Science.gov

Sample records for acid methyltransferase gene

  1. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  2. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    SciTech Connect

    Zhao, Nan; Yao, Jianzhuang; Chaiprasongsuk, Minta; Li, Guanglin; Guan, Ju; Tschaplinski, Timothy J; Guo, Hong; Chen, Feng

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  3. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog

    PubMed Central

    2012-01-01

    Background Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. Results GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. Conclusions Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl

  4. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium 'Yelloween').

    PubMed

    Wang, H; Sun, M; Li, L L; Xie, X H; Zhang, Q X

    2015-01-01

    In lily flowers, the volatile ester methyl benzoate is one of the major and abundant floral scent compounds; however, knowledge regarding the biosynthesis of methyl benzoate remains unknown for Lilium. In this study, we isolated a benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) gene, LiBSMT, from petals of Lilium 'Yelloween'. The gene has an open reading frame of 1083 base pairs (bp) and encodes a protein of 41.05 kDa. Sequence alignment and phylogenetic analyses of LiBSMT revealed 40-50% similarity with other known benzenoid carboxyl methyltransferases in other plant species, and revealed homology to BSMT of Oryza sativa. Heterologous expression of this gene in Escherichia coli yielded an enzyme responsible for catalyzing benzoic acid and salicylic acid to methyl benzoate and methyl salicylate, respectively. Quantitative real-time polymerase chain reaction analysis showed that LiBSMT was preferentially expressed in petals. Moreover, the expression of LiBSMT in petals was developmentally regulated. These expression patterns correlate well with the emission of methyl benzoate. Our results indicate that LiBSMT plays an important role in floral scent methyl benzoate production and emission in lily flowers. PMID:26600510

  5. Down-regulation of the Caffeic acid O-methyltransferase Gene in Switchgrass Reveals a Novel Monolignol Analog

    SciTech Connect

    Tschaplinski, Timothy J; Standaert, Robert F; Engle, Nancy L; Martin, Madhavi Z; Sangha, Amandeep K; Parks, Jerry M; Smith, Jeremy C; Samuel, Reichel; Pu, Yunqiao; Ragauskas, A J; Hamilton, Choo Yieng; Fu, Chunxiang; Wang, Zeng-Yu; Davison, Brian H; Dixon, Richard A; Mielenz, Jonathan R

    2012-01-01

    Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors, confirming the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. Although there was no indication that iso-sinapyl alcohol was integrated into the cell wall, diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth.

  6. Acid detergent lignin, lodging resistance index, and expression of the caffeic acid O-methyltransferase gene in brown midrib-12 sudangrass

    PubMed Central

    Li, Yuan; Liu, Guibo; Li, Jun; You, Yongliang; Zhao, Haiming; Liang, Huan; Mao, Peisheng

    2015-01-01

    Understanding the relationship between acid detergent lignin (ADL) and lodging resistance index (LRI) is essential for breeding new varieties of brown midrib (bmr) sudangrass (Sorghum sudanense (Piper) Stapf.). In this study, bmr-12 near isogenic lines and their wild-types obtained by back cross breeding were used to compare relevant forage yield and quality traits, and to analyze expression of the caffeic acid O-methyltransferase (COMT) gene using quantitative real time-PCR. The research showed that the mean ADL content of bmr-12 mutants (20.94 g kg−1) was significantly (P < 0.05) lower than measured in N-12 lines (43.45 g kg−1), whereas the LRI of bmr-12 mutants (0.29) was significantly (P < 0.05) higher than in N-12 lines (0.22). There was no significant correlation between the two indexes in bmr-12 materials (r = −0.44, P > 0.05). Sequence comparison of the COMT gene revealed two point mutations present in bmr-12 but not in the wild-type, the second mutation changed amino acid 129 of the protein from Gln (CAG) to a stop codon (UAG). The relative expression level of COMT gene was significantly reduced, which likely led to the decreased ADL content observed in the bmr-12 mutant. PMID:26366111

  7. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase.

    PubMed Central

    Vignols, F; Rigau, J; Torres, M A; Capellades, M; Puigdomènech, P

    1995-01-01

    The brown midrib mutations are among the earliest described in maize. Plants containing a brown midrib mutation exhibit a reddish brown pigmentation of the leaf midrib starting when there are four to six leaves. These mutations are known to alter lignin composition and digestibility of plants and therefore constitute prime candidates in the breeding of silage maize. Here, we show that two independent brown midrib3 (bm3) mutations have resulted from structural changes in the COMT gene, which encodes the enzyme O-methyltransferase (COMT; EC 2.1.1.6), involved in lignin biosynthesis. Our results indicate that the bm3-1 allele (the reference mutant allele) has arisen from an insertional event producing a COMT mRNA altered in both size and amount. By sequencing a COMT cDNA clone obtained from bm3-1 maize, a retrotransposon with homology to the B5 element has been found to be inserted near the junction of the 3' coding region of the COMT gene intron. The second bm3 allele, bm3-2, has resulted from a deletion of part of the COMT gene. These alterations of the COMT gene were confirmed by DNA gel blot and polymerase chain reaction amplification analyses. These results clearly demonstrate that mutations at the COMT gene give a brown midrib3 phenotype. Thus, the gene genetically recognized as bm3 is the same as the one coding for COMT. PMID:7773015

  8. Cloning and nucleotide sequence of the gene encoding the Ecal DNA methyltransferase.

    PubMed Central

    Brenner, V; Venetianer, P; Kiss, A

    1990-01-01

    The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed. Images PMID:2183182

  9. Comparative analysis of chemical compositions between non-transgenic soybean seeds and those from plants over-expressing AtJMT, the gene for jasmonic acid carboxyl methyltransferase.

    PubMed

    Nam, Kyong-Hee; Kim, Do Young; Pack, In-Soon; Park, Jung-Ho; Seo, Jun Sung; Choi, Yang Do; Cheong, Jong-Joo; Kim, Chung Ho; Kim, Chang-Gi

    2016-04-01

    Transgenic overexpression of the Arabidopsis gene for jasmonic acid carboxyl methyltransferase (AtJMT) is involved in regulating jasmonate-related plant responses. To examine its role in the compositional profile of soybean (Glycine max), we compared the seeds from field-grown plants that over-express AtJMT with those of the non-transgenic, wild-type (WT) counterpart. Our analysis of chemical compositions included proximates, amino acids, fatty acids, isoflavones, and antinutrients. Overexpression of AtJMT in the seeds resulted in decreased amounts of tryptophan, palmitic acid, linolenic acid, and stachyose, but increased levels of gadoleic acid and genistein. In particular, seeds from the transgenic soybeans contained 120.0-130.5% more genistein and 60.5-82.1% less stachyose than the WT. A separate evaluation of ingredient values showed that all were within the reference ranges reported for commercially available soybeans, thereby demonstrating the substantial equivalence of these transgenic and non-transgenic seeds. PMID:26593488

  10. An Arabidopsis thaliana methyltransferase Capable of Methylating Farnesoic Acid

    SciTech Connect

    Yang,Y.; Yuan, J.; Ross, J.; Noel, J.; Pichersky, E.

    2006-01-01

    We previously reported the identification of a new family of plant methyltransferases (MTs), named the SABATH family, that use S-adenosyl-l-methionine (SAM) to methylate a carboxyl moiety or a nitrogen-containing functional group on a diverse array of plant compounds. The Arabidopsis genome alone contains 24 distinct SABATH genes. To identify the catalytic specificities of members of this protein family in Arabidopsis, we screened recombinantly expressed and purified enzymes with a large number of potential substrates. Here, we report that the Arabidopsis thaliana gene At3g44860 encodes a protein with high catalytic specificity towards farnesoic acid (FA). Under steady-state conditions, this farnesoic acid carboxyl methyltransferase (FAMT) exhibits K{sub M} values of 41 and 71 {mu}M for FA and SAM, respectively. A three-dimensional model of FAMT constructed based upon similarity to the experimentally determined structure of Clarkia breweri salicylic acid methyltransferase (SAMT) suggests a reasonable model for FA recognition in the FAMT active site. In plants, the mRNA levels of At3g44860 increase in response to the exogenous addition of several compounds previously shown to induce plant defense responses at the transcriptional level. Although methyl farnesoate (MeFA) has not yet been detected in Arabidopsis, the presence of a FA-specific carboxyl methyltransferase in Arabidopsis capable of producing MeFA, an insect juvenile hormone made by some plants as a presumed defense against insect herbivory, suggests that MeFA or chemically similar compounds are likely to serve as new specialized metabolites in Arabidopsis.

  11. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis.

    PubMed

    Liu, Shiying; Higashihori, Norihisa; Yahiro, Kohei; Moriyama, Keiji

    2015-03-13

    Cleft lip with or without palate (CL/P) is a common congenital anomaly in humans and is thought to be caused by genetic and environmental factors. However, the epigenetic mechanisms underlying orofacial clefts are not fully understood. Here, we investigate how the overdose of retinoic acid (RA), which can induce cleft palate in mice and humans, regulates histone methyltransferase, Wolf-Hirschhorn syndrome candidate 1 (WHSC1) during palatal development in mice. We treated mouse embryonic fibroblasts (MEFs) with 1 μM all-trans RA and discovered that the global level of H3K36me3 was downregulated and that expression of the H3K36 methyltransferase gene, Whsc1, was reduced. The expression level of WHSC1 in embryonic palatal shelves was reduced during palatogenesis, following maternal administration of 100 mg/kg body weight of RA by gastric intubation. Furthermore, the expression of WHSC1 in palatal shelves was observed in epithelial and mesenchymal cells at all stages, suggesting an important role for palatal development. Our results suggest that the pathogenesis of cleft palate observed after excessive RA exposure is likely to be associated with a reduction in the histone methyltransferase, WHSC1. PMID:25677622

  12. Cloning of the human DNA methyltransferase gene

    SciTech Connect

    Ramchanani, S.K.; Rouleau, J.; Szyf, M.

    1994-09-01

    During the process of carcinogenesis it has been observed that DNA methylation is deregulated. At least two levels of regulation of the mouse DNA MeTase have been shown: at the transcriptional level, via its promoter, and at the post transcriptional level in a cell cycle dependent fashion. The sequence of the complete DNA MeTase gene and identification of the promoter has not yet been reported. Using a probe generated by PCR of the human DNA MeTase cDNA, a human genomic library was screened and a clone of approximately 22 kilobases (kb) was isolated. It was found that this clone contains the complete coding sequence of the DNA MeTase enzyme. Sequence analysis along with restriction enzyme digests have allowed us to construct a partial map of the physical structure of the human DNA MeTase gene. This partial structure has already revealed some interesting aspects related to the genetic evolution of the human DNA MeTase. First, the proposed catalytic domain of the human DNA MeTase is extremely homologous to all other cytosine DNA MeTases, even to those that are found in bacteria, and this catalytic domain is conserved within one complete exon in the human gene. This is very different from the structure of the 5{prime} region of the gene, which is fragmented into numerous little introns and exons. Within one of the small introns that have been identified, a trinucleotide repeat of ATG occurs (9 times in a row), and this repeat is upstream of the proposed start site of translation. Trinucleotide repeat expansion has been shown to be a genetic hot spot for mutation, but even more interesting is the nature of the repeat, ATG, which is the translation start codon; this repeat appears to be in frame with the {open_quotes}normal{close_quotes} coding sequence, the implications being that possible alternative methyltransferases may be translated under certain conditions such as cancer.

  13. Genes encoding farnesyl cysteine carboxyl methyltransferase in Schizosaccharomyces pombe and Xenopus laevis.

    PubMed Central

    Imai, Y; Davey, J; Kawagishi-Kobayashi, M; Yamamoto, M

    1997-01-01

    The mam4 mutation of Schizosaccharomyces pombe causes mating deficiency in h- cells but not in h+ cells. h- cells defective in mam4 do not secrete active mating pheromone M-factor. We cloned mam4 by complementation. The mam4 gene encodes a protein of 236 amino acids, with several potential membrane-spanning domains, which is 44% identical with farnesyl cysteine carboxyl methyltransferase encoded by STE14 and required for the modification of a-factor in Saccharomyces cerevisiae. Analysis of membrane fractions revealed that mam4 is responsible for the methyltransferase activity in S. pombe. Cells defective in mam4 produced farnesylated but unmethylated cysteine and small peptides but no intact M-factor. These observations strongly suggest that the mam4 gene product is farnesyl cysteine carboxyl methyltransferase that modifies M-factor. Furthermore, transcomplementation of S. pombe mam4 allowed us to isolate an apparent homolog of mam4 from Xenopus laevis (Xmam4). In addition to its sequence similarity to S. pombe mam4, the product of Xmam4 was shown to have a farnesyl cysteine carboxyl methyltransferase activity in S. pombe cells. The isolation of a vertebrate gene encoding farnesyl cysteine carboxyl methyltransferase opens the way to in-depth studies of the role of methylation in a large body of proteins, including Ras superfamily proteins. PMID:9032282

  14. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    PubMed

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. PMID:20015628

  15. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice

    PubMed Central

    Byeon, Yeong; Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2015-01-01

    Caffeic acid O-methyltransferase (COMT) methylates N-acetylserotonin into melatonin; that is, it has N-acetylserotonin O-methyltransferase (ASMT) activity. The ASMT activity of COMT was first detected in Arabidopsis thaliana COMT (AtCOMT). To confirm the involvement of COMT on melatonin synthesis in other plant species, the ASMT activity of a COMT from rice (Oryza sativa) (OsCOMT) was evaluated. Purified recombinant OsCOMT protein from Escherichia coli was used to validate the high ASMT activity of OsCOMT, similar to that of AtCOMT. The K m and V max values for the ASMT activity of OsCOMT were 243 µM and 2400 pmol min−1 mg protein−1, which were similar to those of AtCOMT. Similar to AtCOMT, OsCOMT was localized in the cytoplasm. In vitro ASMT activity was significantly inhibited by either caffeic acid or quercetin in a dose-dependent manner. Analogously, in vivo production of melatonin was significantly inhibited by quercetin in 4-week-old detached rice leaves. Lastly, the transgenic rice plants overexpressing rice COMT showed an increase in melatonin levels whereas transgenic rice plants suppressing the rice COMT had a significant decrease on melatonin levels, suggestive of the direct role of COMT in melatonin biosynthesis in plants. PMID:26276868

  16. Structural analysis of histamine N-methyltransferase gene.

    PubMed

    Takemura, M; Yamauchi, K; Yamatodani, A

    1995-11-01

    A clone encoding a part of rat histamine N-tele-methyltransferase gene of 11 kb was isolated. The clone contained 4 exons, encoding from 191 to the 3' end of cDNA. The last exon was 692 bases long and specified more than half of the HMT cDNA. A comparison of the sequences of rat and human cDNAs shows that more than one-third of the human 3' untranslated region does not correspond to the rat counterpart, but a homology was found between this region of human cDNA and the 3' franking region of the rat gene. It was found that an exon was interrupted at 4 residues after a glycine residue, which putatively corresponds to the conserved residue among methyltransferases. PMID:8750786

  17. Plant isoflavone and isoflavanone O-methyltransferase genes

    DOEpatents

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  18. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants

    PubMed Central

    Guillaumie, Sabine; Goffner, Deborah; Barbier, Odile; Martinant, Jean-Pierre; Pichon, Magalie; Barrière, Yves

    2008-01-01

    Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225), and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying) and ear (younger lignifying) internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the different events leading

  19. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  20. Phylogenetic, molecular, and biochemical characterization of caffeic aicd O-methyltransferase (COMT) gene family in Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caffeic acid O-methyltransferase (COMT) is one of the important enzymes controlling lignin monomer production in plant cell wall synthesis. Analysis of the genome sequence of new grass model Brachypodium distachyon identified four COMT gene homologues, designated as BdCOMT1, BdCOMT2, BdCOMT3, and ...

  1. [Bioinformatics analysis and expressed level of histone methyltransferase genes in Lonicera japonica].

    PubMed

    Qi, Lin-jie; Yuan, Yuan; Huang, Lu-qi; Long, Ping; Zha, Liang-ping; Wang, Yao-long

    2015-06-01

    Twenty-three histone methyltransferase genes were obtained from transcriptome dataset of Lonicera japonica. The nucleotide and proteins characteristics, subcellular localization, senior structural domains and conservative forecasting were analyzed. The result of phylogenetic tree showed that 23 histone methyltransferases were mainly divided into two groups: lysine methyltransferase and arginine methyltransferases. The result of gene expression showed that 23 histone methyltransferases showed preference in terms of interspecies and organs. They were more expressed in buds of L. japonica than in L. japonica var. chinensis and lower in leaves of L. japonica than in L. japonica var. chinensis. Eight genes were specific expressed in flower. These results provided basis for further understanding the function of histone methyltransferase and epigenetic regulation of active ingredients of L. japonica. PMID:26552158

  2. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids. PMID:25135243

  3. Structure and expression of the lignin O-methyltransferase gene from Zea mays L.

    PubMed

    Collazo, P; Montoliu, L; Puigdomènech, P; Rigau, J

    1992-12-01

    The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin bio-synthesis of maize. PMID:1463825

  4. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca.

    PubMed

    Gu, Tingting; Ren, Shuai; Wang, Yuanhua; Han, Yuhui; Li, Yi

    2016-06-01

    DNA methylation is an epigenetic modification essential for gene regulations in plants, but understanding on how it is involved in fruit development, especially in non-climacteric fleshy fruit, is limited. The diploid woodland strawberry (Fragaria vesca) is an important model for non-climacteric fruit crops. In this study, we identified DNA methyltransferase genes and demethylase genes in Fragaria vesca and other angiosperm species. In accordance with previous studies, our phylogenetic analyses of those DNA methylation modifiers support the clustering of those genes into several classes. Our data indicate that whole-genome duplications and tandem duplications contributed to the expansion of those DNA methylation modifiers in angiosperms. We have further demonstrated that some DNA methylase and demethylase genes reach their highest expression levels in strawberry fleshy fruits when turning from white to red, suggesting that DNA methylation might undergo a dramatic change at the onset of fleshy fruit-ripening process. In addition, we have observed that expression of some DNA demethylase genes increases in response to various abiotic stresses including heat, cold, drought and salinity. Collectively, our study indicates a regulatory role of DNA methylation in the turning stage of non-climacteric fleshy fruit and responses to environment stimuli, and would facilitate functional studies of DNA methylation in the growth and development of non-climacteric fruits. PMID:26956009

  5. Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development.

    PubMed

    Preuß, Anja; Augustin, Christiane; Figueroa, Carlos R; Hoffmann, Thomas; Valpuesta, Victoriano; Sevilla, José F; Schwab, Wilfried

    2014-09-15

    The volatile metabolite methyl jasmonate (MeJA) plays an important role in intra- and interplant communication and is involved in diverse biological processes. In this study, we report the cloning and functional characterization of a S-adenosyl-l-methionine:jasmonic acid carboxyl methyltransferase (JMT) from Fragaria vesca and Fragaria×ananassa. Biochemical assays and comprehensive transcript analyses showed that JMT has been erroneously annotated as gene fusion with a carboxyl methyltransferase (CMT) (gene15184) in the first published genome sequence of F. vesca. Recombinant FvJMT catalyzed the formation of MeJA with KM value of 22.3μM while FvCMT and the fusion protein were almost inactive. Activity of JMT with benzoic acid and salicylic acid as substrates was less than 1.5% of that with JA. Leucine at position 245, an amino acid missing in other JMT sequences is essential for activity of FvJMT. In accordance with MeJA levels, JMT transcript levels decreased steadily during strawberry fruit ripening, as did the expression levels of JA biosynthesis and regulatory genes. It appears that CMT has originated by a recent duplication of JMT and lost its enzymatic activity toward JA. In the newest version of the strawberry genome sequence (June 2014) CMT and JMT are annotated as separate genes in accordance with differential temporal and spatial expression patterns of both genes in Fragaria sp. In conclusion, MeJA, the inactive derivative of JA, is probably involved in early steps of fruit development by modulating the levels of the active plant hormone JA. PMID:25046752

  6. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  7. Nomenclature for alleles of the thiopurine methyltransferase gene.

    PubMed

    Appell, Malin L; Berg, Jonathan; Duley, John; Evans, William E; Kennedy, Martin A; Lennard, Lynne; Marinaki, Tony; McLeod, Howard L; Relling, Mary V; Schaeffeler, Elke; Schwab, Matthias; Weinshilboum, Richard; Yeoh, Allen E J; McDonagh, Ellen M; Hebert, Joan M; Klein, Teri E; Coulthard, Sally A

    2013-04-01

    The drug-metabolizing enzyme thiopurine methyltransferase (TPMT) has become one of the best examples of pharmacogenomics to be translated into routine clinical practice. TPMT metabolizes the thiopurines 6-mercaptopurine, 6-thioguanine, and azathioprine, drugs that are widely used for treatment of acute leukemias, inflammatory bowel diseases, and other disorders of immune regulation. Since the discovery of genetic polymorphisms in the TPMT gene, many sequence variants that cause a decreased enzyme activity have been identified and characterized. Increasingly, to optimize dose, pretreatment determination of TPMT status before commencing thiopurine therapy is now routine in many countries. Novel TPMT sequence variants are currently numbered sequentially using PubMed as a source of information; however, this has caused some problems as exemplified by two instances in which authors' articles appeared on PubMed at the same time, resulting in the same allele numbers given to different polymorphisms. Hence, there is an urgent need to establish an order and consensus to the numbering of known and novel TPMT sequence variants. To address this problem, a TPMT nomenclature committee was formed in 2010, to define the nomenclature and numbering of novel variants for the TPMT gene. A website (http://www.imh.liu.se/tpmtalleles) serves as a platform for this work. Researchers are encouraged to submit novel TPMT alleles to the committee for designation and reservation of unique allele numbers. The committee has decided to renumber two alleles: nucleotide position 106 (G>A) from TPMT*24 to TPMT*30 and position 611 (T>C, rs79901429) from TPMT*28 to TPMT*31. Nomenclature for all other known alleles remains unchanged. PMID:23407052

  8. Structure of the gene coding for the sequence-specific DNA-methyltransferase of the B. subtilis phage SPR.

    PubMed Central

    Pósfai, G; Baldauf, F; Erdei, S; Pósfai, J; Venetianer, P; Kiss, A

    1984-01-01

    The nucleotide sequence of the gene coding for the 5'-GGCC and 5'-CCGG specific DNA methyltransferase of the Bacillus subtilis phage SPR was determined by the Maxam-Gilbert procedure. Transcriptional and translational signals of the sequence were assigned with the help of S1 mapping and translation in E. coli minicells. The gene codes for a 49 kd polypeptide. The amino acid sequence of the SPR methylase shows regions of homology with the sequence of the 5'-GGCC-specific BspRI modification methylase. Images PMID:6096817

  9. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    SciTech Connect

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  10. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells

    PubMed Central

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X.; Huang, Guowei

    2015-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8–40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production. PMID:26492244

  11. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells.

    PubMed

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X; Huang, Guowei

    2015-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8-40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production. PMID:26492244

  12. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  13. A Continuous, Quantitative Fluorescent Assay for Plant Caffeic acid O-Methyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant caffeic acid O-methyltransferases (COMTs) use s-adenosylmethionine (ado-met), as a methyl donor to transmethylate their preferred (phenolic) substrates in-vivo, and will generally utilize a range of phenolic compounds in-vitro. Collazo et al. (2005; Analytical Biochemistry 342: 86-92) have pu...

  14. Accidental Amplification and Inactivation of a Methyltransferase Gene Eliminates Cytosine Methylation in Mycosphaerella Graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A de novo search for repetitive elements in the genome sequence of the wheat pathogen Mycosphaerella graminicola identified a family of repeats containing a DNA methyltransferase sequence (MgDNMT), which is a homologue of the Neurospora crassa Dim-2 gene. A total of 28 MgDNMT sequences was identifie...

  15. SABATH Methyltransferases from White Spruce (Picea glauca [Moench] Voss): Gene Cloning, Functional Characterization and Structural Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Known members of the plant SABATH family of methyltransferases have important biological functions by methylating hormones, signaling molecules and other metabolites. While all previously characterized SABATH genes were isolated from angiosperms, in this article, we report on the isolation and funct...

  16. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    PubMed

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice. PMID:26466818

  17. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel.

    PubMed

    Petronikolou, Nektaria; Nair, Satish K

    2015-11-19

    Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation. PMID:26526103

  18. Genomic Survey, Gene Expression Analysis and Structural Modeling Suggest Diverse Roles of DNA Methyltransferases in Legumes

    PubMed Central

    Garg, Rohini; Kumari, Romika; Tiwari, Sneha; Goyal, Shweta

    2014-01-01

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes. PMID:24586452

  19. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus.

