central

    Lachenmayer, Anja; Toffanin, Sara; Cabellos, Laia; Alsinet, Clara; Hoshida, Yujin; Villanueva, Augusto; Minguez, Beatriz; Tsai, Hung-Wen; Ward, Stephen C.; Thung, Swan; Friedman, Scott L.; Llovet, Josep M.

    2012-01-01

    Background & Aims Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly dysregulated in cancer and therefore represent promising targets for therapies, however their role in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with sorafenib in preclinical models of liver cancer. Methods Gene expression and copy number changes were analyzed in a cohort of 334 human HCCs, while the effects of panobinostat and sorafenib were evaluated in 3 liver cancer cell lines and a murine xenograft model. Results Aberrant HDAC expression was identified and validated in 91 and 243 HCCs, respectively. Upregulation of HDAC3 and 5 mRNAs were significantly correlated with DNA copy number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while apoptosis and autophagy increased. Panobinostat increased Histone H3 and HSP90 acetylation, downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat and sorafenib significantly decreased vessel density, and most significantly decreased tumor volume and increased survival in HCC xenografts. Conclusions Aberrant expression of several HDACs and copy number gains of HDAC3 and HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this novel combination. PMID:22322234

  11. HDAC-inhibitor (S)-8 disrupts HDAC6-PP1 complex prompting A375 melanoma cell growth arrest and apoptosis.

    PubMed

    Balliu, Manjola; Guandalini, Luca; Romanelli, Maria Novella; D'Amico, Massimo; Paoletti, Francesco

    2015-01-01

    Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4-benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)-8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)-8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)-8 prompted: acetylation of histones H3/H4 and α-tubulin; G0 /G1 and G2 /M cell cycle arrest by rising p21 and hypophos-phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro-angiogenic potential as shown by results of wound-healing assay, down-regulation of MMP-2 and VEGF-A/VEGF-R2, besides TIMP-1/TIMP-2 up-regulation; and also intracellular accumulation of melanin and neutral lipids. The pan-caspase inhibitor Z-VAD-fmk, but not the antioxidant N-acetyl-cysteine, contrasted these events. Mechanistically, (S)-8 allows the disruption of cytoplasmic HDAC6-protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro-survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2-transfected cells with impaired PP1 activity; monitoring drug-induced HDAC6-PP1 complex re-shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)-8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy. PMID:25376115

  12. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    PubMed

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  13. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro

    PubMed Central

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  14. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro.

    PubMed

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  15. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation.

    PubMed

    Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A; Patnaik, Debasis; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2016-02-15

    Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease. PMID:26804233

  16. Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide

    PubMed Central

    Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; St-Coeur, Patrick-Denis; Poitras, Julie; Morin, Pier Jr; Culf, Adrian S.

    2014-01-01

    Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects. PMID:25222834

  17. HC toxin (a HDAC inhibitor) enhances IRS1-Akt signalling and metabolism in mouse myotubes.

    PubMed

    Tan, Hayden Weng Siong; Sim, Arthur Yi Loong; Huang, Su Ling; Leng, Ying; Long, Yun Chau

    2015-12-01

    Exercise enhances numerous signalling pathways and activates substrate metabolism in skeletal muscle. Small molecule compounds that activate these cellular responses have been shown to recapitulate the metabolic benefits of exercise. In this study, a histone deacetylase (HDAC) inhibitor, HC toxin, was investigated as a small molecule compound that activates exercise-induced adaptations. In C2C12 myotubes, HC toxin treatment activated two exercise-stimulated pathways: AMP-activated protein kinase (AMPK) and Akt pathways. HC toxin increased the protein content and phosphorylation of insulin receptor substrate 1 as well as the activation of downstream Akt signalling. The effects of HC toxin on IRS1-Akt signalling were PI3K-dependent as wortmannin abolishes its effects on IRS1 protein accumulation and Akt phosphorylation. HC toxin-induced Akt activation was sufficient to enhance downstream mTOR complex 1 (mTORC1) signalling including p70S6K and S6, which were consistently abolished by PI3K inhibition. Insulin-stimulated glucose uptake, glycolysis, mitochondrial respiration and fatty acid oxidation were also enhanced in HC toxin-treated myotubes. When myotubes were challenged with serum starvation for the induction of atrophy, HC toxin treatment prevented the induction of genes that are involved in autophagy and proteasomal proteolysis. Conversely, IRS1-Akt signalling was not induced by HC toxin in several hepatoma cell lines, providing evidence for a favourable safety profile of this small molecule. These data highlight the potential of HDAC inhibitors as a novel class of small molecules for the induction of exercise-like signalling pathways and metabolism. PMID:26373795

  18. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    PubMed Central

    Lee, Ting-I; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  19. Chemistry and biology of chromatin remodeling agents: state of art and future perspectives of HDAC inhibitors.

    PubMed

    Rodriquez, Manuela; Aquino, Maurizio; Bruno, Ines; De Martino, Giovanni; Taddei, Maurizio; Gomez-Paloma, Luigi

    2006-01-01

    Chromatin remodeling is a fundamental phenomenon in the life of eukaryotic cells, bearing implications to numerous physiological and pathological phenomena. This review outlines the chemistry of natural and synthetic agents endowed with the ability to interfere with such biological function, with a particular emphasis on histone deacetylase (HDAC) inhibitors. Other aspects covered in this article comprise structure activity relationships (SAR) and modes of action at molecular level, including the description of crystal structures of enzyme-inhibitor complexes. PMID:16719774

  20. Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-{kappa}B activation by the HDAC inhibitor apicidin

    SciTech Connect

    Kim, Yong Kee . E-mail: yksnbk@kwandong.ac.kr; Seo, Dong-Wan; Kang, Dong-Won; Lee, Hoi Young; Han, Jeung-Whan; Kim, Su-Nam . E-mail: snkim@kist.re.kr

    2006-09-08

    Histone deacetylase (HDAC) inhibitors are appreciated as one of promising anticancer drugs, but they exert differential responses depending on the cell type. We recently reported the critical role of NF-{kappa}B as a modulator in determining cell fate for apoptosis in response to an HDAC inhibitor. In this study, we investigate a possible signaling pathway required for NF-{kappa}B activation in response to the HDAC inhibitor apicidin. Treatment of HeLa cells with apicidin leads to an increase in transcriptional activity of NF-{kappa}B and the expression of its target genes, IL-8 and TNF-{alpha}. TNF-{alpha} expression by apicidin is induced at earlier time points than NF-{kappa}B activation or IL-8 expression. In addition, our data show that the early expression of TNF-{alpha} does not lead to activation of NF-{kappa}B, because disruption of TNF-{alpha} activity by a neutralizing antibody does not affect nuclear translocation of NF-{kappa}B, I{kappa}B{alpha} degradation or reporter gene activation by apicidin. However, this activation of NF-{kappa}B requires the PI3K and PKC signaling pathways, but not ERK or JNK. Furthermore, apicidin activation of NF-{kappa}B seems to result from HDAC1 inhibition, as evidenced by the observation that overexpression of HDAC1, but not HDAC2, 3 or 4, dramatically inhibits NF-{kappa}B reporter gene activity. Collectively, our results suggest that activation of NF-{kappa}B signaling by apicidin requires both the PI3K/PKC signaling pathways and HDAC1, and functions as a critical modulator in determining the cellular effect of apicidin.

  1. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling

    PubMed Central

    Heinemann, Anja; Cullinane, Carleen; De Paoli-Iseppi, Ricardo; Wilmott, James S.; Gunatilake, Dilini; Madore, Jason; Strbenac, Dario; Yang, Jean Y.; Gowrishankar, Kavitha; Tiffen, Jessamy C.; Prinjha, Rab K.; Smithers, Nicholas; McArthur, Grant A.; Hersey, Peter; Gallagher, Stuart J.

    2015-01-01

    Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells. Here we show that combining the HDAC inhibitor LBH589 and BET inhibitor I-BET151 synergistically induce apoptosis of melanoma cells but not of melanocytes. Induction of apoptosis proceeded through the mitochondrial pathway, was caspase dependent and involved upregulation of the BH3 pro-apoptotic protein BIM. Analysis of signal pathways in melanoma cell lines resistant to BRAF inhibitors revealed that treatment with the combination strongly downregulated anti-apoptotic proteins and proteins in the AKT and Hippo/YAP signaling pathways. Xenograft studies showed that the combination of inhibitors was more effective than single drug treatment and confirmed upregulation of BIM and downregulation of XIAP as seen in vitro. These results support the combination of these two classes of epigenetic regulators in treatment of melanoma including those resistant to BRAF inhibitors. PMID:26087189

  2. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich’s Ataxia

    PubMed Central

    Soragni, Elisabetta; Chou, C. James; Rusche, James R.; Gottesfeld, Joel M.

    2015-01-01

    The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we

  3. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation

    PubMed Central

    Haggarty, Stephen J.; Koeller, Kathryn M.; Wong, Jason C.; Grozinger, Christina M.; Schreiber, Stuart L.

    2003-01-01

    Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover “tubacin,” which inhibits α-tubulin deacetylation in mammalian cells. Tubacin does not affect the level of histone acetylation, gene-expression patterns, or cell-cycle progression. We provide evidence that class II histone deacetylase 6 (HDAC6) is the intracellular target of tubacin. Only one of the two catalytic domains of HDAC6 possesses tubulin deacetylase activity, and only this domain is bound by tubacin. Tubacin treatment did not affect the stability of microtubules but did decrease cell motility. HDAC6 overexpression disrupted the localization of p58, a protein that mediates binding of Golgi elements to microtubules. Our results highlight the role of α-tubulin acetylation in mediating the localization of microtubule-associated proteins. They also suggest that small molecules that selectively inhibit HDAC6-mediated α-tubulin deacetylation, a first example of which is tubacin, might have therapeutic applications as antimetastatic and antiangiogenic agents. PMID:12677000

  4. Promiscuous Actions of Small Molecule Inhibitors of the Protein Kinase D-Class IIa HDAC Axis in Striated Muscle

    PubMed Central

    Lemon, Douglas D.; Harrison, Brooke C.; Horn, Todd R.; Stratton, Matthew S.; Ferguson, Bradley S.; Wempe, Michael F.; McKinsey, Timothy A.

    2015-01-01

    PKD-mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö-6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö-6976 triggered calcium signaling and activated stress-inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö-6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD. PMID:25816750

  5. Reversal of glucose intolerance in rat offspring exposed to ethanol before birth through reduction of nuclear skeletal muscle HDAC expression by the bile acid TUDCA

    PubMed Central

    Yao, Xing‐Hai; Nguyen, Khanh H.; Nyomba, B. L. Grégoire

    2014-01-01

    Abstract Prenatal ethanol exposure causes cellular stress, insulin resistance, and glucose intolerance in adult offspring, with increased gluconeogenesis and reduced muscle glucose transporter‐4 (glut4) expression. Impaired insulin activation of Akt and nuclear translocation of histone deacetylases (HDACs) in the liver partly explain increased gluconeogenesis. The mechanism for the reduced glut4 is unknown. Pregnant rats were gavaged with ethanol over the last week of gestation and adult female offspring were studied. Some ethanol exposed offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. All these rats underwent intraperitoneal glucose tolerance and insulin tolerance tests. The expression of glut4, HDACs, and markers of endoplasmic reticulum (ER) unfolded protein response (XBP1, CHOP, ATF6) was examined in the gastrocnemius muscle fractions, and in C2C12 muscle cells cultured with ethanol, TUDCA, and HDAC inhibitors. Non‐TUDCA‐treated rats exposed to prenatal ethanol were insulin resistant and glucose intolerant with reduced muscle glut4 expression, increased ER marker expression, and increased nuclear HDACs, whereas TUDCA‐treated rats had normal insulin sensitivity and glucose tolerance with normal glut4 expression, ER marker expression, and HDAC levels. In C2C12 cells, ethanol reduced glut4 expression, but increased ER makers. While TUDCA restored glut4 and ER markers to control levels and HDAC inhibition rescued glut4 expression, HDAC inhibition had no effect on ER markers. The increase in nuclear HDAC levels consequent to prenatal ethanol exposure reduces glut4 expression in adult rat offspring, and this HDAC effect is independent of ER unfolded protein response. HDAC inhibition by TUDCA restores glut4 expression, with improvement in insulin sensitivity and glucose tolerance. PMID:25538147

  6. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia. PMID:26510381

  7. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms

    PubMed Central

    Wang, L; Li, H; Ren, Y; Zou, S; Fang, W; Jiang, X; Jia, L; Li, M; Liu, X; Yuan, X; Chen, G; Yang, J; Wu, C

    2016-01-01

    Chemotherapy paclitaxel yields significant reductions in tumor burden in the majority of advanced non-small cell lung cancer (NSCLC) patients. However, acquired resistance limits its clinical use. Here we demonstrated that the histone deacetylase (HDAC) was activated in paclitaxel-resistant NSCLC cells, and its activation promoted proliferation and tumorigenesis of paclitaxel-resistant NSCLC cells in vitro and in vivo. By contrast, knockdown of HDAC1, a primary isoform of HDAC, sensitized resistant cells to paclitaxel in vitro. Furthermore, we observed that overexpression of HDAC1 was associated with the downregulation of p21, a known HDAC target, in advanced NSCLC patients with paclitaxel treatment, and predicted chemotherapy resistance and bad outcome. In addition, we also identified a novel HDACs inhibitor, SNOH-3, which inhibited HDAC expression and activity, induced cell apoptosis, and suppressed cell migration, invasion and angiogenesis. Notably, co-treatment with SNOH-3 and paclitaxel overcome paclitaxel resistance through inhibiting HDAC activity, leading to the induction of apoptosis and suppression of angiogenesis in vitro and in preclinical model. In summary, our data demonstrate a role of HDAC in paclitaxel-resistant NSCLC and provide a promising therapeutic strategy to overcome paclitaxel-acquired resistance. PMID:26794658

  8. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage

    PubMed Central

    Yokoyama, Satoru; Feige, Erez; Poling, Laura L.; Levy, Carmit; Widlund, Hans R.; Khaled, Mehdi; Kung, Andrew L.; Fisher, David E.

    2013-01-01

    Summary Melanoma incidence continues to rise at an alarming rate while effective systemic therapies remain very limited. Microphthalmia-associated transcription factor (MITF) is required for development of melanocytes and is an amplified oncogene in a fraction of human melanomas. MITF also plays an oncogenic role in human clear cell sarcomas, which typically exhibit melanoma-like features. Although pharmacologic suppression of MITF is of potential interest in a variety of clinical settings, it is not known to contain intrinsic catalytic activity capable of direct small molecule inhibition. An alternative drug-targeting strategy is to identify and interfere with lineage-restricted mechanisms required for its expression. Here, we report that multiple HDAC-inhibitor drugs potently suppress MITF expression in melanocytes, melanoma and clear cell sarcoma cells. Although HDAC inhibitors may affect numerous cellular targets, we observed suppression of skin pigmentation by topical drug application as well as evidence of anti-melanoma efficacy in vitro and in mouse xenografts. Consequently, HDAC inhibitor drugs are candidates to play therapeutic roles in targeting conditions affecting the melanocyte lineage. PMID:18627530

  9. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors.

    PubMed

    Wagner, Florence F; Weïwer, Michel; Steinbacher, Stefan; Schomburg, Adrian; Reinemer, Peter; Gale, Jennifer P; Campbell, Arthur J; Fisher, Stewart L; Zhao, Wen-Ning; Reis, Surya A; Hennig, Krista M; Thomas, Méryl; Müller, Peter; Jefson, Martin R; Fass, Daniel M; Haggarty, Stephen J; Zhang, Yan-Ling; Holson, Edward B

    2016-09-15

    The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications. PMID:27377864

  10. The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2016-05-01

    Mesothelioma is an aggressive tumor which is mainly derived from the pleura of lung. In the present study, we evaluated the anticancer effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor on human mesothelioma cells in relation to the levels of HDAC1, reactive oxygen species (ROS) and thioredoxin (Trx). While 1 µM SAHA inhibited cell growth in Phi and ROB cells at 24 h, it did not affect the growth in ADA and Mill cells. Notably, the level of HDAC1 was relatively overexpressed among Phi, REN and ROB cells. SAHA induced necrosis and apoptosis, which was accompanied by the cleavages of PARP and caspase-3 in Phi cells. This agent also increased the loss of mitochondrial membrane potential (MMP, ΔΨm) in Phi cells. All the tested caspase inhibitors attenuated apoptosis in SAHA-treated Phi cells whereas HDAC1 siRNA enhanced the apoptotic cell death. SAHA increased intracellular ROS levels including O2•- in Phi cells. N-acetyl cysteine (NAC) and vitamin C (Vit.C) significantly reduced the growth inhibition and death of Phi cells caused by SAHA. This drug decreased the mRNA and protein levels of Trx1 in Phi and ROB cells. Furthermore, Trx1 siRNA increased cell death and O2•- level in SAHA-treated Phi cells. In conclusion, SAHA selectively inhibited the growth of Phi and ROB mesothelioma cells, which showed the higher basal level of HDAC1. SAHA-induced Phi cell death was related to oxidative stress and Trx1 levels. PMID:26936390

  11. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors.

    PubMed

    Zhang, Zhimin; Hou, Shaohua; Chen, Hongli; Ran, Ting; Jiang, Fei; Bian, Yuanyuan; Zhang, Dewei; Zhi, Yanle; Wang, Lu; Zhang, Li; Li, Hongmei; Zhang, Yanmin; Tang, Weifang; Lu, Tao; Chen, Yadong

    2016-06-15

    The bromodomain protein module and histone deacetylase (HDAC), which recognize and remove acetylated lysine, respectively, have emerged as important epigenetic therapeutic targets in cancer treatments. Herein we presented a novel design approach for cancer drug development by combination of bromodomain and HDAC inhibitory activity in one molecule. The designed compounds were synthesized which showed inhibitory activity against bromodomain 4 and HDAC1. The representative dual bromodomain/HDAC inhibitors, compound 11 and 12, showed potent antiproliferative activities against human leukaemia cell line K562 and MV4-11 in cellular assays. This work may lay the foundation for developing dual bromodomain/HDAC inhibitors as potential anticancer therapeutics. PMID:27142751

  12. Structural Requirements of Histone Deacetylase Inhibitors: SAHA Analogs Modified on the Hydroxamic Acid.

    PubMed

    Bieliauskas, Anton V; Weerasinghe, Sujith V W; Negmeldin, Ahmed T; Pflum, Mary Kay H

    2016-05-01

    Histone deacetylase (HDAC) proteins have emerged as targets for anti-cancer therapeutics, with several inhibitors used in the clinic, including suberoylanilide hydroxamic acid (SAHA, vorinostat). Because SAHA and many other inhibitors target all or most of the 11 human HDAC proteins, the creation of selective inhibitors has been studied intensely. Recently, inhibitors selective for HDAC1 and HDAC2 were reported where selectivity was attributed to interactions between substituents on the metal binding moiety of the inhibitor and residues in the 14-Å internal cavity of the HDAC enzyme structure. Based on this earlier work, we synthesized and tested SAHA analogs with substituents on the hydroxamic acid metal binding moiety. The N-substituted SAHA analogs displayed reduced potency and solubility, but greater selectivity, compared to SAHA. Docking studies suggested that the N-substituent accesses the 14-Å internal cavity to impart preferential inhibition of HDAC1. These studies with N-substituted SAHA analogs are consistent with the strategy exploiting the 14-Å internal cavity of HDAC proteins to create HDAC1/2 selective inhibitors. PMID:27062198

  13. Modulation of Activity Profiles for Largazole-Based HDAC Inhibitors through Alteration of Prodrug Properties

    PubMed Central

    2014-01-01

    Largazole is a potent and class I-selective histone deacetylase (HDAC) inhibitor purified from marine cyanobacteria and was demonstrated to possess antitumor activity. Largazole employs a unique prodrug strategy, via a thioester moiety, to liberate the bioactive species largazole thiol. Here we report alternate prodrug strategies to modulate the pharmacokinetic and pharmacodynamics profiles of new largazole-based compounds. The in vitro effects of largazole analogues on cancer cell proliferation and enzymatic activities of purified HDACs were comparable to the natural product. However, in vitro and in vivo histone hyperacetylation in HCT116 cells and implanted tumors, respectively, showed differences, particularly in the onset of action and oral bioavailability. These results indicate that, by employing a different approach to disguise the “warhead” moiety, the functional consequence of these prodrugs can be significantly modulated. Our data corroborate the role of the pharmacokinetic properties of this class of compounds to elicit the desired and timely functional response. PMID:25147612

  14. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. PMID:26721445

  15. Effect of HDAC Inhibitors on Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices

    PubMed Central

    Koppaka, Vindhya; Lakshman, Neema

    2015-01-01

    Purpose: Histone deacetylase inhibitors (HDAC) have been shown to inhibit the TGFβ-induced myofibroblast transformation of corneal fibroblasts in 2-D culture. However, the effect of HDAC inhibitors on keratocyte spreading, contraction, and matrix remodeling in 3-D culture has not been directly assessed. The goal of this study was to investigate the effects of the HDAC inhibitors Trichostatin A (TSA) and Vorinostat (SAHA) on corneal keratocyte mechanical phenotypes in 3-D culture using defined serum-free culture conditions. Methods: Rabbit corneal keratocytes were plated within standard rat tail type I collagen matrices (2.5 mg/ml) or compressed collagen matrices (~100 mg/ml) and cultured for up to 4 days in serum-free media, PDGF BB, TGFβ1, and either 50 nM TSA, 10 μM SAHA, or vehicle (DMSO). F-actin, α-SM-actin, and collagen fibrils were imaged using confocal microscopy. Cell morphology and global matrix contraction were quantified digitally. The expression of α-SM-actin was assessed using western blotting. Results: Corneal keratocytes in 3-D matrices had a quiescent mechanical phenotype, as indicated by a dendritic morphology, a lack of stress fibers, and minimal cell-induced matrix remodeling. This phenotype was generally maintained following the addition of TSA or SAHA. TGFβ1 induced a contractile phenotype, as indicated by a loss of dendritic cell processes, the development of stress fibers, and significant matrix compaction. In contrast, cells cultured in TGFβ1 plus TSA or SAHA remained dendritic and did not form stress fibers or induce ECM compaction. Western blotting showed that the expression of α-SM actin after treatment with TGFβ1 was inhibited by TSA and SAHA. PDGF BB stimulated the elongation of keratocytes and the extension of dendritic processes within 3-D matrices without inducing stress fiber formation or collagen reorganization. This spreading response was maintained in the presence of TSA or SAHA. Conclusions: Overall, HDAC inhibitors

  16. Design, synthesis and antiproliferative activities of novel benzamides derivatives as HDAC inhibitors.

    PubMed

    Li, Yanyang; Wang, Yongzhen; Xie, Ning; Xu, Ming; Qian, Pengyu; Zhao, Yanjin; Li, Shuxin

    2015-07-15

    Guided by the principle of nonclassical electronic isosterism and structural optimization, a series of novel HDAC inhibitors bearing a bicyclic heterocycle moiety were designed and synthesized based on the lead compound of MS-275. All the prepared compounds were evaluated for their in vitro antiproliferative activities against HCT-116, MCF-7 and A549 human cancer cell lines, all compounds exerted excellent antitumor activities. Moreover, the compound 4a exhibited an acceptable pharmacokinetic profile with bio-availability in rat of 76% and could be considered as a candidate compound for further development. PMID:26140961

  17. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC.

    PubMed

    Peng, Fan-Wei; Xuan, Ji; Wu, Ting-Ting; Xue, Jia-Yu; Ren, Zi-Wei; Liu, Da-Ke; Wang, Xiu-Qi; Chen, Xin-Hang; Zhang, Jia-Wei; Xu, Yun-Gen; Shi, Lei

    2016-02-15

    A single agent that simultaneously inhibits multiple targets may offer greater therapeutic benefits in cancer than single-acting agents through interference with multiple pathways and potential synergistic action. In this work, a series of hybrids bearing N-phenylquinazolin-4-amine and hydroxamic acid moieties were designed and identified as dual VEGFR-2/HDAC inhibitors. Compound 6fd exhibited the most potent inhibitory activity against HDAC with IC50 of 2.2 nM and strong inhibitory effect against VEGFR-2 with IC50 of 74 nM. It also showed the most potent inhibitory activity against a human breast cancer cell line MCF-7 with IC50 of 0.85 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the active binding sites of VEGFR-2 and HDLP ((Histone Deacetylase-Like Protein), which demonstrates that compound 6fd is a potential agent for cancer therapy deserving further researching. PMID:26741358

  18. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment.

    PubMed

    Colussi, Claudia; Mozzetta, Chiara; Gurtner, Aymone; Illi, Barbara; Rosati, Jessica; Straino, Stefania; Ragone, Gianluca; Pescatori, Mario; Zaccagnini, Germana; Antonini, Annalisa; Minetti, Giulia; Martelli, Fabio; Piaggio, Giulia; Gallinari, Paola; Steinkuhler, Christian; Steinkulher, Christian; Clementi, Emilio; Dell'Aversana, Carmela; Altucci, Lucia; Mai, Antonello; Capogrossi, Maurizio C; Puri, Pier Lorenzo; Gaetano, Carlo

    2008-12-01

    The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy. PMID:19047631

  19. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment

    PubMed Central

    Colussi, Claudia; Mozzetta, Chiara; Gurtner, Aymone; Illi, Barbara; Rosati, Jessica; Straino, Stefania; Ragone, Gianluca; Pescatori, Mario; Zaccagnini, Germana; Antonini, Annalisa; Minetti, Giulia; Martelli, Fabio; Piaggio, Giulia; Gallinari, Paola; Steinkuhler, Christian; Clementi, Emilio; Dell'Aversana, Carmela; Altucci, Lucia; Mai, Antonello; Capogrossi, Maurizio C.; Puri, Pier Lorenzo; Gaetano, Carlo

    2008-01-01

    The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy. PMID:19047631

  20. MuLV IN Mutants Responsive to HDAC Inhibitors Enhance Transcription from Unintegrated Retroviral DNA

    PubMed Central

    Schneider, William M.; Wu, Dai-tze; Amin, Vaibhav; Aiyer, Sriram; Roth, Monica J.

    2012-01-01

    For Moloney murine leukemia virus (M-MuLV), sustained viral infections require expression from an integrated provirus. For many applications, non-integrating retroviral vectors have been utilized to avoid the unwanted effects of integration, however, the level of expression from unintegrated DNA is significantly less than that of integrated provirus. We find that unintegrated DNA expression can be increased in the presence of HDAC inhibitors, such as TSA, when applied in combination with integrase (IN) mutations. These mutants include an active site mutation as well as catalytically active INs bearing mutations of K376 in the MuLV C-terminal domain of IN. MuLV IN K376 is homologous to K266 in HIV-1 IN, a known substrate for acetylation. The MuLV IN protein is acetylated by p300 in vitro, however, the effect of HDAC inhibitors on gene expression from unintegrated DNA is not dependent on the acetylation state of MuLV IN K376. PMID:22365328

  1. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine

    PubMed Central

    Ahrens, Theresa D; Timme, Sylvia; Hoeppner, Jens; Ostendorp, Jenny; Hembach, Sina; Follo, Marie; Hopt, Ulrich T; Werner, Martin; Busch, Hauke; Boerries, Melanie; Lassmann, Silke

    2015-01-01

    Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combination treatment using both types of drugs. The drug targets, HDAC1/2/3 and DNMT1, were expressed in normal esophageal epithelium and tumor cells of ESCC or EAC tissue specimens, as well as in non-neoplastic esophageal epithelial (Het-1A), ESCC (OE21, Kyse-270, Kyse-410), and EAC (OE33, SK-GT-4) cell lines. In vitro, HDAC activity, histone acetylation, and p21 expression were similarly affected in non-neoplastic, ESCC, and EAC cell lines post inhibitor treatment. Combined MS-275/AZA treatment, however, selectively targeted esophageal cancer cell lines by inducing DNA damage, cell viability loss, and apoptosis, and by decreasing cell migration. Non-neoplastic Het-1A cells were protected against HDACi (MS-275)/AZA treatment. RNA transcriptome analyses post MS-275 and/or AZA treatment identified novel regulated candidate genes (up: BCL6, Hes2; down: FAIM, MLKL), which were specifically associated with the treatment responses of esophageal cancer cells. In summary, combined HDACi/AZA treatment is efficient and selective for the targeting of esophageal cancer cells, despite similar target expression of normal and esophageal cancer epithelium, in vitro and in human esophageal carcinomas. The precise mechanisms of action of treatment responses involve novel candidate genes regulated by HDACi/AZA in esophageal cancer cells. Together, targeting of epigenetic modifiers in esophageal cancers may represent a potential future therapeutic approach. PMID:25923331

  2. Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from Schistosoma mansoni for the Treatment of Schistosomiasis.

    PubMed

    Heimburg, Tino; Chakrabarti, Alokta; Lancelot, Julien; Marek, Martin; Melesina, Jelena; Hauser, Alexander-Thomas; Shaik, Tajith B; Duclaud, Sylvie; Robaa, Dina; Erdmann, Frank; Schmidt, Matthias; Romier, Christophe; Pierce, Raymond J; Jung, Manfred; Sippl, Wolfgang

    2016-03-24

    Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, a series of new benzohydroxamates were prepared as potent inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by these 3-amidobenzohydroxamates. The newly designed inhibitors were evaluated in screens for enzyme inhibitory activity against schistosome and human HDACs. Twenty-seven compounds were found to be active in the nanomolar range, and some of them showed selectivity toward smHDAC8 over the major human HDACs (1 and 6). The active benzohydroxamates were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Four of these showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture. PMID:26937828

  3. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus.

    PubMed

    Schipper, Holger; Alla, Vijay; Meier, Claudia; Nettelbeck, Dirk M; Herchenröder, Ottmar; Pützer, Brigitte M

    2014-08-15

    Malignant melanoma is a highly aggressive cancer that retains functional p53 and p73, and drug unresponsiveness largely depends on defects in death pathways after epigenetic gene silencing in conjunction with an imbalanced p73/DNp73 ratio. We constructed oncolytic viruses armed with an inhibitor of deacetylation and/or p73 to specifically target metastatic cancer. Arming of the viruses is aimed at lifting epigenetic blockage and re-opening apoptotic programs in a staggered manner enabling both, efficient virus replication and balanced destruction of target cells through apoptosis. Our results showed that cooperative expression of shHDAC1 and p73 efficiently enhances apoptosis induction and autophagy of infected cells which reinforces progeny production. In vitro analyses revealed 100% cytotoxicity after infecting cells with OV.shHDAC1.p73 at a lower virus dose compared to control viruses. Intriguingly, OV.shHDAC1.p73 acts as a potent inhibitor of highly metastatic xenograft tumors in vivo. Tumor expansion was significantly reduced after intratumoral injection of 3 x 10⁸ PFU of either OV.shHDAC1 or OV.p73 and, most important, complete regression could be achieved in 100 % of tumors treated with OV.shHDAC1.p73. Our results point out that the combination of high replication capacity and simultaneous restoration of cell death routes significantly enhance antitumor activity. PMID:25071017

  4. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    SciTech Connect

    Mahal, Katharina; Kahlen, Philip; Biersack, Bernhard; Schobert, Rainer

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  5. Identification of new quinic acid derivatives as histone deacetylase inhibitors by fluorescence-based cellular assay.

    PubMed

    Son, Dohyun; Kim, Chung Sub; Lee, Kang Ro; Park, Hyun-Ju

    2016-05-01

    A fluorescence-based cellular assay system was established to identify potential epigenetic modulator ligands. This assay method is to detect the de-repression of an EGFP reporter in cancer cells by the treatment of HDAC (histone deacetylase) or DNMT (DNA methyltransferase) inhibitor. Using this system, we conducted a preliminary screening of in-house natural product library containing extracts and pure compounds, and identified several active compounds. Among them, novel quinic acid derivatives were recognized as excellent HDAC inhibitors by both enzymatic and cell-based HDAC assays. PMID:26996372

  6. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors.

    PubMed

    Jin, Kang; Li, Shanshan; Li, Xiaoguang; Zhang, Jian; Xu, Wenfang; Li, Xuechen

    2015-08-01

    Histone deacetylases (HDACs) are zinc-dependent or NAD(+) dependent enzymes and play a critical role in the process of tumor development. Herein a series of indoline-2,3-dione derivatives have been designed and synthesized as potential HDACs inhibitors. The preliminary biological evaluation showed that most compounds synthesized have exhibited moderate Hela cell nuclear extract inhibitory activities, among which compound 25a (IC50=10.13 nM) has shown the best efficacy. The anti-proliferative activities of some of these compounds were also discussed. PMID:26100440

  7. Histone deacetylase (HDAC) Inhibitors Preserve White Matter Structure and Function During Ischemia by Conserving ATP and Reducing Excitotoxicity

    PubMed Central

    Baltan, Selva; Murphy, Sean P.; Danilov, Camelia A.; Bachleda, Amelia; Morrison, Richard S.

    2011-01-01

    The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. In a pure WM tract (isolated mouse optic nerve) we show that pan- and Class I specific HDAC inhibitors, administered before or after a period of oxygen and glucose deprivation (OGD), promote functional recovery of axons and preserve WM cellular architecture. This protection correlates with the up-regulation of an astrocyte glutamate transporter, delayed and reduced glutamate accumulation during OGD, preservation of axonal mitochondria and oligodendrocytes, and maintenance of ATP levels. Interestingly, the expression of HDACs 1, 2 and 3 is localized to astrocytes, suggesting that changes in glial cell gene transcription and/or protein acetylation may confer protection to axons. Our findings suggest that a therapeutic opportunity exists for the use of HDAC inhibitors, targeting mitochondrial energy regulation and excitotoxicity in ischemic WM injury. PMID:21411642

  8. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain

    PubMed Central

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2014-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  9. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain.

    PubMed

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2013-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  10. The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR.

    PubMed

    Zhou, Liang; Chen, Shuang; Zhang, Yu; Kmieciak, Maciej; Leng, Yun; Li, Lihong; Lin, Hui; Rizzo, Kathryn A; Dumur, Catherine I; Ferreira-Gonzalez, Andrea; Rahmani, Mohamed; Povirk, Lawrence; Chalasani, Sri; Berger, Allison J; Dai, Yun; Grant, Steven

    2016-05-01

    Two classes of novel agents, NEDD8-activating enzyme (NAE) and histone deacetylase (HDAC) inhibitors, have shown single-agent activity in acute myelogenous leukemia (AML)/myelodysplastic syndrome (MDS). Here we examined mechanisms underlying interactions between the NAE inhibitor pevonedistat (MLN4924) and the approved HDAC inhibitor belinostat in AML/MDS cells. MLN4924/belinostat coadministration synergistically induced AML cell apoptosis with or without p53 deficiency or FLT3-internal tandem duplication (ITD), whereas p53 short hairpin RNA (shRNA) knockdown or enforced FLT3-ITD expression significantly sensitized cells to the regimen. MLN4924 blocked belinostat-induced antiapoptotic gene expression through nuclear factor-κB inactivation. Each agent upregulated Bim, and Bim knockdown significantly attenuated apoptosis. Microarrays revealed distinct DNA damage response (DDR) genetic profiles between individual vs combined MLN4924/belinostat exposure. Whereas belinostat abrogated the MLN4924-activated intra-S checkpoint through Chk1 and Wee1 inhibition/downregulation, cotreatment downregulated multiple homologous recombination and nonhomologous end-joining repair proteins, triggering robust double-stranded breaks, chromatin pulverization, and apoptosis. Consistently, Chk1 or Wee1 shRNA knockdown significantly sensitized AML cells to MLN4924. MLN4924/belinostat displayed activity against primary AML or MDS cells, including those carrying next-generation sequencing-defined poor-prognostic cancer hotspot mutations, and CD34(+)/CD38(-)/CD123(+) populations, but not normal CD34(+) progenitors. Finally, combined treatment markedly reduced tumor burden and significantly prolonged animal survival (P < .0001) in AML xenograft models with negligible toxicity, accompanied by pharmacodynamic effects observed in vitro. Collectively, these findings argue that MLN4924 and belinostat interact synergistically by reciprocally disabling the DDR in AML/MDS cells. This strategy

  11. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals.

    PubMed

    Wu, Shao; Luo, Zhi; Yu, Peng-Jiu; Xie, Hui; He, Yu-Wen

    2016-01-01

    Inhibitor of histone deacetylases (HDACIs) have great therapeutic value for triple negative breast cancer (TNBC) patients. Interestingly, our present study reveals that suberoyl anilide hydroxamic acid (SAHA), one of the most advanced pan-HDAC inhibitor, can obviously promote in vitro motility of MDA-MB-231 and BT-549 cells via induction of epithelial-mesenchymal transition (EMT). SAHA treatment significantly down-regulates the expression of epithelial markers E-cadherin (E-Cad) while up-regulates the mesenchymal markers N-cadherin (N-Cad), vimentin (Vim) and fibronectin (FN). However, SAHA has no effect on the expression and nuclear translocation of EMT related transcription factors including Snail, Slug, Twist and ZEB. While SAHA treatment down-regulates the protein and mRNA expression of FOXA1 and then decreases its nuclear translocation. Over-expression of FOXA1 markedly attenuates SAHA induced EMT of TNBC cells. Further, silence of HDAC8, while not HDAC6, alleviates the down-regulation of FOXA1 and up-regulation of N-Cad and Vim in MDA-MB-231 cells treated with SAHA. Collectively, our present study reveals that SAHA can promote EMT of TNBC cells via HDAC8/FOXA1 signals, which suggests that more attention should be paid when SAHA is used as anti-cancer agent for cancer treatment. PMID:26431101

  12. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade.

    PubMed

    Marchini, Antonio; Scott, Eleanor M; Rommelaere, Jean

    2016-01-01

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a "double-edged sword" for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. PMID:26751469

  13. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade

    PubMed Central

    Marchini, Antonio; Scott, Eleanor M.; Rommelaere, Jean

    2016-01-01

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a “double-edged sword” for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. PMID:26751469

  14. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors

    PubMed Central

    Gillet, Nicolas; Vandermeers, Fabian; de Brogniez, Alix; Florins, Arnaud; Nigro, Annamaria; François, Carole; Bouzar, Amel-Baya; Verlaeten, Olivier; Stern, Eric; Lambert, Didier M.; Wouters, Johan; Willems, Luc

    2012-01-01

    We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1. PMID:25436765

  15. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment.

    PubMed

    You, Chang; Zhang, Huaibo; Sakharkar, Amul J; Teppen, Tara; Pandey, Subhash C

    2014-02-01

    Development of anxiety-like behaviours during ethanol withdrawal has been correlated with increased histone deacetylase (HDAC) activity and decreased brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc) gene expression in the amygdala. Furthermore, HDAC-mediated histone modifications play a role in synaptic plasticity. In this study we used the HDAC inhibitor trichostatin A (TSA) to determine whether HDAC inhibition could prevent ethanol withdrawal-induced deficits in dendritic spine density (DSD), BDNF or Arc expression in the amygdala of rats. It was found that decreased BDNF and Arc expression in the central (CeA) and medial nucleus of amygdala (MeA), observed during withdrawal after chronic ethanol exposure, were normalized following acute TSA treatment. TSA treatment was also able to attenuate anxiety-like behaviours during ethanol withdrawal and correct the observed decrease in DSD in the CeA and MeA of ethanol-withdrawn rats. Taken together, these findings demonstrate that correcting the deficits in histone acetylation through TSA treatment also amends downstream synaptic plasticity-related deficits such as BDNF and Arc expression, and DSD in the CeA and MeA as well as attenuates anxiety-like behaviours in rats during withdrawal after chronic ethanol exposure. PMID:24103311

  16. Histone Deacetylase Inhibition with Valproic Acid Downregulates Osteocalcin Gene Expression in Human Dental Pulp Stem Cells and Osteoblasts: Evidence for HDAC2 Involvement

    PubMed Central

    Paino, Francesca; la Noce, Marcel; Tirino, Virginia; Naddeo, Pasqualina; Desiderio, Vincenzo; Pirozzi, Giuseppe; De Rosa, Alfredo; Laino, Luigi; Altucci, Lucia; Papaccio, Gianpaolo

    2014-01-01

    Adult mesenchymal stem cells, such as dental pulp stem cells, are of great interest for cell-based tissue engineering strategies because they can differentiate into a variety of tissue-specific cells, above all, into osteoblasts. In recent years, epigenetic studies on stem cells have indicated that specific histone alterations and modifying enzymes play essential roles in cell differentiation. However, although several studies have reported that valproic acid (VPA)—a selective inhibitor of histone deacetylases (HDAC)—enhances osteoblast differentiation, data on osteocalcin expression—a late-stage marker of differentiation—are limited. We therefore decided to study the effect of VPA on dental pulp stem cell differentiation. A low concentration of VPA did not reduce cell viability, proliferation, or cell cycle profile. However, it was sufficient to significantly enhance matrix mineralization by increasing osteopontin and bone sialoprotein expression. In contrast, osteocalcin levels were decreased, an effect induced at the transcriptional level, and were strongly correlated with inhibition of HDAC2. In fact, HDAC2 silencing with shRNA produced a similar effect to that of VPA treatment on the expression of osteoblast-related markers. We conclude that VPA does not induce terminal differentiation of osteoblasts, but stimulates the generation of less mature cells. Moreover, specific suppression of an individual HDAC by RNA interference could enhance only a single aspect of osteoblast differentiation, and thus produce selective effects. PMID:24105979

  17. The HDAC Inhibitor Vorinostat Diminishes the In Vitro Metastatic Behavior of Osteosarcoma Cells

    PubMed Central

    Mu, Xiaodong; Brynien, Daniel; Weiss, Kurt R.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone and affects patients in the first two decades of life. The greatest determinant of survival is the presence of pulmonary metastatic disease. The role of epigenetic regulation in OS, specifically the biology of metastases, is unknown. Our previous study with the murine OS cell populations K7M2 and K12 demonstrated a significant correlation of metastatic potential with the DNA methylation level of tumor suppressor genes. In the current study, we investigated if the histone deacetylase (HDAC) inhibitor, vorinostat, could regulate the metastatic potential of highly metastatic OS cells. Our results revealed that vorinostat treatment of highly metastatic K7M2 OS cells was able to greatly reduce the proliferation and metastatic potential of the cells. Morphological features related to cell motility and invasion were changed by vorinostat treatment. In addition, the gene expressions of mTOR, ALDH1, and PGC-1 were downregulated by vorinostat treatment. These data suggest that vorinostat may be an effective modulator of OS cell metastatic potential and should be studied in preclinical models of metastatic OS. PMID:25785263

  18. HDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway

    PubMed Central

    Bhadra, Utpal; Mondal, Tanmoy; Bag, Indira; Mukhopadhyay, Debasmita; Das, Paromita; Parida, Bibhuti B.; Mainkar, Prathama S.; Reddy, Chada Raji; Bhadra, Manika Pal

    2015-01-01

    Apoptosis or programmed cell death is critical for embryogenesis and tissue homeostasis. Uncontrolled apoptosis leads to different human disorders including immunodeficiency, autoimmune disorder and cancer. Several small molecules that control apoptosis have been identified. Here, we have shown the functional role of triazole derivative (DCPTN-PT) that acts as a potent HDAC inhibitor and mis-express proto onco microRNA (miRNA) bantam. To further understanding the mechanism of action of the molecule in apoptotic pathway, a series of experiments were also performed in Drosophila, a well known model organism in which the nature of human apoptosis is very analogous. DCPTN-PT mis processes bantam microRNA and alters its down regulatory target hid function and cleavage of Caspase-3 which in turn influence components of the mitochondrial apoptotic pathway in Drosophila. However regulatory microRNAs in other pro-apoptotic genes are not altered. Simultaneously, treatment of same molecule also affects the mitochondrial regulatory pathway in human tumour cell lines suggesting its conservative nature between fly and human. It is reasonable to propose that triazole derivative (DCPTN-PT) controls bantam oncomiRNA and increases hid induced apoptosis and is also able to influence mitochondrial apoptotic pathway. PMID:26442596

  19. Profile of Class I Histone Deacetylases (HDAC) by Human Dendritic Cells after Alcohol Consumption and In Vitro Alcohol Treatment and Their Implication in Oxidative Stress: Role of HDAC Inhibitors Trichostatin A and Mocetinostat

    PubMed Central

    Yndart, Adriana; Muñoz, Karla; Atluri, Venkata; Samikkannu, Thangavel; Nair, Madhavan P.

    2016-01-01

    Epigenetic mechanisms have been shown to play a role in alcohol use disorders (AUDs) and may prove to be valuable therapeutic targets. However, the involvement of histone deacetylases (HDACs) on alcohol-induced oxidative stress of human primary monocyte-derived dendritic cells (MDDCs) has not been elucidated. In the current study, we took a novel approach combining ex vivo, in vitro and in silico analyses to elucidate the mechanisms of alcohol-induced oxidative stress and role of HDACs in the periphery. ex vivo and in vitro analyses of alcohol-modulation of class I HDACs and activity by MDDCs from self-reported alcohol users and non-alcohol users was performed. Additionally, MDDCs treated with alcohol were assessed using qRT-PCR, western blot, and fluorometric assay. The functional effects of alcohol-induce oxidative stress were measured in vitro using PCR array and in silico using gene expression network analysis. Our findings show, for the first time, that MDDCs from self-reported alcohol users have higher levels of class I HDACs compare to controls and alcohol treatment in vitro differentially modulates HDACs expression. Further, HDAC inhibitors (HDACi) blocked alcohol-induction of class I HDACs and modulated alcohol-induced oxidative stress related genes expressed by MDDCs. In silico analysis revealed new target genes and pathways on the mode of action of alcohol and HDACi. Findings elucidating the ability of alcohol to modulate class I HDACs may be useful for the treatment of alcohol-induced oxidative damage and may delineate new potential immune-modulatory mechanisms. PMID:27249803

  20. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1.

    PubMed

    Yang, Pei-Ming; Lin, Pei-Jie; Chen, Ching-Chow

    2012-04-01

    CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1. PMID:22419072

  1. Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    PubMed Central

    Friman, Tomas; Dencker, Lennart; Sundberg, Christian; Scholz, Birger

    2011-01-01

    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels. PMID:21966390

  2. Efficiently functionalized oxacalix[4]arenes: Synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors.

    PubMed

    Mehta, Viren; Athar, Mohd; Jha, P C; Panchal, Manthan; Modi, Krunal; Jain, V K

    2016-02-01

    A series of novel substituted oxacalix[4]arene has been synthesized and explored for their biological profile by evaluating anticancer, antifungal and antibacterial properties. The derivatives have been characterized by various spectroscopic techniques such as IR, (1)H NMR, (13)C NMR and Mass spectrometry. Many compounds showed strong inhibition (MIC) in the range of ∼0-50 μM with interesting cytotoxic activities against Hela cells in particular. The compounds were theoretically evaluated by docking studies as potential histone deacetylase inhibitors (HDACi). The study indicates that compounds bound adequately with HDAC, and hence complemented the experimental findings. PMID:26725026

  3. Intensified antineoplastic effect by combining an HDAC-inhibitor, an mTOR-inhibitor and low dosed interferon alpha in prostate cancer cells.

    PubMed

    Tsaur, Igor; Hudak, Lukasz; Makarević, Jasmina; Juengel, Eva; Mani, Jens; Borgmann, Hendrik; Gust, Kilian M; Schilling, David; Bartsch, Georg; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2015-08-01

    A significant proportion of men diagnosed with prostate cancer (PCa) eventually develop metastatic disease, which progresses to castration resistance, despite initial response to androgen deprivation. As anticancer therapy has become increasingly effective, acquired drug resistance has emerged, limiting efficacy. Combination treatment, utilizing different drug classes, exemplifies a possible strategy to foil resistance development. The effects of the triple application of the histone deacetylase (HDAC) inhibitor valproic acid (VPA), the mammalian target of rapamycin inhibitor everolimus and low dosed interferon alpha (IFNα) on PCa cell growth and dissemination capacity were investigated. For that purpose, the human PCa cell lines, PC-3, DU-145 and LNCaP were treated with the combined regimen or separate single agents. Cell growth was investigated by the MTT dye reduction assay. Flow cytometry served to analyse cell cycle progression. Adhesion to vascular endothelium or immobilized collagen, fibronectin and laminin was quantified. Migration and invasion characteristics were determined by the modified Boyden chamber assay. Integrin α and β subtypes were investigated by flow cytometry, western blotting and RT-PCR. Integrin related signalling, Epidermal Growth Factor Receptor (EGFr), Akt, p70S6kinase and extracellular signal-regulated kinases (ERK)1/2 activation were also assessed. The triple application of VPA, everolimus and low dosed IFNα blocked tumour cell growth and dissemination significantly better than any agent alone. Antitumour effects were associated with pronounced alteration in the cell cycle machinery, intracellular signalling and integrin expression profile. Combining VPA, everolimus and low dosed IFNα might be a promising option to counteract resistance development and improve outcome in PCa patients. PMID:25808196

  4. The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway.

    PubMed

    Smith, Emma M; Zhang, Lei; Walker, Brian A; Davenport, Emma L; Aronson, Lauren I; Krige, David; Hooftman, Leon; Drummond, Alan H; Morgan, Gareth J; Davies, Faith E

    2015-07-10

    There is a growing body of evidence supporting the use of epigenetic therapies in the treatment of multiple myeloma. We show the novel HDAC inhibitor CHR-3996 induces apoptosis in myeloma cells at concentrations in the nanomolar range and with apoptosis mediated by p53 and caspase pathways. In addition, HDAC inhibitors are highly synergistic, both in vitro and in vivo, with the aminopeptidase inhibitor tosedostat (CHR-2797). We demonstrate that the basis for this synergy is a consequence of changes in the levels of NFκB regulators BIRC3/cIAP2, A20, CYLD, and IκB, which were markedly affected by the combination. When co-administered the HDAC and aminopeptidase inhibitors caused rapid nuclear translocation of NFκB family members p65 and p52, following activation of both canonical and non-canonical NFκB signalling pathways. The subsequent up-regulation of inhibitors of NFκB activation (most significantly BIRC3/cIAP2) turned off the cytoprotective effects of the NFκB signalling response in a negative feedback loop. These results provide a rationale for combining HDAC and aminopeptidase inhibitors clinically for the treatment of myeloma patients and support the disruption of the NFκB signalling pathway as a therapeutic strategy. PMID:26015393

  5. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells.