    PubMed

    Xie, Xi; Tao, Tian; Liu, Mingxin; Zhou, Yanqi; Liu, Zhiye; Zhu, Dongfa

    2016-05-01

    Juvenile hormone (JH) and methyl farnesoate (MF) play essential roles in the development and reproduction of insects and crustaceans respectively. Juvenile hormone acid methyltransferase (JHAMT) catalyzes the methyl esterification in insect JH biosynthesis, while the corresponding step in crustacean MF biosynthesis was long thought to be catalyzed by farnesoic acid O-methyltransferase (FAMeT). However, the new discovery of JHAMT orthologs in crustaceans indicates that JHAMT may also play essential role in the MF biosynthesis in crustaceans. Here we cloned and characterized the full-length cDNA encoding JHAMT in the swimming crab Portunus trituberculatus (PtJHAMT). Sequence and structure analysis of PtJHAMT revealed that it was composed of a 6-stranded β sheet with 9 α helices, and contained a signature Sadenosyl-l-methionine (SAM) binding motif, which is the hallmark in all SAM dependent methyltransferases (SAM-MTs). Several active sites that are critical for the interaction of SAM and JH/FA substrate were also conserved in PtJHAMT. The gene expression of PtJHAMT was highly specific to the mandibular organ, which is the sole site of MF synthesis. PtJHAMT expression significantly increased in the late-vitellogenic stage and mature stage, which suggests a possible role of PtJHAMT in modulating ovarian development. The role of PtJHAMT and PtFAMeT in MF biosynthesis was further investigated by RNA interfering (RNAi). Injection of PtJHAMT and PtFAMeT dsRNA both led to a decrease in hemolymph MF titers. Injection of PtHMGR dsRNA caused the decrease in PtJHAMT expression, but had no effect on mRNA level of PtFAMeT. Together these results suggested that JHAMT and FAMeT are both involved in the MF biosynthesis in crustaceans, while the JHAMT is highly specific to FA substrate, and FAMeT may have more catalytic functions. PMID:26952760

  20. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis.

    PubMed

    Do, Cao-Trung; Pollet, Brigitte; Thévenin, Johanne; Sibout, Richard; Denoue, Dominique; Barrière, Yves; Lapierre, Catherine; Jouanin, Lise

    2007-10-01

    Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin. PMID:17594112

  1. Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus

    PubMed Central

    Sun, Yan-Wei; Tee, Chuan-Sia; Ma, Yong-Huan; Wang, Gang; Yao, Xiang-Mei; Ye, Jian

    2015-01-01

    Although histone H3K9 methylation has been intensively studied in animals and a model plant Arabidopsis thaliana, little is known about the evolution of the histone methyltransferase and its roles in plant biotic stress response. Here we identified a Nicotiana benthamiana homolog of H3K9 histone methyltransferase KRYPTONITE (NbKYP) and demonstrated its fundamental roles on methylation of plant and virus, beside of leading to the suppression of endogenous gene expression and virus replication. NbKYP and another gene encoding DNA methyltransferase CHROMOMETHYLTRANSFERASE 3 (NbCMT3-1) were further identified as the key components of maintenance of transcriptional gene silencing, a DNA methylation involved anti-virus machinery. All three types of DNA methylations (asymmetric CHH and symmetric CHG/CG) were severely affected in NbKYP-silenced plants, but only severe reduction of CHG methylation found in NbCMT3-1-silenced plants. Attesting to the importance of plant histone H3K9 methylation immunity to virus, the virulence of geminiviruses requires virus-encoded trans-activator AC2 which inhibits the expression of KYP via activation of an EAR-motif-containing transcription repressor RAV2 (RELATED TO ABI3 and VP1). The reduction of KYP was correlated with virulence of various similar geminiviruses. These findings provide a novel mechanism of how virus trans-activates a plant endogenous anti-silencing machinery to gain high virulence. PMID:26602265

  2. Multiple-Copy Cluster-Type Organization and Evolution of Genes Encoding O-Methyltransferases in the Apple

    PubMed Central

    Han, Yuepeng; Gasic, Ksenija; Korban, Schuyler S.

    2007-01-01

    Plant O-methyltransferases (OMTs) play important roles in secondary metabolism. Two clusters of genes coding for caffeic acid OMT (COMT) have been identified in the apple genome. Three genes from one cluster and two genes from another cluster were isolated. These five genes encoding COMT, designated Mdomt1–Mdomt5 (GenBank accession nos. DQ886018–DQ886022), were distinguished by a (CT)n microsatellite in the 5′-UTR and two transposon-like sequences present in the promoter region and intron 1, respectively. The transposon-like sequence in intron 1 unambiguously traced the five Mdomt genes in the apple to a common ancestor. The ancestor must have undergone an initial duplication generating two progenitors, and this was followed by further duplication of these progenitors resulting in the two clusters identified in this study. The distal regions of the transposon-like sequences in promoter regions of Mdomt genes are capable of forming palindromic hairpin-like structures. The hairpin formation is likely responsible for nucleotide sequence differences observed in the promoter regions of these genes as it plays a destabilizing role in eukaryotic chromosomes. In addition, the possible mechanism of amplification of Mdomt genes in the apple genome is also discussed. PMID:17717198

  3. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms. PMID:27005412

  4. Glycine N-methyltransferase is a mediator of cytochrome P4501A1 gene expression.

    PubMed

    Raha, A; Joyce, T; Gusky, S; Bresnick, E

    1995-10-01

    Cytochrome P4501A1, the isozyme most closely approximating aryl hydrocarbon hydroxylase activity under conditions of induction, is thought to be regulated by several trans-acting factors, including the 4S polycyclic aromatic hydrocarbon-binding protein; this protein has recently been identified as glycine N-methyltransferase (Raha et al. (1994) J. Biol. Chem. 269, 5750-5756). Previous studies had shown that partially purified liver preparations containing the 4S binding protein interacted with 5'-flanking regions of the cytochrome P4501A1 gene. Consequently, the ability of the 4S binding protein to serve as a mediator in the regulation of the cytochrome P4501A1 gene was investigated further. Introduction of an antisense 24-mer oligonucleotide to glycine N-methyltransferase cDNA into rat hepatoma H4IIE cells by lipofectin resulted in a 60% reduction in the benzo(a)pyrene-mediated induction of ethoxyresorufin-O-deethylase activity and protein over the sense and scrambled antisense oligonucleotide controls. In addition, the antisense oligonucleotide caused a marked reduction in the steady-state level of cytochrome P4501A1 mRNA; no such effect was observed with the sense oligonucleotide. Introduction of GNMT polyclonal antibodies into H4IIE cells by a streptolysin-O permeabilization technique markedly reduced both benzo(a)pyrene-binding and benzo(a)-pyrene-induced ethoxyresorufin-O-deethylase activities, but had no effect on 2,3,7,8-tetrachlorodibenzo-p-dioxin induction. Collectively, these findings suggest that, in addition to the Ah (dioxin) receptor, glycine N-methyltransferase appears to be both a polycyclic aromatic hydrocarbon-binding protein and a mediator of the induction of the cytochrome P4501A1 gene by polycyclic hydrocarbons such as benzo(a)pyrene. PMID:7574713

  5. Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway

    SciTech Connect

    Chang, Aram; Singh, Shanteri; Bingman, Craig A.; Thorson, Jon S.; Phillips, Jr, George N.

    2011-11-07

    The X-ray structure determination at 2.4 {angstrom} resolution of the putative orsellinic acid C3 O-methyltransferase (CalO1) involved in calicheamicin biosynthesis is reported. Comparison of CalO1 with a homology model of the functionally related calicheamicin orsellinic acid C2 O-methyltransferase (CalO6) implicates several residues that are likely to contribute to the regiospecificity of alkylation. Consistent with the proposed requirement of an acyl-carrier-protein-bound substrate, this structural study also reveals structural determinants within CalO1 that are anticipated to accommodate an association with an acyl carrier protein.

  6. X-ray crystal structure of N-6 adenine deoxyribose nucleic acid methyltransferase from Streptococcus pneumoniae

    NASA Astrophysics Data System (ADS)

    Tran, Phidung Hong

    X-ray diffraction by using resonant anomalous scattering has become a popular tool for solving crystal structures in the last ten years with the expanded availability of tunable synchrotron radiation for protein crystallography. Mercury atoms were used for phasing. The crystal structure of N-6 deoxyribose nucleic acid methyltransferase from Streptoccocus pneumoniae (DpnM) was solved by using the Multiple Anomalous Diffraction technique. The crystal structure reveals the formation of mercaptide between the mercury ion and the thiol group on the cysteine amino acid in a hydrophobic environment. The crystal structure contains the bound ligand, S- adenosyl-l-methionine on the surface of the concave opening. The direction of the β-strands on the beta sheets are identical to other solved methyltransferases. The highly conserved motifs, DPPY and the FxGxG, are found to be important in ligand binding and possibly in methyl group transfer. The structure has a concave cleft with an opening on the order of 30 Å that can accommodate a DNA duplex. By molecular modelling coupled to sequence alignment, two other highly conserved residues Arg21 and Gly19 are found to be important in catalysis.

  7. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia.

    PubMed

    Yan, Xiao-Jing; Xu, Jie; Gu, Zhao-Hui; Pan, Chun-Ming; Lu, Gang; Shen, Yang; Shi, Jing-Yi; Zhu, Yong-Mei; Tang, Lin; Zhang, Xiao-Wei; Liang, Wen-Xue; Mi, Jian-Qing; Song, Huai-Dong; Li, Ke-Qin; Chen, Zhu; Chen, Sai-Juan

    2011-04-01

    Abnormal epigenetic regulation has been implicated in oncogenesis. We report here the identification of somatic mutations by exome sequencing in acute monocytic leukemia, the M5 subtype of acute myeloid leukemia (AML-M5). We discovered mutations in DNMT3A (encoding DNA methyltransferase 3A) in 23 of 112 (20.5%) cases. The DNMT3A mutants showed reduced enzymatic activity or aberrant affinity to histone H3 in vitro. Notably, there were alterations of DNA methylation patterns and/or gene expression profiles (such as HOXB genes) in samples with DNMT3A mutations as compared with those without such changes. Leukemias with DNMT3A mutations constituted a group of poor prognosis with elderly disease onset and of promonocytic as well as monocytic predominance among AML-M5 individuals. Screening other leukemia subtypes showed Arg882 alterations in 13.6% of acute myelomonocytic leukemia (AML-M4) cases. Our work suggests a contribution of aberrant DNA methyltransferase activity to the pathogenesis of acute monocytic leukemia and provides a useful new biomarker for relevant cases. PMID:21399634

  8. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer.

    PubMed

    Luo, Hongyan; Liu, Mafeng; Wang, Lanying; Zhou, Wangshu; Wang, Mingshu; Cheng, Anchun; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Chen, Xiaoyue; Zhu, Dekang

    2015-01-01

    Riemerella anatipestifer is a major bacterial pathogen of waterfowl, globally responsible for avian septicaemic disease. As chemotherapy is the predominant method for the prevention and treatment of R. anatipestifer infection in poultry, the widespread use of antibiotics has favoured the emergence of antibiotic-resistant strains. However, little is known about R. anatipestifer susceptibility to macrolide antibiotics and its resistance mechanism. We report for the first time the identification of a macrolide resistance mechanism in R. anatipestifer that is mediated by the ribosomal RNA methyltransferase ermF. We identified the presence of the ermF gene in 64/206 (31%) R. anatipestifer isolates from different regions in China. An ermF deletion strain was constructed to investigate the function of the ermF gene on the resistance to high levels of macrolides. The ermF mutant strain showed significantly decreased resistance to macrolide and lincosamide, exhibiting 1024-, 1024-, 4- and >2048-fold reduction in the minimum inhibitory concentrations for erythromycin, azithromycin, tylosin and lincomycin, respectively. Furthermore, functional analysis of ermF expression in E. coli XL1-blue showed that the R. anatipestifer ermF gene was functional in E. coli XL1-blue and conferred resistance to high levels of erythromycin (100 µg/ml), supporting the hypothesis that the ermF gene is associated with high-level macrolide resistance. Our work suggests that ribosomal RNA modification mediated by the ermF methyltransferase is the predominant mechanism of resistance to erythromycin in R. anatipestifer isolates. PMID:25690020

  9. Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMT), has recently emerged as an important modification in the regulation of gene expression. In this communication, we identified and characterized the channel catfish orthologs to human PRMT 1, 3, 4 and 5, and PRMT4 ...

  10. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  11. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  12. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster.

    PubMed

    Gaisser, S; Lill, R; Wirtz, G; Grolle, F; Staunton, J; Leadlay, P F

    2001-09-01

    Using a previously developed expression system based on the erythromycin-producing strain of Saccharopolyspora erythraea, O-methyltransferases from the spinosyn biosynthetic gene cluster of Saccharopolyspora spinosa have been shown to modify a rhamnosyl sugar attached to a 14-membered polyketide macrolactone. The spnI, spnK and spnH methyltransferase genes were expressed individually in the S. erythraea mutant SGT2, which is blocked both in endogenous macrolide biosynthesis and in ery glycosyltransferases eryBV and eryCIII. Exogenous 3-O-rhamnosyl-erythronolide B was efficiently converted into 3-O-(2'-O-methylrhamnosyl)-erythronolide B by the S. erythraea SGT2 (spnI) strain only. When 3-O-(2'-O-methylrhamnosyl)-erythronolide B was, in turn, fed to a culture of S. erythraea SGT2 (spnK), 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was identified in the culture supernatant, whereas S. erythraea SGT2 (spnH) was without effect. These results confirm the identity of the 2'- and 3'-O-methyltransferases, and the specific sequence in which they act, and they demonstrate that these methyltransferases may be used to methylate rhamnose units in other polyketide natural products with the same specificity as in the spinosyn pathway. In contrast, 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was found not to be a substrate for the 4'-O-methyltransferase SpnH. Although rhamnosylerythromycins did not serve directly as substrates for the spinosyn methyltransferases, methylrhamnosyl-erythromycins were obtained by subsequent conversion of the corresponding methylrhamnosyl-erythronolide precursors using the S. erythraea strain SGT2 housing EryCIII, the desosaminyltransferase of the erythromycin pathway. 3-O-(2'-O-methylrhamnosyl)-erythromycin D was tested and found to be significantly active against a strain of erythromycin-sensitive Bacillus subtilis. PMID:11555300

  13. Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis

    PubMed Central

    Rodriguez-Paredes, M; Martinez de Paz, A; Simó-Riudalbas, L; Sayols, S; Moutinho, C; Moran, S; Villanueva, A; Vázquez-Cedeira, M; Lazo, P A; Carneiro, F; Moura, C S; Vieira, J; Teixeira, M R; Esteller, M

    2014-01-01

    Disruption of the histone modification patterns is one of the most common features of human tumors. However, few genetic alterations in the histone modifier genes have been described in tumorigenesis. Herein we show that the histone methyltransferase SETDB1 undergoes gene amplification in non-small and small lung cancer cell lines and primary tumors. The existence of additional copies of the SETDB1 gene in these transformed cells is associated with higher levels of the corresponding mRNA and protein. From a functional standpoint, the depletion of SETDB1 expression in amplified cells reduces cancer growth in cell culture and nude mice models, whereas its overexpression increases the tumor invasiveness. The increased gene dosage of SETDB1 is also associated with enhanced sensitivity to the growth inhibitory effect mediated by the SETDB1-interfering drug mithramycin. Overall, the findings identify SETDB1 as a bona fide oncogene undergoing gene amplification-associated activation in lung cancer and suggest its potential for new therapeutic strategies. PMID:23770855

  14. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression

    PubMed Central

    Bouchard, Caroline; Bauer, Uta-Maria

    2016-01-01

    Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins. PMID:26848759

  15. The complete nucleotide sequence and structure of the gene encoding bovine phenylethanolamine N-methyltransferase.

    PubMed

    Batter, D K; D'Mello, S R; Turzai, L M; Hughes, H B; Gioio, A E; Kaplan, B B

    1988-03-01

    A cDNA clone for bovine adrenal phenylethanolamine N-methyltransferase (PNMT) was used to screen a Charon 28 genomic library. One phage was identified, designated lambda P1, which included the entire PNMT gene. Construction of a restriction map, with subsequent Southern blot analysis, allowed the identification of exon-containing fragments. Dideoxy sequence analysis of these fragments, and several more further upstream, indicates that the bovine PNMT gene is 1,594 base pairs in length, consisting of three exons and two introns. The transcription initiation site was identified by two independent methods and is located approximately 12 base pairs upstream from the ATG translation start site. The 3' untranslated region is 88 base pairs in length and contains the expected polyadenylation signal (AATAAA). A putative promoter sequence (TATA box) is located about 25 base pairs upstream from the transcription initiation site. Computer comparison of the nucleotide sequence data with the consensus sequences of known regulatory elements revealed potential binding sites for glucocorticoid receptors and the Sp1 regulatory protein in the 5' flanking region of the gene. Additionally, comparison of the sequence of the exons of the PNMT gene with cDNA sequences for other enzymes involved in biogenic amine synthesis revealed no significant homology, indicating that PNMT is not a member of a multigene family of catecholamine biosynthetic enzymes. PMID:3379652

  16. O-Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413.

    PubMed

    Pope, Matthew A; Spence, Edward; Seralvo, Valentina; Gacesa, Ranko; Heidelberger, Sibylle; Weston, Andrew J; Dunlap, Walter C; Shick, J Malcolm; Long, Paul F

    2015-01-19

    The parent core structure of mycosporine-like amino acids (MAAs) is 4-deoxygadusol, which, in cyanobacteria, is derived from conversion of the pentose phosphate pathway intermediate sedoheptulose 7-phosphate by the enzymes 2-epi-5-epivaliolone synthase (EVS) and O-methyltransferase (OMT). Yet, deletion of the EVS gene from Anabaena variabilis ATCC 29413 was shown to have little effect on MAA production, thus suggesting that its biosynthesis is not exclusive to the pentose phosphate pathway. Herein, we report how, using pathway-specific inhibitors, we demonstrated unequivocally that MAA biosynthesis occurs also via the shikimate pathway. In addition, complete in-frame gene deletion of the OMT gene from A. variabilis ATCC 29413 reveals that, although biochemically distinct, the pentose phosphate and shikimate pathways are inextricably linked to MAA biosynthesis in this cyanobacterium. Furthermore, proteomic data reveal that the shikimate pathway is the predominate route for UV-induced MAA biosynthesis. PMID:25487723

  17. Sequence analysis of the NgoPII methyltransferase gene from Neisseria gonorrhoeae P9: homologies with other enzymes recognizing the sequence 5'-GGCC-3'.

    PubMed Central

    Sullivan, K M; Saunders, J R

    1988-01-01

    Recombinant plasmids harbouring the functional M.NgoPII methyltransferase (specificity 5'-GGCC-3') were isolated from amplified gene libraries of gonococcal chromosomal DNA cloned in pBR322 and in Escherichia coli RR1. The M.NgoPII gene was localized by sub-cloning and the nucleotide sequence of a cloned 1.6 kb segment of Neisseria gonorrhoeae DNA harbouring the methylase gene was determined. This data, coupled with sub-cloning experiments and in vitro transcription-translation studies, indicates a theoretical size of 38.5 kd for the methylase protein. The predicted amino acid sequence of the methylase contains significant regions of homology with the projected sequences of other cytosine-modifying methylases, upon which the activity of these enzymes is likely to depend. Images PMID:2837733

  18. Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes

    PubMed Central

    Lhoumaud, Priscillia; Hennion, Magali; Gamot, Adrien; Cuddapah, Suresh; Queille, Sophie; Liang, Jun; Micas, Gael; Morillon, Pauline; Urbach, Serge; Bouchez, Olivier; Severac, Dany; Emberly, Eldon; Zhao, Keji; Cuvier, Olivier

    2014-01-01

    Chromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites. Biochemical purification identifies the H3K36 histone methyltransferase NSD/dMes-4 as a novel IBP cofactor, which specifically co-regulates the chromatin accessibility of hundreds of genes flanked by dCTCF/Beaf32. NSD/dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-dependent H3K36 trimethylation, nucleosome positioning, and RNA splicing. Our results unveil a model for how IBPs regulate nucleosome dynamics and gene expression through NSD/dMes-4, which may regulate H3K27me3 spreading. Our data uncover how IBPs dynamically regulate chromatin organization depending on distinct cofactors. PMID:24916307

  19. Polymorphisms of the DNA Methyltransferase 1 Gene Predict Survival of Gastric Cancer Patients Receiving Tumorectomy

    PubMed Central

    Jia, Zhifang; Wu, Xing; Cao, Donghui; Wang, Chuan; You, Lili; Jin, Meishan; Wen, Simin; Cao, Xueyuan; Jiang, Jing

    2016-01-01

    DNA methyltransferase 1 (DNMT1) plays a pivotal role in maintaining DNA methylation status. Polymorphisms of DNMT1 may modify the role of DNMT1 in prognosis of gastric cancer (GC). Our aim was to test whether polymorphisms of DNMT1 gene were associated with overall survival of GC. Four hundred and forty-seven GC patients who underwent radical tumorectomy were enrolled in the study. Five tagging SNPs (rs10420321, rs16999593, rs2228612, rs2228611, and rs2288349) of the DNMT1 gene were genotyped by TaqMan assays. Kaplan-Meier survival plots and Cox proportional hazard regression were used to analyze the associations between SNPs of DNMT1 and survival of GC. Patients carrying rs2228611 GA/AA genotype tended to live longer than those bearing the GG genotype (HR 0.68, 95% CI: 0.51–0.91, P = 0.007). Further multivariate Cox regression analysis showed that rs2228611 was an independent prognostic factor (GA/AA versus GG: OR 0.67, 95% CI 0.49–0.91, P = 0.010). Nevertheless, other SNPs did not show any significant associations with survival of GC. Polymorphisms of the DNMT1 gene may affect overall survival of GC. The SNP rs2228611 has the potentiality to serve as an independent prognostic marker for GC patients. PMID:27087738

  20. Improved antioxidant activity in transgenic Perilla frutescens plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene.

    PubMed

    Ghimire, Bimal Kumar; Seong, Eun Soo; Lee, Chan Ok; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung Hyun; Chung, Ill Min

    2015-09-01

    The main goal of this study was to generate transgenic Perilla frutescens with enhanced antioxidant properties by overexpressing the γ-tocopherol methyltransferase (γ-tmt) gene. In this study, the antioxidant activity of methanolic crude extracts of transgenic and non-transgenic control plants was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Free radical scavenging activity was evaluated using α-tocopherol and butylated hydroxyl toluene as standard antioxidants. In general, the ethyl acetate fraction of transgenic P. frutescens showed stronger DPPH radical scavenging activity than the ethyl acetate fraction from non-transgenic control plants (IC50 2.00 ± 0.10 and 5.53 ± 0.40 μg ∙ ml(-1), respectively). High-performance liquid chromatography analysis of phenolic acids in leaf extracts confirmed increased levels of 16 individual phenolic compounds in two transgenic lines (pf47-5 and pf47-8) compared with control plants. Changes in the phenolic compound profile and α-tocopherol content were correlated with the antioxidant properties of transgenic plants, indicating that the introduction of transgene γ-tmt influenced the metabolism of phenolic compounds and subsequently produced biochemical changes in the transformants. There were no significant differences in photosynthetic rate in the transgenic plants as compared to the non-transgenic control plants, suggesting that the alteration of phenolic compounds and tocopherol composition had little impact on photosynthesis. PMID:25604637

  1. High Expression of the DNA Methyltransferase Gene Characterizes Human Neoplastic Cells and Progression Stages of Colon Cancer

    NASA Astrophysics Data System (ADS)

    El-Deiry, Wafik S.; Nelkin, Barry D.; Celano, Paul; Chiu Yen, Ray-Whay; Falco, Joseph P.; Hamilton, Stanley R.; Baylin, Stephen B.