    PubMed

    Kang, Y; Nian, H; Rajendran, P; Kim, E; Dashwood, W M; Pinto, J T; Boardman, L A; Thibodeau, S N; Limburg, P J; Löhr, C V; Bisson, W H; Williams, D E; Ho, E; Dashwood, R H

    2014-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy. PMID:25321483

  6. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells

    PubMed Central

    Kang, Y; Nian, H; Rajendran, P; Kim, E; Dashwood, W M; Pinto, J T; Boardman, L A; Thibodeau, S N; Limburg, P J; Löhr, C V; Bisson, W H; Williams, D E; Ho, E; Dashwood, R H

    2014-01-01

    Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy. PMID:25321483

  7. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells.

    PubMed

    Fu, Meili; Shi, Wenhong; Li, Zhengling; Liu, Haiyan

    2016-09-01

    Over-expression and aberrant activation of histone deacetylases (HDACs) are often associated with poor prognosis of hepatocellular carcinoma (HCC). Here, we evaluated the potential anti-hepatocellular carcinoma (HCC) cell activity by resminostat, a novel pan HDAC inhibitor (HDACi). We demonstrated that resminostat induced potent cytotoxic and anti-proliferative activity against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, resminostat treatment in HCC cells activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway, which was evidenced by physical association of cyclophilin-D and adenine nucleotide translocator 1 (ANT-1), mitochondrial depolarization, cytochrome C release and caspase-9 activation. Intriguingly, the mPTP blockers (sanglifehrin A and cyclosporine A), shRNA knockdown of cyclophilin-D or the caspase-9 inhibitor dramatically attenuated resminostat-induced HCC cell apoptosis and cytotoxicity. Reversely, HCC cells with exogenous cyclophilin-D over-expression were hyper-sensitive to resminostat. Intriguingly, a low concentration of resminostat remarkably potentiated sorafenib-induced mitochondrial apoptosis pathway activation, leading to a profound cytotoxicity in HCC cells. The results of this preclinical study indicate that resminostat (or plus sorafenib) could be further investigated as a valuable anti-HCC strategy. PMID:27144317

  8. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat

    PubMed Central

    Meidhof, Simone; Brabletz, Simone; Lehmann, Waltraut; Preca, Bogdan-Tiberius; Mock, Kerstin; Ruh, Manuel; Schüler, Julia; Berthold, Maria; Weber, Anika; Burk, Ulrike; Lübbert, Michael; Puhr, Martin; Culig, Zoran; Wellner, Ulrich; Keck, Tobias; Bronsert, Peter; Küsters, Simon; Hopt, Ulrich T; Stemmler, Marc P; Brabletz, Thomas

    2015-01-01

    Therapy resistance is a major clinical problem in cancer medicine and crucial for disease relapse and progression. Therefore, the clinical need to overcome it, particularly for aggressive tumors such as pancreatic cancer, is very high. Aberrant activation of an epithelial–mesenchymal transition (EMT) and an associated cancer stem cell phenotype are considered a major cause of therapy resistance. Particularly, the EMT-activator ZEB1 was shown to confer stemness and resistance. We applied a systematic, stepwise strategy to interfere with ZEB1 function, aiming to overcome drug resistance. This led to the identification of both its target gene miR-203 as a major drug sensitizer and subsequently the class I HDAC inhibitor mocetinostat as epigenetic drug to interfere with ZEB1 function, restore miR-203 expression, repress stemness properties, and induce sensitivity against chemotherapy. Thereby, mocetinostat turned out to be more effective than other HDAC inhibitors, such as SAHA, indicating the relevance of the screening strategy. Our data encourage the application of mechanism-based combinations of selected epigenetic drugs with standard chemotherapy for the rational treatment of aggressive solid tumors, such as pancreatic cancer. PMID:25872941

  9. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor - belinostat - in glioblastoma cell lines: a preliminary report.

    PubMed

    Kusaczuk, Magdalena; Krętowski, Rafał; Stypułkowska, Anna; Cechowska-Pasko, Marzanna

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are now intensively investigated as potential cytostatic agents in many malignancies. Here, we provide novel information concerning the influence of belinostat (Bel), a hydroxamate-based pan-HDAC inhibitor, on glioblastoma LN-229 and LN-18 cells. We found that LN-229 cells stimulated with 2 μmol/L of Bel for 48 h resulted in 70 % apoptosis, while equivalent treatment of LN-18 cells resulted in only 28 % apoptosis. In LN-229 cells this effect was followed by up-regulation of pro-apoptotic genes including Puma, Bim, Chop and p21. In treated LN-18 cells only p21 was markedly overexpressed. Simultaneously, LN-229 cells treated with 2 μmol/L of Bel for 48 h exhibited down-regulation of molecular chaperones GRP78 and GRP94 at the protein level. In contrast, in LN-18 cells Western blot analysis did not show any marked changes in GRP78 nor GRP94 expression. Despite noticeable overexpression of p21, there were no signs of evident G1 nor G2/M cell cycle arrest, however, the reduction in number of the S phase cells was observed in both cell lines. These results collectively suggest that Bel can be considered as potential anti-glioblastoma agent. To our knowledge this is the first report presenting the effects of belinostat treatment in glioblastoma cell lines. PMID:27468826

  10. HDAC inhibitors, MS-275 and salermide, potentiates the anticancer effect of EF24 in human pancreatic cancer cells

    PubMed Central

    Yar Saglam, Atiye Seda; Yilmaz, Akin; Onen, Hacer Ilke; Alp, Ebru; Kayhan, Handan; Ekmekci, Abdullah

    2016-01-01

    Histone deacetylases (HDACs) play a major role in the regulation of chromatin structure and gene expression by changing acetylation status of histone and non-histone proteins. MS-275 (entinostat, MS) is a well-known benzamide-based HDACI and Salermide (SAL), a reverse amide compound HDACI, have antiproliferative effects on several human cancer cells. In this study, we aimed to investigate the effects of HDACIs (MS and SAL) alone and/or combined use with EF24 (EF), a novel synthetic curcumin analog, on human pancreatic cancer cell line (BxPC-3). In vitro, BxPC-3 cells were exposed to varying concentrations of MS, SAL with or without EF, and their effects on cell viability, acetylated Histone H3 and H4 levels, cytotoxicity, and cleaved caspase 3 levels, and cell cycle distribution were measured. The viability of BxPC-3 cells decreased significantly after treatment with EF, MS and SAL treatments. MS and SAL treatment increased the acetylation of histone H3 and H4 in a dose dependent manner. MS and SAL alone or combined with EF were increased the number of cells in G1 phase. In addition, treatment with agents significantly decreased the ratio of cell in G2/M phase. There were significant dose-dependent increases at cleaved Caspase 3 levels after MS treatment but not after SAL treatment. Our results showed that HDAC inhibitors (MS and SAL), when combined with EF, may effectively reduce pancreatic cancer cell (BxPC-3) progression and stop the cell cycle at G1 phase. Further molecular analyses are needed to understand the fundamental molecular consequences of HDAC inhibition in pancreas cancer cells. PMID:27330528

  11. HDAC inhibitor entinostat restores responsiveness of letrozole resistant MCF-7Ca xenografts to AIs through modulation of Her-2

    PubMed Central

    Sabnis, Gauri J.; Goloubeva, Olga G.; Kazi, Armina A.; Shah, Preeti; Brodie, Angela H.

    2013-01-01

    We previously showed that in innately resistant tumors, silencing of the estrogen receptor (ER) could be reversed by treatment with a histone deacetylase (HDAC) inhibitor entinostat (ENT). Tumors were then responsive to aromatase inhibitor (AIs) letrozole. Here, we investigated whether ER in the acquired letrozole resistant tumors could be restored with ENT. Ovariectomized athymic mice were inoculated with MCF-7Ca cells, supplemented with androstenedione (Δ4A), the aromatizable substrate. When the tumors reached ~300mm3, the mice were treated with letrozole. After initial response to letrozole, the tumors eventually became resistant (doubled their initial volume). The mice then were grouped to receive letrozole, exemestane (250μg/day), ENT (50μg/day) or the combination of ENT with letrozole or exemestane for 26 weeks. The growth rates of tumors of mice treated with the combination of ENT with letrozole or exemestane were significantly slower than with the single agent (p<0.05). Analysis of the letrozole resistant tumors showed ENT increased ERα expression and aromatase activity but downregulated Her-2, p-Her-2, p-MAPK and p-Akt. However, the mechanism of action of ENT in reversing acquired resistance did not involve epigenetic silencing, but rather included post-translational as well as transcriptional modulation of Her-2. ENT treatment reduced the association of the Her-2 protein with HSP-90, possibly by reducing the stability of Her-2 protein. In addition, ENT also reduced Her-2 mRNA levels and its stability. Our results suggest that the HDAC inhibitor may reverse letrozole resistance in cells and tumors by modulating Her-2 expression and activity. PMID:24092810

  12. A MEK/PI3K/HDAC inhibitor combination therapy for KRAS mutant pancreatic cancer cells

    PubMed Central

    Ischenko, Irene; Petrenko, Oleksi; Hayman, Michael J.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive, metastatic disease with limited treatment options. Factors contributing to the metastatic predisposition and therapy resistance in pancreatic cancer are not well understood. Here, we used a mouse model of KRAS-driven pancreatic carcinogenesis to define distinct subtypes of PDAC metastasis: epithelial, mesenchymal and quasi-mesenchymal. We examined pro-survival signals in these cells and the therapeutic response differences between them. Our data indicate that the initiation and maintenance of the transformed state are separable, and that KRAS dependency is not a fundamental constant of KRAS-initiated tumors. Moreover, some cancer cells can shuttle between the KRAS dependent (drug-sensitive) and independent (drug-tolerant) states and thus escape extinction. We further demonstrate that inhibition of KRAS signaling alone via co-targeting the MAPK and PI3K pathways fails to induce extensive tumor cell death and, therefore, has limited efficacy against PDAC. However, the addition of histone deacetylase (HDAC) inhibitors greatly improves outcomes, reduces the self-renewal of cancer cells, and blocks cancer metastasis in vivo. Our results suggest that targeting HDACs in combination with KRAS or its effector pathways provides an effective strategy for the treatment of PDAC. PMID:26158412

  13. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity

    PubMed Central

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D.; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity. PMID:26698121

  14. HDAC inhibitor sodium butyrate augments the MEF2C enhancement of Nampt expression under hypoxia.

    PubMed

    Yan, Shao-Fei; You, Hong-Jie; Xing, Tian-Yu; Zhang, Chen-Guang; Ding, Wei

    2014-01-01

    Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme for the salvage biosynthesis of nicotinamide adenine dinucleotide (NAD). Although elevated level of Nampt expression has been observed in various cancers, the involvement of Nampt promoter regulation was not well understood. We have identified a cluster of MEF2 recognition sites upstream of the functional hypoxia response elements (HREs) within the human Nampt promoter, and demonstrated that the two MEF2 sites at -1272 and -1200 were functional to upregulate the promoter activity by luciferase reporter assays. The Nampt promoter was able to be activated cooperatively following hypoxic stimulation by CoCl₂ treatment with associated MEF2C overexpression. During the investigation on MEF2C regulation of endogenous Nampt expression in HeLa cells, the most significant enhancement of Nampt expression observed was by overexpression of MEF2C in combination with sodium butyrate exposure. By chromatin immunoprecipitation with a MEF2C anti-body, we found that MEF2C indeed interacted with endogenous Nampt promoter. The requirement of HDAC inhibition for the MEF2C enhancement of Nampt transcription was verified by RNAi of HDAC. Our results were in support of reports indicating that MEF2 family transcription factors interacted with HDACs and regulated downstream gene expression at the epigenetic levels. Our study provided important evidence to demonstrate the sophisticated mechanism of endogenous Nampt promoter regulation, and therefore, will help to better understand the Nampt overexpression in cancer progression, especially in the context of MEF2C upregulation which frequently occurred in cancer development and drug resistance. PMID:23888946

  15. A sub-milligram-synthesis protocol for in vitro screening of HDAC11 inhibitors.

    PubMed

    Tian, Yinping; Jin, Jin; Wang, Congying; Lv, Wenhui; Li, Xuewei; Che, Xiaona; Gong, Yanchao; Li, Yanjun; Li, Quanli; Hou, Jingli; Wang, Peng G; Shen, Jie

    2016-05-15

    This work demonstrated the high efficiency of a sub-milligram-synthesis based medicinal chemistry method. Totally 72 compounds, consisting a tri-substituted pyrrolidine core, were prepared. Around 0.1mg of each compound was solid-phase synthesized. Based on the additive property of UV absorptions of unconjugated chromophores of a molecule, these compounds were quantified by UV measurement. A hit, whose IC50 value was 1.2μM in HDAC11 inhibition assays, highlights the applicability of the approach reported here in future optimization works. PMID:27055940

  16. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model

    PubMed Central

    Sandi, Chiranjeevi; Pinto, Ricardo Mouro; Al-Mahdawi, Sahar; Ezzatizadeh, Vahid; Barnes, Glenn; Jones, Steve; Rusche, James R.; Gottesfeld, Joel M.; Pook, Mark A.

    2011-01-01

    Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia. PMID:21397024

  17. Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; Zunino, Franco; Nurisso, Alessandra; Cuendet, Muriel; Giannini, Giuseppe; Vesci, Loredana; Pisano, Claudio; Dallavalle, Sabrina

    2015-10-15

    A series of alternative Zn-binding groups were explored in the design of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Most of the synthesized compounds were less effective than the parent hydroxamic acid. However, the profile of activity shown by the analog bearing a hydroxyurea head group, makes this derivative promising for further investigation. PMID:26376355

  18. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    SciTech Connect

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  19. The seminoma cell line TCam-2 is sensitive to HDAC inhibitor depsipeptide but tolerates various other chemotherapeutic drugs and loss of NANOG expression.

    PubMed

    Nettersheim, Daniel; Gillis, Ad; Biermann, Katharina; Looijenga, Leendert H J; Schorle, Hubert

    2011-12-01

    Seminomas and embryonal carcinomas (EC) are both type II germ cell tumor (GCT) entities and develop from the same precursor lesion (carcinoma-in situ, CIS). However, they show significant differences in growth behavior, differentiation potential, and gene expression. Although ECs are prone to differentiate into all three germ layers and give rise to the non-seminomatous GCT entities teratoma, choriocarcinoma, and yolk-sac tumor, differentiation of seminomas to these entities is only rarely observed. This might reflect the ability of seminomas to actively inhibit differentiation processes evoked by environmental cues. Also, it is not known why CIS gives rise to seminoma in some patients and to non-seminoma in the others. Here, we treated the seminoma-like cell line TCam-2 with the HDAC-inhibitor Depsipeptide, the global demethylating agent 5-aza-2'-deocycytidine, all-trans retinoic acid and the monaminooxidase inhibitor Tranylcipromine and also used knock down approaches to reduce expression of the pluripotency marker NANOG and/or the inhibitor of primordial germ cell differentiation TFAP2C. We found that TCam-2 cells induce apoptosis when treated with Depsipeptide (> 10 nM) but are resistant to treatments with 5-aza-2'-deocycytidine, all-trans retinoic acid and Tranylcipromine, highlighting Depsi as a treatment option for seminomas. We show that TCam-2 cells up-regulate endoderm- and throphectoderm-associated genes after down-regulation of NANOG expression; however, morphologically no indications of differentiation could be found. Instead, we observed up-regulation of OCT3/4 and SOX17 in TCam-2-NANOG knockdown and speculate that this compensates for the loss of the NANOG protein. Hence, NANOG is not a primary target gene responsible for the inhibition of differentiation in seminomas. PMID:21987446

  20. Inactivation of histone deacetylase 1 (HDAC1) but not HDAC2 is required for the glucocorticoid-dependent CCAAT/enhancer-binding protein α (C/EBPα) expression and preadipocyte differentiation.

    PubMed

    Kuzmochka, Claire; Abdou, Houssein-Salem; Haché, Robert J G; Atlas, Ella

    2014-12-01

    Several drugs currently used in the management of mood disorders, epilepsy (ie, valproic acid), or the control of inflammation (ie, corticosteroids) have been shown to promote visceral obesity in humans by increasing the number of newly formed adipocytes. Valproic acid is classified as a nonspecific histone deacetylase (HDAC) inhibitor, along with trichostatin A and butyric acid. In vitro experiments have demonstrated that such molecules greatly enhance the rate of preadipocyte differentiation, similarly to the effect of corticosteroids. The glucocorticoid receptor stimulates adipogenesis in part by enhancing the transcription of C/ebpa through the titration, and subsequent degradation, of HDAC1 from the C/ebpα promoter. There is, however, controversy in the literature as to the role of HDACs during adipogenesis. In this study, we sought to demonstrate, using 2 different strategies, the definite role of HDAC1 in adipogenesis. By using small interference RNA-mediated knockdown of HDAC1 and by generating an enzymatically inactive HDAC1D181A by site-directed mutagenesis, we were able to show that HDAC1, but not HDAC2, suppresses glucocorticoid receptor-potentiated preadipocyte differentiation by decreasing CCAAT/enhancer-binding protein (C/ebp)α and Pparγ expression levels at the onset of differentiation. Finally, we demonstrate that HDAC1D181A acts as a dominant negative mutant of HDAC1 during adipogenesis by modulating C/EBPβ transcriptional activity on the C/ebpα promoter. PMID:25203139

  1. Metabolism-related liabilities of a potent histone deacetylase (HDAC) inhibitor and relevance of the route of administration on its metabolic fate.

    PubMed

    Fonsi, M; Fiore, F; Jones, P; Kinzel, O; Laufer, R; Rowley, M; Monteagudo, E

    2009-10-01

    Compound A [1-methyl-N-{(1S)-1-[5-(2-naphthyl)-1H-imidazol-2-yl]-7-oxooctyl}piperidine-4-carboxamide is a potent class I histone deacetylase (HDAC) inhibitor that demonstrated good antiproliferative activity against human tumour cell lines of different origin. This compound showed high in vivo clearance in rats (160 ml min(-1) kg(-1)) due to metabolism. The main metabolite detected in urine after intravenous dosing was characterized as a dihydrohydroxy S-mercapturic acid conjugate. Following oral dosing, however, the mercapturic acid derivative was no longer the main metabolite but the major metabolites were mono- and di-glucuronide conjugates of oxidized species having a mass shift of +34 m/z with respect to the parent. Comparison of plasma concentration after intra-arterial infusion and intravenous infusion and incubation with microsomes from different tissues (liver, kidney, small intestine and lung) in the presence of beta-nicotinamide adenine dinucleotide phosphate (NADPH) indicated that the compound was highly cleared by the lung. Oxidation of the naphthalene moiety was demonstrated to be the cause of the high in vivo clearance of compound A and the potential for bioactivation of this group was flagged. PMID:19569735

  2. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors.

    PubMed

    Iranshahi, Mehrdad; Chini, Maria Giovanna; Masullo, Milena; Sahebkar, Amirhossein; Javidnia, Azita; Chitsazian Yazdi, Mahsa; Pergola, Carlo; Koeberle, Andreas; Werz, Oliver; Pizza, Cosimo; Terracciano, Stefania; Piacente, Sonia; Bifulco, Giuseppe

    2015-12-24

    Curcumin, or diferuloylmethane, a polyphenolic molecule isolated from the rhizome of Curcuma longa, is reported to modulate multiple molecular targets involved in cancer and inflammatory processes. On the basis of its pan-inhibitory characteristics, here we show that simple chemical modifications of the curcumin scaffold can regulate its biological selectivity. In particular, the curcumin scaffold was modified with three types of substituents at positions C-1, C-8, and/or C-8' [C5 (isopentenyl, 5-8), C10 (geranyl, 9-12), and C15 (farnesyl, 13, 14)] in order to make these molecules more selective than the parent compound toward two specific targets: histone deacetylase (HDAC) and microsomal prostaglandin E2 synthase-1 (mPGES-1). From combined in silico and in vitro analyses, three selective inhibitors by proper substitution at position 8 were revealed. Compound 13 has improved HDAC inhibitory activity and selectivity with respect to the parent compound, while 5 and 9 block the mPGES-1 enzyme. We hypothesize about the covalent interaction of curcumin, 5, and 9 with the mPGES-1 binding site. PMID:26588603

  3. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.

    PubMed

    Peng, Fan-Wei; Wu, Ting-Ting; Ren, Zi-Wei; Xue, Jia-Yu; Shi, Lei

    2015-11-15

    A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC. PMID:26475519

  4. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway. PMID:24530320

  5. HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity

    PubMed Central

    Leus, Niek G.J.; van der Wouden, Petra E.; van den Bosch, Thea; Hooghiemstra, Wouter T.R.; Ourailidou, Maria E.; Kistemaker, Loes E.M.; Bischoff, Rainer; Gosens, Reinoud; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    The increasing number of patients suffering from chronic obstructive pulmonary disease (COPD) represents a major and increasing health problem. Therefore, novel therapeutic approaches are needed. Class I HDACs 1, 2 and 3 play key roles in the regulation of inflammatory gene expression with a particular pro-inflammatory role for HDAC 3. HDAC 3 has been reported to be an important player in inflammation by deacetylating NF-κB p65, which has been implicated in the pathology of COPD. Here, we applied the pharmacological HDAC 3-selective inhibitor RGFP966, which attenuated pro-inflammatory gene expression in models for inflammatory lung diseases. Consistent with this, a robust decrease of the transcriptional activity of NF-κB p65 was observed. HDAC 3 inhibition affected neither the acetylation status of NF-κB p65 nor histone H3 or histone H4. This indicates that HDAC 3 inhibition does not inhibit NF-κB p65 transcriptional activity by affecting its deacetylation but rather by inhibiting enzymatic activity of HDAC 3. Taken together, our findings indicate that pharmacological HDAC 3-selective inhibition by inhibitors such as RGFP966 may provide a novel and effective approach toward development of therapeutics for inflammatory lung diseases. PMID:26993378

  6. HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity.

    PubMed

    Leus, Niek G J; van der Wouden, Petra E; van den Bosch, Thea; Hooghiemstra, Wouter T R; Ourailidou, Maria E; Kistemaker, Loes E M; Bischoff, Rainer; Gosens, Reinoud; Haisma, Hidde J; Dekker, Frank J

    2016-05-15

    The increasing number of patients suffering from chronic obstructive pulmonary disease (COPD) represents a major and increasing health problem. Therefore, novel therapeutic approaches are needed. Class I HDACs 1, 2 and 3 play key roles in the regulation of inflammatory gene expression with a particular pro-inflammatory role for HDAC 3. HDAC 3 has been reported to be an important player in inflammation by deacetylating NF-κB p65, which has been implicated in the pathology of COPD. Here, we applied the pharmacological HDAC 3-selective inhibitor RGFP966, which attenuated pro-inflammatory gene expression in models for inflammatory lung diseases. Consistent with this, a robust decrease of the transcriptional activity of NF-κB p65 was observed. HDAC 3 inhibition affected neither the acetylation status of NF-κB p65 nor histone H3 or histone H4. This indicates that HDAC 3 inhibition does not inhibit NF-κB p65 transcriptional activity by affecting its deacetylation but rather by inhibiting enzymatic activity of HDAC 3. Taken together, our findings indicate that pharmacological HDAC 3-selective inhibition by inhibitors such as RGFP966 may provide a novel and effective approach toward development of therapeutics for inflammatory lung diseases. PMID:26993378

  7. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level.

    PubMed

    Felisbino, Marina Barreto; Alves da Costa, Thiago; Gatti, Maria Silvia Viccari; Mello, Maria Luiza Silveira

    2016-10-01

    Diabetes is a complex multifactorial disorder characterized by chronic hyperglycemia due to impaired insulin secretion. Recent observations suggest that the complexity of the disease cannot be entirely accounted for genetic predisposition and a compelling argument for an epigenetic component is rapidly emerging. The use of histone deacetylase inhibitor (HDACi) in clinical setting is an emerging area of investigation. In this study, we have aimed to understand and compare the response of hepatocyte chromatin to valproic acid (VPA) and trichostatin A (TSA) treatments under normoglycemic or hyperglycemic conditions to expand our knowledge about the consequences of HDACi treatment in a diabetes cell model. Under normoglycemic conditions, these treatments promoted chromatin remodeling, as assessed by image analysis and H3K9ac and H3K9me2 abundance. Simultaneously, H3K9ac marks shifted to the nuclear periphery accompanied by HP1 dissociation from the heterochromatin and a G1 cell cycle arrest. More striking changes in the cell cycle progression and mitotic ratios required drastic treatment. Under hyperglycemic conditions, high glucose per se promoted chromatin changes similar to those promoted by VPA and TSA. Nonetheless, these results were not intensified in cells treated with HDACis under hyperglycemic conditions. Despite the absence of morphological changes being promoted, HDACi treatment seems to confer a physiological meaning, ameliorating the cellular hyperglycemic state through reduction of glucose production. These observations allow us to conclude that the glucose level to which the hepatocytes are subjected affects how chromatin responds to HDACi and their action under high-glucose environment might not reflect on chromatin remodeling. J. Cell. Physiol. 231: 2257-2265, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888775

  8. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation

    PubMed Central

    Wang, Zhifei; Leng, Yan; Wang, Junyu; Liao, Hsiao-Mei; Bergman, Joel; Leeds, Peter; Kozikowski, Alan; Chuang, De-Maw

    2016-01-01

    Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in the central nervous system. This study investigated the beneficial effects of tubastatin A (TubA), a novel specific HDAC6 inhibitor, in a rat model of transient middle cerebral artery occlusion (MCAO) and an in vitro model of excitotoxicity. Post-ischemic TubA treatment robustly improved functional outcomes, reduced brain infarction, and ameliorated neuronal cell death in MCAO rats. These beneficial effects lasted at least three days after MCAO. Notably, when given at 24 hours after MCAO, TubA still exhibited significant protection. Levels of acetylated α-tubulin were decreased in the ischemic hemisphere on Days 1 and 3 after MCAO, and were significantly restored by TubA. MCAO markedly downregulated fibroblast growth factor-21 (FGF-21) and TubA significantly reversed this downregulation. TubA also mitigated impaired FGF-21 signaling in the ischemic hemisphere, including up-regulating β-Klotho, and activating ERK and Akt/GSK-3β signaling pathways. In addition, both TubA and exogenous FGF-21 conferred neuroprotection and restored mitochondrial trafficking in rat cortical neurons against glutamate-induced excitotoxicity. Our findings suggest that the neuroprotective effects of TubA likely involve HDAC6 inhibition and the subsequent up-regulation of acetylated α-tubulin and FGF-21. PMID:26790818

  9. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells.

    PubMed

    Steinwascher, Sofie; Nugues, Anne-Lucie; Schoeneberger, Hannah; Fulda, Simone

    2015-09-28

    Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNFα signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an

  10. In vitro cytotoxicity evaluation of HDAC inhibitor Apicidin in pancreatic carcinoma cells subsequent time and dose dependent treatment.

    PubMed

    Bauden, Monika; Tassidis, Helena; Ansari, Daniel

    2015-07-01

    Apicidin is a potent histone deacetylase inhibitor (HDACI) that selectively binds to histone deacetylases (HDACs) class I and interferes with the deacetylation process, which results in modification of acetylation level of cellular proteins. The aim of the study was to investigate the potential time and dose dependent cytotoxicity of the test compound, Apicidin, in pancreatic cancer cells Capan-1 and Panc-1 as well as estimate maximal tolerable dose (MTD) of the test agent and determine EC50 using four complementary colorimetric cytotoxicity or viability assays. The cells were treated with increasing concentrations of Apicidin (0-5000nM) for 2, 4 and 6h (short term exposure) or 24, 48 and 72h (long term exposure) before conducting cytotoxic analyses with lactate dehydrogenase assay or viability analyses with sulforhodamine B (SRB), methyl tetrazolium (MTT) and crystal violet (CV) assays. In order to investigate whether Apicidin irreversibly affects the cells already during the short term exposure, the medium containing Apicidin was removed and replaced with fresh culturing medium after 6h of treatment. The cells were then incubated for additional 24, 48 or 72h before carrying out the analysis. The results obtained from cytotoxicity and viability assays indicated, that Apicidin was well tolerated by both cell lines at concentrations below 100nM at any given time point and at all applied concentrations during the short term (6h or less) treatment. Continuous prolonged term exposures (48h or greater) of the cells to Apicidin with concentration exceeding 100nM resulted in significantly increasing cytotoxicity and sustained significant loss of cell viability. Moreover, long term exposure of pancreatic cancer cells Capan-1 and Panc-1 to Apicidin concentrations exceeding 100nM showed an initial anti-proliferative effect before cytotoxicity onset. In summary, MTD was exposure time dependent and estimated to 100nM for long term treatment and to at least 5000nM for treatment

  11. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    SciTech Connect

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  12. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy.

    PubMed

    Chen, Guojun; Jaskula-Sztul, Renata; Harrison, April; Dammalapati, Ajitha; Xu, Wenjin; Cheng, Yiqiang; Chen, Herbert; Gong, Shaoqin

    2016-08-01

    Neuroendocrine (NE) cancers can cause significant patient morbidity. Besides surgery, there are no curative treatments for NE cancers and their metastases, emphasizing the need for the development of other forms of therapy. In this study, multifunctional unimolecular micelles were developed for targeted NE cancer therapy. The unimolecular micelles were formed by multi-arm star amphiphilic block copolymer poly(amidoamine)-poly(valerolactone)-poly(ethylene glycol) conjugated with KE108 peptide and Cy5 dye (abbreviated as PAMAM-PVL-PEG-KE108/Cy5). The unimolecular micelles with a spherical core-shell structure exhibited a uniform size distribution and excellent stability. The hydrophobic drug thailandepsin-A (TDP-A), a recently discovered HDAC inhibitor, was physically encapsulated into the hydrophobic core of the micelles. KE108 peptide, a somatostatin analog possessing high affinity for all five subtypes of somatostatin receptors (SSTR 1-5), commonly overexpressed in NE cancer cells, was used for the first time as an NE cancer targeting ligand. KE108 exhibited superior targeting abilities compared to other common somatostatin analogs, such as octreotide, in NE cancer cell lines. The in vitro assays demonstrated that the TDP-A-loaded, KE108-targeted micelles exhibited the best capabilities in suppressing NE cancer cell growth. Moreover, the in vivo near-infrared fluorescence imaging on NE-tumor-bearing nude mice showed that KE108-conjugated micelles exhibited the greatest tumor accumulation due to their passive targeting and active targeting capabilities. Finally, TDP-A-loaded and KE108-conjugated micelles possessed the best anticancer efficacy without detectable systemic toxicity. Thus, these novel TDP-A-loaded and KE108-conjugated unimolecular micelles offer a promising approach for targeted NE cancer therapy. PMID:27156249

  13. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.

    PubMed

    Turgeon, Naomie; Gagné, Julie Moore; Blais, Mylène; Gendron, Fernand-Pierre; Boudreau, François; Asselin, Claude

    2014-04-01

    Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from dextran sulfate sodium (DSS)-induced murine colitis. Although tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal disease activity index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability, and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation. PMID:24525021

  14. HDAC inhibitor AR-42 decreases CD44 expression and sensitizes myeloma cells to lenalidomide

    PubMed Central

    Sborov, Douglas W.; Cascione, Luciano; Radomska, Hanna S.; Smith, Emily; Stiff, Andrew; Consiglio, Jessica; Caserta, Enrico; Rizzotto, Lara; Zanesi, Nicola; Stefano, Volinia; Kaur, Balveen; Mo, Xiaokui; Byrd, John C.; Efebera, Yvonne A.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy of plasma cells in the bone marrow. Despite multiple treatment options, MM is inevitably associated with drug resistance and poor outcomes. Histone deacetylase inhibitors (HDACi's) are promising novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with MM. Although in preclinical studies HDACi's have proven anti-myeloma activity, but in the clinic single-agent HDACi treatments have been limited due to low tolerability. Improved clinical outcomes were reported only when HDACi's were combined with other drugs. Here, we show that a novel pan-HDACi AR-42 downregulates CD44, a glycoprotein that has been associated with lenalidomide and dexamethasone resistance in myeloma both in vitro and in vivo. We also show that this CD44 downregulation is in part mediated by miR-9–5p, targeting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which directly binds to CD44 mRNA and increases its stability. Importantly, we also demonstrate that AR-42 enhances anti-myeloma activity of lenalidomide in primary MM cells isolated from lenalidomide resistant patients and in in vivo MM mouse model. Thus, our findings shed light on potential novel combinatorial therapeutic approaches modulating CD44 expression, which may help overcome lenalidomide resistance in myeloma patients. PMID:26429859

  15. HDAC1 regulates fear extinction in mice.

    PubMed

    Bahari-Javan, Sanaz; Maddalena, Andrea; Kerimoglu, Cemil; Wittnam, Jessica; Held, Torsten; Bähr, Mathias; Burkhardt, Susanne; Delalle, Ivanna; Kügler, Sebastian; Fischer, Andre; Sananbenesi, Farahnaz

    2012-04-11

    Histone acetylation has been implicated with the pathogenesis of neuropsychiatric disorders and targeting histone deacetylases (HDACs) using HDAC inhibitors was shown to be neuroprotective and to initiate neuroregenerative processes. However, little is known about the role of individual HDAC proteins during the pathogenesis of brain diseases. HDAC1 was found to be upregulated in patients suffering from neuropsychiatric diseases. Here, we show that virus-mediated overexpression of neuronal HDAC1 in the adult mouse hippocampus specifically affects the extinction of contextual fear memories, while other cognitive abilities were unaffected. In subsequent experiments we show that under physiological conditions, hippocampal HDAC1 is required for extinction learning via a mechanism that involves H3K9 deacetylation and subsequent trimethylation of target genes. In conclusion, our data show that hippocampal HDAC1 has a specific role in memory function. PMID:22496552

  16. DNA damage response and anti-apoptotic proteins predict radiosensitization efficacy of HDAC inhibitors SAHA and LBH589 in patient-derived glioblastoma cells.

    PubMed

    Pont, Lotte M E Berghauser; Naipal, Kishan; Kloezeman, Jenneke J; Venkatesan, Subramanian; van den Bent, Martin; van Gent, Dik C; Dirven, Clemens M F; Kanaar, Roland; Lamfers, Martine L M; Leenstra, Sieger

    2015-01-28

    HDAC inhibitors have radiosensitizing effects in established cancer cell lines. This study was conducted to compare the efficacy of SAHA, LBH589, Valproic Acid (VPA), MS275 and Scriptaid in the patient-derived glioblastoma model. In more detail, SAHA and LBH589 were evaluated to determine predictors of response. Acetylated-histone-H3, γH2AX/53BP1, (p)Chek2/ATM, Bcl-2/Bcl-XL, p21(CIP1/WAF1) and caspase-3/7 were studied in relation to response. SAHA sensitized 50% of cultures, LBH589 45%, VPA and Scriptaid 40% and MS275 60%. Differences after treatment with SAHA/RTx or LBH589/RTx in a sensitive and resistant culture were increased acetylated-H3, caspase-3/7 and prolonged DNA damage repair γH2AX/53BP1 foci. pChek2 was found to be associated with both SAHA/RTx and LBH589/RTx response with a positive predictive value (PPV) of 90%. Bcl-XL had a PPV of 100% for LBH589/RTx response. Incubation with HDACi 24 and 48 hours pre-RTx resulted in the best efficacy of combination treatment. In conclusion a subset of patient-derived glioblastoma cultures were sensitive to HDACi/RTx. For SAHA and LBH589 responses were strongly associated with pChek2 and Bcl-XL, which warrant further clinical exploration. Additional information on responsiveness was obtained by DNA damage response markers and apoptosis related proteins. PMID:25305451

  17. The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression.

    PubMed

    Meylan, Elsa M; Halfon, Olivier; Magistretti, Pierre J; Cardinaux, Jean-René

    2016-08-01

    Major depression is a highly complex disabling psychiatric disorder affecting millions of people worldwide. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these medications. A better understanding of the neurobiology of depression and the mechanisms underlying antidepressant response is thus critically needed. We previously reported that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study, we similarly show that Crtc1(-/-) mice are resistant to the antidepressant effect of chronic desipramine in a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hippocampus and prefrontal cortex of Crtc1(-/-) mice. Epigenetic regulation of neuroplasticity gene expression has been associated with depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike conventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues the depressive-like behavior of Crtc1(-/-) mice. This behavioral effect is accompanied by an increased expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant development. PMID:26970016

  18. IN VITRO AND IN VIVO INTERACTIONS BETWEEN THE HDAC6 INHIBITOR RICOLINOSTAT (ACY1215) AND THE IRREVERSIBLE PROTEASOME INHIBITOR CARFILZOMIB IN NON-HODGKIN’S LYMPHOMA CELLS

    PubMed Central

    Dasmahapatra, Girija; Patel, Hiral; Friedberg, Johnathan; Quayle, Steven N; Jones, Simon S; Grant, Steven

    2014-01-01

    Interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor Carfilzomib (CFZ) were examined in non-Hodgkin’s lymphoma models, including diffuse large B-cell (DLBCL), mantle cell (MCL) and double-hit lymphoma cells. Marked in vitro synergism was observed in multiple cell types associated with activation of cellular stress pathways (e.g., JNK1/2, ERK1/2, and p38) accompanied by increases in DNA damage (γH2A.X), G2M arrest, and the pronounced induction of mitochondrial injury and apoptosis. Combination treatment with CFZ and ricolinostat increased reactive oxygen species (ROS), while the antioxidant TBAP attenuated DNA damage, JNK activation, and cell death. Similar interactions occurred in bortezomib-resistant and double-hit DLBCL, MCL, and primary DLBCL cells, but not in normal CD34+ cells. However, ricolinostat did not potentiate inhibition of chymotryptic activity by CFZ. shRNA knock-down of JNK1 (but not MEK1/2), or pharmacologic inhibition of p38, significantly reduced CFZ/ricolinostat lethality, indicating a functional contribution of these stress pathways to apoptosis. Combined exposure to CFZ and ricolinostat also markedly down-regulated the cargo-loading protein HR23B. Moreover, HR23B knock-down significantly increased CFZ- and ricolinostat-mediated lethality, suggesting a role for this event in cell death. Finally, combined in vivo treatment with CFZ and ricolinostat was well tolerated and significantly suppressed tumor growth and increased survival in an MCL xenograft model. Collectively, these findings indicate that CFZ and ricolinostat interact synergistically in NHL cells through multiple stress-related mechanisms, and suggest that this strategy warrants further consideration in NHL. PMID:25239935

  19. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease

    PubMed Central

    Sung, You Me; Lee, Taehee; Yoon, Hyejin; DiBattista, Amanda Marie; Song, JungMin; Sohn, Yoojin; Moffat, Emily Isabella; Turner, R. Scott; Jung, Mira; Kim, Jungsu; Hoe, Hyang-Sook

    2013-01-01

    Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs area potential treatment for Alzheimer's disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3x Tg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD. PMID:23063601

  20. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. PMID:27143132

  1. Histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide attenuates plasminogen activator inhibitor-1 expression in human pleural mesothelial cells.

    PubMed

    Chung, Chi-Li; Sheu, Joen-Rong; Chen, Wei-Lin; Chou, Yung-Chen; Hsiao, Che-Jen; Hsiao, Shih-Hsin; Hsu, Ming-Jen; Cheng, Yu-Wen; Hsiao, George

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1), primarily up-regulated by transforming growth factor (TGF)-β, is essential in the development of fibrosis. Histone deacetylase (HDAC) was shown to modulate gene expression and fibrogenesis in various tissues. However, the implications of HDAC in terms of PAI-1 expression and pleural fibrosis remain unclear. In this study, we examined the effects of m-carboxycinnamic acid bis-hydroxamide (CBHA), a hybrid-polar HDAC inhibitor, on the TGF-β1-induced expression of PAI-1 in a human pleural mesothelial cell line (MeT-5A). MeT-5A cells were treated with TGF-β1 in the presence or absence of CBHA. We assayed the expression and stability of PAI-1 mRNA and protein, PAI-1 promoter activity, the activation of Smad signaling, the protein-protein interactions of Smads with transcriptional cofactors Sp1 and coactivator p300, and the expression of the mRNA-stabilizing protein nucleolin. The results indicate that CBHA significantly inhibited TGF-β1-induced PAI-1 mRNA and protein expression, and attenuated PAI-1 promoter activity in MeT-5A cells. CBHA abrogated TGF-β1-induced Smad4 nuclear translocation, but not Smad2/3 activation. Furthermore, the association of Smad4 with p300, but not with Sp1, was disrupted by CBHA. Alternatively, CBHA suppressed TGF-β1-induced nucleolin expression, and thereby destabilized PAI-1 mRNA and decreased PAI-1 protein concentrations. These findings suggest that the inhibition of HDAC activity by CBHA may attenuate PAI-1 expression through the modulation of cellular signaling at multiple levels. Given the down-regulating effect of CBHA on PAI-1 expression, HDAC inhibitors should be tested further in animal models as potential therapeutic agents for pleural fibrosis. PMID:22033265

  2. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  3. The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: A review of clinical studies.

    PubMed

    Duvic, Madeleine; Dimopoulos, Meletios

    2016-02-01

    Histone acetyltransferases and histone deacetylases (HDACs) are multifunctional enzymes that posttranslationally modify both histone and nonhistone acetylation sites, affecting a broad range of cellular processes (e.g., cell cycle, apoptosis, and protein folding) often dysregulated in cancer. HDAC inhibitors are small molecules that directly interact with HDAC catalytic sites preventing the removal of acetyl groups, thereby counteracting the effects of HDACs. Since the first HDAC inhibitor, valproic acid, was investigated as a potential antitumor agent, there have been a number of other HDAC inhibitors developed to improve efficacy and safety. Despite significant progress in the management of patients with hematologic malignancies, overall survival is still poor. The discovery that HDACs may play a role in hematologic malignancies and preclinical studies showing promising activity with HDAC inhibitors in various tumor types, led to clinical evaluation of HDAC inhibitors as potential treatment options for patients with advanced hematologic malignancies. The Food and Drug Administration has approved two HDAC inhibitors, vorinostat (2006) and romidepsin (2009), for the treatment of cutaneous T-cell lymphoma. This review highlights the safety of HDAC inhibitors currently approved or being investigated for the treatment of hematologic malignancies, with a specific focus on the safety experience with vorinostat in cutaneous T-cell lymphoma. PMID:26827693

  4. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

    SciTech Connect

    Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel; Wegener, Dennis; Schwienhorst, Andreas; Ficner, Ralf

    2007-04-01

    The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with a nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.

  5. HDAC1 and HDAC2 independently predict mortality in hepatocellular carcinoma by a competing risk regression model in a Southeast Asian population

    PubMed Central

    LER, SER YENG; LEUNG, CAROL HO WING; KHIN, LAY WAI; LU, GUO-DONG; SALTO-TELLEZ, MANUEL; HARTMAN, MIKAEL; IAU, PHILIP TSAU CHOONG; YAP, CELESTIAL T.; HOOI, SHING CHUAN

    2015-01-01

    Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality. PMID:26352599

  6. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells

    PubMed Central

    2012-01-01

    Background Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells. Methods Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays. Results Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis. Conclusion Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression

  7. NBM-T-BBX-OS01, Semisynthesized from Osthole, Induced G1 Growth Arrest through HDAC6 Inhibition in Lung Cancer Cells.

    PubMed

    Pai, Jih-Tung; Hsu, Chia-Yun; Hua, Kuo-Tai; Yu, Sheng-Yung; Huang, Chung-Yang; Chen, Chia-Nan; Liao, Chiung-Ho; Weng, Meng-Shih

    2015-01-01

    Disrupting lung tumor growth via histone deacetylases (HDACs) inhibition is a strategy for cancer therapy or prevention. Targeting HDAC6 may disturb the maturation of heat shock protein 90 (Hsp90) mediated cell cycle regulation. In this study, we demonstrated the effects of semisynthesized NBM-T-BBX-OS01 (TBBX) from osthole on HDAC6-mediated growth arrest in lung cancer cells. The results exhibited that the anti-proliferative activity of TBBX in numerous lung cancer cells was more potent than suberoylanilide hydroxamic acid (SAHA), a clinically approved pan-HDAC inhibitor, and the growth inhibitory effect has been mediated through G1 growth arrest. Furthermore, the protein levels of cyclin D1, CDK2 and CDK4 were reduced while cyclin E and CDK inhibitor, p21Waf1/Cip1, were up-regulated in TBBX-treated H1299 cells. The results also displayed that TBBX inhibited HDAC6 activity via down-regulation HDAC6 protein expression. TBBX induced Hsp90 hyper-acetylation and led to the disruption of cyclin D1/Hsp90 and CDK4/Hsp90 association following the degradation of cyclin D1 and CDK4 proteins through proteasome. Ectopic expression of HDAC6 rescued TBBX-induced G1 arrest in H1299 cells. Conclusively, the data suggested that TBBX induced G1 growth arrest may mediate HDAC6-caused Hsp90 hyper-acetylation and consequently increased the degradation of cyclin D1 and CDK4. PMID:25946558

  8. Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer

    PubMed Central

    2011-01-01

    Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255

  9. Chemical tools for probing histone deacetylase (HDAC) activity.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    2015-01-01

    Histone deacetylases (HDACs) enzymes are responsible for removing epigenetic markers on histone proteins, which results in chromatin inactivation and gene repression. An evaluation of HDAC activity is essential for not only determining the physiological function of HDACs, but also for developing HDAC-targeting drugs. This review focuses on the chemical tools used to detect HDAC activity. We highlight activity-based probes and positron emission tomography probes based on the chemical structure of the inhibitors. We also summarize fluorogenic probes used in single-step methods for HDAC detection. These fluorogenic probes are designed based on the nucleophilicity of the amino group, aggregation via electrostatic interactions, and changes in the DNA binding properties. These fluorogenic systems may enable facile and rapid screening to evaluate HDAC inhibitors, which will contribute to the development of epigenetic drugs. PMID:25864671

  10. Two New Pimelic Diphenylamide HDAC Inhibitors Induce Sustained Frataxin Upregulation in Cells from Friedreich's Ataxia Patients and in a Mouse Model

    PubMed Central

    Rai, Myriam; Soragni, Elisabetta; Chou, C. James; Barnes, Glenn; Jones, Steve; Rusche, James R.; Gottesfeld, Joel M.; Pandolfo, Massimo

    2010-01-01

    Background Friedreich's ataxia (FRDA), the most common recessive ataxia in Caucasians, is due to severely reduced levels of frataxin, a highly conserved protein, that result from a large GAA triplet repeat expansion within the first intron of the frataxin gene (FXN). Typical marks of heterochromatin are found near the expanded GAA repeat in FRDA patient cells and mouse models. Histone deacetylase inhibitors (HDACIs) with a pimelic diphenylamide structure and HDAC3 specificity can decondense the chromatin structure at the FXN gene and restore frataxin levels in cells from FRDA patients and in a GAA repeat based FRDA mouse model, KIKI, providing an appealing approach for FRDA therapeutics. Methodology/Principal Findings In an effort to further improve the pharmacological profile of pimelic diphenylamide HDACIs as potential therapeutics for FRDA, we synthesized additional compounds with this basic structure and screened them for HDAC3 specificity. We characterized two of these compounds, 136 and 109, in FRDA patients' peripheral blood lymphocytes and in the KIKI mouse model. We tested their ability to upregulate frataxin at a range of concentrations in order to determine a minimal effective dose. We then determined in both systems the duration of effect of these drugs on frataxin mRNA and protein, and on total and local histone acetylation. The effects of these compounds exceeded the time of direct exposure in both systems. Conclusions/Significance Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACIs for FRDA and provide information for the design of future human trials of these drugs, suggesting an intermittent administration of the drug. PMID:20098685

  11. HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat.

    PubMed

    Angelika Ihle, Michaela; Merkelbach-Bruse, Sabine; Hartmann, Wolfgang; Bauer, Sebastian; Ratner, Nancy; Sonobe, Hiroshi; Nishio, Jun; Larsson, Olle; Åman, Pierre; Pedeutour, Florence; Taguchi, Takahiro; Wardelmann, Eva; Buettner, Reinhard; Schildhaus, Hans-Ulrich

    2016-04-01

    Histone deacetylases (HDAC) are key players in epigenetic regulation of gene expression and HDAC inhibitor (HDACi) treatment seems to be a promising anticancer therapy in many human tumours, including soft tissue sarcomas. HR23b has been shown to be a potential biomarker for sensitivity to HDACi therapy in cutaneous T-cell lymphoma and hepatocellular carcinoma. We aimed to evaluate HR23b as a candidate biomarker for HDACi response in sarcomas and gastrointestinal stromal tumours (GIST). Therefore, HR23b expression was analysed comprehensively by western blot in sarcoma and GIST cell lines covering all major clinically relevant subtypes. MTT assay and ApoTox-Glo(TM) Triplex assay were performed after treatment with vorinostat, belinostat, mocetinostat and entinostat. HR23b protein expression was measured under HDACi treatment. Furthermore, HR23b expression levels were immunohistochemically determined in a large set of 523 clinical samples from sarcoma and GIST patients. Western blot analyses showed that sarcomas differ significantly in their expression of HR23b protein. All HDACi were able to regulate proliferation and apoptosis in vitro. Sensitivity to vorinostat correlated significantly with HR23b protein expression. Immunohistochemical prevalence screening in clinical samples of relevant adult-type tumours revealed that 12.5% of sarcomas (among them malignant peripheral nerve sheath tumours, pleomorphic liposarcomas, leiomyosarcomas, dedifferentiated liposarcomas, synovial sarcomas and angiosarcomas) and 23.2% of GIST show high HR23b expression. Therefore, HDACi have antiproliferative and proapoptotic effects in sarcomas depending on the expression level of HR23b. These findings suggest that HR23b represents a candidate biomarker for HDACi sensitivity in certain sarcoma types and in GIST. PMID:27499916

  12. HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat

    PubMed Central

    Angelika Ihle, Michaela; Merkelbach‐Bruse, Sabine; Hartmann, Wolfgang; Bauer, Sebastian; Ratner, Nancy; Sonobe, Hiroshi; Nishio, Jun; Larsson, Olle; Åman, Pierre; Pedeutour, Florence; Taguchi, Takahiro; Wardelmann, Eva; Buettner, Reinhard

    2016-01-01

    Abstract Histone deacetylases (HDAC) are key players in epigenetic regulation of gene expression and HDAC inhibitor (HDACi) treatment seems to be a promising anticancer therapy in many human tumours, including soft tissue sarcomas. HR23b has been shown to be a potential biomarker for sensitivity to HDACi therapy in cutaneous T‐cell lymphoma and hepatocellular carcinoma. We aimed to evaluate HR23b as a candidate biomarker for HDACi response in sarcomas and gastrointestinal stromal tumours (GIST). Therefore, HR23b expression was analysed comprehensively by western blot in sarcoma and GIST cell lines covering all major clinically relevant subtypes. MTT assay and ApoTox‐GloTM Triplex assay were performed after treatment with vorinostat, belinostat, mocetinostat and entinostat. HR23b protein expression was measured under HDACi treatment. Furthermore, HR23b expression levels were immunohistochemically determined in a large set of 523 clinical samples from sarcoma and GIST patients. Western blot analyses showed that sarcomas differ significantly in their expression of HR23b protein. All HDACi were able to regulate proliferation and apoptosis in vitro. Sensitivity to vorinostat correlated significantly with HR23b protein expression. Immunohistochemical prevalence screening in clinical samples of relevant adult‐type tumours revealed that 12.5% of sarcomas (among them malignant peripheral nerve sheath tumours, pleomorphic liposarcomas, leiomyosarcomas, dedifferentiated liposarcomas, synovial sarcomas and angiosarcomas) and 23.2% of GIST show high HR23b expression. Therefore, HDACi have antiproliferative and proapoptotic effects in sarcomas depending on the expression level of HR23b. These findings suggest that HR23b represents a candidate biomarker for HDACi sensitivity in certain sarcoma types and in GIST. PMID:27499916

  13. The Effects of Pharmacological Inhibition of Histone Deacetylase 3 (HDAC3) in Huntington’s Disease Mice

    PubMed Central

    Jia, Haiqun; Wang, Ying; Morris, Charles D.; Jacques, Vincent; Gottesfeld, Joel M.; Rusche, James R.; Thomas, Elizabeth A.