    1991-04-01

    DNA methylation abnormalities occur consistently in human neoplasia including widespread hypomethylation and more recently recognized local increases in DNA methylation that hold potential for gene inactivation events. To study this imbalance further, we have cloned and localized to chromosome 19 a portion of the human DNA methyltransferase gene that codes for the enzyme catalyzing DNA methylation. Expression of this gene is low in normal human cells, significantly increased (30- to 50-fold by PCR analysis) in virally transformed cells, and strikingly elevated in human cancer cells (several hundredfold). In comparison to colon mucosa from patients without neoplasia, median levels of DNA methyltransferase transcripts are 15-fold increased in histologically normal mucosa from patients with cancers or the benign polyps that can precede cancers, 60-fold increased in the premalignant polyps, and >200-fold increased in the cancers. Thus, increases in DNA methyltransferase gene expression precede development of colonic neoplasia and continue during progression of colonic neoplasms. These increases may play a role in the genetic instability of cancer and mark early events in cell transformation.

  2. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    PubMed Central

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  3. Salvianolic acid B as a substrate and weak catechol-O-methyltransferase inhibitor in rats.

    PubMed

    Qi, Qu; Cao, Lijuan; Li, Feiyan; Wang, Hong; Liu, Huiying; Hao, Haiping; Hao, Kun

    2015-01-01

    1. The aim of this study was to investigate the biotransformation of salvianolic acid B (SAB) by catechol-O-methyltransferase (COMT) and its interaction with levodopa (l-DOPA) methylation in rats. 2. The enzyme kinetics of SAB were studied after incubation with rat COMT. The in vivo SAB and 3-monomethyl-SAB (3-MMS) levels were determined after a single dose of tolcapone with or without SAB administration. For l-DOPA, the effect of SAB inhibition on l-DOPA methylation was studied in vitro. The l-DOPA and 3-O-methyldopa (3-OMD) levels were determined after single and multiple doses of SAB with or without l-DOPA administration. 3. After incubation, we found that SAB was methylated mainly by rat liver and kidney COMT. Tolcapone strongly inhibited the formation of 3-MMS in vitro and in vivo, without any change in the plasma concentration of SAB. Moreover, tolcapone significantly increased the cumulative bile excretion of SAB from 3% to 40% in the rat. SAB inhibited the methylation of l-DOPA with an IC50 value of 2.08 μM in vitro. In vivo, a single intravenous dose of SAB decreased the plasma concentration of 3-OMD, with no obvious effect on the pharmacokinetics of l-DOPA. Multiple doses of SAB given to rats also decreased the plasma concentration of 3-OMD, while SAB increased the plasma concentration of l-DOPA. PMID:25869243

  4. Phenolic Profiling of Caffeic Acid O-Methyltransferase-Deficient Poplar Reveals Novel Benzodioxane Oligolignols1

    PubMed Central

    Morreel, Kris; Ralph, John; Lu, Fachuang; Goeminne, Geert; Busson, Roger; Herdewijn, Piet; Goeman, Jan L.; Van der Eycken, Johan; Boerjan, Wout; Messens, Eric

    2004-01-01

    Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins. PMID:15563622

  5. Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae.

    PubMed Central

    Nordlund, M E; Johansson, J O; von Pawel-Rammingen, U; Byström, A S

    2000-01-01

    The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2. PMID:10864043

  6. Analysis of catechol-O-methyltransferase gene mutation and identification of new pathogenic gene for paroxysmal kinesigenic dyskinesia.

    PubMed

    Gu, Chengzhi; Li, Jia; Zhu, Lianhai; Lu, Zhenhui; Huang, Huaiyu

    2016-03-01

    We aimed to analyze the mutation site and frequency of catechol-O-methyltransferase (COMT) gene, to explore the relationship between COMT genotype and phenotype, and to find new pathogenic genes for paroxysmal kinesigenic dyskinesia (PKD). PKD patients who were treated from December 2011 to January 2014 were selected and subjected to genetic testing in the exon region of COMT. Two patients and one intrafamilial healthy control were subjected to exome sequencing using whole exome capture in combination with high-throughput sequencing to find candidate pathogenic gene sites. The results were verified by Sanger sequencing. A total of 11 familial PKD patients from 4 families and 9 sporadic patients without family history were included. Pathogenic c.634dupC(p.P220fsX7) mutation of COMT gene was found in 7 familial PKD patients and3 sporadic patients. Mutated COMT gene carriers suffered from PKD earlier (average age of onset: 11.61 ± 2.33 vs 16.21 ± 2.58, P = 0.001) with symmetric symptoms in most cases, while the mutation-negative group only showed unilateral symptoms (P = 0.001). The mutation-positive group also had more daily attacks (P = 0.038). Carbamazepine worked for all mutation-positive patients (10/10, 100%), but only for a part of mutation-negative patients (3/10, 30.0%). About 90000 single nucleotide polymorphisms and 2000 insertion-deletion polymorphisms were detected in each of the three samples. c.737C → T(p.T246 M) mutation of POC1B gene was a new pathogenic site for a selected family. COMT gene mutation, which was the pathogenesis of most familial PKD patients and a part of sporadic patients, predicted the response to carbamazepine. POC1B may be a novel pathogenic gene for PKD. PMID:26650803

  7. Histone Methyltransferase DOT1L Drives Recovery of Gene Expression after a Genotoxic Attack

    PubMed Central

    Ziani, Salim; Mari, Pierre-Olivier; Eberova, Jitka; Nardo, Tiziana; Stefanini, Miria; Giglia-Mari, Giuseppina; Egly, Jean-Marc; Coin, Frédéric

    2013-01-01

    UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEFDOT1L) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack. PMID:23861670

  8. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack.

    PubMed

    Oksenych, Valentyn; Zhovmer, Alexander; Ziani, Salim; Mari, Pierre-Olivier; Eberova, Jitka; Nardo, Tiziana; Stefanini, Miria; Giglia-Mari, Giuseppina; Egly, Jean-Marc; Coin, Frédéric

    2013-01-01

    UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEF(DOT1L)) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack. PMID:23861670

  9. Catechol-O-Methyltransferase Gene Polymorphisms in Specific Obsessive-Compulsive Disorder Patients' Subgroups.

    PubMed

    Melo-Felippe, Fernanda Brito; de Salles Andrade, Juliana Braga; Giori, Isabele Gomes; Vieira-Fonseca, Tamiris; Fontenelle, Leonardo Franklin; Kohlrausch, Fabiana Barzotti

    2016-01-01

    Pharmacological data and animal models support the hypothesis that the dopaminergic (DA) system is implicated in obsessive-compulsive disorder (OCD). Therefore, this case-control study assessed whether genetics variations in catechol-O-methyltransferase gene (COMT) could influence susceptibility to OCD and OCD features in a Brazilian sample. A sample of 199 patients with OCD and 200 healthy individuals was genotyped for -287A > G (rs2075507) and Val158Met (rs4680) single nucleotide polymorphisms (SNPs) by TaqMan(®) or restriction mapping. We observed a statistically significant predominance of the Met low-activity allele in the male patient group as compared to the male healthy control group. The -287A > G polymorphism's genotypes and alleles were significantly overrepresented among male individuals with ordering and female subjects with washing symptoms. We also found female hoarders to exhibit a significant higher frequency of the low activity Met/Met genotype of Val158Met polymorphism compared to female patients who did not express this dimension. Our data suggest an influence of COMT polymorphisms on OCD and OCD patients' features, such as gender, and ordering, washing, and hoarding symptom dimensions. Further studies to confirm the clinical importance of COMT SNPs in OCD are warranted. PMID:26687156

  10. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family

    SciTech Connect

    Zhao,N.; Ferrer, J.; Ross, J.; Guan, J.; Yang, Y.; Pichersky, E.; Noel, J.; Chen, F.

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Angstroms resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in

  11. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family1[W][OA

    PubMed Central

    Zhao, Nan; Ferrer, Jean-Luc; Ross, Jeannine; Guan, Ju; Yang, Yue; Pichersky, Eran; Noel, Joseph P.; Chen, Feng

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-l-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Å resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA

  12. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria. PMID:27570304

  13. Recruitment of histone methyltransferase G9a mediates transcriptional repression of Fgf21 gene by E4BP4 protein.

    PubMed

    Tong, Xin; Zhang, Deqiang; Buelow, Katie; Guha, Anirvan; Arthurs, Blake; Brady, Hugh J M; Yin, Lei

    2013-02-22

    The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes. However, the epigenetic mechanism for E4BP4-dependent suppression of Fgf21 has not yet been addressed. Here we present evidence that histone methyltransferase G9a mediates E4BP4-dependent repression of Fgf21 during refeeding by promoting repressive histone modification. We find that Fgf21 expression is up-regulated in E4bp4 knock-out mouse liver. We demonstrate that the G9a-specific inhibitor BIX01294 abolishes suppression of the Fgf21 promoter activity by E4BP4, whereas overexpression of E4bp4 leads to increased levels of dimethylation of histone 3 lysine 9 (H3K9me2) around the Fgf21 promoter region. Furthermore, we also show that E4BP4 interacts with G9a, and knockdown of G9a blocks repression of Fgf21 promoter activity and expression in cells overexpressing E4bp4. A G9a mutant lacking catalytic activity, due to deletion of the SET domain, fails to inhibit the Fgf21 promoter activity. Importantly, acute hepatic knockdown by adenoviral shRNA targeting G9a abolishes Fgf21 repression by refeeding, concomitant with decreased levels of H3K9me2 around the Fgf21 promoter region. In summary, we show that G9a mediates E4BP4-dependent suppression of hepatic Fgf21 by enhancing histone methylation (H3K9me2) of the Fgf21 promoter. PMID:23283977

  14. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes

    PubMed Central

    Resseguie, Mary; Song, Jiannan; Niculescu, Mihai D.; da Costa, Kerry-Ann; Randall, Thomas A.; Zeisel, Steven H.

    2008-01-01

    Choline is an essential nutrient for humans, though some of the requirement can be met by endogenous synthesis catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). Premenopausal women are relatively resistant to choline deficiency compared with postmenopausal women and men. Studies in animals suggest that estrogen treatment can increase PEMT activity. In this study we investigated whether the PEMT gene is regulated by estrogen. PEMT transcription was increased in a dose-dependent manner when primary mouse and human hepatocytes were treated with 17-β-estradiol for 24 h. This increased message was associated with an increase in protein expression and enzyme activity. In addition, we report a region that contains a perfect estrogen response element (ERE) ∼7.5 kb from the transcription start site corresponding to transcript variants NM_007169 and NM-008819 of the human and murine PEMT genes, respectively, three imperfect EREs in evolutionarily conserved regions and multiple imperfect EREs in nonconserved regions in the putative promoter regions. We predict that both the mouse and human PEMT genes have three unique transcription start sites, which are indicative of either multiple promoters and/or alternative splicing. This study is the first to explore the underlying mechanism of why dietary requirements for choline vary with estrogen status in humans.—Resseguie, M., Song, J., Niculescu, M. D., da Costa, K., Randall, T. A., Zeisel, S. H. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. PMID:17456783

  15. Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable.

    PubMed

    Vanet, A; Plumbridge, J A; Guérin, M F; Alix, J H

    1994-12-01

    The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable. PMID:7715456

  16. Promoter variation in the catechol-O-methyltransferase gene is associated with remission of symptoms during fluvoxamine treatment for major depression.

    PubMed

    Fukui, Naoki; Suzuki, Yutaro; Sugai, Takuro; Watanabe, Junzo; Ono, Shin; Tsuneyama, Nobuto; Someya, Toshiyuki

    2014-08-30

    We investigated the association between remission of depressive symptoms in fluvoxamine treatment and catechol-O-methyltransferase (COMT) gene. Sixteen SNPs in the COMT gene were investigated in 123 outpatients with major depression. Three single nucleotide polymorphisms located in the 5' region were associated with remission in fluvoxamine-treated outpatients with moderate to severe depression. PMID:24814141

  17. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    PubMed

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium. PMID:26416763

  18. Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

    PubMed

    Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A; Bruner, Steven D; Shen, Ben

    2008-05-23

    Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation into the neocarzinostatin chromophore are catalyzed by five enzymes NcsB, NcsB1, NcsB2, NcsB3, and NcsB4. Here we report the biochemical characterization of NcsB1, unveiling that: (i) NcsB1 is an S-adenosyl-L-methionine-dependent O-methyltransferase; (ii) NcsB1 catalyzes regiospecific methylation at the 7-hydroxy group of its native substrate, 2,7-dihydroxy-5-methyl-1-naphthoic acid; (iii) NcsB1 also recognizes other dihydroxynaphthoic acids as substrates and catalyzes regiospecific O-methylation; and (iv) the carboxylate and its ortho-hydroxy groups of the substrate appear to be crucial for NcsB1 substrate recognition and binding, and O-methylation takes place only at the free hydroxy group of these dihydroxynaphthoic acids. These findings establish that NcsB1 catalyzes the third step in the biosynthesis of the naphthoic acid moiety of the neocarzinostatin chromophore and further support the early proposal for the biosynthesis of the naphthoic acid and its incorporation into the neocarzinostatin chromophore with free naphthoic acids serving as intermediates. NcsB1 represents another opportunity that can now be exploited to produce novel neocarzinostatin analogs by engineering neocarzinostatin biosynthesis or applying directed biosynthesis strategies. PMID:18387946

  19. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality

    PubMed Central

    Ho-Yue-Kuang, Séverine; Alvarado, Camille; Antelme, Sébastien; Bouchet, Brigitte; Cézard, Laurent; Le Bris, Philippe; Legée, Frédéric; Maia-Grondard, Alessandra; Yoshinaga, Arata; Saulnier, Luc; Guillon, Fabienne; Sibout, Richard; Lapierre, Catherine; Chateigner-Boutin, Anne-Laure

    2016-01-01

    Cereal crop by-products are a promising source of renewable raw material for the production of biofuel from lignocellulose. However, their enzymatic conversion to fermentable sugars is detrimentally affected by lignins. Here the characterization of the Brachypodium Bd5139 mutant provided with a single nucleotide mutation in the caffeic acid O-methyltransferase BdCOMT6 gene is reported. This BdCOMT6-deficient mutant displayed a moderately altered lignification in mature stems. The lignin-related BdCOMT6 gene was also found to be expressed in grains, and the alterations of Bd5139 grain lignins were found to mirror nicely those evidenced in stem lignins. The Bd5139 grains displayed similar size and composition to the control. Complementation experiments carried out by introducing the mutated gene into the AtCOMT1-deficient Arabidopsis mutant demonstrated that the mutated BdCOMT6 protein was still functional. Such a moderate down-regulation of lignin-related COMT enzyme reduced the straw recalcitrance to saccharification, without compromising the vegetative or reproductive development of the plant. PMID:26433202

  20. Effects of topiramate on ethanol-cocaine interactions and DNA methyltransferase gene expression in the rat prefrontal cortex

    PubMed Central

    Echeverry-Alzate, V; Giné, E; Bühler, K M; Calleja-Conde, J; Olmos, P; Gorriti, M A; Nadal, R; Rodríguez de Fonseca, F; López-Moreno, J A

    2014-01-01

    BACKGROUND AND PURPOSE Recent and ongoing clinical studies have indicated that topiramate (Topamax®) could be effective in treating ethanol or cocaine abuse. However, the effects of topiramate on the co-administration of ethanol and cocaine remain largely unknown. EXPERIMENTAL APPROACH We studied the effects of topiramate, in Wistar rats, on operant ethanol self-administration with the co-administration of cocaine (i.p.). The psychomotor effects of topiramate were examined before ethanol self-administration and cocaine exposure. Blood samples were collected to analyse ethanol and cocaine metabolism (blood ethanol levels and benzoylecgonine). Quantitative real-time PCR was used to characterize the gene expression in the prefrontal cortex. KEY RESULTS Topiramate prevented the cocaine-induced increased response to ethanol in a dose-dependent manner without causing any motor impairment by itself. This effect was observed when topiramate was administered before ethanol access, but not when topiramate was administered before the cocaine injection. Topiramate did not block cocaine-induced psychomotor stimulation. Topiramate reduced blood ethanol levels but did not affect cocaine metabolism. Ethanol increased the gene expression of DNA methyltransferases (Dnmt1 and Dnmt3a), the corepressor Dnmt1-associated protein 1 (Dmap1), and the RNA methyltransferase Trdmt1. These effects were prevented by topiramate or cocaine. Gene expression of histone deacetylase-2 and glutamate receptor kainate-1 were only increased by cocaine treatment. Topiramate and cocaine co-administration caused an up-regulation of dopamine (Drd1, Th) and opioid (Oprm1) receptor genes. Topiramate showed a tendency to alter episodic-like memory. CONCLUSIONS AND IMPLICATIONS Topiramate is an effective inhibitor of the cocaine-induced increase in operant ethanol self-administration. PMID:24527678

  1. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome

    SciTech Connect

    Lachman, H.M.; Papolos, D.F.; Veit, S.

    1996-09-20

    Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploinsufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine{r_arrow}methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158{sup met} leads to a 3- to 4-fold reduction in enzymatic activity, compared with homozygotes for COMT158{sup met}. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158{sup met}, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form. 33 refs., 3 tabs.

  2. S-Farnesyl-Thiopropionic Acid Triazoles as Potent Inhibitors of Isoprenylcysteine Carboxyl Methyltransferase

    PubMed Central

    2011-01-01

    We report the design and synthesis of novel FTPA-triazole compounds as potent inhibitors of isoprenylcysteine carboxyl methyltransferase (Icmt), through a focus on thioether and isoprenoid mimetics. These mimetics were coupled utilizing a copper-assisted cycloaddition to assemble the potential inhibitors. Using the resulting triazole from the coupling as an isoprenyl mimetic resulted in the biphenyl-substituted FTPA triazole 10n. This lipid-modified analogue is a potent inhibitor of Icmt (IC50 = 0.8 ± 0.1 μM; calculated Ki = 0.4 μM). PMID:22754607

  3. Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With S-adenosylmethionine (SAM) acting as the methyl donor, caffeic acid O-methyltransferase from Sorghum bicolor (SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde, to form sinapaldehyde. In order to determine the mechanism of SbCOMT and understand the red...

  4. Molecular Cloning and Characterization of Juvenile Hormone Acid Methyltransferase in the Honey Bee, Apis mellifera, and Its Differential Expression during Caste Differentiation

    PubMed Central

    Li, Wenfeng; Huang, Zachary Y.; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation. PMID:23874662

  5. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    PubMed

    Li, Wenfeng; Huang, Zachary Y; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different orders, and they have been shown to play critical roles in metamorphosis and reproduction. However, the significance of JHAMT in Hymenopteran insects is unknown. We used RACE amplification method to clone JHAMT cDNA from the honey bee, Apis mellifera (AmJHAMT). The full length cDNA of AmJHAMT that we cloned is 1253bp long and encodes a 278-aa protein that shares 32-36% identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, is present in AmJHAMT. Its secondary structure also contains a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) are conserved in AmJHAMT as in other JHAMT orthologs. Phylogenetic analysis clustered AmJHAMT with the other orthologs from Hymenoptera to form a major clade in the phylogenetic tree. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies and to verify the identity of AmJHAMT by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis. These results suggest that the gene that we cloned codes for a functional JHAMT that catalyzes the final reactions of JH biosynthesis in honey bees. In addition, AmJHAMT may play an important role in honey bee caste differentiation. PMID:23874662

  6. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de Novo DNA methyltransferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aberrant DNA methylation is common in carcinogenesis. The typical pattern appears to involve reduced expression of maintenance DNA methyltransferase, DNMT1, inducing genomic hypomethylation, whereas increased expression of de novo DNMT3a or 3b causes gene-specific hypermethylation. During cadmium-in...

  7. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. PMID:26603903

  8. An intact SAM-dependent methyltransferase fold is encoded by the human endothelin-converting enzyme-2 gene

    SciTech Connect

    Tempel, W.; Wu, H.; Dombrovsky, L.; Zeng, H.; Loppnau, P.; Zhu, H.; Plotnikov, A.N.; Bochkarev, A.

    2010-08-17

    A recent survey of protein expression patterns in patients with Alzheimer's disease (AD) has identified ece2 (chromosome: 3; Locations: 3q27.1) as the most significantly downregulated gene within the tested group. ece2 encodes endothelin-converting enzyme ECE2, a metalloprotease with a role in neuropeptide processing. Deficiency in the highly homologous ECE1 has earlier been linked to increased levels of AD-related {beta}-amyloid peptide in mice, consistent with a role for ECE in the degradation of that peptide. Initially, ECE2 was presumed to resemble ECE1, in that it comprises a single transmembrane region of {approx}20 residues flanked by a small amino-terminal cytosolic segment and a carboxy-terminal lumenar peptidase domain. The carboxy-terminal domain has significant sequence similarity to both neutral endopeptidase, for which an X-ray structure has been determined, and Kell blood group protein. After their initial discovery, multiple isoforms of ECE1 and ECE2 were discovered, generated by alternative splicing of multiple exons. The originally described ece2 transcript, RefSeq NM{_}174046, contains the amino-terminal cytosolic portion followed by the transmembrane region and peptidase domain (Fig. 1, isoform B). Another ece2 transcript, available from the Mammalian Gene Collection under MGC2408 (Fig. 1, isoform C), RefSeq accession NM{_}032331, is predicted to be translated into a 255 residue peptide with low but detectable sequence similarity to known S-adenosyl-L-methionine (SAM)-dependent methyltransferases (SAM-MTs), such as the hypothetical protein TT1324 from Thermus thermophilis, PDB code 2GS9, which shares 30% amino acid sequence identity with ECE2 over 138 residues of the sequence. Intriguingly, another 'elongated' ece2 transcript (Fig. 1, isoform A) (RefSeq NM{_}014693) contains an amino-terminal portion of the putative SAM-MT domain, the transmembrane domain, and the protease domain. This suggests the possibility for coexistence of the putative SAM

  9. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  10. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.

    PubMed

    Arias, Cesar A; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V; Murray, Barbara E; Quinn, John P

    2008-03-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  11. High Glucose Increases the Expression of Inflammatory Cytokine Genes in Macrophages Through H3K9 Methyltransferase Mechanism.

    PubMed

    Li, Mei-Fang; Zhang, Rong; Li, Ting-Ting; Chen, Ming-Yun; Li, Lian-Xi; Lu, Jun-Xi; Jia, Wei-Ping

    2016-01-01

    Recent studies suggest that histone modification is one of the mechanisms regulating inflammatory cytokine gene expression in hyperglycemic conditions. However, it remains unknown how histone methylation is initiated and involved in changes of inflammatory cytokine gene expression under high glucose (HG) conditions. Our aim was to investigate whether H3K9 methylation was involved in HG-induced expression of inflammatory cytokines in macrophages. Expression profile of cytokine genes under hyperglycemia in THP-1-derived macrophages was determined by human cytokine antibody array. Based on the results from the human cytokine antibody array analyses, the H3K9me3 levels of 4 inflammatory cytokine genes, including interleukin-6 (IL-6), IL-12p40, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β under HG were determined by ChIP assays. Furthermore, the expression of these 4 inflammatory cytokine genes under either HG or chaetocin (an inhibitor of SUV39H1 methyltransferase) exposure or overexpression of SUV39H1 (a H3K9me3-specific methyltransferase) was analyzed by quantitative polymerase chain reaction. Macrophages cultured in HG conditions showed increased gene expression and decreased H3K9me3 levels of inflammatory cytokine genes compared with macrophages incubated in normal glucose (NG) culture. Inhibition of SUV39H1 with chaetocin in NG-treated macrophages also increased the expression of IL-6, IL-12p40, MIP-1α, and MIP-1β. Furthermore, inhibition of SUV39H1 with chaetocin in HG-treated macrophages further increased the expression of these inflammatory cytokines. Contrarily, NG-treated macrophages transfected with SUV39H1 plasmids show decreased expression of inflammatory cytokines. Furthermore, overexpression of SUV39H1 in HG-treated macrophages alleviated the expression of inflammatory cytokines under HG conditions. Finally, HG also increases the expression of inflammation cytokines in mouse bone marrow-derived macrophages. Our data demonstrated that HG

  12. Molecular cloning, characterization and expression analysis of the protein arginine N-methyltransferase 1 gene (As-PRMT1) from Artemia sinica.