    2016-01-01

    An important epigenetic modification in Huntington’s disease (HD) research is histone acetylation, which is regulated by histone acetyltransferase and histone deacetylase (HDAC) enzymes. HDAC inhibitors have proven effective in HD model systems, and recent work is now focused on functional dissection of the individual HDAC enzymes in these effects. Histone deacetylase 3 (HDAC3), a member of the class I subfamily of HDACs, has previously been implicated in neuronal toxicity and huntingtin-induced cell death. Hence, we tested the effects of RGFP966 ((E)-N-(2-amino-4-fluorophenyl)-3-(1-cinnamyl-1H-pyrazol-4-yl)acrylamide), a benzamide-type HDAC inhibitor that selectively targets HDAC3, in the N171-82Q transgenic mouse model of HD. We found that RGFP966 at doses of 10 and 25 mg/kg improves motor deficits on rotarod and in open field exploration, accompanied by neuroprotective effects on striatal volume. In light of previous studies implicating HDAC3 in immune function, we measured gene expression changes for 84 immune-related genes elicited by RGFP966 using quantitative PCR arrays. RGFP966 treatment did not cause widespread changes in cytokine/chemokine gene expression patterns, but did significantly alter the striatal expression of macrophage migration inhibitory factor (Mif), a hormone immune modulator associated with glial cell activation, in N171-82Q transgenic mice, but not WT mice. Accordingly, RGFP966-treated mice showed decreased glial fibrillary acidic protein (GFAP) immunoreactivity, a marker of astrocyte activation, in the striatum of N171-82Q transgenic mice compared to vehicle-treated mice. These findings suggest that the beneficial actions of HDAC3 inhibition could be related, in part, with lowered Mif levels and its associated downstream effects. PMID:27031333

  14. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease.

    PubMed

    Pinho, Brígida R; Reis, Sara D; Guedes-Dias, Pedro; Leitão-Rocha, Ana; Quintas, Clara; Valentão, Patrícia; Andrade, Paula B; Santos, Miguel M; Oliveira, Jorge M A

    2016-01-01

    Histone deacetylases (HDACs) are key epigenetic enzymes and emerging drug targets in cancer and neurodegeneration. Pan-HDAC inhibitors provided neuroprotection in Parkinson's Disease (PD) models, however, the HDAC isoforms with highest neuroprotective potential remain unknown. Zebrafish larvae (powerful pharmacological testing tools bridging cellular and in vivo studies) have thus far been used in PD modelling with limited phenotypic characterization. Here we characterize the behavioural and metabolic phenotypes of a zebrafish PD model induced with MPP(+), assess the feasibility of targeting zebrafish HDAC1 and HDAC6 isoforms, and test the in vivo effects of their selective inhibitors MS-275 and tubastatin A, respectively. MPP(+) induced a concentration-dependent decrease in metabolic activity and sensorimotor reflexes, and induced locomotor impairments rescuable by the dopaminergic agonist apomorphine. Zebrafish HDAC1 and HDAC6 isoforms show high sequence identity with mammalian homologues at the deacetylase active sites, and pharmacological inhibition increased acetylation of their respective histone and tubulin targets. MS-275 and tubastatin rescued the MPP(+)-induced decrease in diencephalic tyrosine hydroxylase immunofluorescence and in whole-larvae metabolic activity, without modifying mitochondrial complex activity or biogenesis. MS-275 or tubastatin alone modulated spontaneous locomotion. When combined with MPP(+), however, neither MS-275 nor tubastatin rescued locomotor impairments, although tubastatin did ameliorate the head-reflex impairment. This study demonstrates the feasibility of pharmacologically targeting the zebrafish HDAC1 and HDAC6 isoforms, and indicates that their inhibition can rescue cellular metabolism in a PD model. Absence of improvement in locomotion, however, suggests that monotherapy with either HDAC1 or HDAC6 inhibitors is unlikely to provide strong benefits in PD. This study highlights parameters dependent on the integrity of

  15. Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma

    PubMed Central

    Dai, Wei; Zhou, Jingfeng; Jin, Bei; Pan, Jingxuan

    2016-01-01

    Uveal melanoma (UM) is the most common intraocular malignancy in adults. Despite improvements in surgical, radiation and chemotherapy treatments, the overall survival of UM and prognosis remain poor. In the present study, we hypothesized that Sirtuin 1 and 2 (SIRT1/2), class III histone deacetylases (HDACs), were critical in controlling the destiny of bulk tumor cells and cancer stem cells (CSCs) of UM. We testified this hypothesis in four lines of UM cells (92.1, Mel 270, Omm 1 and Omm 2.3). Our results showed that inhibition of SIRT1/2 by Tenovin-6 induced apoptosis in UM cells by activating the expression of tumor suppressor genes such as p53 and elevating reactive oxygen species (ROS). Tenovin-6 inhibited the growth of UM cells. Tenovin-6 and vinblastine was synergistic in inducing apoptosis of UM cell line 92.1 and Mel 270. Furthermore, Tenovin-6 eliminated cancer stem cells in 92.1 and Mel 270 cells. In conclusion, our findings suggest that Tenovin-6 may be a promising agent to kill UM bulk tumor cells and CSCs. PMID:26940009

  16. Heterocyclics as corrosion inhibitors for acid media

    SciTech Connect

    Ajmal, M.; Khan, M.A.W.; Ahmad, S.; Quraishi, M.A.

    1996-12-01

    The available literature on the use of heterocyclic compounds as corrosion inhibitors in acid media has been reviewed. It has been noted that the workers in this field have either used sulfur or nitrogen containing heterocyclic compounds for studying inhibition action. The authors have synthesized compounds containing sulfur and nitrogen both in the same ring and studied their inhibition action in acid media. These compounds were found to be better inhibitors than those containing either atoms alone.

  17. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  18. High-throughput screening uncovers a compound that activates latent HIV-1 and acts cooperatively with a histone deacetylase (HDAC) inhibitor.

    PubMed

    Micheva-Viteva, Sofiya; Kobayashi, Yoshifumi; Edelstein, Leonard C; Pacchia, Annmarie L; Lee, Hui-Ling Rose; Graci, Jason D; Breslin, Jamie; Phelan, Bradley D; Miller, Leia K; Colacino, Joseph M; Gu, Zhengxian; Ron, Yacov; Peltz, Stuart W; Dougherty, Joseph P

    2011-06-17

    Current antiretroviral therapy (ART) provides potent suppression of HIV-1 replication. However, ART does not target latent viral reservoirs, so persistent infection remains a challenge. Small molecules with pharmacological properties that allow them to reach and activate viral reservoirs could potentially be utilized to eliminate the latent arm of the infection when used in combination with ART. Here we describe a cell-based system modeling HIV-1 latency that was utilized in a high-throughput screen to identify small molecule antagonists of HIV-1 latency. A more detailed analysis is provided for one of the hit compounds, antiviral 6 (AV6), which required nuclear factor of activated T cells for early mRNA expression while exhibiting RNA-stabilizing activity. It was found that AV6 reproducibly activated latent provirus from different lymphocyte-based clonal cell lines as well as from latently infected primary resting CD4(+) T cells without causing general T cell proliferation or activation. Moreover, AV6 complemented the latency antagonist activity of a previously described histone deacetylase (HDAC) inhibitor. This is a proof of concept showing that a high-throughput screen employing a cell-based model of HIV-1 latency can be utilized to identify new classes of compounds that can be used in concert with other persistent antagonists with the aim of viral clearance. PMID:21498519

  19. Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells

    PubMed Central

    Ammerpohl, O; Trauzold, A; Schniewind, B; Griep, U; Pilarsky, C; Grutzmann, R; Saeger, H-D; Janssen, O; Sipos, B; Kloppel, G; Kalthoff, H

    2006-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357, BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1, T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8, BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly reported by this study. PMID:17164759

  20. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice

    PubMed Central

    Mozzetta, Chiara; Consalvi, Silvia; Saccone, Valentina; Tierney, Matthew; Diamantini, Adamo; Mitchell, Kathryn J; Marazzi, Giovanna; Borsellino, Giovanna; Battistini, Luca; Sassoon, David; Sacco, Alessandra; Puri, Pier Lorenzo

    2013-01-01

    HDAC inhibitors (HDACi) exert beneficial effects in mdx mice, by promoting endogenous regeneration; however, the cellular determinants of HDACi activity on dystrophic muscles have not been determined. We show that fibroadipogenic progenitors (FAP) influence the regeneration potential of satellite cells during disease progression in mdx mice and mediate HDACi ability to selectively promote regeneration at early stages of disease. FAPs from young mdx mice promote, while FAPs from old mdx mice repress, satellite cell-mediated formation of myotubes. In young mdx mice HDACi inhibited FAP adipogenic potential, while enhancing their ability to promote differentiation of adjacent satellite cells, through upregulation of the soluble factor follistatin. By contrast, FAPs from old mdx mice were resistant to HDACi-mediated inhibition of adipogenesis and constitutively repressed satellite cell-mediated formation of myotubes. We show that transplantation of FAPs from regenerating young muscles restored HDACi ability to increase myofibre size in old mdx mice. These results reveal that FAPs are key cellular determinants of disease progression in mdx mice and mediate a previously unappreciated stage-specific beneficial effect of HDACi in dystrophic muscles. PMID:23505062

  1. Histone deacetylase 3 (HDAC3) as a novel therapeutic target in multiple myeloma

    PubMed Central

    Minami, Jiro; Suzuki, Rikio; Mazitschek, Ralph; Gorgun, Gullu; Ghosh, Balaram; Cirstea, Diana; Hu, Yiguo; Mimura, Naoya; Ohguchi, Hiroto; Cottini, Francesca; Jakubikova, Jana; Munshi, Nikhil C.; Haggarty, Stephen J.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2014-01-01

    Histone deacetylases (HDACs) represent novel molecular targets for the treatment of various types of cancers, including multiple myeloma (MM). Many HDAC inhibitors have already shown remarkable anti-tumor activities in the preclinical setting; however, their clinical utility is limited due to unfavorable toxicities associated with their broad range HDAC inhibitory effects. Isoform-selective HDAC inhibition may allow for MM cytotoxicity without attendant side effects. In this study, we demonstrated that HDAC3 knockdown and a small molecule HDAC3 inhibitor BG45 trigger significant MM cell growth inhibition via apoptosis, evidenced by caspase and PARP cleavage. Importantly, HDAC3 inhibition downregulates phosphorylation (tyrosine 705 and serine 727) of STAT3. Neither IL-6 nor bone marrow stromal cells overcome this inhibitory effect of HDAC3 inhibition on p-STAT3 and MM cell growth. Moreover, HDAC3 inhibition also triggers hyperacetylation of STAT3, suggesting crosstalk signaling between phosphorylation and acetylation of STAT3. Importantly, inhibition of HDAC3, but not HDAC1 or HDAC2, significantly enhances bortezomib-induced cytotoxicity. Finally, we confirm that BG45 alone and in combination with bortezomib trigger significant tumor growth inhibition in vivo in a murine xenograft model of human MM. Our results indicate that HDAC3 represents a promising therapeutic target, and validate a prototype novel HDAC3 inhibitor BG45 in MM. PMID:23913134

  2. Search for novel histone deacetylase inhibitors. Part II: design and synthesis of novel isoferulic acid derivatives.

    PubMed

    Lu, Wen; Wang, Fang; Zhang, Tao; Dong, Jinyun; Gao, Hongping; Su, Ping; Shi, Yaling; Zhang, Jie

    2014-05-01

    Previously, we described the discovery of potent ferulic acid-based histone deacetylase inhibitors (HDACIs) with halogeno-acetanilide as novel surface recognition moiety (SRM). In order to improve the affinity and activity of these HDACIs, twenty seven isoferulic acid derivatives were described herein. The majority of title compounds displayed potent HDAC inhibitory activity. In particular, IF5 and IF6 exhibited significant enzymatic inhibitory activities, with IC50 values of 0.73 ± 0.08 and 0.57 ± 0.16 μM, respectively. Furthermore, these compounds showed moderate antiproliferative activity against human cancer cells. Especially, IF6 displayed promising profile as an antitumor candidate with IC50 value of 3.91 ± 0.97 μM against HeLa cells. The results indicated that these isoferulic acid derivatives could serve as promising lead compounds for further optimization. PMID:24702857

  3. Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors.

    PubMed

    Wang, Fang; Lu, Wen; Zhang, Tao; Dong, Jinyun; Gao, Hongping; Li, Pengfei; Wang, Sicen; Zhang, Jie

    2013-11-15

    Histone deacetylase inhibitors (HDACIs) offer a promising strategy for cancer therapy. The discovery of potent ferulic acid-based HDACIs with hydroxamic acid or 2-aminobenzamide group as zinc binding group was reported. The halogeno-acetanilide was introduced as novel surface recognition moiety (SRM). The majority of title compounds displayed potent HDAC inhibitory activity. In particular, FA6 and FA16 exhibited significant enzymatic inhibitory activities, with IC50 values of 3.94 and 2.82 μM, respectively. Furthermore, these compounds showed moderate antiproliferative activity against a panel of human cancer cells. FA17 displayed promising profile as an antitumor candidate. The results indicated that these ferulic acid derivatives could serve as promising lead compounds for further optimization. PMID:24095016

  4. Inhibition of HDAC2 Protects the Retina From Ischemic Injury

    PubMed Central

    Fan, Jie; Alsarraf, Oday; Dahrouj, Mohammad; Platt, Kenneth A.; Chou, C. James; Rice, Dennis S.; Crosson, Craig E.

    2013-01-01

    Purpose. Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. Methods. Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2+/− mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. Results. Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2+/− mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2+/− mice exhibit significantly less retinal degeneration than wild-type mice. Conclusions. This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury. PMID:23696608

  5. Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies.

    PubMed

    Matthews, Geoffrey M; Mehdipour, Parinaz; Cluse, Leonie A; Falkenberg, Katrina J; Wang, Eric; Roth, Mareike; Santoro, Fabio; Vidacs, Eva; Stanley, Kym; House, Colin M; Rusche, James R; Vakoc, Christopher R; Zuber, Johannes; Minucci, Saverio; Johnstone, Ricky W

    2015-11-19

    Histone deacetylase (HDAC) inhibitors (HDACis) have demonstrated activity in hematological and solid malignancies. Vorinostat, romidepsin, belinostat, and panobinostat are Food and Drug Administration-approved for hematological malignancies and inhibit class II and/or class I HDACs, including HDAC1, 2, 3, and 6. We combined genetic and pharmacological approaches to investigate whether suppression of individual or multiple Hdacs phenocopied broad-acting HDACis in 3 genetically distinct leukemias and lymphomas. Individual Hdacs were depleted in murine acute myeloid leukemias (MLL-AF9;Nras(G12D); PML-RARα acute promyelocytic leukemia [APL] cells) and Eµ-Myc lymphoma in vitro and in vivo. Strikingly, Hdac3-depleted cells were selected against in competitive assays for all 3 tumor types. Decreased proliferation following Hdac3 knockdown was not prevented by BCL-2 overexpression, caspase inhibition, or knockout of Cdkn1a in Eµ-Myc lymphoma, and depletion of Hdac3 in vivo significantly reduced tumor burden. Interestingly, APL cells depleted of Hdac3 demonstrated a more differentiated phenotype. Consistent with these genetic studies, the HDAC3 inhibitor RGFP966 reduced proliferation of Eµ-Myc lymphoma and induced differentiation in APL. Genetic codepletion of Hdac1 with Hdac2 was pro-apoptotic in Eµ-Myc lymphoma in vitro and in vivo and was phenocopied by the HDAC1/2-specific agent RGFP233. This study demonstrates the importance of HDAC3 for the proliferation of leukemia and lymphoma cells, suggesting that HDAC3-selective inhibitors could prove useful for the treatment of hematological malignancies. Moreover, our results demonstrate that codepletion of Hdac1 with Hdac2 mediates a robust pro-apoptotic response. Our integrated genetic and pharmacological approach provides important insights into the individual or combinations of HDACs that could be prioritized for targeting in a range of hematological malignancies. PMID:26447190

  6. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase.

    PubMed

    Huang, Wei-Jan; Chen, Ching-Chow; Chao, Shi-Wei; Lee, Shoei-Sheng; Hsu, Fen-Lin; Lu, Yeh-Lin; Hung, Ming-Fang; Chang, Chung-I

    2010-04-01

    Histone deacetylase (HDAC) inhibitors are regarded as promising therapeutics for the treatment of cancer. All reported HDAC inhibitors contain three pharmacophoric features: a zinc-chelating group, a hydrophobic linker, and a hydrophobic cap for surface recognition. In this study we investigated the effectiveness of osthole, a hydrophobic Chinese herbal compound, as the surface recognition cap in hydroxamate-based compounds as inhibitors of HDAC. Nine novel osthole-based N-hydroxycinnamides were synthesized and screened for enzyme inhibition activity. Compounds 9 d, 9 e, 9 g exhibited inhibitory activities (IC(50)=24.5, 20.0, 19.6 nM) against nuclear HDACs in HeLa cells comparable to that of suberoylanilide hydroxamic acid (SAHA; IC(50)=24.5 nM), a potent inhibitor clinically used for the treatment of cutaneous T-cell lymphoma (CTCL). While compounds 9 d and 9 e showed SAHA-like activity towards HDAC1 and HDAC6, compound 9 g was more selective for HDAC1. Compound 9 d exhibited the best cellular effect, which was comparable to that of SAHA, of enhancing acetylation of either alpha-tubulin or histone H3. Molecular docking analysis showed that the osthole moiety of compound 9 d may interact with the same hydrophobic surface pocket exploited by SAHA and it may be modified to provide class-specific selectivity. These results suggest that osthole is an effective hydrophobic cap when incorporated into N-hydroxycinnamide-derived HDAC inhibitors. PMID:20209563

  7. ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer.

    PubMed

    Napoli, Marco; Venkatanarayan, Avinashnarayan; Raulji, Payal; Meyers, Brooke A; Norton, William; Mangala, Lingegowda S; Sood, Anil K; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Vin, Harina; Duvic, Madeleine; Tetzlaff, Michael B; Curry, Jonathan L; Rook, Alain H; Abbas, Hussein A; Coarfa, Cristian; Gunaratne, Preethi H; Tsai, Kenneth Y; Flores, Elsa R

    2016-06-13

    ΔNp63 is an oncogenic member of the p53 family and acts to inhibit the tumor-suppressive activities of the p53 family. By performing a chemical library screen, we identified histone deacetylase inhibitors (HDACi) as agents reducing ΔNp63 protein stability through the E3 ubiquitin ligase, Fbw7. ΔNp63 inhibition decreases the levels of its transcriptional target, DGCR8, and the maturation of let-7d and miR-128, which we found to be critical for HDACi function in vitro and in vivo. Our work identified Fbw7 as a predictive marker for HDACi response in squamous cell carcinomas and lymphomas, and unveiled let-7d and miR-128 as specific targets to bypass tumor resistance to HDACi treatment. PMID:27300436

  8. Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells.

    PubMed

    Baldan, Federica; Mio, Catia; Lavarone, Elisa; Di Loreto, Carla; Puglisi, Fabio; Damante, Giuseppe; Puppin, Cinzia

    2015-05-01

    Studies on stem cell differentiation led to the identification of paused genes, characterized by the contemporary presence of both activator and repressor epigenetic markers (bivalent marking). TXNIP is an oncosuppressor gene the expression of which was reduced in breast cancer. In the present study, we evaluated whether the concept of epigenetic bivalent marking can be applied to TXNIP gene in breast cancer cells. Using chromatin immunoprecipitation (ChIP), three histone modifications were investigated: two associated with transcriptional activation, lysines 9-14 acetylation of H3 histone (H3K9K14ac) and lysine 4 trimethylation of H3 histone (H3K4me3), and one associated with transcriptional silencing, lysine 27 trimethylation of H3 histone (H3K27me3). According to the bivalent marking model, TXNIP gene appears to be paused in MDA157 cells (markers of active and repressed transcription are present), but are definitively silenced in MDA468 cells (presence of only markers of transcription repression). This was proven by evaluating TXNIP mRNA and protein levels after the treatment of cell lines with a histone deacetylase inhibitor (SAHA) and a poly-ADP-ribose polymerases inhibitor (PJ34). In MDA157 cells, SAHA and PJ34 showed a synergistic effect: a large increment was observed in TXNIP mRNA and protein levels. By contrast, in MDA468 cells, synergy between the two compounds was not observed. Therefore, the pausing epigenetic signature was permissive for synergy between SAHA and PJ34 on TXNIP gene expression. The synergy between SAHA and PJ34 on TXNIP expression was associated with variation in cell viability and apoptosis. In MDA157 cells, but not in MDA468 cells, combined treatment of SAHA and PJ34 induced a decrease in cell viability and an increase of apoptosis. Thus, our data support the hypothesis that TXNIP is an effective target for the treatment of breast cancer. PMID:25812606

  9. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer. PMID:25781604

  10. Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation

    PubMed Central

    Kelkar, Madhura G.; Senthilkumar, Kalimuthu; Jadhav, Smita; Gupta, Sudeep; Ahn, Beyong-Cheol; De, Abhijit

    2016-01-01

    The aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) has raised the possibility of using targeted radioiodide therapy. Here we investigate modulation of endogenous, functional NIS expression by histone deacetylase inhibitors (HDACi) in vitro and in vivo. Luciferase reporter based initial screening of six different HDACi shows 2–10 fold enhancement of NIS promoter activity in majority of the cell types tested. As a result of drug treatment, endogenous NIS transcript and protein shows profound induction in BC cells. To get an insight on the mechanism of such transcriptional activation, role of Stat4, CREB and other transcription factors are revealed by transcription factor profiling array. Further, NIS-mediated intracellular iodide uptake also enhances substantially (p < 0.05) signifying functional relevance of the transcriptional modulation strategy. Gamma camera imaging confirms 30% higher uptake in VPA or NaB treated BC tumor xenograft. Corroborating with such functional impact of NIS, significant reduction in cell survival (p < 0.005) is observed in VPA, NaB or CI994 drug and 131I combination treatment in vivo indicating effective radioablation. Thus, for the first time this study reveals the mechanistic basis and demonstrates functional relevance of HDACi pre-treatment strategy in elevating NIS gene therapy approach for BC management in clinic. PMID:26777440

  11. The thioacetate-ω(γ-lactam carboxamide) HDAC inhibitor ST7612AA1 as HIV-1 latency reactivation agent.

    PubMed

    Badia, Roger; Grau, Judith; Riveira-Muñoz, Eva; Ballana, Ester; Giannini, Giuseppe; Esté, José A

    2015-11-01

    Antiretroviral therapy (ART) is unable to cure HIV infection. The ability of HIV to establish a subset of latent infected CD4(+) T cells, which remain undetectable to the immune system, becomes a major roadblock to achieve viral eradication. Histone deacetylase inhibitors (HDACi) have been shown to potently induce the reactivation of latent HIV. Here, we show that a new thiol-based HDACi, the thioacetate-ω(γ-lactam carboxamide) derivative ST7612AA1, is a potent inducer of HIV reactivation. We evaluated HIV reactivation activity of ST7612AA1 compared to panobinostat (PNB), romidepsin (RMD) and vorinostat (VOR) in cell culture models of HIV-1 latency, in latently infected primary CD4(+) T lymphocytes and in PBMCs from HIV(+) patients. ST7612AA1 potently induced HIV-1 reactivation at submicromolar concentrations with comparable potency to panobinostat or superior to vorinostat. The presence of known antiretrovirals did not affect ST7612AA1-induced reactivation and their activity was not affected by ST7612AA1. Cell proliferation and cell activation were not affected by ST7612AA1, or any other HDACi used. In conclusion, our results indicate that ST7612AA1 is a potent activator of latent HIV and that reactivation activity of ST7612AA1 is exerted without activation or proliferation of CD4(+) T cells. ST7612AA1 is a suitable candidate for further studies of HIV reactivation strategies and potential new therapies to eradicate the viral reservoirs. PMID:26348004

  12. Protective Effects of Valproic Acid, a Histone Deacetylase Inhibitor, against Hyperoxic Lung Injury in a Neonatal Rat Model

    PubMed Central

    Cetinkaya, Merih; Cansev, Mehmet; Cekmez, Ferhat; Tayman, Cuneyt; Canpolat, Fuat Emre; Kafa, Ilker Mustafa; Yaylagul, Esra Orenlili; Kramer, Boris W.; Sarici, Serdar Umit

    2015-01-01

    Objective Histone acetylation and deacetylation may play a role in the pathogenesis of inflammatory lung diseases. We evaluated the preventive effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on neonatal hyperoxic lung injury. Methods Forty newborn rat pups were randomized in normoxia, normoxia+VPA, hyperoxia and hyperoxia+VPA groups. Pups in the normoxia and normoxia+VPA groups were kept in room air and received daily saline and VPA (30 mg/kg) injections, respectively, while those in hyperoxia and hyperoxia+VPA groups were exposed to 95% O2 and received daily saline and VPA (30 mg/kg) injections for 10 days, respectively. Growth, histopathological, biochemical and molecular biological indicators of lung injury, apoptosis, inflammation, fibrosis and histone acetylation were evaluated. Results VPA treatment during hyperoxia significantly improved weight gain, histopathologic grade, radial alveolar count and lamellar body membrane protein expression, while it decreased number of TUNEL(+) cells and active Caspase-3 expression. Expressions of TGFβ3 and phospho-SMAD2 proteins and levels of tissue proinflammatory cytokines as well as lipid peroxidation biomarkers were reduced, while anti-oxidative enzyme activities were enhanced by VPA treatment. VPA administration also reduced HDAC activity while increasing acetylated H3 and H4 protein expressions. Conclusions The present study shows for the first time that VPA treatment ameliorates lung damage in a neonatal rat model of hyperoxic lung injury. The preventive effect of VPA involves HDAC inhibition. PMID:25938838

  13. AKT activation controls cell survival in response to HDAC6 inhibition.

    PubMed

    Kaliszczak, M; Trousil, S; Ali, T; Aboagye, E O

    2016-01-01

    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3'-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and (18)F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors. PMID:27362804

  14. PP2A Regulates HDAC4 Nuclear Import

    PubMed Central

    Paroni, Gabriela; Cernotta, Nadia; Dello Russo, Claudio; Gallinari, Paola; Pallaoro, Michele; Foti, Carmela; Talamo, Fabio; Orsatti, Laura; Steinkühler, Christian

    2008-01-01

    Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme Cα, Aα, B/PR55α. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import. PMID:18045992

  15. Role of 5′TG3′-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition

    PubMed Central

    Sharma, Ajay; Sinha, Nishant R.; Siddiqui, Saad

    2015-01-01

    Purpose We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5′TG3′-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Methods Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Results Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8–3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4–1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in

  16. Synthesis, Biological Evaluation, and Computer-Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors.

    PubMed

    Zhang, Song; Huang, Weibin; Li, Xiaonan; Yang, Zhicheng; Feng, Binghong

    2015-10-01

    The synthesis and biological evaluation of a novel series of compounds based on suberoylanilide hydroxamic acid (SAHA) had been designed as potential histone deacetylase inhibitors (HDACis). Molecular docking studies indicated that our derivatives had better fitting in the binding sites of HDAC8 than SAHA. Compounds 1-5 were synthesized through the synthetic routes. In biological test, compounds also showed good inhibitory activity in HDAC enzyme assay and more potent growth inhibition in human glioma cell lines (MGR2, U251, and U373). A representative compound, N3F, exhibited better inhibitory effect (HDAC, IC50  = 0.1187 μm; U251, IC50  = 0.8949 μm) and lower toxicity for human normal cells (LO2, IC50  = 172.5 μm and MRC5, IC50  = 213.6 μm) compared with SAHA (HDAC, IC50  = 0.8717 μm; U251, IC50  = 8.938 μm; LO2, IC50  = 86.52 μm and MRC5, IC50  = 81.02 μm). In addition, N3F obviously increased Beclin-1 and Caspase-3 and 9 as well as inhibited Bcl-2 in U251 cells. All of our results indicated that these SAHA cap derivatives could serve as potential lead compounds for further optimization. In addition, N3F and N2E both displayed promising profile as antitumor candidates for the treatment of human glioma. PMID:25763653

  17. Suppression of IL-12p40-related regulatory cytokines by suberoylanilide hydroxamic acid an inhibitor of histone deacetylases.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2016-08-01

    Small molecule inhibitors of histone deacetylases (HDACs) are a new class drugs used in clinical trials for the treatment of various malignancies. Emerging evidence suggest that HDAC inhibitors may also have anti-inflammatory properties, although the molecular mechanisms remain poorly defined. Our study investigates the effect of the HDACs inhibitor suberoylanilide hydroxamic acid (SAHA) on the expression of IL-12p40-related cytokines. For this purpose, human peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. IL-12p40, IL-12p35 and IL-23p19 mRNA was determined at 6 h by qRT-PCR. Cytokine levels were determined in culture supernatants at 6 and 24 h, by ELISA. SAHA significantly inhibited IL-12p40 and IL-23p19 mRNA synthesis and did not change IL-12p35 mRNA transcription. Early at 6 h, we detected significantly decreased IL-12p40 and IL-23, but not IL-12p70 protein production in cultures treated with SAHA. Results also showed that the suppression of IL-12p40-related cytokines was clearly defined at 24 h. However, this suppression was less pronounced regarding IL-12p70. The present study showed that SAHA suppressed the gene expression of IL-23p19 stronger than the expression of IL-12p35, as well as the synthesis of IL-23 compared to that of IL-12p70. We suggest that this inhibitory effect of SAHA may be beneficial during treatment of inflammatory and autoimmune diseases mediated by Th17 immune response. PMID:27240992

  18. Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.

    PubMed

    Sindlinger, Julia; Bierlmeier, Jan; Geiger, Lydia-Christina; Kramer, Katharina; Finkemeier, Iris; Schwarzer, Dirk

    2016-05-01

    Histone deacetylases (HDACs) are key regulators of numerous cellular proteins by removing acetylation marks from modified lysine residues. Peptide-based HDAC probes containing α-aminosuberic acid ω-hydroxamate have been established as useful tools for investigating substrate selectivity and composition of endogenous HDAC complexes in cellular lysates. Here we report a structure-activity study of potential HDAC-probes containing derivatives of the hydroxamate moieties. While most of these probes did not recruit significant amounts of endogenous HDACs from cellular lysates, peptides containing Nε-acetyl-Nε-hydroxy-L-lysine served as HDAC probe. The recruitment efficiency varied between HDACs and was generally lower than that of α-aminosuberic acid ω-hydroxamate probes, but showed a similar global interaction profile. These findings indicate that Nε-acetyl-Nε-hydroxy-L-lysine might be a useful tool for investigations on HDAC complexes and the development of HDAC inhibitors. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27071932

  19. Inhibitors of histone deacetylase as antitumor agents: A critical review.

    PubMed

    Manal, Mohammed; Chandrasekar, M J N; Gomathi Priya, Jeyapal; Nanjan, M J

    2016-08-01

    Histone deacetylase (EC 3.5.1.98 - HDAC) is an amidohydrolase involved in deacetylating the histone lysine residues for chromatin remodeling and thus plays a vital role in the epigenetic regulation of gene expression. Due to its aberrant activity and over expression in several forms of cancer, HDAC is considered as a potential anticancer drug target. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as cell survival, differentiation and apoptosis in tumor cells and thus exhibit anticancer activity. Till date, four drugs, namely Vorinostat (SAHA), Romidepsin (FK-228), Belinostat (PXD-101) and Panobinostat (LBH-589) have been granted FDA approval for cancer and several HDAC inhibitors are currently in various phases of clinical trials, either as monotherapy and/or in combination with existing/novel anticancer agents. Regardless of this, today scientific efforts have fortified the quest for newer and novel HDAC inhibitors that show isoform selectivity. This review focuses on the chemistry of the molecules of two classes of HDAC inhibitors, namely short chain fatty acids and hydroxamic acids, investigated so far as novel therapeutic agents for cancer. PMID:27239721

  20. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Kramer, Lora; Fisher, Richard I; Friedberg, Jonathan; Dent, Paul; Grant, Steven

    2010-06-01

    Interactions between histone deacetylase inhibitors (HDACIs) and the novel proteasome inhibitor carfilzomib (CFZ) were investigated in GC- and activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells. Coadministration of subtoxic or minimally toxic concentrations of CFZ) with marginally lethal concentrations of HDACIs (vorinostat, SNDX-275, or SBHA) synergistically increased mitochondrial injury, caspase activation, and apoptosis in both GC- and ABC-DLBCL cells. These events were associated with Jun NH2-terminal kinase (JNK) and p38MAPK activation, abrogation of HDACI-mediated nuclear factor-kappaB activation, AKT inactivation, Ku70 acetylation, and induction of gammaH2A.X. Genetic or pharmacologic JNK inhibition significantly diminished CFZ/vorinostat lethality. CFZ/vorinostat induced pronounced lethality in 3 primary DLBCL specimens but minimally affected normal CD34(+) hematopoietic cells. Bortezomib-resistant GC (SUDHL16) and ABC (OCI-LY10) cells exhibited partial cross-resistance to CFZ. However, CFZ/vorinostat dramatically induced resistant cell apoptosis, accompanied by increased JNK activation and gammaH2A.X expression. Finally, subeffective vorinostat doses markedly increased CFZ-mediated tumor growth suppression and apoptosis in a murine xenograft OCI-LY10 model. These findings indicate that HDACIs increase CFZ activity in GC- and ABC-DLBCL cells sensitive or resistant to bortezomib through a JNK-dependent mechanism in association with DNA damage and inhibition of nuclear factor-kappaB activation. Together, they support further investigation of strategies combining CFZ and HDACIs in DLBCL. PMID:20233973

  1. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo

    PubMed Central

    Dasmahapatra, Girija; Lembersky, Dmitry; Kramer, Lora; Fisher, Richard I.; Friedberg, Jonathan; Dent, Paul

    2010-01-01

    Interactions between histone deacetylase inhibitors (HDACIs) and the novel proteasome inhibitor carfilzomib (CFZ) were investigated in GC- and activated B-cell–like diffuse large B-cell lymphoma (ABC-DLBCL) cells. Coadministration of subtoxic or minimally toxic concentrations of CFZ) with marginally lethal concentrations of HDACIs (vorinostat, SNDX-275, or SBHA) synergistically increased mitochondrial injury, caspase activation, and apoptosis in both GC- and ABC-DLBCL cells. These events were associated with Jun NH2-terminal kinase (JNK) and p38MAPK activation, abrogation of HDACI-mediated nuclear factor-κB activation, AKT inactivation, Ku70 acetylation, and induction of γH2A.X. Genetic or pharmacologic JNK inhibition significantly diminished CFZ/vorinostat lethality. CFZ/vorinostat induced pronounced lethality in 3 primary DLBCL specimens but minimally affected normal CD34+ hematopoietic cells. Bortezomib-resistant GC (SUDHL16) and ABC (OCI-LY10) cells exhibited partial cross-resistance to CFZ. However, CFZ/vorinostat dramatically induced resistant cell apoptosis, accompanied by increased JNK activation and γH2A.X expression. Finally, subeffective vorinostat doses markedly increased CFZ-mediated tumor growth suppression and apoptosis in a murine xenograft OCI-LY10 model. These findings indicate that HDACIs increase CFZ activity in GC- and ABC-DLBCL cells sensitive or resistant to bortezomib through a JNK-dependent mechanism in association with DNA damage and inhibition of nuclear factor-κB activation. Together, they support further investigation of strategies combining CFZ and HDACIs in DLBCL. PMID:20233973

  2. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma. PMID:27267806

  3. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  4. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.

    PubMed

    Wang, Qun; Tan, Rong; Zhu, Xin; Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-03-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance. PMID:26848526

  5. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression

    PubMed Central

    Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-01-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance. PMID:26848526

  6. Optimization of a series of potent and selective ketone histone deacetylase inhibitors.

    PubMed

    Pescatore, Giovanna; Kinzel, Olaf; Attenni, Barbara; Cecchetti, Ottavia; Fiore, Fabrizio; Fonsi, Massimiliano; Rowley, Michael; Schultz-Fademrecht, Carsten; Serafini, Sergio; Steinkühler, Christian; Jones, Philip

    2008-10-15

    Histone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy and the first generation HDAC inhibitors are currently in the clinic. Herein we describe the optimization of a series of ketone small molecule HDAC inhibitors leading to potent and selective class I HDAC inhibitors with good dog PK. PMID:18809328

  7. HDAC8, A Potential Therapeutic Target for the Treatment of Malignant Peripheral Nerve Sheath Tumors (MPNST)

    PubMed Central

    Lopez, Gonzalo; Bill, Kate Lynn J.; Bid, Hemant Kumar; Braggio, Danielle; Constantino, Dylan; Prudner, Bethany; Zewdu, Abeba; Batte, Kara; Lev, Dina; Pollock, Raphael E.

    2015-01-01

    Introduction HDAC isoform-specific inhibitors may improve the therapeutic window while limiting toxicities. Developing inhibitors against class I isoforms poses difficulties as they share high homology among their catalytic sites; however, HDAC8 is structurally unique compared to other class I isoforms. HDAC8 inhibitors are novel compounds and have affinity for class I HDAC isoforms demonstrating anti-cancer effects; little is known about their activity in malignant peripheral nerve sheath tumors (MPNST). Recently, we demonstrated anti-MPNST efficacy of HDAC8i in human and murine-derived MPNST pre-clinical models; we now seek to consider the potential therapeutic inhibition of HDAC8 in MPNST. Methods Four Human MPNST cell lines, a murine-derived MPNST cell line, and two HDAC8 inhibitors (PCI-34051, PCI-48012; Pharmacyclics, Inc. Sunnyvale, CA) were studied. Proliferation was determined using MTS and clonogenic assays. Effects on cell cycle were determined via PI FACS analysis; effects on apoptosis were determined using Annexin V-PI FACS analysis and cleaved caspase 3 expression. In vivo growth effects of HDAC8i were evaluated using MPNST xenograft models. 2D gel electrophoresis and mass spectrometry were used to identify potential HDAC8 deacetylation substrates. Results HDAC8i induced cell growth inhibition and marked S-phase cell cycle arrest in human and murine-derived MPNST cells. Relative to control, HDAC8i induced apoptosis in both human and murine-derived MPNST cells. HDAC8i exhibited significant effects on MPNST xenograft growth (p=0.001) and tumor weight (p=0.02). Four potential HDAC8 substrate targets were identified using a proteomic approach: PARK7, HMGB1, PGAM1, PRDX6. Conclusions MPNST is an aggressive sarcoma that is notoriously therapy-resistant, hence the urgent need for improved anti-MPNST therapies. HDAC8 inhibition may be useful for MPNST by improving efficacy while limiting toxicities as compared to pan-HDACis. PMID:26200462

  8. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma.

    PubMed

    Kikuchi, S; Suzuki, R; Ohguchi, H; Yoshida, Y; Lu, D; Cottini, F; Jakubikova, J; Bianchi, G; Harada, T; Gorgun, G; Tai, Y-T; Richardson, P G; Hideshima, T; Anderson, K C

    2015-09-01

    Histone deacetylase (HDAC) inhibitors have been extensively investigated as therapeutic agents in cancer. However, the biological role of class IIa HDACs (HDAC4, 5, 7 and 9) in cancer cells, including multiple myeloma (MM), remains unclear. Recent studies show HDAC4 interacts with activating transcription factor 4 (ATF4) and inhibits activation of endoplasmic reticulum (ER) stress-associated proapoptotic transcription factor C/EBP homologous protein (CHOP). In this study, we hypothesized that HDAC4 knockdown and/or inhibition could enhance apoptosis in MM cells under ER stress condition by upregulating ATF4, followed by CHOP. HDAC4 knockdown showed modest cell growth inhibition; however, it markedly enhanced cytotoxicity induced by either tunicamycin or carfilzomib (CFZ), associated with upregulating ATF4 and CHOP. For pharmacological inhibition of HDAC4, we employed a novel and selective class IIa HDAC inhibitor TMP269, alone and in combination with CFZ. As with HDAC4 knockdown, TMP269 significantly enhanced cytotoxicity induced by CFZ in MM cell lines, upregulating ATF4 and CHOP and inducing apoptosis. Conversely, enhanced cytotoxicity was abrogated by ATF4 knockdown, confirming that ATF4 has a pivotal role mediating cytotoxicity in this setting. These results provide the rationale for novel treatment strategies combining class IIa HDAC inhibitors with ER stressors, including proteasome inhibitors, to improve patient outcome in MM. PMID:25801913

  9. The Role of HDACs as Leukemia Therapy Targets using HDI

    PubMed Central

    Ahmadzadeh, Ahmad; Khodadi, Elahe; Shahjahani, Mohammad; Bertacchini, Jessika; Vosoughi, Tina; Saki, Najmaldin

    2015-01-01

    Histone deacetylases (HDACs) are the enzymes causing deacetylation of histone and non-histone substrates. Histone deacetylase inhibitors (HDIs) are a family of drugs eliminating the effect of HDACs in malignant cells via inhibition of HDACs. Due to extensive effects upon gene expression through interference with fusion genes and transcription factors, HDACs cause proliferation and migration of malignant cells, inhibiting apoptosis in these cells via tumor suppressor genes. Over expression evaluation of HDACs in leukemias may be a new approach for diagnosis of leukemia, which can present new targets for leukemia therapy. HDIs inhibit HDACs, increase acetylation in histones, cause up- or down regulation in some genes and result in differentiation, cell cycle arrest and apoptosis induction in malignant cells via cytotoxic effects. Progress in identification of new HDIs capable of tracking several targets in the cell can result in novel achievements in treatment and increase survival in patients. In this review, we examine the role of HDACs as therapeutic targets in various types of leukemia as well as the role of HDIs in inhibition of HDACs for treatment of these malignancies. PMID:26865932

  10. Effects of downregulated HDAC6 expression on the proliferation of lung cancer cells

    SciTech Connect

    Kamemura, Kazuo; Ito, Akihiro Shimazu, Tadahiro; Matsuyama, Akihisa; Maeda, Satoko; Yao, Tso-Pang; Horinouchi, Sueharu; Khochbin, Saadi; Yoshida, Minoru

    2008-09-12

    Histone deacetylase 6 (HDAC6) is a multifunctional, cytosolic protein deacetylase that primarily acts on {alpha}-tubulin. Here we report that stable knockdown of HDAC6 expression causes a decrease in the steady-state level of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor {alpha}, in A549 lung cancer cells. The decreased levels of in EGFR in HDAC6-knockdown cells, which correlated with increased acetylation of microtubules, were due to increased turnover of EGFR protein. Despite the decrease in EGFR levels, A549 cells lacking functional HDAC6 appeared to grow normally, probably due to increased expression of extracellular signal-regulated kinases 1 and 2. Indeed, HDAC6-knockdown cells were more sensitive than control cells to the MEK inhibitor U0126. These results suggest that HDAC6 inhibitors combined with inhibitors of growth factor signaling may be useful as cancer therapy.

  11. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  12. Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo

    PubMed Central

    Bosisio, Daniela; Vulcano, Marisa; Del Prete, Annalisa; Sironi, Marina; Salvi, Valentina; Salogni, Laura; Riboldi, Elena; Leoni, Flavio; Dinarello, Charles A.; Girolomoni, Giampiero; Sozzani, Silvano

    2008-01-01

    Histone deacetylase (HDAC) inhibitors are small molecules inducing cell-cycle arrest, differentiation, and apoptosis, currently undergoing clinical trials as anticancer drugs. In addition, emerging evidence suggests HDAC inhibitors may have anti-inflammatory and immunomodulatory properties as well, although the molecular mechanisms remain poorly defined. Given the central role of dendritic cells (DC) in the induction and maintenance of the inflammatory and immune response, we investigated the effects of HDAC inhibitors on the maturation and activation of human monocyte-derived DC in the presence of LPS and IFN-γ. Our results show that the production of TH1- and TH17-inducing cytokines, namely IL-12 and IL-23, was inhibited by trichostatin A (72% and 52%, respectively) and suberoylanilide hydroxamic acid (86% and 83%). Strikingly, HDAC inhibitors were effective if added simultaneously as well as after the proinflammatory challenge, and their effect was not associated to a reduction of expression or function of LPS/IFN-γ receptors. These findings were confirmed in two different murine models. In addition, HDAC inhibitors selectively blocked the production of TH1-attracting chemokines CXCL9, CXCL10, and CXCL11. The reduction of TH1- and TH17-inducing cytokines as well as TH1-attracting chemokines may represent relevant mechanisms through which HDAC inhibitors at nonproapoptotic doses exert their immunomodulatory properties. PMID:18780875

  13. Combined autophagy and HDAC inhibition

    PubMed Central

    Mahalingam, Devalingam; Mita, Monica; Sarantopoulos, John; Wood, Leslie; Amaravadi, Ravi K; Davis, Lisa E; Mita, Alain C; Curiel, Tyler J; Espitia, Claudia M; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2014-01-01

    We previously reported that inhibition of autophagy significantly augmented the anticancer activity of the histone deacetylase (HDAC) inhibitor vorinostat (VOR) through a cathepsin D-mediated mechanism. We thus conducted a first-in-human study to investigate the safety, preliminary efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and VOR in patients with advanced solid tumors. Of 27 patients treated in the study, 24 were considered fully evaluable for study assessments and toxicity. Patients were treated orally with escalating doses of HCQ daily (QD) (d 2 to 21 of a 21-d cycle) in combination with 400 mg VOR QD (d one to 21). Treatment-related adverse events (AE) included grade 1 to 2 nausea, diarrhea, fatigue, weight loss, anemia, and elevated creatinine. Grade 3 fatigue and/or myelosuppression were observed in a minority of patients. Fatigue and gastrointestinal AE were dose-limiting toxicities. Six-hundred milligrams HCQ and 400 mg VOR was established as the maximum tolerated dose and recommended phase II regimen. One patient with renal cell carcinoma had a confirmed durable partial response and 2 patients with colorectal cancer had prolonged stable disease. The addition of HCQ did not significantly impact the PK profile of VOR. Treatment-related increases in the expression of CDKN1A and CTSD were more pronounced in tumor biopsies than peripheral blood mononuclear cells. Based on the safety and preliminary efficacy of this combination, additional clinical studies are currently being planned to further investigate autophagy inhibition as a new approach to increase the efficacy of HDAC inhibitors. PMID:24991835

  14. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity.

    PubMed

    Rawat, Varun; Goux, Warren; Piechaczyk, Marc; D'Mello, Santosh R

    2016-03-01

    Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington's disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell

  15. p21 Downregulation is an important component of PAX3/FKHR oncogenicity and its reactivation by HDAC inhibitors enhances combination treatment.