    PubMed

    Jiang, Xue; Yao, Feng; Li, Xuejie; Jia, Baolin; Zhong, Guangying; Zhang, Jianfeng; Zou, Xiangyang; Hou, Lin

    2015-07-01

    Protein arginine N-methyltransferase 1 (PRMT1) is an important epigenetic regulation factor in eukaryotic genomes. PRMT1 is involved in histone arginine loci methylation modification, changes in eukaryotic genomes' chromatin structure, and gene expression regulation. In the present paper, the full-length 1201-bp cDNA sequence of the PRMT1 homolog of Artemia sinica (As-PRMT1) was cloned for the first time. The putative As-PRMT1 protein comprises 346 amino acids with a SAM domain and a PRMT5 domain. Multiple sequence alignments revealed that the putative sequence of As-PRMT1 protein was relatively conserved across species, especially in the SAM domain. As-PRMT1 is widely expressed during embryo development of A. sinica. This is followed by a dramatic upregulation after diapause termination and then downregulation from the nauplius stage. Furthermore, As-PRMT1 transcripts are highly upregulated under conditions of high salinity and low temperature stress. These findings suggested that As-PRMT1 is a stress-related factor that might promote or inhibit the expression of certain genes, play a critical role in embryonic development and in resistance to low temperature and high salinity stress. PMID:25843627

  13. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences coding for COMT, CCoAOMT1, and CCoAOMT2 was analyzed in relation to stover cell wall digestibility for a panel of 40 European forage maize inbred lines, and re-analyzed for a panel of 34 lines from a published French study. Different methodologies for association analysis were performed and compared. Across association methodologies, a total number of 25, 12, 1, 6 COMT polymorphic sites were significantly associated with DNDF, OMD, NDF, and WSC, respectively. Association analysis for CCoAOMT1 and CCoAOMT2 identified substantially fewer polymorphic sites (3 and 2, respectively) associated with the investigated traits. Our re-analysis on the 34 lines from a published French dataset identified 14 polymorphic sites significantly associated with cell wall digestibility, two of them were consistent with our study. Promising polymorphisms putatively causally associated with variability of cell wall digestibility were inferred from the total number of significantly associated SNPs/Indels. Conclusions Several polymorphic sites for three O-methyltransferase loci were associated with stover cell wall digestibility. All three tested genes seem to be involved in controlling DNDF, in particular COMT. Thus, considerable variation among Bm3 wildtype alleles can be exploited for improving cell-wall digestibility. Target sites for functional markers were identified enabling development of efficient marker-based selection strategies. PMID:20152036

  14. Investigating the Potential Role of Genetic and Epigenetic Variation of DNA Methyltransferase Genes in Hyperplastic Polyposis Syndrome

    PubMed Central

    Drini, Musa; Wong, Nicholas C.; Scott, Hamish S.; Craig, Jeffrey M.; Dobrovic, Alexander; Hewitt, Chelsee A.; Dow, Christofer; Young, Joanne P.; Jenkins, Mark A.; Saffery, Richard; Macrae, Finlay A.

    2011-01-01

    Background Hyperplastic Polyposis Syndrome (HPS) is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC). At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP), potentially linked to aberrant DNA methyltransferase (DNMT) activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT), and negative regulators of Wnt signaling (such as WIF1). In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS. Methods We utilized high resolution melting (HRM) analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters. Results No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene) was over-represented in cases with HPS (p<0.01) compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053). BRAF mutations were common (11 out of 21 polyps), whilst KRAS mutations were identified in 4 of 21 polyps. Conclusions Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series. PMID:21347319

  15. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  16. Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes.

    PubMed

    Ganu, Radhika S; Ishida, Yasuko; Koutmos, Markos; Kolokotronis, Sergios-Orestis; Roca, Alfred L; Garrow, Timothy A; Schook, Lawrence B

    2015-01-01

    Betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 convert homocysteine to methionine using betaine and S-methylmethionine, respectively, as methyl donor substrates. Increased levels of homocysteine in blood are associated with cardiovascular disease. Given their role in human health and nutrition, we identified BHMT and BHMT2 genes and proteins from 38 species of deuterostomes including human and non-human primates. We aligned the genes to look for signatures of selection, to infer evolutionary rates and events across lineages, and to identify the evolutionary timing of a gene duplication event that gave rise to two genes, BHMT and BHMT2. We found that BHMT was present in the genomes of the sea urchin, amphibians, reptiles, birds and mammals; BHMT2 was present only across mammals. BHMT and BHMT2 were present in tandem in the genomes of all monotreme, marsupial and placental species examined. Evolutionary rates were accelerated for BHMT2 relative to BHMT. Selective pressure varied across lineages, with the highest dN/dS ratios for BHMT and BHMT2 occurring immediately following the gene duplication event, as determined using GA Branch analysis. Nine codons were found to display signatures suggestive of positive selection; these contribute to the enzymatic or oligomerization domains, suggesting involvement in enzyme function. Gene duplication likely occurred after the divergence of mammals from other vertebrates but prior to the divergence of extant mammalian subclasses, followed by two deletions in BHMT2 that affect oligomerization and methyl donor specificity. The faster evolutionary rate of BHMT2 overall suggests that selective constraints were reduced relative to BHMT. The dN/dS ratios in both BHMT and BHMT2 was highest following the gene duplication, suggesting that purifying selection played a lesser role as the two paralogs diverged in function. PMID:26213999

  17. Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes

    PubMed Central

    Ganu, Radhika S.; Ishida, Yasuko; Koutmos, Markos; Kolokotronis, Sergios-Orestis; Roca, Alfred L.; Garrow, Timothy A.; Schook, Lawrence B.

    2015-01-01

    Betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 convert homocysteine to methionine using betaine and S-methylmethionine, respectively, as methyl donor substrates. Increased levels of homocysteine in blood are associated with cardiovascular disease. Given their role in human health and nutrition, we identified BHMT and BHMT2 genes and proteins from 38 species of deuterostomes including human and non-human primates. We aligned the genes to look for signatures of selection, to infer evolutionary rates and events across lineages, and to identify the evolutionary timing of a gene duplication event that gave rise to two genes, BHMT and BHMT2. We found that BHMT was present in the genomes of the sea urchin, amphibians, reptiles, birds and mammals; BHMT2 was present only across mammals. BHMT and BHMT2 were present in tandem in the genomes of all monotreme, marsupial and placental species examined. Evolutionary rates were accelerated for BHMT2 relative to BHMT. Selective pressure varied across lineages, with the highest dN/dS ratios for BHMT and BHMT2 occurring immediately following the gene duplication event, as determined using GA Branch analysis. Nine codons were found to display signatures suggestive of positive selection; these contribute to the enzymatic or oligomerization domains, suggesting involvement in enzyme function. Gene duplication likely occurred after the divergence of mammals from other vertebrates but prior to the divergence of extant mammalian subclasses, followed by two deletions in BHMT2 that affect oligomerization and methyl donor specificity. The faster evolutionary rate of BHMT2 overall suggests that selective constraints were reduced relative to BHMT. The dN/dS ratios in both BHMT and BHMT2 was highest following the gene duplication, suggesting that purifying selection played a lesser role as the two paralogs diverged in function. PMID:26213999

  18. A two allele DNA polymorphism of the human phenylethanolamine N-methyltransferase (hPNMT) gene identified by HGIA I

    SciTech Connect

    Hoehe, M.R.; Berrettini, W.H. ); Baetge, E.E. )

    1989-01-25

    An 8 kb DNA fragment (Eco RI) of the human phenylethanolamine N-methyltransferase gene (hPNMT), selected from a 14 kb Eco RI fragment isolated from a lambda Charon 3A human lymphocyte genomic library and subcloned into pUC18, was used as a probe. This human genomic fragment contained the first 1,923 bp of 5{prime} flanking DNA, the hPNMT structural gene spanning 2,070 bp in total (composed of three exons (225, 208, 524 bp) and two introns (1,000 and 113 bp)), and 3.8 kb of 3{prime} flanking DNA (1). Hybridization of human genomic DNA digested with HgiA I identifies a two allele polymorphism with bands at 3.0 kb (A) and 2.5 kb (B). The hPNMT gene has been assigned to chromosome 17. Co-dominant segregation in two families with two generations was observed. The number of meioses scorred was 18.

  19. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O6-methylguanine-DNA methyltransferase (MGMT) expression

    PubMed Central

    Zhu, Zhongling; Du, Shuangshuang; Ding, Fengxia; Guo, Shanshan; Ying, Guoguang; Yan, Zhao

    2016-01-01

    The DNA-alkylating agent temozolomide (TMZ) is an effective chemotherapeutic agent against malignant glioma, including glioblastoma multiforme (GBM). However, the clinical efficacy of TMZ is limited in many patients because of O6-methylguanine-DNA methyltransferase (MGMT)-driven resistance. Thus, new strategies to overcome TMZ resistance are urgently needed. Ursolic acid (UA) is a naturally derived pentacyclic triterpene acid that exerts broad anticancer effects, and shows capability to cross the blood-brain barrier. In this study, we evaluated the possible synergistic effect of TMZ and UA in resistant GBM cell lines. The results showed that UA prevented the proliferation of resistant GBM cells in a concentration-dependent manner. Compared with TMZ or UA treatment alone, the combination treatment of TMZ and UA synergistically enhanced cytotoxicity and senescence in TMZ-resistant GBM cells. This effect was correlated with the downregulation of MGMT. Moreover, experimental results with an in vivo mouse xenograft model showed that the combination treatment of UA and TMZ reduced tumor volumes by depleting MGMT. Therefore, UA as both a monotherapy and a resensitizer, might be a candidate agent for patients with refractory malignant gliomas. PMID:27508051

  20. Determination of the Structure and Catalytic Mechanism of Sorghum bicolor Caffeic Acid O-Methyltransferase and the Structural Impact of Three brown midrib12 Mutations.

    PubMed

    Green, Abigail R; Lewis, Kevin M; Barr, John T; Jones, Jeffrey P; Lu, Fachuang; Ralph, John; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2014-06-19

    Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low Km for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion. PMID:24948836

  1. The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters

    PubMed Central

    Freitag, Michael

    2013-01-01

    The cereal pathogen Fusarium graminearum produces secondary metabolites toxic to humans and animals, yet coordinated transcriptional regulation of gene clusters remains largely a mystery. By chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq) we found that regions with secondary metabolite clusters are enriched for trimethylated histone H3 lysine 27 (H3K27me3), a histone modification associated with gene silencing. H3K27me3 was found predominantly in regions that lack synteny with other Fusarium species, generally subtelomeric regions. Di- or trimethylated H3K4 (H3K4me2/3), two modifications associated with gene activity, and H3K27me3 are predominantly found in mutually exclusive regions of the genome. To find functions for H3K27me3, we deleted the gene for the putative H3K27 methyltransferase, KMT6, a homolog of Drosophila Enhancer of zeste, E(z). The kmt6 mutant lacks H3K27me3, as shown by western blot and ChIP-seq, displays growth defects, is sterile, and constitutively expresses genes for mycotoxins, pigments and other secondary metabolites. Transcriptome analyses showed that 75% of 4,449 silent genes are enriched for H3K27me3. A subset of genes that were enriched for H3K27me3 in WT gained H3K4me2/3 in kmt6. A largely overlapping set of genes showed increased expression in kmt6. Almost 95% of the remaining 2,720 annotated silent genes showed no enrichment for either H3K27me3 or H3K4me2/3 in kmt6. In these cases mere absence of H3K27me3 was insufficient for expression, which suggests that additional changes are required to activate genes. Taken together, we show that absence of H3K27me3 allowed expression of an additional 14% of the genome, resulting in derepression of genes predominantly involved in secondary metabolite pathways and other species-specific functions, including putative secreted pathogenicity factors. Results from this study provide the framework for novel targeted strategies to control the “cryptic genome

  2. A farnesoic acid O-methyltransferase (FAMeT) from Exopalaemon carinicauda is responsive to Vibrio anguillarum and WSSV challenge.

    PubMed

    Duan, Yafei; Liu, Ping; Li, Jitao; Wang, Yun; Li, Jian; Chen, Ping

    2014-05-01

    Methyl farnesoate (MF), an analogue of the insect juvenile hormone III, is believed to play important roles in the regulation of the growth and reproductive development in crustaceans. Farnesoic acid O-methyltransferase (FAMeT) is the key enzyme in the juvenile hormone biosynthetic pathway, involved in the conversion of farnesoic acid (FA) to MF in the final step of MF synthesis. In this study, a FAMeT cDNA (named EcFAMeT) was cloned from the hemocytes of ridgetail white prawn Exopalaemon carinicauda by rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of EcFAMeT was 1,620 bp, including contains a 5'-untranslated region (UTR) of 75 bp, 3'-UTR of 714 bp with a poly (A) tail, an open reading frame (ORF) of 831 bp, encoding a 276-amino-acid polypeptide with the predicted molecular weight of 31.57 kDa and estimated isoelectric point of 4.67. BLAST analysis revealed that amino acids of EcFAMeT shared high identity (75-90 %) with that of other crustaceans. Two conserved signatures domains of Methyltransf-FA superfamily were also identified in EcFAMeT. Real time quantitative RT-PCR analysis indicated that EcFAMeT could be detected in all the tested tissues and strongly expressed in hepatopancreas and ovary of E. carinicauda. After Vibrio anguillarum and WSSV challenge, EcFAMeT transcripts both in hemocytes and hepatopancreas increased significantly in the first 3 h, respectively. The results indicated that EcFAMeT might be associated with the immune defenses to V. anguillarum and WSSV in E. carinicauda. PMID:24136172

  3. Catechol-O-methyltransferase (COMT) gene modulates private self-consciousness and self-flexibility.

    PubMed

    Wang, Bei; Ru, Wenzhao; Yang, Xing; Yang, Lu; Fang, Pengpeng; Zhu, Xu; Shen, Guomin; Gao, Xiaocai; Gong, Pingyuan

    2016-08-01

    Dopamine levels in the brain influence human consciousness. Inspired by the role of Catechol-O-methyltransferase (COMT) in inactivating dopamine in the brain, we investigated to what extent COMT could modulate individual's self-consciousness dispositions and self-consistency by genotyping the COMT Val158Met (rs4680) polymorphism and measuring self-consciousness and self-consistency and congruence in a college student population. The results indicated that COMT Val158Met polymorphism significantly modulated the private self-consciousness. The individuals with Val/Val genotype, corresponding to lower dopamine levels in the brain, were more likely to be aware of their feelings and beliefs. The results also indicated that this polymorphism modulated one's self-flexibility. The individuals with Val/Val genotype showed higher levels of stereotype in self-concept compared with those with Met/Met genotype. These findings suggest that COMT is a predictor of the individual differences in self-consciousness and self-flexibility. PMID:27522491

  4. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene.

    PubMed

    Mercimek-Mahmutoglu, Saadet; Ndika, Joseph; Kanhai, Warsha; de Villemeur, Thierry Billette; Cheillan, David; Christensen, Ernst; Dorison, Nathalie; Hannig, Vickie; Hendriks, Yvonne; Hofstede, Floris C; Lion-Francois, Laurence; Lund, Allan M; Mundy, Helen; Pitelet, Gaele; Raspall-Chaure, Miquel; Scott-Schwoerer, Jessica A; Szakszon, Katalin; Valayannopoulos, Vassili; Williams, Monique; Salomons, Gajja S

    2014-04-01

    Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT-D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C>A (p.Pro8Thr) and c.79T>C (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT-D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene. PMID:24415674

  5. Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation

    PubMed Central

    Gao, Wei-wei; Xiao, Rong-quan; Peng, Bing-ling; Xu, Huan-teng; Shen, Hai-feng; Huang, Ming-feng; Shi, Tao-tao; Yi, Jia; Zhang, Wen-juan; Wu, Xiao-nan; Gao, Xiang; Lin, Xiang-zhi; Dorrestein, Pieter C.; Rosenfeld, Michael G.; Liu, Wen

    2015-01-01

    Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. PMID:26080448

  6. Sequencing around 5-Hydroxyconiferyl Alcohol-Derived Units in Caffeic Acid O-Methyltransferase-Deficient Poplar Lignins1[OA

    PubMed Central

    Lu, Fachuang; Marita, Jane M.; Lapierre, Catherine; Jouanin, Lise; Morreel, Kris; Boerjan, Wout; Ralph, John

    2010-01-01

    Caffeic acid O-methyltransferase (COMT) is a bifunctional enzyme that methylates the 5- and 3-hydroxyl positions on the aromatic ring of monolignol precursors, with a preference for 5-hydroxyconiferaldehyde, on the way to producing sinapyl alcohol. Lignins in COMT-deficient plants contain benzodioxane substructures due to the incorporation of 5-hydroxyconiferyl alcohol (5-OH-CA), as a monomer, into the lignin polymer. The derivatization followed by reductive cleavage method can be used to detect and determine benzodioxane structures because of their total survival under this degradation method. Moreover, partial sequencing information for 5-OH-CA incorporation into lignin can be derived from detection or isolation and structural analysis of the resulting benzodioxane products. Results from a modified derivatization followed by reductive cleavage analysis of COMT-deficient lignins provide evidence that 5-OH-CA cross couples (at its β-position) with syringyl and guaiacyl units (at their O-4-positions) in the growing lignin polymer and then either coniferyl or sinapyl alcohol, or another 5-hydroxyconiferyl monomer, adds to the resulting 5-hydroxyguaiacyl terminus, producing the benzodioxane. This new terminus may also become etherified by coupling with further monolignols, incorporating the 5-OH-CA integrally into the lignin structure. PMID:20427467

  7. Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins.

    PubMed

    Lu, Fachuang; Marita, Jane M; Lapierre, Catherine; Jouanin, Lise; Morreel, Kris; Boerjan, Wout; Ralph, John

    2010-06-01

    Caffeic acid O-methyltransferase (COMT) is a bifunctional enzyme that methylates the 5- and 3-hydroxyl positions on the aromatic ring of monolignol precursors, with a preference for 5-hydroxyconiferaldehyde, on the way to producing sinapyl alcohol. Lignins in COMT-deficient plants contain benzodioxane substructures due to the incorporation of 5-hydroxyconiferyl alcohol (5-OH-CA), as a monomer, into the lignin polymer. The derivatization followed by reductive cleavage method can be used to detect and determine benzodioxane structures because of their total survival under this degradation method. Moreover, partial sequencing information for 5-OH-CA incorporation into lignin can be derived from detection or isolation and structural analysis of the resulting benzodioxane products. Results from a modified derivatization followed by reductive cleavage analysis of COMT-deficient lignins provide evidence that 5-OH-CA cross couples (at its beta-position) with syringyl and guaiacyl units (at their O-4-positions) in the growing lignin polymer and then either coniferyl or sinapyl alcohol, or another 5-hydroxyconiferyl monomer, adds to the resulting 5-hydroxyguaiacyl terminus, producing the benzodioxane. This new terminus may also become etherified by coupling with further monolignols, incorporating the 5-OH-CA integrally into the lignin structure. PMID:20427467

  8. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    PubMed

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA. PMID:25893162

  9. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama)

    PubMed Central

    Van Ekert, Evelien; Shatters, Robert G.; Rougé, Pierre; Powell, Charles A.; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus ‘Liberibacter’ asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10−3 and 0.217 × 10−3 s−1, respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10−3, 0.013 × 10−3, and 0.003 × 10−3 s−1, respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca2+, Mg2+ or Zn2+, however, Zn2+ (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA. PMID:25893162

  10. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression.

    PubMed

    Zika, Eleni; Fauquier, Lucas; Vandel, Laurence; Ting, Jenny P-Y

    2005-11-01

    Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-gamma. IFN-gamma activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-gamma-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, CARM1, and the acetyltransferase cyclic-AMP response element binding (CREB)-binding protein (CBP) during this process. CARM1 synergizes with CIITA in activating MHC-II transcription and synergy is abrogated when an arginine methyltransferase-defective CARM1 mutant is used. Protein-arginine methyltransferase 1 has much less effect on MHC-II transcription. Specific RNA interference reduced CARM1 expression as well as MHC-II expression. The recruitment of CARM1 to the promoter requires endogenous CIITA and results in methylation of histone H3-R17; hence, CIITA is an upstream regulator of histone methylation. Previous work has shown that CARM1 can methylate CBP at three arginine residues. Using wild-type CBP and a mutant of CBP lacking the CARM1-targeted arginine residues (R3A), we show that arginine methylation of CBP is required for IFN-gamma induction of MHC-II. A kinetic analysis shows that CIITA, CARM1, and H3-R17 methylation all precede CBP loading on the MHC-II promoter during IFN-gamma treatment. These results suggest functional and temporal relationships among CIITA, CARM1, and CBP for IFN-gamma induction of MHC-II. PMID:16254053

  11. Androgen response element of the glycine N-methyltransferase gene is located in the coding region of its first exon.

    PubMed

    Lee, Cheng-Ming; Yen, Chia-Hung; Tzeng, Tsai-Yu; Huang, Yu-Zen; Chou, Kuan-Hsien; Chang, Tai-Jay; Arthur Chen, Yi-Ming

    2013-01-01

    Androgen plays an important role in the pathogenesis of PCa (prostate cancer). Previously, we identified GNMT (glycine N-methyltransferase) as a tumour susceptibility gene and characterized its promoter region. Besides, its enzymatic product-sarcosine has been recognized as a marker for prognosis of PCa. The goals of this study were to determine whether GNMT is regulated by androgen and to map its AREs (androgen response elements). Real-time PCR analyses showed that R1881, a synthetic AR (androgen receptor) agonist induced GNMT expression in AR-positive LNCaP cells, but not in AR-negative DU145 cells. In silico prediction showed that there are four putative AREs in GNMT-ARE1, ARE2 and ARE3 are located in the intron 1 and ARE4 is in the intron 2. Consensus ARE motif deduced from published AREs was used to identify the fifth ARE-ARE5 in the coding region of exon 1. Luciferase reporter assay found that only ARE5 mediated the transcriptional activation of R1881. ARE3 overlaps with a YY1 [Yin and Yang 1 (motif (CaCCATGTT, +1118/+1126)] that was further confirmed by antibody supershift and ChIP (chromatin immunoprecipitation) assays. EMSA (electrophoretic mobility shift assay) and ChIP assay confirmed that AR interacts with ARE5 in vitro and in vivo. In summary, GNMT is an AR-targeted gene with its functional ARE located at +19/+33 of the first exon. These results are valuable for the study of the influence of androgen on the gene expression of GNMT especially in the pathogenesis of cancer. PMID:23883094

  12. Population differences in the human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method

    SciTech Connect

    Fujihara, Junko; Kunito, Takashi; Agusa, Tetsuro; Yasuda, Toshihiro; Iida, Reiko; Fujii, Yoshimi; Takeshita, Haruo

    2007-12-15

    Arsenic poisoning from drinking groundwater is a serious problem, particularly in developing Asian countries. Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. Recently, a single nucleotide polymorphism (SNPs; rs17885947, M287T (T860C)) in the AS3MT gene was shown to be related to enzyme activity and considered to be related to genetic susceptibility to arsenic. In the present study, a useful genotyping method for M287T was developed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Applying this method, the genotype distribution of M287T in Ovambo (n = 185), Turkish (n = 191), Mongolian (n = 233), Korean (n = 200), and Japanese (n = 370) populations were investigated. The mutation frequencies in Asian populations were relatively lower than those of African and Caucasian populations, including those from previous studies: the frequencies of mutation in the Mongolian, Korean, and Japanese populations were 0.040, 0.010, and 0.010, respectively. In the course of this study, a PCR-based genotyping method that is inexpensive and does not require specialized equipment was developed. This method could be applied to a large number of residents at risk for arsenic poisoning.

  13. Carrier frequency of guanidinoacetate methyltransferase deficiency in the general population by functional characterization of missense variants in the GAMT gene.

    PubMed

    Desroches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Marshall, Christian R; Salomons, Gajja S; Mercimek-Mahmutoglu, Saadet

    2015-12-01

    Guanidinoacetate methyltransferase (GAMT) deficiency is a neurodegenerative disease. Although no symptomatic patients on treatment achieved normal neurodevelopment, three asymptomatic newborns were reported with normal neurodevelopmental outcome on neonatal treatment. GAMT deficiency is therefore a candidate for newborn screening programs, but there are no studies for the carrier frequency of this disease in the general population. To determine carrier frequency of GAMT deficiency, we studied the variants in the GAMT gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We used previously cloned GAMT transcript variant 1 (7 missense variants) and cloned a novel GAMT transcript variant 2 (5 missense variants). The latter was used in Exome Variant Server database according to recommendations of the Human Genome Variation Society. There were 4 missense variants (1 previously reported and 3 novel) with low GAMT enzyme activity indicating pathogenicity. Additionally, there was one novel frameshift and one novel nonsense variant likely pathogenic. There was no measurable GAMT enzyme activity in the wild type of GAMT transcript variant 2. We concluded that GAMT transcript variant 2 is not involved in GAMT protein synthesis. For this reason, Human Genome Variation Society should use mutation nomenclature according to the coding region of the GAMT transcript variant 1. The carrier frequency of GAMT deficiency was 0.123 % in the general population. As early diagnosis results in normal neurodevelopmental outcome, GAMT deficiency should be included in newborn screening programs to diagnose individuals at the asymptomatic stage of the disease to prevent permanent neurodevelopmental disability. PMID:26003046

  14. Population differences in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method.

    PubMed

    Fujihara, Junko; Kunito, Takashi; Agusa, Tetsuro; Yasuda, Toshihiro; Iida, Reiko; Fujii, Yoshimi; Takeshita, Haruo

    2007-12-15

    Arsenic poisoning from drinking groundwater is a serious problem, particularly in developing Asian countries. Human arsenic (+3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. Recently, a single nucleotide polymorphism (SNPs; rs17885947, M287T (T860C)) in the AS3MT gene was shown to be related to enzyme activity and considered to be related to genetic susceptibility to arsenic. In the present study, a useful genotyping method for M287T was developed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Applying this method, the genotype distribution of M287T in Ovambo (n=185), Turkish (n=191), Mongolian (n=233), Korean (n=200), and Japanese (n=370) populations were investigated. The mutation frequencies in Asian populations were relatively lower than those of African and Caucasian populations, including those from previous studies: the frequencies of mutation in the Mongolian, Korean, and Japanese populations were 0.040, 0.010, and 0.010, respectively. In the course of this study, a PCR-based genotyping method that is inexpensive and does not require specialized equipment was developed. This method could be applied to a large number of residents at risk for arsenic poisoning. PMID:17889916

  15. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay.

    PubMed Central

    Margison, G P; Cooper, D P; Brennand, J

    1985-01-01

    Alkylating agents react with various nitrogen and oxygen atoms in DNA and many of the products are substrates for repair processes. Oxygen atom derivatives such as O6-methylguanine (O6-meG) O4-methylthymine and methylphosphotriesters (MP) have been shown to undergo repair by methyl group removal. The proteins involved in the latter reaction can be considered to be methyltransferases (MT) because their action results in the transfer of the methyl group to a cysteine residue within a polypeptide. A rapid and sensitive assay for MT activity has been developed and used to screen extracts of bacteria harbouring an E. coli genomic DNA library carried in a plasmid vector. We report here the cloning of an E. coli gene coding for O6-meG and MP MT repair functions. These two activities reside on a 37Kd protein that can undergo a host-dependent cleavage to produce an 18Kd protein which contains only O6-meG MT and a 13Kd protein which contains only MP MT. Images PMID:3889845

  16. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability.

    PubMed

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J M; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D James; Carter, Melissa T; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B

    2015-10-15

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  17. Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking

    PubMed Central

    Haggarty, Paul; Hoad, Gwen; Harris, Sarah E.; Starr, John M.; Fox, Helen C.

    2010-01-01

    Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779) allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40additive; 95%CI 0.22,2.59; p = 0.020 and 1.99dominant; 95%CI 0.55,3.43; p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25additive; 95%CI 1.05,1.51; p = 0.011 and OR 1.37dominant; 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40th (padditive = 0.009; pdominant = 0.002) and lowest 30th (padditive = 0.004; pdominant = 0.002) centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts. PMID:20593030

  18. Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    PubMed Central

    Nicetto, Dario; Hahn, Matthias; Jung, Julia; Schneider, Tobias D.; Straub, Tobias; David, Robert; Schotta, Gunnar; Rupp, Ralph A. W.

    2013-01-01

    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians

  19. Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China.

    PubMed

    Xia, Jing; Sun, Jian; Cheng, Ke; Li, Liang; Fang, Liang-Xing; Zou, Meng-Ting; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-05-30

    A total of 963 non-duplicate Escherichia coli strains isolated from food-producing animals between 2002 and 2012 were screened for the presence of the 16S rRNA methyltransferase genes. Among the positive isolates, resistance determinants to extended spectrum β-lactamases, plasmid-mediated quinolone resistance genes as well as floR and fosA/A3/C2 were detected using PCR analysis. These isolates were further subjected to antimicrobial susceptibility testing, molecular typing, PCR-based plasmid replicon typing and plasmid analysis. Of the 963 E. coli isolates, 173 (18.0%), 3 (0.3%) and 2 (0.2%) were rmtB-, armA- and rmtE-positive strains, respectively. All the 16S rRNA methyltransferase gene-positive isolates were multidrug resistant and over 90% of them carried one or more type of resistance gene. IncF (especially IncFII) and non-typeable plasmids played the main role in the dissemination of rmtB, followed by the IncN plasmids. Plasmids that harbored rmtB ranged in size from 20kb to 340kb EcoRI-RFLP testing of the 109 rmtB-positive plasmids from different years and different origins suggested that horizontal (among diverse animals) and vertical transfer of IncF, non-typeable and IncN-type plasmids were responsible for the spread of rmtB gene. In summary, our findings highlight that rmtB was the most prevalent 16S rRNA methyltransferase gene, which present persistent spread in food-producing animals in China and a diverse group of plasmids was responsible for rmtB dissemination. PMID:27139028

  20. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells.

    PubMed

    Sarabi, Mostafa Moradi; Naghibalhossaini, Fakhraddin

    2015-10-01

    There are conflicting reports regarding the association between DNA methyltransferases (DNMTs) expression and global or gene-specific DNA methylation in colorectal cancer (CRC) cells. To correlate DNMTs expression with DNA methylation, we quantified DNMT1, DNMT3A and DNMT3B mRNA levels in five CRC cell lines (HCT116, LS180, HT29/219, Caco2 and SW742) by real-time reverse-transcriptase polymerase chain reaction (PCR) assay. In addition, we examined the global 5-methyl cytosine levels and the methylation patterns of 12 CpG islands in these CRC cells by enzyme-linked immunosorbent assay and methylation-specific PCR methods, respectively. The average expression levels of three DNMTs in HCT116, Caco2, HT29/219 and SW742, relative to the expression level in LS180 (taken to be 1), were 90.1, 31.6, 2.66 and 1.86. Our data indicated that overall about 1.45%, 1.03%, 0.98%, 0.86% and 0.85% of the cytosines were methylated in the genome of HCT116, Caco2, HT29/219, SW742 and LS180 cells, respectively. The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in five CRC cell lines as verified by Pearson correlation test. However, we found no positive correlation between mRNA expression of DNMTs and gene promoter hypermethylation in these cells. Our results suggest that cellular DNMT expression is positively correlated with global DNA methylation level but not with regional DNA hypermethylation at each locus. PMID:26416384

  1. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  2. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    SciTech Connect

    Yao, Jianzhuang; Xu, Qin; Chen, Feng; Guo, Hong

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoate in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.

  3. Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation.

    PubMed

    Schulze, A; Ebinger, F; Rating, D; Mayatepek, E

    2001-12-01

    Guanidinoacetate methyltransferase (GAMT) deficiency (McKusick 601240), an inborn error of creatine biosynthesis, is characterized by creatine depletion and accumulation of guanidinoacetate (GAA) in the brain. Treatment by oral creatine supplementation had no effect on the intractable seizures. Based on the possible role of GAA as an epileptogenic agent, we evaluated a dietary treatment with arginine restriction and ornithine supplementation in order to achieve reduction of GAA. In an 8-year-old Kurdish girl with GAMT deficiency arginine intake was restricted to 15 mg/kg/day (0.4 g natural protein/kg/day) and ornithine was supplemented with 100 mg/kg/day over a period of 14 months. The diet was enriched with 0.4 g/kg/day of arginine-free essential amino acid mixture and creatine treatment remained unchanged (1.1 g/kg/day). Guanidino compounds in blood, urine, and CSF were measured by means of cation-exchange chromatography. The combination of arginine restriction and ornithine supplementation led to a substantial and permanent decrease of arginine without disturbance of nitrogen detoxification. Formation of GAA was effectively reduced after 4 weeks of treatment and sustained thereafter. Biochemical effects were accompanied by a marked clinical improvement. Distinctly reduced epileptogenic activities in electroencephalography accompanied by almost complete disappearance of seizures demonstrates the positive effect of GAA reduction. This indicates for the first time that GAA may exert an important epileptogenic potential in man. Arginine restriction in combination with ornithine supplementation represents a new and rationale therapeutic approach in GAMT deficiency. PMID:11749046

  4. Genetic polymorphisms of estrogen receptor alpha and catechol-O-methyltransferase genes in Turkish patients with familial prostate carcinoma

    PubMed Central

    Pazarbasi, Ayfer; Yilmaz, M. Bertan; Alptekin, Davut; Luleyap, Umit; Tansug, Zuhtu; Ozpak, Lutfiye; Izmirli, Muzeyyen; Onatoglu-Arikan, Dilge; Kocaturk-Sel, Sabriye; Erkoc, Mehmet Ali; Turgut, Ozgur; Bereketoglu, Ceyhun; Tunc, Erdal; Akbal, Eylul

    2013-01-01

    OBJECTIVES: Estrogen is one of the most crucial hormones participating in the proliferation and carcinogenesis of the prostate glands. Genetic polymorphisms in the estrogen metabolism pathway might be involved in the risk of prostate carcinoma development. We evaluated the association between genetic polymorphisms in estrogen receptor alpha (ESR1) and catechol-O-methyltransferase (COMT) genes and the risk of developing familial prostate carcinoma. MATERIALS AND METHODS: In this study, 34 cases with prostate carcinoma whose first-degree relatives had prostate carcinoma and 30 healthy age-matched male controls were enrolled. The genotypes of ESR1 and COMT genes were analyzed employing polymerase chain reaction-restriction fragment length polymorphism method. 34 cases with prostate carcinoma, whose first degree relatives had prostate carcinoma and 14 age-matched male controls were enrolled to analyze the genotype of these two genes. RESULTS: Among control patients, the ESR1 PvuII genotypes of C/C, C/T and T/T were observed in 37%, 26% and 37%, respectively, whereas the C/C, C/T and T/T genotypes were observed in 18%, 41% and 41% of case patients, respectively. Among controls, the ESR1 PvuII allele frequencies of C and T were equally observed, whereas the C and T allele frequencies were observed in 38% and 62% of patients, respectively. Among ESR1 PvuII genotypes there were not any significant difference in terms of genotype (P = 0.199) and allele (P = 0.181) frequencies. Among controls, the ESR1 XbaI genotypes of G/G, G/A and A/A were observed in 33%, 37% and 33%, respectively, whereas the G/G, G/A and A/A genotypes were observed in 12%, 47% and 41% of patients, respectively. Among controls, the ESR1 XbaI allele frequencies of A and G were observed equally, respectively, whereas the A and G frequencies were observed in 65% and 35% of patients, respectively. Among ESR1 Χ baI, there was not any significant difference in terms of genotype (P = 0.111) and allele (P = 0

  5. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    PubMed

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  6. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of "unhealthy" foods.

    PubMed

    Wallace, Deanna L; Aarts, Esther; d'Oleire Uquillas, Federico; Dang, Linh C; Greer, Stephanie M; Jagust, William J; D'Esposito, Mark

    2015-09-01

    The role of dopamine is extensively documented in weight regulation and food intake in both animal models and humans. Yet the role of dopamine has not been well studied in individual differences for food desirability. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene has been shown to influence dopamine levels, with greater COMT enzymatic activity in val/val individuals corresponding to greater degradation of dopamine. Decreased dopamine has been associated with poorer cognitive control and diminished goal-directed behavior in various behavioral paradigms. Additionally, dopaminergic-rich regions such as the frontal cortex and dorsal striatum have been shown to be important for supporting food-related decision-making. However, the role of dopamine, as assessed by COMT genotype status, in food desirability has not been fully explored. Therefore, we utilized an individual's COMT genotype status (n = 61) and investigated food desirability based on self-rated "healthy" and "unhealthy" food perceptions. Here we found val/val individuals (n = 19) have greater desirability for self-rated "unhealthy" food items, but not self-rated "healthy" food items, as compared to val/met (n = 24) and met/met (n = 18) individuals (p < 0.005). Utilizing an objective health measure for the food items, we also found val/val and val/met individuals have greater desirability for objectively defined "unhealthy" food items, as compared to met/met individuals (p < 0.01). This work further substantiates the role of dopamine in food-related behaviors and more specifically in relationship to food desirability for "unhealthy" food items. PMID:25963102

  7. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    PubMed

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus. PMID:26407870

  8. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    PubMed

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  9. Automated high-performance liquid chromatographic method for the determination of guanidinoacetic acid in dried blood spots: a tool for early diagnosis of guanidinoacetate methyltransferase deficiency.

    PubMed

    Carducci, C; Birarelli, M; Santagata, P; Leuzzi, V; Carducci, C; Antonozzi, I

    2001-05-01

    A new automated method for the assay of guanidinoacetic acid (GAA) in dried blood spot (DBS) on filter paper is reported. The method, based on reversed-phase (RP)-HPLC, precolumn derivatisation with benzoin and fluorescence detection, has shown good precision and sensitivity and requires only minimal sample handling. The validity of the method was demonstrated by analysing the neonatal blood spot of a patient affected by guanidinoacetate methyltransferase (GAMT) deficiency. GAA concentration was found to be nearly 12-fold higher than the mean control value. We propose this method as an inexpensive and widely applicable tool for the diagnosis of GAMT deficiency. PMID:11393723

  10. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  11. The Role of the Catechol-O-Methyltransferase (COMT) Gene in Personality and Related Psychopathological Disorders

    PubMed Central

    Montag, Christian; Jurkiewicz, Magdalena; Reuter, Martin

    2015-01-01

    This review provides a short overview of the most significant biologically oriented theories of human personality. Personality concepts of Eysenck, Gray and McNaughton, Cloninger and Panksepp will be introduced and the focal evidence for the heritability of personality will be summarized. In this context, a synopsis of a large number of COMT genetic association studies (with a focus on the COMT Val158Met polymorphism) in the framework of the introduced biologically oriented personality theories will be given. In line with the theory of a continuum model between healthy anxious behavior and related psychopathological behavior, the role of the COMT gene in anxiety disorders will be discussed. A final outlook considers new research strategies such as genetic imaging and epigenetics for a better understanding of human personality. PMID:22483293

  12. The Role of the Catechol-o-methyltransferase (COMT) Gene Val158Met in Aggressive Behavior, A Review of Genetic Studies

    PubMed Central

    Qayyum, Arqam; Zai, Clement C.; Hirata, Yuko; Tiwari, Arun K.; Cheema, Sheraz; Nowrouzi, Behdin; Beitchman, Joseph H.; Kennedy, James L.

    2015-01-01

    Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior. PMID:26630958

  13. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  14. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines

    PubMed Central

    Azizi, Masoumeh; Teimoori-Toolabi, Ladan; Arzanani, Mohsen Karimi; Azadmanesh, Kayhan; Fard-Esfahani, Pezhman; Zeinali, Sirous

    2014-01-01

    Overexpression of DNA methyltransferase 1 (DNMT-1) is observed mostly in pancreatic cancer and it can cause tumor suppressor genes silencing in this disease. Recent studies suggest that abnormal expressions of microRNAs (miRs) are involved in pathogenesis of different types of human cancers including pancreatic cancer. In this study we aimed to investigate the effect of miR-148b and -152 on reverting the tumorigenic phenotype of pancreatic cancer cell lines. In order to investigate whether miR-148b and -152 are involved in the regulation of DNMT-1, luciferase reporter assay was used and confirmed that the DNMT-1 mRNA could be a target for miR-148b and miR-152. Furthermore, overexpression of miR-148b and -152 in pancreatic cancer cell lines (MIA PaCa-2 and AsPC-1) decreased DNMT-1 expression (53% and 59% respectively), returned DNA methylation to normal patterns and induced re-expression of tumor suppressor genes, like BNIP3 (4.7- and 3.8-fold) and SPARC (5.3- and 2.9-fold) for miR-148b and -152 respectively. Moreover, the introduced miR-148b and -152 could inhibit the proliferation of MIA PaCa-2 (35% and 37% respectively) and AsPC-1 (39% and 40% respectively) cell lines. The apoptosis rates of MIA PaCa-1 after treatment with miR-148b and -152 were 10% and 8% respectively; while these rates in AsPC-1 were 16% and 11% respectively. Conclusively these findings mean that miRs that are targeting DNMT-1 and modifying methylation status of tumor suppressor genes such as BNIP3 and SPARC can be applied in killing the pancreatic cancer cells and decreasing the tumorigenicity of these cells. PMID:24448385

  15. Family-based association study of the arsenite methyltransferase gene (AS3MT, rs11191454) in Korean children with attention-deficit hyperactivity disorder.

    PubMed

    Park, Subin; Park, Jong-Eun; Yoo, Hee Jeong; Kim, Jae-Won; Cho, Soo-Churl; Shin, Min-Sup; Cheong, Jae Hoon; Han, Doug Hyun; Kim, Bung-Nyun

    2015-02-01

    We examined the association between the selected polymorphisms in two candidate genes, the arsenite methyltransferase gene (AS3MT, rs11191454) and the inter-α-trypsin inhibitors heavy chain-3 gene (ITIH3, rs2535629), and attention-deficit hyperactivity disorder (ADHD) in a Korean population. A total of 238 patients with ADHD, along with both of their biological parents, were recruited. The children were administered intelligence quotient tests, whereas their parents completed the Child Behavior Checklist. In the transmission disequilibrium test on 181 trios, we found overtransmission of the A allele at the AS3MT rs11191454 polymorphism in children with ADHD (χ²=8.81, P=0.003). However, there was no preferential transmission at the ITIH3 rs52535629 polymorphism (χ²=0.14, P=0.707). Our results provide preliminary evidence for the overtransmission of the A allele at the AS3MT rs11191454 polymorphism in ADHD. PMID:25461954

  16. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  17. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases.

    PubMed

    Widiez, Thomas; Hartman, Thomas G; Dudai, Nativ; Yan, Qing; Lawton, Michael; Havkin-Frenkel, Daphna; Belanger, Faith C

    2011-08-01

    Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids. PMID:21629984

  18. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases.

    PubMed

    Tsai, Chi-Neu; Tsai, Chia-Lung; Tse, Ka-Po; Chang, Hwan-You; Chang, Yu-Sun

    2002-07-23

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which is notoriously metastatic. Although it is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PCR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMP1-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery. PMID:12110730

  19. Endothelial transcriptome in response to pharmacological methyltransferase inhibition.

    PubMed

    Okabe, Jun; Fernandez, Ana Z; Ziemann, Mark; Keating, Samuel T; Balcerczyk, Aneta; El-Osta, Assam

    2014-08-01

    The enzymatic activities of protein methyltransferases serve to write covalent modifications on histone and non-histone proteins in the control of gene transcription. Here, we describe gene expression changes in human endothelial cells caused by treatment with methyltransferase inhibitors 7,7'-carbonylbis (azanediyl) bis(4-hydroxynaphthalene-2 -sulfonic acid (AMI-1) and disodium-2-(2,4,5,7- tetrabromo-3-oxido-6-oxoxanthen-9-yl) benzoate trihydrate (AMI-5). Deep sequencing of mRNA indicated robust change on transcription following AMI-5 treatment compared with AMI-1. Functional annotation analysis revealed that both compounds suppress the expression of genes associated with translational regulation, suggesting arginine methylation by protein arginine methyltransferases (PRMTs) could be associated with regulation of this pathway. Interestingly, AMI-5 but not AMI-1 was found to decrease methylation of H3 histones at lysine 4 and down-regulate gene expression associated with interleukin-6 (IL-6) and activator protein-1 (AP-1) signaling pathways. These results imply that inhibition of protein methylation by AMI-1 and AMI-5 can differentially regulate specific pathways with potential to interrupt pathological signaling in the vascular endothelium. PMID:24850797

  20. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection.

    PubMed

    Manoharan, Ranjith Kumar; Shanmugam, Ashokraj; Hwang, Indeok; Park, Jong-In; Nou, Ill-Sup

    2016-06-01

    Brassica oleracea var. capitata (cabbage) is an important vegetable crop in Asian countries such as Korea, China, and Japan. Cabbage production is severely affected by clubroot disease caused by the soil-borne plant pathogen Plasmodiophora brassicae. During clubroot development, methyl salicylate (MeSA) is biosynthesized from salicylic acid (SA) by methyltransferase. In addition, methyl salicylate esterase (MES) plays a major role in the conversion of MeSA back into free SA. The interrelationship between MES and methytransferases during clubroot development has not been fully explored. To begin to examine these relationships, we investigated the expression of MES genes in disease-susceptible and disease-resistant plants during clubroot development. We identified three MES-encoding genes potentially involved in the defense against pathogen attack. We found that SS1 was upregulated in both the leaves and roots of B. oleracea during P. brassicae infection. These results support the conclusion that SA biosynthesis is suppressed during pathogen infection in resistant plants. We also characterized the expression of a B. oleracea BSMT gene, which appears to be involved in glycosylation rather than MeSA biosynthesis. Our results provide insight into the functions and interactions of genes for MES and methyltransferase during infection. Taken together, our findings indicate that MES genes are important candidates for use to control clubroot diseases. PMID:27171821

  1. Histone H3 lysine 36 methyltransferase Whsc1 promotes the association of Runx2 and p300 in the activation of bone-related genes.

    PubMed

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1-/- embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  2. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-κB–dependent DNA methyltransferase activity in acute myeloid leukemia

    PubMed Central

    Liu, Shujun; Liu, Zhongfa; Xie, Zhiliang; Pang, Jiuxia; Yu, Jianhua; Lehmann, Esther; Huynh, Lenguyen; Vukosavljevic, Tamara; Takeki, Mitsui; Klisovic, Rebecca B.; Baiocchi, Robert A.; Blum, William; Porcu, Pierluigi; Garzon, Ramiro; Byrd, John C.; Perrotti, Danilo; Caligiuri, Michael A.; Chan, Kenneth K.; Wu, Lai-Chu

    2008-01-01

    Bortezomib reversibly inhibits 26S proteasomal degradation, interferes with NF-κB, and exhibits antitumor activity in human malignancies. Zinc finger protein Sp1 transactivates DNMT1 gene in mice and is functionally regulated through protein abundance, posttranslational modifications (ie, ubiquitination), or interaction with other transcription factors (ie, NF-κB). We hypothesize that inhibition of proteasomal degradation and Sp1/NF-κB–mediated transactivation may impair aberrant DNA methyltransferase activity. We show here that, in addition to inducing accumulation of polyubiquitinated proteins and abolishment of NF-κB activities, bortezomib decreases Sp1 protein levels, disrupts the physical interaction of Sp1/NF-κB, and prevents binding of the Sp1/NF-κB complex to the DNMT1 gene promoter. Abrogation of Sp1/NF-κB complex by bortezomib causes transcriptional repression of DNMT1 gene and down-regulation of DNMT1 protein, which in turn induces global DNA hypomethylation in vitro and in vivo and re-expression of epigenetically silenced genes in human cancer cells. The involvement of Sp1/NF-κB in DNMT1 regulation is further demonstrated by the observation that Sp1 knockdown using mithramycin A or shRNA decreases DNMT1 protein levels, which instead are increased by Sp1 or NF-κB overexpression. Our results unveil the Sp1/NF-κB pathway as a modulator of DNA methyltransferase activity in human cancer and identify bortezomib as a novel epigenetic-targeting drug. PMID:18083845

  3. Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.

    PubMed

    Zhang, Xiujun; Zhu, Yingying; Bao, Longfei; Gao, Liwei; Yao, Guangshan; Li, Yanan; Yang, Zhifeng; Li, Zhonghai; Zhong, Yaohua; Li, Fuli; Yin, Heng; Qu, Yinbo; Qin, Yuqi

    2016-09-01

    The morphological development of fungi is a complex process and is often coupled with secondary metabolite production. In this study, we assessed the function of putative methyltransferase LaeA and transcription factor CreA in controlling asexual development and secondary metabolic gene cluster expression in Penicillium oxalicum. The deletion of laeA (ΔlaeA) impaired the conidiation in P. oxalicum, with a downregulated expression of brlA. Overexpression of P. oxalicum brlA in ΔlaeA could upregulate brlA and abaA remarkably, but could not rescue the conidiation defect; therefore, brlA and abaA expression were necessary but not sufficient for conidiation. Deletion of creA in ΔlaeA background (ΔlaeAΔcreA) blocked conidiation with a white fluffy phenotype. Nutrient-rich medium could not rescue developmental defects in ΔlaeAΔcreA mutant but could rescue defects in ΔlaeA. Expression of 10 genes, namely, albA/wA, abrB/yA, arpA, aygA, arpA-like, arpB, arpB-like, rodA, rodA-like, and rodB, for pigmentation and spore wall protein genes was silenced in ΔlaeAΔcreA, whereas only six of them were downregulated in ΔlaeA. Among the 28 secondary metabolism gene clusters in P. oxalicum, four secondary metabolism gene clusters were silenced in ΔlaeA and two were also silenced in ΔbrlA mutant. A total of 10 physically linked and coregulated genes were distributed over five chromosomes in ΔlaeA. Six of these genes were located in subtelomeric regions, thus demonstrating a positional bias for LaeA-regulated clusters toward subtelomeric regions. All of silenced clusters located in subtelomeric regions were derepressed in ΔlaeAΔcreA, hence showing that lack of CreA could remediate the repression of gene clusters in ΔlaeA background. Results show that both putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. PMID:27387217

  4. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer.