    PubMed

    Hecker, R M; Amstutz, R A; Wachtel, M; Walter, D; Niggli, F K; Schäfer, B W

    2010-07-01

    A number of drugs developed against cancer-specific molecular targets have been shown to offer survival benefits alone or in combination with standard treatments, especially for those cases in which tumor pathogenesis is dominated by a single molecular abnormality. One example for such a tumor type is alveolar rhabdomyosarcoma (aRMS), which is characterized by a specific translocation creating the oncogenic PAX3/FKHR transcription factor, believed to be the molecular basis of the disease. Recently, we were able to show that the small molecule inhibitor PKC412 (midostaurin) shows strong antitumor activity against aRMS by reducing the transcriptional activity of PAX3/FKHR. In this study, we screened for combination strategies that are superior to PKC412-only treatment and found that the combination of PKC412 with histone deacetylase inhibitors like valproic acid (VPA) synergistically induced apoptosis resulting in suppressed aRMS tumor growth in vivo. We provide evidence that the antitumor effect on combination treatment is achieved by VPA-induced reactivation of p21, which is downregulated in aRMS cells by destabilization of the transcriptional regulator EGR1 by PAX3/FKHR. Our study highlights a possible mechanism behind the increased efficacy and indicates that different arms of PAX3/FKHR oncogenicity can be exploited therapeutically by the specific combination of drugs to increase their therapeutic potential. PMID:20453878

  16. HDAC3 regulates stability of estrogen receptor α mRNA

    SciTech Connect

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn

    2013-03-08

    Highlights: ► HDAC inhibitors decrease the stability of ERα mRNA in MCF-7 cells. ► HDAC3 is involved in maintaining ERα mRNA stability in MCF-7 cells. ► ERα mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ERα-positive MCF-7 cells. ► HDAC3 specific inhibitor will be one of new drugs for ERα-positive breast cancers. -- Abstract: Estrogen receptor alpha (ERα) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ERα expression in ERα-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ERα mRNA, and that knockdown of HDAC3 decreases the stability of ERα mRNA and suppresses estrogen-dependent proliferation of ERα-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ERα-positive tumors are higher than those in ERα-negative tumors, thus suggesting that HDAC3 is necessary for ERα mRNA stability, and is involved in the estrogen-dependent proliferation of ERα-positive tumors.

  17. Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression

    PubMed Central

    Suter, Ueli

    2015-01-01

    Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact mechanisms of action remain poorly understood. We have generated a conditional knockout mouse model targeting retinal ganglion cells (RGCs) to investigate specifically the functional role of HDAC1 and HDAC2 in an acute model of optic nerve injury. Our results demonstrate that combined HDAC1 and HDAC2 ablation promotes survival of axotomized RGCs. Based on global gene expression analyses, we identified the p53-PUMA apoptosis-inducing axis to be strongly activated in axotomized mouse RGCs. Specific HDAC1/2 ablation inhibited this apoptotic pathway by impairing the crucial acetylation status of p53 and reducing PUMA expression, thereby contributing to the ensuing enhanced neuroprotection due to HDAC1/2 depletion. HDAC1/2 inhibition and the affected downstream signaling components emerge as specific targets for developing therapeutic strategies in neuroprotection. PMID:26129908

  18. Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties.

    PubMed

    Ximenes, José Christian Machado; Neves, Kelly Rose Tavares; Leal, Luzia Kalyne A M; do Carmo, Marta Regina Santos; Brito, Gerly Anne de Castro; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Ésper Abrão; Viana, Glauce Socorro de Barros

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were

  19. Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties

    PubMed Central

    Ximenes, José Christian Machado; Neves, Kelly Rose Tavares; Leal, Luzia Kalyne A. M.; do Carmo, Marta Regina Santos; Brito, Gerly Anne de Castro; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Ésper Abrão; Viana, Glauce Socorro de Barros

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were

  20. Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor

    PubMed Central

    Sun, Zheng; Feng, Dan; Fang, Bin; Mullican, Shannon E.; You, Seo-Hee; Lim, Hee-Woong; Everett, Logan J.; Nabel, Christopher S.; Li, Yun; Selvakumaran, Vignesh; Won, Kyoung-Jae; Lazar, Mitchell A.

    2013-01-01

    Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight non-enzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors. PMID:24268577

  1. Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6.

    PubMed

    Tsai, Hsin-Da; Wu, Jui-Sheng; Kao, Mei-Han; Chen, Jin-Jer; Sun, Grace Y; Ong, Wei-Yi; Lin, Teng-Nan

    2016-09-01

    Many population-based epidemiological studies have unveiled an inverse correlation between intake of herbal plants and incidence of stroke. C. nutans is a traditional herbal medicine widely used for snake bite, viral infection and cancer in Asian countries. However, its role in protecting stroke damage remains to be studied. Despite of growing evidence to support epigenetic regulation in the pathogenesis and recovery of stroke, a clear understanding of the underlying molecular mechanisms is still lacking. In the present study, primary cortical neurons were subjected to in vitro oxygen-glucose deprivation (OGD)-reoxygenation and hypoxic neuronal death was used to investigate the interaction between C. nutans and histone deacetylases (HDACs). Using pharmacological agents (HDAC inhibitor/activator), loss-of-function (HDAC siRNA) and gain-of-function (HDAC plasmid) approaches, we demonstrated an early induction of HDAC1/2/3/8 and HDAC6 in neurons after OGD insult. C. nutans extract selectively inhibited HDAC1 and HDAC6 expression and attenuated neuronal death. Results of reporter analysis further revealed that C. nutans suppressed HDAC1 and HDAC6 transcription. Besides ameliorating neuronal death, C. nutans also protected astrocytes and endothelial cells from hypoxic-induced cell death. In summary, results support ability for C. nutans to suppress post-hypoxic HDACs activation and mitigate against OGD-induced neuronal death. This study further opens a new avenue for the use of herbal medicines to regulate epigenetic control of brain injury. PMID:27165113

  2. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation

    PubMed Central

    Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.

    2016-01-01

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876

  3. A Potent HDAC Inhibitor, 1-Alaninechlamydocin, from a Tolypocladium sp. Induces G2/M Cell Cycle Arrest and Apoptosis in MIA PaCa-2 Cells

    PubMed Central

    2015-01-01

    The cyclic tetrapeptide 1-alaninechlamydocin was purified from a Great Lakes-derived fungal isolate identified as a Tolypocladium sp. Although the planar structure was previously described, a detailed analysis of its spectroscopic data and biological activity are reported here for the first time. Its absolute configuration was determined using a combination of spectroscopic (1H–1H ROESY, ECD, and X-ray diffraction) and chemical (Marfey’s analysis) methods. 1-Alaninechlamydocin showed potent antiproliferative/cytotoxic activities in a human pancreatic cancer cell line (MIA PaCa-2) at low-nanomolar concentrations (GI50 5.3 nM, TGI 8.8 nM, LC50 22 nM). Further analysis revealed that 1-alaninechlamydocin induced G2/M cell cycle arrest and apoptosis. Similar to other cyclic epoxytetrapeptides, the inhibitory effects of 1-alaninechlamydocin are proposed to be produced primarily via inhibition of histone deacetylase (HDAC) activity. PMID:24999749

  4. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity

    SciTech Connect

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2010-10-18

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  5. HDAC6 Regulates Mitochondrial Transport in Hippocampal Neurons

    PubMed Central

    Chen, Sigeng; Owens, Geoffrey C.; Makarenkova, Helen; Edelman, David B.

    2010-01-01

    Background Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We have shown previously that the neuromodulator serotonin increases mitochondrial movement in hippocampal neurons via the Akt-GSK3β signaling pathway. Here, we demonstrate a role for HDAC6 in this signaling pathway. Methodology/Principal Findings We found that the presence of tubacin, a specific HDAC6 inhibitor, dramatically enhanced mitochondrial movement in hippocampal neurons, whereas niltubacin, an inactive tubacin analog, had no effect. Compared to control cultures, higher levels of acetylated tubulin were found in neurons treated with tubacin, and more kinesin-1 was associated with mitochondria isolated from these neurons. Inhibition of GSK3β decreased cytoplasmic deacetylase activity and increased tubulin acetylation, whereas blockade of Akt, which phosphorylates and down-regulates GSK3β, increased cytoplasmic deacetylase activity and decreased tubulin acetylation. Concordantly, the administration of 5-HT, 8-OH-DPAT (a specific 5-HT1A receptor agonist), or fluoxetine (a 5-HT reuptake inhibitor) increased tubulin acetylation. GSK3β was found to co-localize with HDAC6 in hippocampal neurons, and inhibition of GSK3β resulted in decreased binding of antibody to phosphoserine-22, a potential GSK3β phosphorylation site in HDAC6. GSK3β may therefore regulate HDAC6 activity by phosphorylation. Conclusions/Significance This study demonstrates that HDAC6 plays an important role in the modulation of mitochondrial transport. The link between HDAC6 and GSK3β, established here, has important implications for our understanding of neurodegenerative disorders. In particular

  6. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells

    PubMed Central

    LeBoeuf, Matthew; Terrell, Anne; Trivedi, Sohum; Sinha, Satrajit; Epstein, Jonathan A.; Olson, Eric N.; Morrisey, Edward E.; Millar, Sarah E.

    2010-01-01

    Summary Epidermal and hair follicle development from surface ectodermal progenitor cells require coordinated changes in gene expression. Histone deacetylases alter gene expression programs through modification of chromatin and transcription factors. We find that deletion of ectodermal Hdac1 and Hdac2 results in dramatic failure of hair follicle specification and epidermal proliferation and stratification, phenocopying loss of the key ectodermal transcription factor p63. While expression of p63 and its positively regulated basal cell targets is maintained in Hdac1/2 deficient ectoderm, targets of p63-mediated repression, including p21, 14-3-3σ and p16/INK4a, are ectopically expressed, and HDACs bind and are active at their promoter regions in normal undifferentiated keratinocytes. Mutant embryos display increased levels of acetylated p53, which opposes p63 functions, and p53 is required for HDAC inhibitor-mediated p21 expression in keratinocytes. Our data identify critical requirements for HDAC1/2 in epidermal development, and indicate that HDAC1/2 directly mediate repressive functions of p63, and suppress p53 activity. PMID:21093383

  7. HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells

    PubMed Central

    Tang, Xiaomei; Xia, Yong; He, Guozhen; Min, Zhiqun; Li, Chun; Xiong, Shiqiu; Shi, Zhi; Lu, Yongjian; Yuan, Zhongmin

    2016-01-01

    Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5′-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at −149 to −3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1. PMID:26734995

  8. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription.

    PubMed

    Lin, Tzer-Bin; Hsieh, Ming-Chun; Lai, Cheng-Yuan; Cheng, Jen-Kun; Wang, Hsueh-Hsiao; Chau, Yat-Pang; Chen, Gin-Den; Peng, Hsien-Yu

    2016-04-01

    Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons. PMID:26732138

  9. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  10. Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation.

    PubMed

    Gaur, Vidhi; Connor, Timothy; Sanigorski, Andrew; Martin, Sheree D; Bruce, Clinton R; Henstridge, Darren C; Bond, Simon T; McEwen, Kevin A; Kerr-Bayles, Lyndal; Ashton, Trent D; Fleming, Cassandra; Wu, Min; Pike Winer, Lisa S; Chen, Denise; Hudson, Gregg M; Schwabe, John W R; Baar, Keith; Febbraio, Mark A; Gregorevic, Paul; Pfeffer, Frederick M; Walder, Ken R; Hargreaves, Mark; McGee, Sean L

    2016-09-13

    Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase) transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity. PMID:27626651

  11. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma.

    PubMed

    Wang, Zhihao; Tang, Fang; Hu, Pengchao; Wang, Ying; Gong, Jun; Sun, Shaoxing; Xie, Conghua

    2016-07-01

    Histone deacetylases (HDACs) are promising targets for cancer therapy, and first-generation HDAC inhibitors are currently in clinical trials for the treatment of cancer patients. HDAC6, which is a key regulator of many signaling pathways that are linked to cancer, has recently emerged as an attractive target for the treatment of cancer. In the present study, HDAC6 was found to be overexpressed in lung adenocarcinoma cell lines and was negatively correlated with the prognosis of patients with lung adenocarcinoma. Overexpression of HDAC6 promoted the proliferation of lung adenocarcinoma cells in a deacetylase activity-dependent manner. HDAC6 overexpression conferred resistance to gefitinib via the stabilization of epidermal growth factor receptor (EGFR). The inhibition of HDAC6 by CAY10603, a potent and selective inhibitor of HDAC6, inhibited the proliferation of lung adenocarcinoma cells and induced apoptosis. CAY10603 downregulated the levels of EGFR protein, which in turn inhibited activation of the EGFR signaling pathway. Moreover, CAY10603 synergized with gefitinib to induce apoptosis of the lung adenocarcinoma cell lines via the destabilization of EGFR. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of lung adenocarcinoma. PMID:27221381

  12. Pyridoxine hydroxamic acids as novel HIV-integrase inhibitors.

    PubMed

    Stranix, Brent R; Wu, Jinzi J; Milot, Guy; Beaulieu, Françis; Bouchard, Jean-Emanuel; Gouveia, Kristine; Forte, André; Garde, Seema; Wang, Zhigang; Mouscadet, Jean-François; Delelis, Olivier; Xiao, Yong

    2016-02-15

    A series of pyridoxine hydroxamic acid analog bearing a 5-aryl-spacers were synthesized. Evaluation of these novel HIV integrase complex inhibitors revealed compounds with high potency against wild-type HIV virus. PMID:26826732

  13. Improved Histone Deacetylase Inhibitors as Therapeutics for the Neurodegenerative Disease Friedreich's Ataxia: A New Synthetic Route

    PubMed Central

    Xu, Chunping; Soragni, Elisabetta; Jacques, Vincent; Rusche, James R.; Gottesfeld, Joel M.

    2011-01-01

    Friedreich's ataxia (FRDA) is caused by transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin. Based on the hypothesis that the acetylation state of the histone proteins is responsible for gene silencing in FRDA, previous work in our lab identified a first generation of HDAC inhibitors (pimelic o-aminobenzamides), which increase FXN mRNA in lymphocytes from FRDA patients. Importantly, these compounds also function in a FRDA mouse model to increase FXN mRNA levels in the brain and heart. While the first generation of HDAC inhibitors hold promise as potential therapeutics for FRDA, they have two potential problems: less than optimal brain penetration and metabolic instability in acidic conditions. Extensive optimization focusing on modifying the left benzene ring, linker and the right benzene ring lead to a novel class of HDAC inhibitors that have optimized pharmacological properties (increased brain penetration and acid stability) compared to the previous HDAC inhibitors. This article will describe the chemical synthesis and pharmacological properties of these new HDAC inhibitors.

  14. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2

    PubMed Central

    Ma, Taotao; Huang, Cheng; Meng, Xiaoming; Li, Xiaofeng; Zhang, Yilong; Ji, Shuai; Li, Jun; Ye, Min; Liang, Hong

    2016-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy. PMID:27145860

  15. Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability

    PubMed Central

    Chao, Min-Wu; Chu, Po-Chen; Chuang, Hsiao-Ching; Shen, Fang-Hsiu; Chou, Chih-Chien; Hsu, En-Chi; Himmel, Lauren E.; Huang, Han-Li; Tu, Huang-Ju; Kulp, Samuel K.; Teng, Che-Ming; Chen, Ching-Shih

    2016-01-01

    Here, we report a novel non-epigenetic function of histone deacetylase (HDAC) 8 in activating cancer stem cell (CSC)-like properties in breast cancer cells by enhancing the stability of Notch1 protein. The pan-HDAC inhibitors AR-42 and SAHA, and the class I HDAC inhibitor depsipeptide, suppressed mammosphere formation and other CSC markers by reducing Notch1 expression in MDA-MB-231 and SUM-159 cells. Interrogation of individual class I isoforms (HDAC1–3 and 8) using si/shRNA-mediated knockdown, ectopic expression and/or pharmacological inhibition revealed HDAC8 to be the primary mediator of this drug effect. This suppression of Notch1 in response to HDAC8 inhibition was abrogated by the proteasome inhibitor MG132 and siRNA-induced silencing of Fbwx7, indicating Notch1 suppression occurred through proteasomal degradation. However, co-immunoprecipitation analysis indicated that HDAC8 did not form complexes with Notch1 and HDAC inhibition had no effect on Notch1 acetylation. In a xenograft tumor model, the tumorigenicity of breast cancer cells was decreased by HDAC8 knockdown. These findings suggest the therapeutic potential of HDAC8 inhibition to suppress Notch1 signaling in breast cancer. PMID:26625202

  16. Hyposensitivity to gamma-aminobutyric acid in the ventral tegmental area during alcohol withdrawal: reversal by histone deacetylase inhibitors.

    PubMed

    Arora, Devinder S; Nimitvilai, Sudarat; Teppen, Tara L; McElvain, Maureen A; Sakharkar, Amul J; You, Chang; Pandey, Subhash C; Brodie, Mark S

    2013-08-01

    Putative dopaminergic (pDAergic) ventral tegmental area (VTA) neurons have an important role in alcohol addiction. Acute ethanol increases the activity of pDAergic neurons, and withdrawal from repeated ethanol administration produces a decreased sensitivity of pDAergic VTA neurons to GABA. Recent studies show that behavioral changes induced by chronic alcohol are reversed by inhibitors of histone deacetylases (HDACs). Whether HDAC-induced histone modifications regulate changes in GABA sensitivity of VTA pDAergic neurons during withdrawal is unknown. Here, we investigated modulation of withdrawal-induced changes in GABA sensitivity of pDAergic VTA neurons by HDAC inhibitors (HDACi), and also measured the levels of HDAC2, histone (H3-K9) acetylation, and GABA-Aα1 receptor (GABA (A-α1) R) subunit in VTA during ethanol withdrawal. Mice were injected intraperitoneally (ip) with either ethanol (3.5 g/kg) or saline twice daily for 3 weeks. In recordings from pDAergic VTA neurons in brain slices from ethanol-withdrawn mice, sensitivity to GABA (50-500 μM) was reduced. In brain slices from ethanol-withdrawn mice incubated with the HDACi SAHA (vorinostat) or trichostatin A (TSA) for 2 h, the hyposensitivity of pDAergic VTA neurons to GABA was significantly attenuated. There was no effect of TSA or SAHA on GABA sensitivity of pDAergic VTA neurons from saline-treated mice. In addition, ethanol withdrawal was associated with an increase in levels of HDAC2 and a decrease in histone (H3-K9) acetylation and levels of GABA (A-α1) R subunits in the VTA. Therefore, blockade of upregulation of HDAC2 by HDACi normalizes GABA hyposensitivity of pDAergic neurons developed during withdrawal after chronic ethanol treatment, which suggests the possibility that inhibition of HDACs can reverse ethanol-induced neuroadaptational changes in reward circuitry. PMID:23474591

  17. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma

    PubMed Central

    Vleeshouwer-Neumann, Terra; Phelps, Michael; Bammler, Theo K.; MacDonald, James W.; Jenkins, Isaac; Chen, Eleanor Y.

    2015-01-01

    Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients. PMID:26636678

  18. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation.

    PubMed

    Kawano, Takeshi; Akiyama, Masaharu; Agawa-Ohta, Miyuki; Mikami-Terao, Yoko; Iwase, Satsuki; Yanagisawa, Takaaki; Ida, Hiroyuki; Agata, Naoki; Yamada, Hisashi

    2010-10-01

    Although p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis. Exposure of cells to IR in the presence of VPA or FK228 induced the accumulation of p53 acetylated at Lys382 and phosphorylated at Ser46 through the reduction of binding affinity with MDM2 and MDMX. These results suggest that acetylation of p53 by HDAC inhibitors is a promising new therapeutic target in refractory retinoblastoma. PMID:20811699

  19. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1

    PubMed Central

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation. PMID:27171263

  20. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    PubMed

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation. PMID:27171263

  1. The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver

    SciTech Connect

    Oiso, Hiroshi; Furukawa, Noboru; Suefuji, Mihoshi; Shimoda, Seiya; Ito, Akihiro; Furumai, Ryohei; Nakagawa, Junichi; Yoshida, Minoru; Nishino, Norikazu; Araki, Eiichi

    2011-01-07

    Research highlights: {yields} A novel class I HDAC inhibitor decreased hepatic PEPCK mRNA and gluconeogenesis. {yields} Inhibition of HDAC decreased PEPCK by reducing HNF4{alpha} expression and FoxO1 activity. {yields} siRNA knockdown of HDAC1 in HepG2 cells reduced the expression of PEPCK and HNF4{alpha}. {yields} Inhibition of class I HDAC improves glucose homeostasis in HFD mice. -- Abstract: Hepatic gluconeogenesis is crucial for glucose homeostasis. Although sirtuin 1 (Sirt1) is implicated in the regulation of gluconeogenesis in the liver, the effects of other histone deacetylases (HDAC) on gluconeogenesis are unclear. The aim of this study was to identify the role of class I HDACs in hepatic gluconeogenesis. In HepG2 cells and the liver of mice, the expressions of phosphoenol pyruvate carboxykinase (PEPCK) and hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) were significantly decreased by treatment with a newly designed class I HDAC inhibitor, Ky-2. SiRNA knockdown of HDAC1 expression, but not of HDAC2 or HDAC3, in HepG2 cells decreased PEPCK and HNF4{alpha} expression. In HepG2 cells, insulin-stimulated phosphorylation of Akt and forkhead box O 1 (FoxO1) was increased by Ky-2. Pyruvate tolerance tests in Ky-2-treated high-fat-diet (HFD)-fed mice showed a marked reduction in blood glucose compared with vehicle-treated HFD mice. These data suggest that class I HDACs increase HNF4{alpha} protein expression and the transcriptional activity of FoxO1, followed by the induction of PEPCK mRNA expression and gluconeogenesis in liver.

  2. Converting maslinic acid into an effective inhibitor of acylcholinesterases.

    PubMed

    Schwarz, Stefan; Loesche, Anne; Lucas, Susana Dias; Sommerwerk, Sven; Serbian, Immo; Siewert, Bianka; Pianowski, Elke; Csuk, René

    2015-10-20

    During the last decade, maslinic acid has been evaluated for many biological properties, e.g. as an anti-tumor or an anti-viral agent but also as a nutraceutical. The potential of maslinic acid and related derivatives to act as inhibitors of acetyl- or butyryl-cholinesterase was examined in this communication in more detail. Cholinesterases do still represent an interesting group of target enzymes with respect to the investigation and treatment of the Alzheimer's disease and other dementia illnesses as well. Although other triterpenoic acids have successfully been tested for their ability to act as inhibitors of cholinesterases, up to now maslinic acid has not been part of such studies. For this reason, three series of maslinic acid derivatives possessing modifications at different centers were synthesized and subjected to Ellman's assay to determine their inhibitory strength and type of inhibitory action. While parent compound maslinic acid was no inhibitor in these assays, some of the compounds exhibited an inhibition of acetylcholinesterase in the single-digit micro-molar range. Two compounds were identified as inhibitors of butyrylcholinesterase showing inhibition constants comparable to those of galantamine, a drug often used in the treatment of Alzheimer's disease. Furthermore, additional selectivity as well as cytotoxicity studies were performed underlining the potential of several derivatives and qualifying them for further investigations. Docking studies revealed that the different kinetic behavior within the same compound series may be explained by the ability of the compounds to enter the active site gorge of AChE. PMID:26383128

  3. Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain.