    PubMed

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan; Du, Zhenzong

    2016-08-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  5. Investigating the Genetic Basis of Theory of Mind (ToM): The Role of Catechol-O-Methyltransferase (COMT) Gene Polymorphisms

    PubMed Central

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed ‘theory of mind (ToM)’ is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies. PMID:23209597

  6. Molecular cloning and characterization of the gene encoding the DNA methyltransferase, M.CviBIII, from Chlorella virus NC-1A.

    PubMed Central

    Narva, K E; Wendell, D L; Skrdla, M P; Van Etten, J L

    1987-01-01

    The gene encoding the DNA methyltransferase, M.CviBIII, from Chlorella virus NC-1A was cloned and expressed in E. coli plasmid pUC8. Plasmid (pNC-1A.14.8) encoded M.CviBIII methylates adenine in TCGA sequences both in vivo in E. coli and in vitro. Transposon Tn5 mutagenesis localized the M.CviBIII functional domain to a 1.5 kbp region of pNC-1A.14.8 and also indicated that a virus promoter directs transcription of the gene in E. coli. The 2.1 kbp insert containing the M.CviBIII gene was sequenced and a single open reading frame of 1131 bp was identified within the domain determined by Tn5 mutagenesis. When the M.CviBIII gene was fused in-frame with the 19 amino-terminal codons of lacZ a 45 kD polypeptide was identified in maxicells as predicted by the DNA sequence. The M.CviBIII gene was not essential for virus replication since a virus M.CviBIII deletion mutant also replicated in Chlorella. Images PMID:3320956

  7. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  8. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    SciTech Connect

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  9. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'.

    PubMed

    Maravić, Gordana; Feder, Marcin; Pongor, Sándor; Flögel, Mirna; Bujnicki, Janusz M

    2003-09-01

    Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family. PMID:12946350

  10. Weaver Syndrome‐Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro

    PubMed Central

    Yap, Damian B.; Lewis, M.E. Suzanne; Chijiwa, Chieko; Ramos‐Arroyo, Maria A.; Tkachenko, Natália; Milano, Valentina; Fradin, Mélanie; McKinnon, Margaret L.; Townsend, Katelin N.; Xu, Jieqing; Van Allen, M.I.; Ross, Colin J.D.; Dobyns, William B.; Weaver, David D.; Gibson, William T.

    2016-01-01

    ABSTRACT Weaver syndrome (WS) is a rare congenital disorder characterized by generalized overgrowth, macrocephaly, specific facial features, accelerated bone age, intellectual disability, and susceptibility to cancers. De novo mutations in the enhancer of zeste homolog 2 (EZH2) have been shown to cause WS. EZH2 is a histone methyltransferase that acts as the catalytic agent of the polycomb‐repressive complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating histone methyltransferase activity of mutant EZH2 from various cancers have been reported, whereas WS‐associated mutations remain poorly characterized. To investigate the role of EZH2 in WS, we performed functional studies using artificially assembled PRC2 complexes containing mutagenized human EZH2 that reflected the codon changes predicted from patients with WS. We found that WS‐associated amino acid alterations reduce the histone methyltransferase function of EZH2 in this in vitro assay. Our results support the hypothesis that WS is caused by constitutional mutations in EZH2 that alter the histone methyltransferase function of PRC2. However, histone methyltransferase activities of different EZH2 variants do not appear to correlate directly with the phenotypic variability between WS patients and individuals with a common c.553G>C (p.Asp185His) polymorphism in EZH2. PMID:26694085

  11. Weaver Syndrome-Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro.

    PubMed

    Cohen, Ana S A; Yap, Damian B; Lewis, M E Suzanne; Chijiwa, Chieko; Ramos-Arroyo, Maria A; Tkachenko, Natália; Milano, Valentina; Fradin, Mélanie; McKinnon, Margaret L; Townsend, Katelin N; Xu, Jieqing; Van Allen, M I; Ross, Colin J D; Dobyns, William B; Weaver, David D; Gibson, William T

    2016-03-01

    Weaver syndrome (WS) is a rare congenital disorder characterized by generalized overgrowth, macrocephaly, specific facial features, accelerated bone age, intellectual disability, and susceptibility to cancers. De novo mutations in the enhancer of zeste homolog 2 (EZH2) have been shown to cause WS. EZH2 is a histone methyltransferase that acts as the catalytic agent of the polycomb-repressive complex 2 (PRC2) to maintain gene repression via methylation of lysine 27 on histone H3 (H3K27). Functional studies investigating histone methyltransferase activity of mutant EZH2 from various cancers have been reported, whereas WS-associated mutations remain poorly characterized. To investigate the role of EZH2 in WS, we performed functional studies using artificially assembled PRC2 complexes containing mutagenized human EZH2 that reflected the codon changes predicted from patients with WS. We found that WS-associated amino acid alterations reduce the histone methyltransferase function of EZH2 in this in vitro assay. Our results support the hypothesis that WS is caused by constitutional mutations in EZH2 that alter the histone methyltransferase function of PRC2. However, histone methyltransferase activities of different EZH2 variants do not appear to correlate directly with the phenotypic variability between WS patients and individuals with a common c.553G>C (p.Asp185His) polymorphism in EZH2. PMID:26694085

  12. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    PubMed

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-01-01

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains. PMID:26867950

  13. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence

    PubMed Central

    Tan, Aimee; Hill, Dorothea M. C.; Harrison, Odile B.; Srikhanta, Yogitha N.; Jennings, Michael P.; Maiden, Martin C. J.; Seib, Kate L.

    2016-01-01

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the ‘hyperinvasive lineages’ are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains. PMID:26867950

  14. Reprogramming of Polycomb-Mediated Gene Silencing in Embryonic Stem Cells by the miR-290 Family and the Methyltransferase Ash1l

    PubMed Central

    Kanellopoulou, Chryssa; Gilpatrick, Timothy; Kilaru, Gokhul; Burr, Patrick; Nguyen, Cuong K.; Morawski, Aaron; Lenardo, Michael J.; Muljo, Stefan A.

    2015-01-01

    Summary Members of the miR-290 family are the most abundantly expressed microRNAs (miRNAs) in mouse embryonic stem cells (ESCs). They regulate aspects of differentiation, pluripotency, and proliferation of ESCs, but the molecular program that they control has not been fully delineated. In the absence of Dicer, ESCs fail to express mature miR-290 miRNAs and have selective aberrant overexpression of Hoxa, Hoxb, Hoxc, and Hoxd genes essential for body plan patterning during embryogenesis, but they do not undergo a full differentiation program. Introduction of mature miR-291 into DCR−/− ESCs restores Hox gene silencing. This was attributed to the unexpected regulation of Polycomb-mediated gene targeting by miR-291. We identified the methyltransferase Ash1l as a pivotal target of miR-291 mediating this effect. Collectively, our data shed light on the role of Dicer in ESC homeostasis by revealing a facet of molecular regulation by the miR-290 family. PMID:26549848

  15. Reprogramming of Polycomb-Mediated Gene Silencing in Embryonic Stem Cells by the miR-290 Family and the Methyltransferase Ash1l.

    PubMed

    Kanellopoulou, Chryssa; Gilpatrick, Timothy; Kilaru, Gokhul; Burr, Patrick; Nguyen, Cuong K; Morawski, Aaron; Lenardo, Michael J; Muljo, Stefan A

    2015-12-01

    Members of the miR-290 family are the most abundantly expressed microRNAs (miRNAs) in mouse embryonic stem cells (ESCs). They regulate aspects of differentiation, pluripotency, and proliferation of ESCs, but the molecular program that they control has not been fully delineated. In the absence of Dicer, ESCs fail to express mature miR-290 miRNAs and have selective aberrant overexpression of Hoxa, Hoxb, Hoxc, and Hoxd genes essential for body plan patterning during embryogenesis, but they do not undergo a full differentiation program. Introduction of mature miR-291 into DCR(-/-) ESCs restores Hox gene silencing. This was attributed to the unexpected regulation of Polycomb-mediated gene targeting by miR-291. We identified the methyltransferase Ash1l as a pivotal target of miR-291 mediating this effect. Collectively, our data shed light on the role of Dicer in ESC homeostasis by revealing a facet of molecular regulation by the miR-290 family. PMID:26549848

  16. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  17. Structure-Function Analyses of a Caffeic Acid O-Methyltransferase from Perennial Ryegrass Reveal the Molecular Basis for Substrate Preference[W][OA

    PubMed Central

    Louie, Gordon V.; Bowman, Marianne E.; Tu, Yi; Mouradov, Aidyn; Spangenberg, German; Noel, Joseph P.

    2010-01-01

    Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-l-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT’s catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde. PMID:21177481

  18. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    SciTech Connect

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  19. Reduced Euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice.

    PubMed

    Balemans, Monique C M; Ansar, Muhammad; Oudakker, Astrid R; van Caam, Arjan P M; Bakker, Brenda; Vitters, Elly L; van der Kraan, Peter M; de Bruijn, Diederik R H; Janssen, Sanne M; Kuipers, Arthur J; Huibers, Manon M H; Maliepaard, Eliza M; Walboomers, X Frank; Benevento, Marco; Nadif Kasri, Nael; Kleefstra, Tjitske; Zhou, Huiqing; Van der Zee, Catharina E E M; van Bokhoven, Hans

    2014-02-15

    Haploinsufficiency of Euchromatin histone methyltransferase 1 (EHMT1), a chromatin modifying enzyme, is the cause of Kleefstra syndrome (KS). KS is an intellectual disability (ID) syndrome, with general developmental delay, hypotonia, and craniofacial dysmorphisms as additional core features. Recent studies have been focused on the role of EHMT1 in learning and memory, linked to the ID phenotype of KS patients. In this study we used the Ehmt1(+/-) mouse model, and investigated whether the core features of KS were mimicked in these mice. When comparing Ehmt1(+/-) mice to wildtype littermates we observed delayed postnatal growth, eye opening, ear opening, and upper incisor eruption, indicating a delayed postnatal development. Furthermore, tests for muscular strength and motor coordination showed features of hypotonia in young Ehmt1(+/-) mice. Lastly, we found that Ehmt1(+/-) mice showed brachycephalic crania, a shorter or bent nose, and hypertelorism, reminiscent of the craniofacial dysmorphisms seen in KS. In addition, gene expression analysis revealed a significant upregulation of the mRNA levels of Runx2 and several other bone tissue related genes in P28 Ehmt1(+/-) mice. Runx2 immunostaining also appeared to be increased. The mRNA upregulation was associated with decreased histone H3 lysine 9 dimethylation (H3K9me2) levels, the epigenetic mark deposited by Ehmt1, in the promoter region of these genes. Together, Ehmt1(+/-) mice indeed recapitulate KS core features and can be used as an animal model for Kleefstra syndrome. The increased expression of bone developmental genes in the Ehmt1(+/-) mice likely contributes to their cranial dysmorphisms and might be explained by diminished Ehmt1-induced H3K9 dimethylation. PMID:24362066

  20. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Lee, Kyungjin; Lee, Hye-Jung; Back, Kyoungwhan

    2014-11-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis. We cloned SNAT from Arabidopsis thaliana (AtSNAT) and functionally characterized this enzyme for the first time from dicotyledonous plants. Similar to rice SNAT, AtSNAT was found to localize to chloroplasts with peak enzyme activity at 45 °C (Km , 309 μm; Vmax , 1400 pmol/min/mg protein). AtSNAT also catalyzed 5-methoxytryptamine (5-MT) into melatonin with high catalytic activity (Km , 51 μm; Vmax , 5300 pmol/min/mg protein). In contrast, Arabidopsis caffeic acid O-methyltransferase (AtCOMT) localized to the cytoplasm. Interestingly, AtCOMT can methylate serotonin into 5-MT with low catalytic activity (Km , 3.396 mm; Vmax , 528 pmol/min/mg protein). These data suggest that serotonin can be converted into either N-acetylserotonin by SNAT or into 5-MT by COMT, after which it is metabolized into melatonin by COMT or SNAT, respectively. To support this hypothesis, serotonin was incubated in the presence of both AtSNAT and AtCOMT enzymes. In addition to melatonin production, the production of major intermediates depended on incubation temperatures; N-acetylserotonin was predominantly produced at high temperatures (45 °C), while low temperatures (37 °C) favored the production of 5-MT. Our results provide biochemical evidence for the presence of a serotonin O-methylation pathway in plant melatonin biosynthesis. PMID:25250906

  1. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    PubMed Central

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  2. 1 Protein Methyltransferases: Their Distribution Among the Five Structural Classes of AdoMet-Dependent Methyltransferases.

    PubMed

    Schubert, Heidi L; Blumenthal, Robert M; Cheng, Xiaodong

    2006-01-01

    S-adenosyl-l-methionine (AdoMet) dependent methyltransferases (MTases) are involved in biosynthesis, signal transduction, protein repair, chromatin regulation, and gene silencing. Five different structural folds (designated I through V) have been described that bind AdoMet and catalyze methyltransfer to diverse substrates, although the great majority of known MTases have the Class I fold. Even within a particular MTase class the amino-acid sequence similarity can be as low as 10%. Thus, the structural and catalytic requirements for methyltransfer from AdoMet appear to be remarkably flexible. MTases that act on protein substrates have been found to date among three of the five structural classes (I, the classical fold; III, the corrin MTase fold; and V, the SET fold). "There are many paths to the top of the mountain, but the view is always the same."-Chinese proverb The Columbia World of Quotations, New York, Columbia University Press, 1996. PMID:26718035

  3. Dopamine receptor D2 and catechol-O-methyltransferase gene polymorphisms associated with anorexia nervosa in Chinese Han population: DRD2 and COMT gene polymorphisms were associated with AN.

    PubMed

    Peng, Sufang; Yu, Shunying; Wang, Qian; Kang, Qing; Zhang, Yanxia; Zhang, Ran; Jiang, Wenhui; Qian, Yiping; Zhang, Haiyin; Zhang, Mingdao; Xiao, Zeping; Chen, Jue

    2016-03-11

    Dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) are important in dopamine system which is proved to be associated with food-anticipatory behavior, food restriction, reward and motivation. This has made them good candidates for anorexia nervosa (AN). The aim of this work is to explore the roles of DRD2 (rs1800497) and COMT (rs4680, rs4633, rs4818) gene polymorphisms in the susceptibility of AN within the Chinese Han population. We recruited 260AN patients with DSM-IV diagnosis criteria, and 247 unrelated, normal weight controls. DRD2 (rs1800497) and COMT (rs4680, rs4633, rs4818) were genotyped in all subjects. We found rs1800497 and rs4633 were associated with the susceptibility of AN within the Chinese Han sample, and allele C of rs1800497 was a protective factor. There was a gene-gene interaction between rs1800497 of DRD2 gene and rs4633 of COMT gene. We concluded that rs1800497 and rs4633 play important roles in the AN susceptibility with respect to the Chinese Han population. The gene-gene interaction between DRD2 and COMT contributes to the risk of AN. PMID:26808641

  4. Promoters of the CATG-Specific Methyltransferase Gene hpyIM Differ between iceA1 and iceA2 Helicobacter pylori Strains

    PubMed Central

    Xu, Qing; Blaser, Martin J.

    2001-01-01

    Helicobacter pylori strains can be divided into two groups, based on the presence of two unrelated genes, iceA1 and iceA2, that occupy the same genomic locus. hpyIM, located immediately downstream of either gene, encodes a functional CATG-specific methyltransferase. Despite the strong conservation of the hpyIM open reading frame (ORF) among all H. pylori strains, the sequences upstream of the ORF in iceA1 and iceA2 strains are substantially different. To explore the roles of these upstream sequences in hpyIM regulation, promoter analysis of hpyIM was performed. Both deletion mutation and primer extension analyses demonstrate that the hpyIM promoters differ between H. pylori strains 60190 (iceA1) and J188 (iceA2). In strain 60190, hpyIM has two promoters, Pa or PI, which may function independently, whereas only one hpyIM promoter, Pc, was found in strain J188. The XylE assay showed that the hpyIM transcription level was much higher in strain 60190 than in strain J188, indicating that regulation of hpyIM transcription differs between the H. pylori iceA1 strain (60190) and iceA2 strains (J188). Since the iceA1 and iceA2 sequences are highly conserved within iceA1 or iceA2 strains, we conclude that promoters of the CATG-specific methylase gene hpyIM differ between iceA1 and iceA2 strains, which leads to differences in regulation of hpyIM transcription. PMID:11395450

  5. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2.

    PubMed

    Solari, Claudia; Echegaray, Camila Vázquez; Luzzani, Carlos; Cosentino, María Soledad; Waisman, Ariel; Petrone, María Victoria; Francia, Marcos; Sassone, Alina; Canizo, Jésica; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2016-04-22

    Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells. PMID:27012206

  6. Methoxypyrazine Accumulation and O-Methyltransferase Gene Expression in Sauvignon blanc Grapes: The Role of Leaf Removal, Light Exposure, and Berry Development.

    PubMed

    Gregan, Scott M; Jordan, Brian

    2016-03-23

    Methoxypyrazines are present in the grapes of certain Vitis vinifera varieties including Sauvignon blanc and contribute herbaceous/green aromas to wine. Environmental factors such as light exposure and temperature can influence methoxypyrazine levels, and viticultural interventions such as canopy manipulation have the ability to reduce methoxypyrazine accumulation in grapes. We assessed methoxypyrazine levels and showed that leaf removal significantly reduces accumulation in Sauvignon blanc grapes. The main effect of reducing methoxypyrazines was preveraison, as postveraison treatments had no effect on concentrations at harvest. Methoxypyrazine concentrations in controls peaked preveraison and decreased through harvest. Dilution due to an increase in berry weight was found to be the major driver of decreasing concentrations, as methoxypyrazine levels on a per berry basis were found to increase through development in two of three seasons. In the one year of our study that showed contrasting results, analyses of weather data indicate that warmer than average temperatures appear to be the principal factor affecting the berries' ability to accumulate and retain methoxypyrazines. We also explored the expression of potential biosynthetic O-methyltransferase genes VvOMT1, VvOMT2, and VvOMT3; no significant differences were observed with respect to effect of leaf removal and light exposure. PMID:26923868

  7. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle.

    PubMed

    Liu, X; Guo, X Y; Xu, X Z; Wu, M; Zhang, X; Li, Q; Ma, P P; Zhang, Y; Wang, C Y; Geng, F J; Qin, C H; Liu, L; Shi, W H; Wang, Y C; Yu, Y

    2012-01-01

    DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits. PMID:22843074

  8. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction.

    PubMed

    Göder, Anja; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg

    2015-08-01

    Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy. PMID:25998848

  9. Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynthesis of the Alzheimer's drug galanthamine in Narcissus sp. aff. pseudonarcissus.

    PubMed

    Kilgore, Matthew B; Augustin, Megan M; Starks, Courtney M; O'Neil-Johnson, Mark; May, Gregory D; Crow, John A; Kutchan, Toni M

    2014-01-01

    Galanthamine is an Amaryllidaceae alkaloid used to treat the symptoms of Alzheimer's disease. This compound is primarily isolated from daffodil (Narcissus spp.), snowdrop (Galanthus spp.), and summer snowflake (Leucojum aestivum). Despite its importance as a medicine, no genes involved in the biosynthetic pathway of galanthamine have been identified. This absence of genetic information on biosynthetic pathways is a limiting factor in the development of synthetic biology platforms for many important botanical medicines. The paucity of information is largely due to the limitations of traditional methods for finding biochemical pathway enzymes and genes in non-model organisms. A new bioinformatic approach using several recent technological improvements was applied to search for genes in the proposed galanthamine biosynthetic pathway, first targeting methyltransferases due to strong signature amino acid sequences in the proteins. Using Illumina sequencing, a de novo transcriptome assembly was constructed for daffodil. BLAST was used to identify sequences that contain signatures for plant O-methyltransferases in this transcriptome. The program HAYSTACK was then used to identify methyltransferases that fit a model for galanthamine biosynthesis in leaf, bulb and inflorescence tissues. One candidate gene for the methylation of norbelladine to 4'-O-methylnorbelladine in the proposed galanthamine biosynthetic pathway was identified. This methyltransferase cDNA was expressed in E. coli and the protein purified by affinity chromatography. The resulting protein was found to be a norbelladine 4'-O-methyltransferase (NpN4OMT) of the proposed galanthamine biosynthetic pathway. PMID:25061748

  10. Cloning and Characterization of a Norbelladine 4′-O-Methyltransferase Involved in the Biosynthesis of the Alzheimer’s Drug Galanthamine in Narcissus sp. aff. pseudonarcissus

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; Starks, Courtney M.; O’Neil-Johnson, Mark; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2014-01-01

    Galanthamine is an Amaryllidaceae alkaloid used to treat the symptoms of Alzheimer’s disease. This compound is primarily isolated from daffodil (Narcissus spp.), snowdrop (Galanthus spp.), and summer snowflake (Leucojum aestivum). Despite its importance as a medicine, no genes involved in the biosynthetic pathway of galanthamine have been identified. This absence of genetic information on biosynthetic pathways is a limiting factor in the development of synthetic biology platforms for many important botanical medicines. The paucity of information is largely due to the limitations of traditional methods for finding biochemical pathway enzymes and genes in non-model organisms. A new bioinformatic approach using several recent technological improvements was applied to search for genes in the proposed galanthamine biosynthetic pathway, first targeting methyltransferases due to strong signature amino acid sequences in the proteins. Using Illumina sequencing, a de novo transcriptome assembly was constructed for daffodil. BLAST was used to identify sequences that contain signatures for plant O-methyltransferases in this transcriptome. The program HAYSTACK was then used to identify methyltransferases that fit a model for galanthamine biosynthesis in leaf, bulb and inflorescence tissues. One candidate gene for the methylation of norbelladine to 4′-O-methylnorbelladine in the proposed galanthamine biosynthetic pathway was identified. This methyltransferase cDNA was expressed in E. coli and the protein purified by affinity chromatography. The resulting protein was found to be a norbelladine 4′-O-methyltransferase (NpN4OMT) of the proposed galanthamine biosynthetic pathway. PMID:25061748

  11. Effect of Catechol-O-methyltransferase-gene (COMT) Variants on Experimental and Acute Postoperative Pain in 1,000 Women undergoing Surgery for Breast Cancer

    PubMed Central

    Kambur, Oleg; Kaunisto, Mari A.; Tikkanen, Emmi; Leal, Suzanne M.; Ripatti, Samuli; Kalso, Eija A.

    2016-01-01

    Background Catechol-O-methyltransferase (COMT) metabolizes catecholamines in different tissues. Polymorphisms in COMT gene can attenuate COMT activity and increase sensitivity to pain. Human studies exploring the effect of COMT polymorphisms on pain sensitivity have mostly included small, heterogeneous samples and have ignored several important single nucleotide polymorphisms (SNPs). This study examines the effect of COMT polymorphisms on experimental and postoperative pain phenotypes in a large ethnically homogeneous female patient cohort. Methods Intensity of cold (+2–4°C) and heat (+48°C) pain and tolerance to cold pain were assessed in 1,000 patients scheduled for breast cancer surgery. Acute postoperative pain and oxycodone requirements were recorded. Twenty-two COMT SNPs were genotyped and their association with six pain phenotypes analyzed with linear regression. Results There was no association between any of the tested pain phenotypes and SNP rs4680. The strongest association signals were seen between rs165774 and heat pain intensity as well as rs887200 and cold pain intensity. In both cases, minor allele carriers reported less pain. Neither of these results remained significant after strict multiple testing corrections. When analyzed further, the effect of rs887200 was, however, shown to be significant and consistent throughout the cold pressure test. No evidence of association between the SNPs and postoperative oxycodone consumption was found. Conclusions SNPs rs887200 and rs165774 located in the untranslated regions of the gene had the strongest effects on pain sensitivity. Their effect on pain is described here for the first time. These results should be confirmed in further studies and the potential functional mechanisms of the variants studied. PMID:24343288

  12. Perinatal Risk Factors Interacting With Catechol O-Methyltransferase and the Serotonin Transporter Gene Predict ASD symptoms in Children With ADHD

    PubMed Central

    Nijmeijer, Judith S.; Hartman, Catharina A.; Rommelse, Nanda N.J.; Altink, Marieke E.; Buschgens, Cathelijne J.M.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Ruud B.; Ormel, Johan; Sergeant, Joseph A.; Verhulst, Frank C.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2010-01-01

    Background Symptoms of Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) often co-occur. Given the previously found familiality of ASD symptoms in children with ADHD, addressing these symptoms may be useful for genetic association studies, especially for candidate gene findings that have not been consistently replicated for ADHD. Methods We studied the association of the catechol o-methyltransferase (COMT) Val158Met polymorphism and the serotonin transporter (SLC6A4/SERT/5-HTT) 5-HTTLPR insertion/deletion polymorphism with ASD symptoms in children with ADHD, and whether these polymorphisms would interact with pre- and perinatal risk factors, i.e., maternal smoking during pregnancy and low birth weight. Analyses were performed using linear regression in 207 Dutch participants with combined type ADHD of the International Multicenter ADHD Genetics (IMAGE) study, and repeated in an independent ADHD sample (n = 439) selected from the TRracking Adolescents' Individual Lives Survey (TRAILS). Dependent variables were the total and subscale scores of the Children's Social Behavior Questionnaire (CSBQ). Results No significant main effects of COMT Val158Met, 5-HTTLPR, maternal smoking during pregnancy and low birth weight on ASD symptoms were found. However, the COMT Val/Val genotype interacted with maternal smoking during pregnancy in increasing stereotyped behavior in the IMAGE sample (p = 0.008); this interaction reached significance in the TRAILS sample after correction for confounders (p = 0.02). In the IMAGE sample, the 5-HTTLPR S/S genotype interacted with maternal smoking during pregnancy, increasing problems in social interaction (p = 0.02), and also interacted with low birth weight, increasing rigid behavior (p = 0.03). Findings for 5-HTTLPR in the TRAILS sample were similar, albeit for related CSBQ subscales. Conclusions These findings suggest gene-environment interaction effects on ASD symptoms in children with ADHD. PMID:20868372

  13. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases

    PubMed Central

    2014-01-01

    Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation. PMID:25012753

  14. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  15. Catechol-O-methyltransferase Val158Met genotype and the clinical responses to duloxetine treatment or plasma levels of 3-methoxy-4-hydroxyphenylglycol and homovanillic acid in Japanese patients with major depressive disorder

    PubMed Central

    Atake, Kiyokazu; Yoshimura, Reiji; Hori, Hikaru; Katsuki, Asuka; Nakamura, Jun

    2015-01-01

    Purpose This study investigated the relationships among the plasma levels of catecholamine metabolites, the clinical response to duloxetine treatment, and Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene. Subjects and methods Sixty-four patients and 30 healthy control subjects were recruited. Major depressive episodes were diagnosed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. The severity of depression was evaluated using the 17-item Hamilton Rating Scale for Depression (HAMD17). Patients whose HAMD17 scores were 15 or greater were enrolled in the study. Blood sampling and clinical evaluation were performed at week 0 and week 8. The levels of plasma catecholamine metabolites were measured using high-performance liquid chromatography with electrochemical detection. Genotyping was performed using direct sequencing. Results Thirty of 45 patients (67%) responded to duloxetine treatment during the 8 weeks of treatment. The baseline plasma levels of 3-methoxy-4-hydroxyphenylglycol (MHPG), but not homovanillic acid (HVA), were lower in patients with major depressive disorder (MDD) who had the Val/Val genotype than in patients who were Met-carriers. Patients with MDD and the Val/Val genotype, but not Met carriers, had increased plasma levels of MHPG after 8 weeks of duloxetine treatment. The baseline plasma MHPG levels in healthy control subjects with the Val/Val genotype were significantly higher than those in patients with MDD. Among the subjects in the MDD group with the Val/Val genotype, the plasma MHPG levels increased to the same degree as in the healthy control subjects with the Val/Val genotype after 8 weeks of duloxetine treatment. Conclusion The relationship among the COMT Val158Met polymorphism, plasma levels of catecholamine metabolites, and responses to duloxetine is complex. Nevertheless, our results suggest that patients with MDD and the

  16. DNA Methyltransferases Inhibitors from Natural Sources.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  17. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol.

    PubMed

    Jung, Je Hyeong; Altpeter, Fredy

    2016-09-01

    Sugarcane (Saccharum spp. hybrids) is a prime crop for commercial biofuel production. Advanced conversion technology utilizes both, sucrose accumulating in sugarcane stems as well as cell wall bound sugars for commercial ethanol production. Reduction of lignin content significantly improves the conversion of lignocellulosic biomass into ethanol. Conventional mutagenesis is not expected to confer reduction in lignin content in sugarcane due to its high polyploidy (x = 10-13) and functional redundancy among homo(eo)logs. Here we deploy transcription activator-like effector nuclease (TALEN) to induce mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane. Capillary electrophoresis (CE) was validated by pyrosequencing as reliable and inexpensive high throughput method for identification and quantitative characterization of TALEN mediated mutations. Targeted COMT mutations were identified by CE in up to 74 % of the lines. In different events 8-99 % of the wild type COMT were converted to mutant COMT as revealed by pyrosequencing. Mutation frequencies among mutant lines were positively correlated to lignin reduction. Events with a mutation frequency of 99 % displayed a 29-32 % reduction of the lignin content compared to non-transgenic controls along with significantly reduced S subunit content and elevated hemicellulose content. CE analysis displayed similar peak patterns between primary COMT mutants and their vegetative progenies suggesting that TALEN mediated mutations were faithfully transmitted to vegetative progenies. This is the first report on genome editing in sugarcane. The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes. PMID:27306903

  18. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  19. Cloning and expresion of cDNA for rat O6-methylguanine-DNA methyltransferase.

    PubMed Central

    Sakumi, K; Shiraishi, A; Hayakawa, H; Sekiguchi, M

    1991-01-01

    cDNA for O6-methylguanine-DNA methyltransferase was isolated by screening rat liver cDNA libraries, using as a probe the human cDNA sequence for methyltransferase. The rat cDNA encodes a protein with 209 amino acid residues. The predicted amino acid sequence of the rat methyltransferase exhibits considerable homology with those of the human, yeast and bacterial enzymes, especially around putative methyl acceptor sites. When the cDNA was placed under control of the lac promoter and expressed in methyltransferase-deficient Escherichia coli (ada-, ogt-) cells, a characteristic methyltransferase protein was produced. The rat DNA methyltransferase thus expressed could complement the biological defects of the E. coli cell caused by lack of its own DNA methyltransferases; e.g. increased sensitivity to alkylating agents in terms of both cell death and mutation induction. Images PMID:1945835

  20. Effect of maternal folic acid supplementation on hepatic one-carbon unit associated gene expressions in newborn piglets.

    PubMed

    Liu, Jing-Bo; Chen, Dai-Wen; Yu, Bing; Mao, Xiang-bing

    2011-08-01

    Intrauterine growth retardation (IUGR) induces alterations to hepatic gene expressions which might program poor postnatal growth and health status. Maternal folic acid supplementation was administered in gilt diets to test whether hepatic mRNA expressions of some important genes induced by IUGR could be rescued by folic acid supplementation. Thirty-two Yorkshire gilts were allotted to two treatment groups of control (C folic acid 1.3 mg/kg) or folic acid supplementation (FS folic acid 30 mg/kg) after mating, to study the effects of maternal folic acid supplementation on the mRNA expression of methionine adenosyltransferase (MAT), cystathionine-β-synthase (CBS), methylenetetrahydrofolate reductase (MTHFR), DNA methyltransferase1 (DNMT1), peroxisomal proliferator-activated receptor (PPARγ), glucocorticoid receptor (GR), obesity receptor (ob-R) and Acyl-CoA oxidase (AOX) in the liver of IUGR and NBW piglets. Blood and liver samples were collected for determinations of serum folic acid and gene expressions. The total number of born piglets, number of piglets born alive, average birth weight and 21 days average weight were not affected by dietary treatment (P>0.05), and serum folic acid concentration of piglets was greater in FS than C groups (P<0.05). Real-time PCR indicated that gene expression of MAT1A, MAT2A and DNMT1 were lower in IUGR piglets but could be elevated by maternal folic acid supplementation. Transcript expression levels of PPARγ, GR and AOX were higher in IUGR piglets, but were decreased to the level of normal piglets by maternal folic acid supplementation. Our results suggested that maternal folic acid supplementation be an effective way to rescue the gene expressions negatively induced by IUGR. PMID:21108044

  1. Ethnic differences in five intronic polymorphisms associated with arsenic metabolism within human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene

    SciTech Connect

    Fujihara, Junko; Fujii, Yoshimi; Agusa, Tetsuro; Kunito, Takashi; Yasuda, Toshihiro; Moritani, Tamami; Takeshita, Haruo

    2009-01-01

    Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite, and intronic single-nucleotide polymorphisms (SNPs: G7395A, G12390C, T14215C, T35587C, and G35991A) in the AS3MT gene were shown to be related to inter-individual variation in the arsenic metabolism. In the present study, the genotyping for these SNPs was developed using the polymerase chain reaction and restriction fragment length polymorphism technique. Applying this method, the genotype distribution among the Ovambo, Turkish, Mongolian, Korean, and Japanese populations was investigated, and our results were compared with those from other studies. G7395, G12390, T35587, and A35991 were predominant among the five populations in our study. However, a previous study in Argentina, C12390 and G35991 showed the highest allele frequency among the eight populations studied in other studies. The dominant allele of T14215C differed among populations: the T14215 allele was predominant in Argentina, the allele frequency of C14215 was higher than that of T14215 among Turks, Mongolians, Europeans, and American ancestry. In Korea and Japan, similar allele frequencies were observed in T14215 and C14215. Higher allele frequencies were observed in haplotype G7395/G12390/C14215/T35587 with frequencies of 0.40 (Turks), 0.28 (Mongolians), and 0.23 (Koreans). On the other hand, the allele frequency for G7395/G14215/T35587/A35991 was the highest among the Ovambos (0.32), and the frequency for G7395/G12390/C35587/G35991 was the highest among the Japanese (0.27). It is noteworthy that the Japanese haplotype differs from that of the Koreans and Mongolians, which indicates the importance of investigating other intronic polymorphisms in AS3MT, especially in Asians.

  2. Ethnic differences in five intronic polymorphisms associated with arsenic metabolism within human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene.

    PubMed

    Fujihara, Junko; Fujii, Yoshimi; Agusa, Tetsuro; Kunito, Takashi; Yasuda, Toshihiro; Moritani, Tamami; Takeshita, Haruo

    2009-01-01

    Human arsenic (+3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite, and intronic single-nucleotide polymorphisms (SNPs: G7395A, G12390C, T14215C, T35587C, and G35991A) in the AS3MT gene were shown to be related to inter-individual variation in the arsenic metabolism. In the present study, the genotyping for these SNPs was developed using the polymerase chain reaction and restriction fragment length polymorphism technique. Applying this method, the genotype distribution among the Ovambo, Turkish, Mongolian, Korean, and Japanese populations was investigated, and our results were compared with those from other studies. G7395, G12390, T35587, and A35991 were predominant among the five populations in our study. However, a previous study in Argentina, C12390 and G35991 showed the highest allele frequency among the eight populations studied in other studies. The dominant allele of T14215C differed among populations: the T14215 allele was predominant in Argentina, the allele frequency of C14215 was higher than that of T14215 among Turks, Mongolians, Europeans, and American ancestry. In Korea and Japan, similar allele frequencies were observed in T14215 and C14215. Higher allele frequencies were observed in haplotype G7395/G12390/C14215/T35587 with frequencies of 0.40 (Turks), 0.28 (Mongolians), and 0.23 (Koreans). On the other hand, the allele frequency for G7395/G14215/T35587/A35991 was the highest among the Ovambos (0.32), and the frequency for G7395/G12390/C35587/G35991 was the highest among the Japanese (0.27). It is noteworthy that the Japanese haplotype differs from that of the Koreans and Mongolians, which indicates the importance of investigating other intronic polymorphisms in AS3MT, especially in Asians. PMID:18976679

  3. Protein Arginine Methyltransferase 6 (Prmt6) Is Essential for Early Zebrafish Development through the Direct Suppression of gadd45αa Stress Sensor Gene.

    PubMed

    Zhao, Xin-Xi; Zhang, Yun-Bin; Ni, Pei-Li; Wu, Zhi-Li; Yan, Yuan-Chang; Li, Yi-Ping

    2016-01-01

    Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa. PMID:26487724

  4. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1.

    PubMed

    Sauer, K; Harms, U; Thauer, R K

    1997-02-01

    In Methanosarcina barkeri, methanogenesis from methanol is initiated by the formation of methylcoenzyme M from methanol and coenzyme M. This methyl transfer reaction is catalyzed by two enzymes, designated MT1 and MT2. Transferase MT1 is a corrinoid protein. The purification, catalytic properties and encoding genes of MT2 (MtaA) have been described previously [Harms, U. and Thauer, R.K. (1996) Eur. J. Biochem. 235, 653-659]. We report here on the corresponding analysis of MT1. The corrinoid protein MT1 was purified to apparent homogeneity and showed a specific activity of 750 mumol min-1 mg-1. The enzyme catalyzed the methylation of its bound corrinoid in the cob(I)amide oxidation state by methanol. In addition to this automethylation, the purified enzyme was found to catalyze the methylation of free cob(I)alamin to methylcob(III)alamin. It was composed of two different subunits designated MtaB and MtaC, with apparent molecular masses of 49 kDa and 24 kDa, respectively. The subunit MtaC was shown to harbour the corrinoid prosthetic group. The genes mtaB and mtaC were cloned and sequenced. They were found to be juxtapositioned and to form a transcription unit mtaCB. The corrinoid-harbouring subunit MtaC exhibits 35% sequence similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli. PMID:9057830

  5. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate

    PubMed Central

    Drobna, Zuzana; Narenmandura, Hua; Kubachka, Kevin M.; Edwards, Brenda C.; Herbin-Davis, Karen; Styblo, Miroslav; Le, X. Chris; Creed, John T.; Maeda, Noboyu; Hughes, Michael F.; Thomas, David J.

    2009-01-01

    The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [73As]-arsenate. Mice were radioassayed for up to 96 hours after dosing; tissues were collected at 2 and 24 hours after dosing. At 2 and 24 hours after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 hours after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [73As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 hours after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 hours, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals. PMID:19691357

  6. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process. PMID:26784358

  7. Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases.

    PubMed

    Bujnicki, J M

    2000-11-01

    The sequences of known Escherichia coli 16S rRNA:m2G1207 methyltransferase (MTase) RsmC and hypothetical 16S rRNA:m2G966 MTase encoded by the ygjo open reading frame were used to carry out a database search of other putative m2G-generating enzymes in finished and unfinished genomic sequences. Sequence comparison and phylogenetic analysis of 21 close homologs of RsmC and YgjO revealed the presence of the third paralogous lineage in E. coli and other gamma-Proteobacteria, which might correspond to the subfamily of MTases specific for G1516 in 16S rRNA. In addition, the comparative sequence analysis supported by sequence/structure threading suggests that rRNA:m2G MTases are very closely related to RNA and DNA:m6A MTases and that these two enzyme families share common architecture of the active site and presumably a similar mechanism of methyl group transfer onto the exocyclic amino group of their target bases. PMID:11053259

  8. Arginine methyltransferases in normal and malignant hematopoiesis.

    PubMed

    Greenblatt, Sarah M; Liu, Fan; Nimer, Stephen D

    2016-06-01

    Arginine methylation is an abundant covalent modification that regulates diverse cellular processes, including transcription, translation, DNA repair, and RNA processing. The enzymes that catalyze these marks are known as the protein arginine methyltransferases (PRMTs), and they can generate asymmetric dimethyl arginine (type I arginine methyltransferases), symmetric dimethylarginine (type II arginine methyltransferases), or monomethyarginine (type III arginine methyltransferases). The PRMTs are capable of modifying diverse substrates, from histone components to specific nuclear and cytoplasmic proteins. Additionally, the PRMTs can orchestrate chromatin remodeling by blocking the docking of other epigenetic modifying enzymes or by recruiting them to specific gene loci. In the hematopoietic system, PRMTs can regulate cell behavior, including the critical balance between stem cell self-renewal and differentiation, in at least two critical ways, via (i) the covalent modification of transcription factors and (ii) the regulation of histone modifications at promoters critical to cell fate determination. Given these important functions, it is not surprising that these processes are altered in hematopoietic malignancies, such as acute myeloid leukemia, where they promote increased self-renewal and impair hematopoietic stem and progenitor cell differentiation. PMID:27026282

  9. Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes.

    PubMed Central

    Szilák, L; Venetianer, P; Kiss, A

    1990-01-01

    The genes coding for the GGNCC specific Sau96I restriction and modification enzymes were cloned and expressed in E. coli. The DNA sequence predicts a 430 amino acid protein (Mr: 49,252) for the methyltransferase and a 261 amino acid protein (Mr: 30,486) for the endonuclease. No protein sequence similarity was detected between the Sau96I methyltransferase and endonuclease. The methyltransferase contains the sequence elements characteristic for m5C-methyltransferases. In addition to this, M.Sau96I shows similarity, also in the variable region, with one m5C-methyltransferase (M.SinI) which has closely related recognition specificity (GGA/TCC). M.Sau96I methylates the internal cytosine within the GGNCC recognition sequence. The Sau96I endonuclease appears to act as a monomer. Images PMID:2204026

  10. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  11. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  12. Role of several histone lysine methyltransferases in tumor development

    PubMed Central

    LI, JIFU; ZHU, SHUNQIN; KE, XIAO-XUE; CUI, HONGJUAN

    2016-01-01

    The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action. PMID:26998265

  13. Identification and Biochemical Characterization of Four Wood-Associated Glucuronoxylan Methyltransferases in Populus

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Wood is one of the promising bioenergy feedstocks for lignocellulosic biofuel production. Understanding how wood components are synthesized will help us design strategies for better utilization of wood for biofuel production. One of the major wood components is xylan, in which about 10% of xylosyl residues are substituted with glucuronic acid (GlcA) side chains. All the GlcA side chains of xylan in wood of Populus trichocarpa are methylated, which is different from Arabidopsis xylan in which about 60% of GlcA side chains are methylated. Genes responsible for methylation of GlcA side chains in Populus xylan have not been identified. Here, we report genetic and biochemical analyses of four DUF579 domain-containing proteins, PtrGXM1, PtrGXM2, PtrGXM3 and PtrGXM4, from Populus trichocarpa and their roles in GlcA methylation in xylan. The PtrGXM genes were found to be highly expressed in wood-forming cells and their encoded proteins were shown to be localized in the Golgi. When overexpressed in the Arabidopsis gxm1/2/3 triple mutant, PtrGXMs were able to partially complement the mutant phenotypes including defects in glucuronoxylan methyltransferase activity and GlcA methylation in xylan, indicating that PtrGXMs most likely function as glucuronoxylan methyltransferases. Direct evidence was provided by enzymatic analysis of recombinant PtrGXM proteins showing that they possessed a methyltransferase activity capable of transferring the methyl group onto GlcA-substituted xylooligomers. Kinetic analysis showed that PtrGXMs exhibited differential affinities toward the GlcA-substituted xylooligomer acceptor with PtrGXM3 and PtrGXM4 having 10 times higher Km values than PtrGXM1 and PtrGXM2. Together, these findings indicate that PtrGXMs are methyltransferases mediating GlcA methylation in Populus xylan during wood formation. PMID:24523868

  14. Genomic and proteomic analyses reveal multiple homologs of genes encoding enzymes of the methanol:coenzyme M methyltransferase system that are differentially expressed in methanol- and acetate-grown Methanosarcina thermophila.

    PubMed

    Ding, Yan-Huai R; Zhang, Shi-Ping; Tomb, Jean-Francois; Ferry, James G

    2002-09-24

    Each of the genomic sequences of Methanosarcina acetivorans, Methanosarcina mazei, and Methanosarcina thermophila revealed two homologs of mtaA, three homologs of mtaB, and three homologs of mtaC encoding enzymes specific for methanogenesis from methanol. Two-dimensional gel electrophoretic analyses of polypeptides from M. thermophila established that methanol induces the expression of mtaA-1, mtaB-1, mtaB-2, mtaB-3, mtaC-1, mtaC-2, and mtaC-3 whereas mtaB-3 and mtaC-3 are constitutively expressed in acetate-grown cells. The gene product of one of three mttC homologs, encoding trimethylamine-specific methyltransferase I, was detected in methanol- but not acetate-grown M. thermophila. A postulated role for the multiple homologs is discussed. PMID:12393212

  15. Monoamine Oxidase A (MAOA) and Catechol-O-Methyltransferase (COMT) Gene Polymorphisms Interact with Maternal Parenting in Association with Adolescent Reactive Aggression but not Proactive Aggression: Evidence of Differential Susceptibility.

    PubMed

    Zhang, Wenxin; Cao, Cong; Wang, Meiping; Ji, Linqin; Cao, Yanmiao

    2016-04-01

    To date, whether and how gene-environment (G × E) interactions operate differently across distinct subtypes of aggression remains untested. More recently, in contrast with the diathesis-stress hypothesis, an alternative hypothesis of differential susceptibility proposes that individuals could be differentially susceptible to environments depending on their genotypes in a "for better and for worse" manner. The current study examined interactions between monoamine oxidase A (MAOA) T941G and catechol-O-methyltransferase (COMT) Val158Met polymorphisms with maternal parenting on two types of aggression: reactive and proactive. Moreover, whether these potential G × E interactions would be consistent with the diathesis-stress versus the differential susceptibility hypothesis was tested. Within the sample of 1399 Chinese Han adolescents (47.2 % girls, M age = 12.32 years, SD = 0.50), MAOA and COMT genes both interacted with positive parenting in their associations with reactive but not proactive aggression. Adolescents with T alleles/TT homozygotes of MAOA gene or Met alleles of COMT gene exhibited more reactive aggression when exposed to low positive parenting, but less reactive aggression when exposed to high positive parenting. These findings provide the first evidence for distinct G × E interaction effects on reactive versus proactive aggression and lend further support for the differential susceptibility hypothesis. PMID:26932718

  16. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish)

    PubMed Central

    Itoh, Nobuya; Toda, Hiroshi; Matsuda, Michiko; Negishi, Takashi; Taniguchi, Tomokazu; Ohsawa, Noboru

    2009-01-01

    Background Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission profiles of methyl halides and the enzymatic properties of HMT/HTMT, and their role in vivo remains unclear. Results Thirty-five higher plant species were screened, and high CH3I emissions and HMT/HTMT activities were found in higher plants belonging to the Poaceae family, including wheat (Triticum aestivum L.) and paddy rice (Oryza sativa L.), as well as the Brassicaceae family, including daikon radish (Raphanus sativus). The in vivo emission of CH3I clearly correlated with HMT/HTMT activity. The emission of CH3I from the sprouting leaves of R. sativus, T. aestivum and O. sativa grown hydroponically increased with increasing concentrations of supplied iodide. A gene encoding an S-adenosylmethionine halide/thiol methyltransferase (HTMT) was cloned from R. sativus and expressed in Escherichia coli as a soluble protein. The recombinant R. sativus HTMT (RsHTMT) was revealed to possess high specificity for iodide (I-), bisulfide ([SH]-), and thiocyanate ([SCN]-) ions. Conclusion The present findings suggest that HMT/HTMT activity is present in several families of higher plants including Poaceae and Brassicaceae, and is involved in the formation of methyl halides. Moreover, it was found that the emission of methyl iodide from plants was affected by the iodide concentration in the cultures. The recombinant RsHTMT demonstrated enzymatic properties similar to those of Brassica oleracea HTMT, especially in terms of its high specificity for iodide, bisulfide, and thiocyanate ions. A survey of

  17. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    PubMed

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism. PMID:20407462

  18. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA)

    PubMed Central

    Erova, Tatiana E.; Kosykh, Valeri G.; Sha, Jian; Chopra, Ashok K.