    PubMed

    Pujol Lopez, Yara; Kenis, Gunter; Stettinger, Waldtraud; Neumeier, Karin; de Jonge, Sylvia; Steinbusch, Harry W M; Zill, Peter; van den Hove, Daniel L A; Myint, Aye M

    2016-07-01

    The aim of our study was to investigate the brain-specific epigenetic effects on global enzymatic histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity after prenatal exposure to maternal immune challenge by polyinosinic:polycytidylic acid (Poly I:C) at gestational day (GD) 17 in C57BL/6JRccHsd mouse offspring. Pregnant mice were randomly divided into 2 groups, receiving either 5 mg/kg Poly I:C or phosphate buffered saline (PBS) intravenously at GD 17. Subsequently, the effects on whole brain enzymatic HDAC and DNMT activity and the protein levels of various HDAC isoforms were assessed in the offspring. Overall, a significant sex × treatment interaction effect was observed after prenatal exposure to maternal immune challenge by Poly I:C, indicative of increased global HDAC activity particularly in female offspring from mothers injected with Poly I:C when compared to controls. Results on the levels of specific HDAC isoforms suggested that neither differences in the levels of HDAC1, HDAC2, HDAC3, HDAC4 or HDAC6 could explain the increased global HDAC activity observed in female Poly I:C offspring. In conclusion, we show that Poly I:C administration to pregnant mice alters global brain HDAC, but not DNMT activity in adult offspring, whereas it is still unclear which specific HDAC(s) mediate(s) this effect. These results indicate the necessity for further research on the epigenetic effects of Poly I:C. PMID:27216537

  4. Histone and Non-Histone Targets of Dietary Deacetylase Inhibitors.

    PubMed

    Kim, Eunah; Bisson, William H; Löhr, Christiane V; Williams, David E; Ho, Emily; Dashwood, Roderick H; Rajendran, Praveen

    2016-01-01

    Acetylation is an important, reversible post-translational modification affecting histone and non-histone proteins with critical roles in gene transcription, DNA replication, DNA repair, and cell cycle progression. Key regulatory enzymes include histone deacetylase (HDACs) and histone acetyltransferases (HATs). Overexpressed HDACs have been identified in many human cancers, resulting in repressed chromatin states that interfere with vital tumor suppressor functions. Inhibition of HDAC activity has been pursued as a mechanism for re-activating repressed genes in cancers, with some HDAC inhibitors showing promise in the clinical setting. Dietary compounds and their metabolites also have been shown to modulate HDAC activity or expression. Out of this body of research, attention increasingly has shifted towards non-histone targets of HDACs and HATs, such as transcriptions factors, hormone receptors, DNA repair proteins, and cytoskeletal components. These aspects are covered in present review, along with the possible clinical significance. Where such data are available, examples are cited from the literature of studies with short chain fatty acids, polyphenols, isoflavones, indoles, organosulfur compounds, organoselenium compounds, sesquiterpene lactones, isoflavones, and various miscellaneous agents. By virtue of their effects on both histone and non-histone proteins, dietary chemopreventive agents modulate the cellular acetylome in ways that are only now becoming apparent. A better understanding of the molecular mechanisms will likely enhance the potential to more effectively combat diseases harboring altered epigenetic landscapes and dysregulated protein signaling. PMID:26303421

  5. Dual Inhibitors Against Topoisomerases and Histone Deacetylases

    PubMed Central

    Seo, Young Ho

    2015-01-01

    Topoisomerases and histone deacetylases (HDACs) are considered as important therapeutic targets for a wide range of cancers, due to their association with the initiation, proliferation and survival of cancer cells. Topoisomerases are involved in the cleavage and religation processes of DNA, while HDACs regulate a dynamic epigenetic modification of the lysine amino acid on various proteins. Extensive studies have been undertaken to discover small molecule inhibitor of each protein and thereby, several drugs have been transpired from this effort and successfully approved for clinical use. However, the inherent heterogeneity and multiple genetic abnormalities of cancers challenge the clinical application of these single targeted drugs. In order to overcome the limitations of a single target approach, a novel approach, simultaneously targeting topoisomerases and HDACs with a single molecule has been recently employed and attracted much attention of medicinal chemists in drug discovery. This review highlights the current studies on the discovery of dual inhibitors against topoisomerases and HDACs, provides their pharmacological aspects and advantages, and discusses the challenges and promise of the dual inhibitors. PMID:26151040

  6. Class I HDAC inhibitor mocetinostat induces apoptosis by activation of miR-31 expression and suppression of E2F6

    PubMed Central

    Zhang, Q; Sun, M; Zhou, S; Guo, B

    2016-01-01

    The class I selective inhibitor of the histone deacetylases, mocetinostat, has promising antitumor activities in both preclinical studies and the clinical trials. To understand how mocetinostat induces apoptosis, we examined the effects of mocetinostat on miR-31, a proapoptotic microRNA that was previously found to be epigenetically silenced in prostate cancer. We found that miR-31 was significantly upregulated by mocetinostat in prostate cancer cells. Antiapoptotic protein E2F6, the target of miR-31, was decreased by mocetinostat treatment. When miR-31 was blocked with an inhibitor, the ability of mocetinostat to induce apoptosis was reduced. We further demonstrated that mocetinostat enhanced the activity of docetaxel in apoptosis induction. While siRNA knockdown of E2F6 sensitized cancer cells to mocetinostat-induced apoptosis, overexpression of E2F6 blocked mocetinostat-induced apoptosis. In an orthotopic xenograft model, we demonstrated that mocetinostat activated miR-31, decreased E2F6, induced apoptosis, and significantly reduced prostate cancer growth. Importantly, we found that mocetinostat also increased miR-31 expression, decreased E2F6, and induced apoptosis in the primary prostate cancer stem cells. Thus, activation of miR-31 and downregulation of E2F6 constitute an important mechanism in mocetinostat-induced apoptosis in prostate cancer. PMID:27551526

  7. HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: Specificity versus compensation.

    PubMed

    Ma, P; Schultz, R M

    2016-07-01

    Oocyte and preimplantation embryo development entail dynamic changes in chromatin structure and gene expression, which are regulated by a number of maternal and zygotic epigenetic factors. Histone deacetylases (HDACs), which tighten chromatin structure, repress transcription and gene expression by removing acetyl groups from histone or non-histone proteins. HDAC1 and HDAC2 are two highly homologous Class I HDACs and display compensatory or specific roles in different cell types or in response to different stimuli and signaling pathways. We summarize here the current knowledge about the functions of HDAC1 and HDAC2 in regulating histone modifications, transcription, DNA methylation, chromosome segregation, and cell cycle during oocyte and preimplantation embryo development. What emerges from these studies is that although HDAC1 and HDAC2 are highly homologous, HDAC2 is more critical than HDAC1 for oocyte development and reciprocally, HDAC1 is more critical than HDAC2 for preimplantation development. PMID:27082454

  8. HDAC3 mediates smoking-induced pancreatic cancer

    PubMed Central

    Edderkaoui, Mouad; Xu, Shiping; Chheda, Chintan; Morvaridi, Susan; Hu, Robert W.; Grippo, Paul J.; Mascariñas, Emman; Principe, Daniel R.; Knudsen, Beatrice; Xue, Jing; Habtezion, Aida; Uyeminami, Dale; Pinkerton, Kent E.; Pandol, Stephen J.

    2016-01-01

    Smoking is a major risk factor for developing pancreatic adenocarcinoma (PDAC); however, little is known about the mechanisms involved. Here we employed a genetic animal model of early stages of PDAC that overexpresses oncogenic Kras in the pancreas to investigate the mechanisms of smoking-induced promotion of the disease in vivo. We confirmed the regulation of the interactions between the tumor microenvironment cells using in vitro cellular systems. Aerial exposure to cigarette smoke stimulated development of pancreatic intraepithelial neaoplasia (PanIN) lesions associated with a tumor microenvironment-containing features of human PDAC including fibrosis, activated stellate cells, M2-macrophages and markers of epithelial-mesenchymal transition (EMT). The pro-cancer effects of smoking were prevented by Histone Deacetylase HDAC I/II inhibitor Saha. Smoking decreased histone acetylation associated with recruitment of and phenotypic changes in macrophages; which in turn, stimulated survival and induction of EMT of the pre-cancer and cancer cells. The interaction between the cancer cells and macrophages is mediated by IL-6 produced under the regulation of HDAC3 translocation to the nucleus in the cancer cells. Pharmacological and molecular inhibitions of HDAC3 decreased IL-6 levels in cancer cells. IL-6 stimulated the macrophage phenotype change through regulation of the IL-4 receptor level of the macrophage. This study demonstrates a novel pathway of interaction between cancer cells and tumor promoting macrophages involving HDAC3 and IL-6. It further demonstrates that targeting HDAC3 prevents progression of the disease and could provide a strategy for treating the disease considering that the HDAC inhibitor we used is FDA approved for a different disease. PMID:26745602

  9. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  10. The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication

    PubMed Central

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-01-01

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected. PMID:21379379

  11. Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss.

    PubMed

    Chen, Jun; Hill, Kayla; Sha, Su-Hua

    2016-08-01

    Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL. PMID:27095478

  12. Discovery of 1-hydroxypyridine-2-thiones as selective histone deacetylase inhibitors and their potential application for treating leukemia.

    PubMed

    Muthyala, Ramaiah; Shin, Woo Shik; Xie, Jiashu; Sham, Yuk Yin

    2015-10-01

    Histone deacetylase (HDAC) is a validated target for pursuing anticancer agents. However, obtaining a selective inhibitor against a given HDAC member remains a significant challenge. We report here the use of 1-hydroxypyridine-2-thione (1HPT) as a key pharmacophore for zinc-binding can result in highly selective HDAC inhibitors. 1HPT-6-carboxylic acid exhibits selective inhibition of HDAC6 with an IC50 of 150 nM that corresponds to a remarkable 0.9 ligand efficiency. Two analogs with simple amino acids shows nearly 600-fold selectivity among the eleven zinc-dependent HDACs. At low micromolar concentration these compounds inhibit the growth of HDAC8-overexpressing chronic myelogenous leukemia cells and specific form of acute myelogenous leukemia cells. Their potential mode of binding was examined by molecular docking and their stability was assessed in mouse and human plasma. Together the results suggest 1HPT analogs exhibit promising therapeutic potential for further development as anticancer agents to treat leukemia. PMID:26264503

  13. Histone deacetylase inhibitors stimulate the susceptibility of A549 cells to a plasma-activated medium treatment.

    PubMed

    Adachi, Tetsuo; Kano, Ayame; Nonomura, Saho; Kamiya, Tetsuro; Hara, Hirokazu

    2016-09-15

    The number of potential applications of non-thermal atmospheric pressure plasma (NTAPP) discharges in medicine, particularly in cancer therapy, has increased in recent years. NTAPP has been shown to affect cells not only by direct irradiation, but also by an indirect treatment with previously prepared plasma-activated medium (PAM). Histone deacetylase (HDAC) inhibitors have the potential to enhance susceptibility to anticancer drugs and radiation. The aim of the present study was to demonstrate the advantage of the combined application of PAM and HDAC inhibitors on A549 cancer cell survival and elucidate the underlying mechanisms. Cell death with DNA breaks in the nucleus was greater using combined regimens of PAM and HDAC inhibitors such as trichostatin A (TSA) and valproic acid (VPA) than a single PAM treatment and was accompanied by the activation of poly (ADP-ribose) polymerase-1 (PARP-1), depletion of ATP, and elevations in intracellular calcium levels. Moreover, the expression of Rad 51, a DNA repair factor in homologous recombination pathways, was significantly suppressed by the treatment with HDAC inhibitors. These results demonstrate that HDAC inhibitors may synergistically induce the sensitivity of cancer cells to PAM components. PMID:27470189

  14. HDAC8 Substrates: Histones and Beyond

    PubMed Central

    Wolfson, Noah A.; Pitcairn, Carol Ann; Fierke, Carol A.

    2012-01-01

    The lysine deacetylase family of enzymes (HDACs) was first demonstrated to catalyze deacetylation of acetyllysine residues on histones. In subsequent years, HDACs have been shown to recognize a large pool of acetylated non-histone proteins as substrates. Recently, thousands of acetylated proteins have been discovered, yet in most cases, the HDAC that catalyzes deacetylation in vivo has not been identified. This gap has created the need for better in vivo, in vitro, and in silico approaches for determining HDAC substrates. While HDAC8 is the best kinetically and structurally characterized HDAC, few efficient substrates have yet been substantiated in vivo. In this review we delineate factors that may be important for determining HDAC8 substrate recognition and catalytic activity, including structure, complex formation, and post-translational modifications. This summary provides insight into the challenges of identifying in vivo substrates for HDAC8, and provides a good vantage point for understanding the variables important for predicting HDAC substrate recognition. PMID:23175386

  15. Chronic administration of an HDAC inhibitor treats both neurological and systemic Niemann-Pick type C disease in a mouse model.

    PubMed

    Alam, Md Suhail; Getz, Michelle; Haldar, Kasturi

    2016-02-17

    Histone deacetylase inhibitors (HDACi) are approved for treating rare cancers and are of interest as potential therapies for neurodegenerative disorders. We evaluated a triple combination formulation (TCF) comprising the pan-HDACi vorinostat, the caging agent 2-hydroxypropyl-β-cyclodextrin (HPBCD), and polyethylene glycol (PEG) for treating a mouse model (the Npc1(nmf164) mouse) of Niemann-Pick type C (NPC) disease, a difficult-to-treat cerebellar disorder. Vorinostat alone showed activity in cultured primary cells derived from Npc1(nmf164) mice but did not improve animal survival. However, low-dose, once-weekly intraperitoneal injections of the TCF containing vorinostat increased histone acetylation in the mouse brain, preserved neurites and Purkinje cells, delayed symptoms of neurodegeneration, and extended mouse life span from 4 to almost 9 months. We demonstrate that the TCF boosted the ability of HDACi to cross the blood-brain barrier and was not toxic even when used long term. Further, the TCF enabled dose reduction, which has been a major challenge in HDACi therapy. TCF simultaneously treats neurodegenerative and systemic symptoms of Niemann-Pick type C disease in a mouse model. PMID:26888431

  16. Interaction of silicic acid with sulfurous acid scale inhibitor

    SciTech Connect

    Gallup, D.L.

    1997-12-31

    The solubility of amorphous silica and the inhibition of silica polymerization in the presence of sulfurous acid and sulfite salts has been investigated to 260{degrees}C. Investigations of inhibition of silica scaling from geothermal brines by sulfurous acid have produced unusual results. Bisulfite/sulfite increases amorphous silica solubility by {open_quotes}salting in{close_quotes} effects resulting from apparent complexation. Silica-sulfite complexes are postulated to form via hydrogen bonding, and appear to be much stronger than silica-sulfate complexes. Treatment of brines with sulfurous acid inhibits silica scaling by (1) retarding the kinetics of silicic acid polymerization, and (2) forming soluble sulfito-silicate complexes. Sulfurous acid offers several advantages over sulfuric acid in controlling scale deposition-reduced corrosion potential, reduced by-product scale formation potential, oxygen scavenging and inhibition of certain metal silicate scales.

  17. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma

    PubMed Central

    Mai, Shi-Juan; Wang, Meng-He; Zhang, Mei-Yin; Zheng, X.F. Steven; Wang, Hui-Yun

    2016-01-01

    Histone deacetylases (HDACs) mediate histone deacetylation, leading to transcriptional repression, which is involved in many diseases, including age-related tissue degeneration, heart failure and cancer. In this study, we were aimed to investigate the expression, clinical significance and biological function of HDAC4 in esophageal carcinoma (EC). We found that HDAC4 mRNA and protein are overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. HDAC4 overexpression is associated with higher tumor grade, advanced clinical stage and poor survival. Mechanistically, HDAC4 promotes proliferation and G1/S cell cycle progression in EC cells by inhibiting cyclin-dependent kinase (CDK) inhibitors p21 and p27 and up-regulating CDK2/4 and CDK-dependent Rb phosphorylation. HDAC4 also enhances ESCC cell migration. Furthermore, HDAC4 positively regulates epithelial-mesenchymal transition (EMT) by increasing the expression of Vimentin and decreasing the expression of E-Cadherin/α-Catenin. Together, our study shows that HDAC4 overexpression is important for the oncogenesis of EC, which may serve as a useful prognostic biomarker and therapeutic target for this malignancy. PMID:27295551

  18. HDAC2 deregulation in tumorigenesis is causally connected to repression of immune modulation and defense escape.

    PubMed

    Conte, Mariarosaria; Dell'Aversana, Carmela; Benedetti, Rosaria; Petraglia, Francesca; Carissimo, Annamaria; Petrizzi, Valeria Belsito; D'Arco, Alfonso Maria; Abbondanza, Ciro; Nebbioso, Angela; Altucci, Lucia

    2015-01-20

    Histone deacetylase 2 (HDAC2) is overexpressed or mutated in several disorders such as hematological cancers, and plays a critical role in transcriptional regulation, cell cycle progression and developmental processes. Here, we performed comparative transcriptome analyses in acute myeloid leukemia to investigate the biological implications of HDAC2 silencing versus its enzymatic inhibition using epigenetic-based drug(s). By gene expression analysis of HDAC2-silenced vs wild-type cells, we found that HDAC2 has a specific role in leukemogenesis. Gene expression profiling of U937 cell line with or without treatment of the well-known HDAC inhibitor vorinostat (SAHA) identifies and characterizes several gene clusters where inhibition of HDAC2 'mimics' its silencing, as well as those where HDAC2 is selectively and exclusively regulated by HDAC2 protein expression levels. These findings may represent an important tool for better understanding the mechanisms underpinning immune regulation, particularly in the study of major histocompatibility complex class II genes. PMID:25473896

  19. HDAC2 deregulation in tumorigenesis is causally connected to repression of immune modulation and defense escape

    PubMed Central

    Conte, Mariarosaria; Dell'Aversana, Carmela; Benedetti, Rosaria; Petraglia, Francesca; Carissimo, Annamaria; Petrizzi, Valeria Belsito; D'Arco, Alfonso Maria; Abbondanza, Ciro; Nebbioso, Angela; Altucci, Lucia

    2015-01-01

    Histone deacetylase 2 (HDAC2) is overexpressed or mutated in several disorders such as hematological cancers, and plays a critical role in transcriptional regulation, cell cycle progression and developmental processes. Here, we performed comparative transcriptome analyses in acute myeloid leukemia to investigate the biological implications of HDAC2 silencing versus its enzymatic inhibition using epigenetic-based drug(s). By gene expression analysis of HDAC2-silenced vs wild-type cells, we found that HDAC2 has a specific role in leukemogenesis. Gene expression profiling of U937 cell line with or without treatment of the well-known HDAC inhibitor vorinostat (SAHA) identifies and characterizes several gene clusters where inhibition of HDAC2 ‘mimics’ its silencing, as well as those where HDAC2 is selectively and exclusively regulated by HDAC2 protein expression levels. These findings may represent an important tool for better understanding the mechanisms underpinning immune regulation, particularly in the study of major histocompatibility complex class II genes. PMID:25473896

  20. Requirement of HDAC6 for Transforming Growth Factor-β1-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Shan, Bin; Yao, Tso-pang; Nguyen, Hong T.; Zhuo, Ying; Levy, Dawn R.; Klingsberg, Ross C.; Tao, Hui; Palmer, Michael L.; Holder, Kevin N.; Lasky, Joseph A.

    2008-01-01

    The aberrant expression of transforming growth factor (TGF)-β1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-β1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including α-tubulin, and regulates cell motility. We showed that TGF-β1-induced EMT is accompanied by HDAC6-dependent deacetylation of α-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-β1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-β1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of α-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-β-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis. PMID:18499657

  1. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  2. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells

    PubMed Central

    Lee, Jane Ying-Chieh; Kuo, Ching-Wen; Tsai, Shing-Ling; Cheng, Siao Muk; Chen, Shang-Hung; Chan, Hsiu-Han; Lin, Chun-Hui; Lin, Kun-Yuan; Li, Chien-Feng; Kanwar, Jagat R.; Leung, Euphemia Y.; Cheung, Carlos Chun Ho; Huang, Wei-Jan; Wang, Yi-Ching; Cheung, Chun Hei Antonio

    2016-01-01

    SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHA's molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future. PMID:27065869

  3. Polyamines are Inhibitors of Gastric Acid Secretion

    NASA Astrophysics Data System (ADS)

    Ray, Tushar K.; Nandi, Jyotirmoy; Pidhorodeckyj, Nykolai; Meng-Ai, Zhou

    1982-03-01

    The naturally occurring organic polycations such as spermine and spermidine inhibit histamine-stimulated gastric acid secretion by bullfrog gastric mucosa in vitro; spermine is much more potent than spermidine. Unlike the H2 receptor antagonists, the polyamines are completely ineffective from the nutrient side and are effective only from the secretory side of the chambered mucosa. The polyamine effects could be reversed by increasing K+ concentration in the secretory solution. Studies with isolated gastric microsomal vesicles demonstrate that the polyamines do not inhibit the gastric H+,K+-ATPase but greatly decrease the ATPase-mediated uptake of H+ under appropriate conditions. For the latter effects the presence of polyamine within the vesicle interior was found to be essential. Our data strongly suggest an uncoupling of the gastric H+,K+-ATPase system by the polyamines. The therapeutic potential of these and similar compounds in the treatment of hyperacidity and peptic ulcer is discussed.

  4. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification

    PubMed Central

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R.; Mendrysa, Susan M.; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  5. Requirement of HDAC6 for activation of Notch1 by TGF-β1.

    PubMed

    Deskin, Brian; Lasky, Joseph; Zhuang, Yan; Shan, Bin

    2016-01-01

    TGF-β1 is enriched in the tumor microenvironment and acts as a key inducer of epithelial to mesenchymal transition (EMT) in lung cancer. The NOTCH signaling pathway is conserved across species and is an essential pathway for development, cell differentiation, and cancer biology. Dysregulation of Notch signaling is a common feature of non-small cell lung cancer (NSCLC) and is correlated with poor prognosis. Crosstalk exists between the NOTCH and TGF-β signaling pathways in EMT. Herein we report that histone deacetylase 6 (HDAC6) modulates TGF-β1-mediated activation of the Notch pathway. HDAC6, a primarily cytoplasmic deacetylase, mediates TGF-β1-induced EMT in human lung cancer cells. Inhibition of HDAC6 with a small molecule inhibitor, namely tubacin or with siRNA attenuated TGF-β1-induced Notch-1 signaling. We show that TGFβ-1-induced EMT is accompanied by rapid HDAC6-dependent deacetylation of heat shock protein 90 (HSP90). Consistently, inhibition of HSP90 with its small molecule inhibitor 17AAG attenuated expression of TGF-β1-induced Notch-1 target genes, HEY-1 and HES-1. These findings reveal a novel function of HDAC6 in EMT via mediating the TGF-β-Notch signaling cascade, and support HDAC6 as a key regulator of TGFβ-induced EMT in NSCLC. This work suggests that HDAC6 may be an attractive therapeutic target against tumor progression and metastasis. PMID:27499032

  6. Requirement of HDAC6 for activation of Notch1 by TGF-β1

    PubMed Central

    Deskin, Brian; Lasky, Joseph; Zhuang, Yan; Shan, Bin

    2016-01-01

    TGF-β1 is enriched in the tumor microenvironment and acts as a key inducer of epithelial to mesenchymal transition (EMT) in lung cancer. The NOTCH signaling pathway is conserved across species and is an essential pathway for development, cell differentiation, and cancer biology. Dysregulation of Notch signaling is a common feature of non-small cell lung cancer (NSCLC) and is correlated with poor prognosis. Crosstalk exists between the NOTCH and TGF-β signaling pathways in EMT. Herein we report that histone deacetylase 6 (HDAC6) modulates TGF-β1-mediated activation of the Notch pathway. HDAC6, a primarily cytoplasmic deacetylase, mediates TGF-β1-induced EMT in human lung cancer cells. Inhibition of HDAC6 with a small molecule inhibitor, namely tubacin or with siRNA attenuated TGF-β1-induced Notch-1 signaling. We show that TGFβ-1-induced EMT is accompanied by rapid HDAC6-dependent deacetylation of heat shock protein 90 (HSP90). Consistently, inhibition of HSP90 with its small molecule inhibitor 17AAG attenuated expression of TGF-β1-induced Notch-1 target genes, HEY-1 and HES-1. These findings reveal a novel function of HDAC6 in EMT via mediating the TGF-β-Notch signaling cascade, and support HDAC6 as a key regulator of TGFβ-induced EMT in NSCLC. This work suggests that HDAC6 may be an attractive therapeutic target against tumor progression and metastasis. PMID:27499032

  7. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification.

    PubMed

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R; Mendrysa, Susan M; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  8. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  9. HDAC6 inhibition restores ciliary expression and decreases tumor growth

    PubMed Central

    Gradilone, Sergio A; Radtke, Brynn N; Bogert, Pamela S; Huang, Bing Q; Gajdos, Gabriella B; LaRusso, Nicholas F

    2013-01-01

    Primary cilia are multisensory organelles recently found to be absent in some tumor cells, but the mechanisms of deciliation and the role of cilia in tumor biology remain unclear. Cholangiocytes, the epithelial cells lining the biliary tree, normally express primary cilia and their interaction with bile components regulates multiple processes, including proliferation and transport. Utilizing cholangiocarcinoma (CCA) as a model, we found primary cilia are reduced in CCA by a mechanism involving histone deacetylase 6 (HDAC6). The experimental deciliation of normal cholangiocyte cells increased the proliferation rate and induced anchorage-independent growth. Furthermore, deciliation induced the activation of MAPK and Hedgehog signaling, two important pathways involved in CCA development. We found HDAC6 is overexpressed in CCA and overexpression of HDAC6 in normal cholangiocytes induced deciliation, and increased both proliferation and anchorage-independent growth. To evaluate the effect of cilia restoration on tumor cells, we targeted HDAC6 by shRNA or by the pharmacologic inhibitor, tubastatin-A. Both approaches restored the expression of primary cilia in CCA cell lines and decreased cell proliferation and anchorage-independent growth. The effects of tubastatin-A were abolished when CCA cells were rendered unable to regenerate cilia by stable transfection of IFT88-shRNA. Finally, inhibition of HDAC6 by tubastatin-A also induced a significant decrease in tumor growth in a CCA animal model. Our data support a key role for primary cilia in malignant transformation, provide a plausible mechanism for their involvement, and suggest that restoration of primary cilia in tumor cells by HDAC6 targeting may be a potential therapeutic approach for CCA. PMID:23370327

  10. Discovery of potent wall teichoic acid early stage inhibitors.

    PubMed

    Labroli, Marc A; Caldwell, John P; Yang, Christine; Lee, Sang Ho; Wang, Hao; Koseoglu, Sandra; Mann, Paul; Yang, Shu-Wei; Xiao, Jing; Garlisi, Charles G; Tan, Christopher; Roemer, Terry; Su, Jing

    2016-08-15

    The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for novel treatment options. Using an S. aureus phenotypic screening strategy, we have identified small molecule early stage wall teichoic acid (WTA) pathway-specific inhibitors predicted to be chemically synergistic with β-lactams. These previously disclosed inhibitors, termed tarocins, demonstrate by genetic and biochemical means inhibition of TarO, the first step in WTA biosynthesis. Tarocins demonstrate potent bactericidal synergy in combination with broad spectrum β-lactam antibiotics across diverse clinical isolates of methicillin-resistant Staphylococci. The synthesis and structure-activity relationships (SAR) of a tarocin series will be detailed. Tarocins and other WTA inhibitors may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant Staphylococci. PMID:27436582