    2013-01-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam+) and GM33 (Δdam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA+ strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ΔgidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by

  19. Comparison of Bacillus monooxygenase genes for unique fatty acid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activiti...

  20. Evolution of Cinnamate/p-Coumarate Carboxyl Methyltransferases and Their Role in the Biosynthesis of Methylcinnamate[W

    PubMed Central

    Kapteyn, Jeremy; Qualley, Anthony V.; Xie, Zhengzhi; Fridman, Eyal; Dudareva, Natalia; Gang, David R.

    2007-01-01

    Methylcinnamate, which is widely distributed throughout the plant kingdom, is a significant component of many floral scents and an important signaling molecule between plants and insects. Comparison of an EST database obtained from the glandular trichomes of a basil (Ocimum basilicum) variety that produces high levels of methylcinnamate (line MC) with other varieties producing little or no methylcinnamate identified several very closely related genes belonging to the SABATH family of carboxyl methyltransferases that are highly and almost exclusively expressed in line MC. Biochemical characterization of the corresponding recombinant proteins showed that cinnamate and p-coumarate are their best substrates for methylation, thus designating these enzymes as cinnamate/p-coumarate carboxyl methyltransferases (CCMTs). Gene expression, enzyme activity, protein profiling, and metabolite content analyses demonstrated that CCMTs are responsible for the formation of methylcinnamate in sweet basil. A phylogenetic analysis of the entire SABATH family placed these CCMTs into a clade that includes indole-3-acetic acid carboxyl methyltransferases and a large number of uncharacterized carboxyl methyltransferase–like proteins from monocots and lower plants. Structural modeling and ligand docking suggested active site residues that appear to contribute to the substrate preference of CCMTs relative to other members of the SABATH family. Site-directed mutagenesis of specific residues confirmed these findings. PMID:17951447

  1. An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability.

    PubMed

    Labonne, Jonathan D J; Lee, Kang-Han; Iwase, Shigeki; Kong, Il-Keun; Diamond, Michael P; Layman, Lawrence C; Kim, Cheol-Hee; Kim, Hyung-Goo

    2016-07-01

    Microdeletion syndromes are frequent causes of neuropsychiatric disorders leading to intellectual disability as well as autistic features accompanied by epilepsy and craniofacial anomalies. From comparative deletion mapping of the smallest microdeletion to date at 12q24.31, found in a patient with overlapping clinical features of 12q24.31 microdeletion syndrome, we narrowed the putative critical region to 445 kb containing seven genes, one microRNA, and one non-coding RNA. Zebrafish in situ hybridization and comprehensive transcript analysis of annotated genes in the panels of human organ and brain suggest that these are all candidates for neurological phenotypes excluding the gene HPD. This is also corroborated by synteny analysis revealing the conservation of the order of these six candidate genes between humans and zebrafish. Among them, we propose histone demethylase KDM2B and histone methyltransferase SETD1B as the two most plausible candidate genes involved in intellectual disability, autism, epilepsy, and craniofacial anomalies. These two chromatin modifiers located approximately 224 kb apart were both commonly deleted in six patients, while two additional patients had either KDM2B or SETD1B deleted. The four additional candidate genes (ORAI1, MORN3, TMEM120B, RHOF), a microRNA MIR548AQ, and a non-coding RNA LINC01089 are localized between KDM2B and SETD1B. The 12q24.31 microdeletion syndrome with syndromic intellectual disability extends the growing list of microdeletion syndromes and underscores the causative roles of chromatin modifiers in cognitive and craniofacial development. PMID:27106595

  2. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  3. Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation).

    PubMed

    Leuzzi, V; Bianchi, M C; Tosetti, M; Carducci, C; Cerquiglini, C A; Cioni, G; Antonozzi, I

    2000-11-14

    The authors describe an Italian child with guanidinoacetate methyltransferase deficiency, neurologic regression, movement disorders, and epilepsy during the first year of life. Brain MRI showed pallidal and periaqueductal alterations. In vivo 1H-MRS showed brain creatine depletion. The assessment of guanidinoacetic acid concentration in biologic fluids confirmed the diagnosis. Clinical, biochemical, and neuroradiologic improvement followed creatine supplementation. PMID:11087795

  4. Multiple lysine methylation of PCAF by Set9 methyltransferase

    SciTech Connect

    Masatsugu, Toshihiro; Yamamoto, Ken

    2009-03-27

    The molecular functions of several non-histone proteins are regulated through lysine modification by histone methyltransferases. The p300/CBP-associated factor (PCAF) is an acetyltransferase that has been implicated in many cellular processes. Here, we report that PCAF is a novel substrate of Set9 methyltransferase. In vitro mapping experiments revealed six lysine residues could be methylated by Set9. A comparison of amino acid sequences of target sites revealed the novel consensus motif which differs from previously identified Set9-consensus sequence. Further methyltransferase assays focusing on the six lysine residues showed that K78 and K89 are preferentially methylated in full-length PCAF in vitro. Using specific antibodies recognizing mono-methylated K89, in vivo PCAF methylation and its nuclear localization were demonstrated. Our data may lead to a new insight into PCAF functions and provide additional information to identify unknown targets of Set9.

  5. [Expression of Catechol-O-Methyltransferase (Comt), Mineralocorticoid Receptor (Mlr), and Epithelial Sodium Channel (ENaC) Genes in Kidneys of Hypertensive ISIAH Rats at Rest and during Response to Stress].

    PubMed

    Abramova, T O; Smolenskaya, S E; Antonov, E V; Redina, O E; Markel, A L

    2016-02-01

    Emotional stress plays a significant role in the processes of the development of arterial hypertension, especially in the presence of genetic predisposition. The origin and maintenance of hypertensive status during stress development can be activated by the sympathetic nervous system. An increase in sympathetic stimulation can, in turn, result in a change in the functions of kidneys, which provide fluid and electrolyte balance of the organism. A comparative study of the mRNA expression level of catechol-o-methyltransferase (Comt), mineralocorticoid receptor (Mlr), and β-subunit of epithelial sodium channel (β-ENaC) genes was conducted on the kidneys of hypertensive ISIAH rats and normotensive WAG rats at rest and after the effect of emotional stress. The discovered changes in the expression level of the selected genes confirm their involvement in increased sympathetic stimulation of the kidney, along with changes in the function of kidney regulation of fluid and electrolyte balance, which is an important factor of the development of sustained hypertension in the ISIAH rats strain. PMID:27215035

  6. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment.

    PubMed

    Guazzaroni, María-Eugenia; Morgante, Verónica; Mirete, Salvador; González-Pastor, José E

    2013-04-01

    Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. PMID:23145860

  7. Identification of Methylated Proteins in the Yeast Small Ribosomal Subunit: A Role for SPOUT Methyltransferases in Protein Arginine Methylation†

    PubMed Central

    Young, Brian D.; Weiss, David I.; Zurita-Lopez, Cecilia I.; Webb, Kristofor J.; Clarke, Steven G.; McBride, Anne E.

    2012-01-01

    We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation on Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes. PMID:22650761

  8. Association of Single Nucleotide Polymorphisms in Catechol-O-Methyltransferase and Serine-Threonine Protein Kinase Genes in the Pakistani Schizophrenic Population: A Study with Special Emphasis on Cannabis and Smokeless Tobacco.

    PubMed

    Nawaz, Rukhsana; Siddiqui, Sonia

    2015-01-01

    Schizophrenia is a neuropsychiatric disorder in which abnormalities in the prefrontal cortex lead to impaired synthesis of dopamine. It is associated with hallucination, psychosis and hearing impairments. Many susceptible genes have been identified in schizophrenia such as catechol-O-methyltransferase (COMT) and serine/threonine kinase (AKT1). Single nucleotide polymorphisms (SNPs) in these genes have not been identified in Pakistan. Therefore, we investigated the allelic and genotypic frequencies in COMT and AKT1 genes in the Pakistani population. Polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) and DNA sequencing were used to identify SNPs in the genes. The present study shows that COMT Val and COMT Met allelic frequencies for the controls were p=0.52, q=0.48 and for the schizophrenic cases they were p=0.34, q=0.66 respectively. The distribution of polymorphism in COMT Val158Met genotype by Hardy-Weinberg equilibrium (HWE) was P=0.61 for controls and P=0.005 for cases. The data reveal that SNP rs1130214 T allele mutation was found neither in patients nor in controls in the 5' untranslated region (UTR). This proves that no association of AKT1 and positive association of COMT with schizophrenia exist in the population of Pakistan. Moreover, a study based on a single family showed COMT Met allele inheritance in schizophrenic offspring. This suggested that COMT allele alteration influences susceptibility to at least some forms of psychosis in the Pakistani population. Interestingly, according to our socio-economical survey, COMT genotype has no association with cannabis but it is strongly associated with tobacco. The Pakistani population with Val158Met SNP showed more susceptibility towards developing schizophrenia. This study highlights the genetic differences between Pakistani and other Caucasian populations. PMID:25801838

  9. Importance of membrane-bound catechol-O-methyltransferase in L-DOPA metabolism: a pharmacokinetic study in two types of Comt gene modified mice

    PubMed Central

    Käenmäki, M; Tammimäki, A; Garcia-Horsman, JA; Myöhänen, T; Schendzielorz, N; Karayiorgou, M; Gogos, JA; Männistö, PT

    2009-01-01

    Background and purpose: Catechol-O-methyltransferase (COMT) metabolizes compounds containing catechol structures and has two forms: soluble (S-COMT) and membrane-bound (MB-COMT). Here we report the generation of a mouse line that expresses MB-COMT but not S-COMT. We compared the effects of deleting S-COMT only or both COMT forms on the pharmacokinetics of oral L-DOPA. Experimental approach: L-DOPA (10 mg·kg−1) and carbidopa (30 mg·kg−1) were given to mice by gastric tube, and samples were taken at various times. HPLC was used to measure L-DOPA in plasma and tissue samples, and dopamine and its metabolites in brain. Immunohistochemistry and Western blotting were used to characterize the distribution of COMT protein isoforms. Key results: Lack of S-COMT did not affect the levels of L-DOPA in plasma or peripheral tissues, whereas in the full COMT-knock-out mice, these levels were increased. The levels of 3-O-methyldopa were significantly decreased in the S-COMT-deficient mice. In the brain, L-DOPA levels were not significantly increased, and dopamine was increased only in females. The total COMT activity in the S-COMT-deficient mice was 22–47% of that in the wild-type mice. In peripheral tissues, female mice had lower COMT activity than the males. Conclusions and implications: In S-COMT-deficient mice, MB-COMT in the liver and the duodenum is able to O-methylate about one-half of exogenous L-DOPA. Sexual dimorphism and activity of the two COMT isoforms seems to be tissue specific and more prominent in peripheral tissues than in the brain. PMID:19930170

  10. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    PubMed Central

    Ticak, Tomislav; Kountz, Duncan J.; Girosky, Kimberly E.; Krzycki, Joseph A.; Ferguson, Donald J.

    2014-01-01

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptors such as nitrate or fumarate, producing dimethylglycine and CO2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. In addition, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. They are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health. PMID:25313086

  11. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2015-11-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  12. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  13. Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis.

    PubMed

    Byeon, Yeong; Lee, Hye-Jung; Lee, Hyoung Yool; Back, Kyoungwhan

    2016-01-01

    The N-acetylserotonin O-methyltransferase (ASMT) gene encodes the enzyme that catalyzes the conversion of N-acetylserotonin to melatonin as the last step in melatonin biosynthesis. The first plant ASMT gene to be cloned was from rice. An orthologous gene encoding a protein with ASMT activity and only 39.7% amino acid sequence identity to the rice ASMT protein was recently isolated from apple (Malus zumi). The low homology of the apple ASMT sequence prompted us to screen the Arabidopsis genome for a homologous ASMT gene. The At4g35160 gene exhibited the highest sequence identity (31%) to the rice ASMT gene, followed by the At1g76790 gene with 29% sequence identity. We purified recombinant proteins expressed from the two Arabidopsis genes. The At4g35160 recombinant protein exhibited ASMT enzyme activity, but the At1g76790 recombinant protein did not; thus, we designated At4g35160 as an Arabidopsis thaliana ASMT (AtASMT) gene. The AtASMT protein catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine with Vmax values of 0.11 and 0.29 pkat/mg protein, respectively. However, AtASMT exhibited no caffeic acid O-methyltransferase activity, suggesting that its function was highly specific to melatonin synthesis. AtASMT transcripts were induced by cadmium treatment in Arabidopsis followed by increased melatonin synthesis. Similar to other ASMT proteins, AtASMT was localized in the cytoplasm and its ectopic overexpression in rice resulted in increased ASMT enzyme activity and melatonin production, indicating the involvement of AtASMT in melatonin synthesis. PMID:26484897

  14. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  15. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  16. Betaine Homocysteine Methyltransferase Is Active in the Mouse Blastocyst and Promotes Inner Cell Mass Development*

    PubMed Central

    Lee, Martin B.; Kooistra, Megan; Zhang, Baohua; Slow, Sandy; Fortier, Amanda L.; Garrow, Timothy A.; Lever, Michael; Trasler, Jacquetta M.; Baltz, Jay M.

    2012-01-01

    Methyltransferases are an important group of enzymes with diverse roles that include epigenetic gene regulation. The universal donor of methyl groups for methyltransferases is S-adenosylmethionine (AdoMet), which in most cells is synthesized using methyl groups carried by a derivative of folic acid. Another mechanism for AdoMet synthesis uses betaine as the methyl donor via the enzyme betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5), but it has been considered to be significant only in liver. Here, we show that mouse preimplantation embryos contain endogenous betaine; Bhmt mRNA is first expressed at the morula stage; BHMT is abundant at the blastocyst stage but not other preimplantation stages, and BHMT activity is similarly detectable in blastocyst homogenates but not those of two-cell or morula stage embryos. Knockdown of BHMT protein levels and reduction of enzyme activity using Bhmt-specific antisense morpholinos or a selective BHMT inhibitor resulted in decreased development of embryos to the blastocyst stage in vitro and a reduction in inner cell mass cell number in blastocysts. The detrimental effects of BHMT knockdown were fully rescued by the immediate methyl-carrying product of BHMT, methionine. A physiological role for betaine and BHMT in blastocyst viability was further indicated by increased fetal resorption following embryo transfer of BHMT knockdown blastocysts versus control. Thus, mouse blastocysts are unusual in being able to generate AdoMet not only by the ubiquitous folate-dependent mechanism but also from betaine metabolized by BHMT, likely a significant pool of methyl groups in blastocysts. PMID:22847001

  17. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  18. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  19. Two new severe mutations causing guanidinoacetate methyltransferase deficiency.

    PubMed

    Carducci, C; Leuzzi, V; Carducci, C; Prudente, S; Mercuri, L; Antonozzi, I

    2000-12-01

    Primary disorders of creatine metabolism have been only recently described. We report new molecular and biochemical findings obtained from a child affected by guanidinoacetate methyltransferase deficiency. This patient presented with neurological regression, epilepsy, and a movement disorder during the first year of life. HPLC analysis showed high concentrations of guanidinoacetic acid in urine, plasma, and CSF. Molecular analyses of cDNA and genomic DNA revealed two novel mutations, a G insertion following nucleotide 491 of the cDNA (c.491insG) in exon 5 and a transversion at nt -3 in intron 5 (IVS5-3C>G). The c.491insG mutation causes a frameshift and a premature stop codon at the end of the exon. The IVS5-3C>G mutation prevents the splicing of the last exon of the gene precluding the complete maturation of the transcript and, most likely, causes rapid degradation of the mRNA. PMID:11136556

  20. Engineering Monolignol 4-O-Methyltransferases to Modulate Lignin Biosynthesis

    SciTech Connect

    Bhuiya, M.W.; Liu, C.

    2010-01-01

    Lignin is a complex polymer derived from the oxidative coupling of three classical monolignols. Lignin precursors are methylated exclusively at the meta-positions (i.e. 3/5-OH) of their phenyl rings by native O-methyltransferases, and are precluded from substitution of the para-hydroxyl (4-OH) position. Ostensibly, the para-hydroxyls of phenolics are critically important for oxidative coupling of phenoxy radicals to form polymers. Therefore, creating a 4-O-methyltransferase to substitute the para-hydroxyl of monolignols might well interfere with the synthesis of lignin. The phylogeny of plant phenolic O-methyltransferases points to the existence of a batch of evolutionarily 'plastic' amino acid residues. Following one amino acid at a time path of directed evolution, and using the strategy of structure-based iterative site-saturation mutagenesis, we created a novel monolignol 4-O-methyltransferase from the enzyme responsible for methylating phenylpropenes. We show that two plastic residues in the active site of the parental enzyme are vital in dominating substrate discrimination. Mutations at either one of these separate the evolutionarily tightly linked properties of substrate specificity and regioselective methylation of native O-methyltransferase, thereby conferring the ability for para-methylation of the lignin monomeric precursors, primarily monolignols. Beneficial mutations at both sites have an additive effect. By further optimizing enzyme activity, we generated a triple mutant variant that may structurally constitute a novel phenolic substrate binding pocket, leading to its high binding affinity and catalytic efficiency on monolignols. The 4-O-methoxylation of monolignol efficiently impairs oxidative radical coupling in vitro, highlighting the potential for applying this novel enzyme in managing lignin polymerization in planta.

  1. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  2. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

    PubMed Central

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  3. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  4. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase

    PubMed Central

    Ping, Xiao-Li; Sun, Bao-Fa; Wang, Lu; Xiao, Wen; Yang, Xin; Wang, Wen-Jia; Adhikari, Samir; Shi, Yue; Lv, Ying; Chen, Yu-Sheng; Zhao, Xu; Li, Ang; Yang, Ying; Dahal, Ujwal; Lou, Xiao-Min; Liu, Xi; Huang, Jun; Yuan, Wei-Ping; Zhu, Xiao-Fan; Cheng, Tao; Zhao, Yong-Liang; Wang, Xinquan; Danielsen, Jannie M Rendtlew; Liu, Feng; Yang, Yun-Gui

    2014-01-01

    The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism. PMID:24407421

  5. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.

    PubMed

    Ping, Xiao-Li; Sun, Bao-Fa; Wang, Lu; Xiao, Wen; Yang, Xin; Wang, Wen-Jia; Adhikari, Samir; Shi, Yue; Lv, Ying; Chen, Yu-Sheng; Zhao, Xu; Li, Ang; Yang, Ying; Dahal, Ujwal; Lou, Xiao-Min; Liu, Xi; Huang, Jun; Yuan, Wei-Ping; Zhu, Xiao-Fan; Cheng, Tao; Zhao, Yong-Liang; Wang, Xinquan; Rendtlew Danielsen, Jannie M; Liu, Feng; Yang, Yun-Gui

    2014-02-01

    The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism. PMID:24407421

  6. Perinatal Risk Factors Interacting with Catechol O-Methyltransferase and the Serotonin Transporter Gene Predict ASD Symptoms in Children with ADHD

    ERIC Educational Resources Information Center

    Nijmeijer, Judith S.; Hartman, Catharina A.; Rommelse, Nanda N. J.; Altink, Marieke E.; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Ruud B.; Ormel, Johan; Sergeant, Joseph A.; Verhulst, Frank C.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2010-01-01

    Background: Symptoms of autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Given the previously found familiality of ASD symptoms in children with ADHD, addressing these symptoms may be useful for genetic association studies, especially for candidate gene findings that have not been consistently…

  7. Cloning and characterization of a novel O-methyltransferase from Flammulina velutipes that catalyzes methylation of pyrocatechol and pyrogallol structures in polyphenols.

    PubMed

    Kirita, Masanobu; Tanaka, Yoshihisa; Tagashira, Motoyuki; Kanda, Tomomasa; Maeda-Yamamoto, Mari

    2015-01-01

    A novel O-methyltransferase gene was isolated from Flammulina velutipes. The isolated full-length cDNA was composed of a 690-nucleotide open reading frame encoding 230 amino acids. A database search revealed that the deduced amino acid sequence was similar to those of other O-methyltransferases; the highest identity was only 61.8% with Laccaria bicolor. The recombinant enzyme was expressed by Escherichia coli. BL21 (DE3) was assessed for its ability to methylate (-)-epigallocatechin-3-O-gallate (EGCG). LC-TOF-MS and NMR revealed that the enzyme produced five kinds of O-methylated EGCGs: (-)-epigallocatechin-3-O-(3-O-methyl)gallate, (-)-epigallocatechin-3-O-(4-O-methyl)gallate, (-)-epigallocatechin-3-O-(3,4-O-dimethyl)gallate, (-)-epigallocatechin-3-O-(3,5-O-dimethyl)gallate, and (-)-4'-O-methylepigallocatechin-3-O-(3,5-O-dimethyl)gallate. The substrate specificity of the enzyme for 20 kinds of polyphenols was assessed using the crude recombinant enzyme of O-methyltransferase. This enzyme introduced methyl group(s) into polyphenols with pyrocatechol and pyrogallol structures. PMID:25754602

  8. Identification of white campion (Silene latifolia) guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction

    PubMed Central

    2012-01-01

    Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia. PMID:22937972

  9. Abscisic acid represses the transcription of chloroplast genes*

    PubMed Central

    Yamburenko, Maria V.; Zubo, Yan O.; Börner, Thomas

    2013-01-01

    Numerous studies have shown effects of abscisic acid (ABA) on nuclear genes encoding chloroplast-localized proteins. ABA effects on the transcription of chloroplast genes, however, have not been investigated yet thoroughly. This work, therefore, studied the effects of ABA (75 μM) on transcription and steady-state levels of transcripts in chloroplasts of basal and apical segments of primary leaves of barley (Hordeum vulgare L.). Basal segments consist of young cells with developing chloroplasts, while apical segments contain the oldest cells with mature chloroplasts. Exogenous ABA reduced the chlorophyll content and caused changes of the endogenous concentrations not only of ABA but also of cytokinins to different extents in the basal and apical segments. It repressed transcription by the chloroplast phage-type and bacteria-type RNA polymerases and lowered transcript levels of most investigated chloroplast genes drastically. ABA did not repress the transcription of psbD and a few other genes and even increased psbD mRNA levels under certain conditions. The ABA effects on chloroplast transcription were more pronounced in basal vs. apical leaf segments and enhanced by light. Simultaneous application of cytokinin (22 μM 6-benzyladenine) minimized the ABA effects on chloroplast gene expression. These data demonstrate that ABA affects the expression of chloroplast genes differentially and points to a role of ABA in the regulation and coordination of the activities of nuclear and chloroplast genes coding for proteins with functions in photosynthesis. PMID:24078671

  10. Gene therapy for aromatic L-amino acid decarboxylase deficiency.

    PubMed

    Hwu, Wuh-Liang; Muramatsu, Shin-ichi; Tseng, Sheng-Hong; Tzen, Kai-Yuan; Lee, Ni-Chung; Chien, Yin-Hsiu; Snyder, Richard O; Byrne, Barry J; Tai, Chun-Hwei; Wu, Ruey-Meei

    2012-05-16

    Aromatic L-amino acid decarboxylase (AADC) is required for the synthesis of the neurotransmitters dopamine and serotonin. Children with defects in the AADC gene show compromised development, particularly in motor function. Drug therapy has only marginal effects on some of the symptoms and does not change early childhood mortality. Here, we performed adeno-associated viral vector-mediated gene transfer of the human AADC gene bilaterally into the putamen of four patients 4 to 6 years of age. All of the patients showed improvements in motor performance: One patient was able to stand 16 months after gene transfer, and the other three patients achieved supported sitting 6 to 15 months after gene transfer. Choreic dyskinesia was observed in all patients, but this resolved after several months. Positron emission tomography revealed increased uptake by the putamen of 6-[(18)F]fluorodopa, a tracer for AADC. Cerebrospinal fluid analysis showed increased dopamine and serotonin levels after gene transfer. Thus, gene therapy targeting primary AADC deficiency is well tolerated and leads to improved motor function. PMID:22593174

  11. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    PubMed Central

    Atkinson, Gemma C.; Hansen, Lykke H.; Tenson, Tanel; Rasmussen, Anette; Kirpekar, Finn

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the RlmN methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr- and RlmN-like sequences. The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed. PMID:23752511

  12. SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4'-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A.

    PubMed

    Huang, Ke-xue; Zahn, James; Han, Lei

    2008-12-01

    Deoxysugar, 2', 3', 4'-tri-O-methylrhamnose is an essential structural component of spinosyn A and D, which are the active ingredients of the commercial insect control agent, Spinosad. The spnH gene, which was previously assigned as a rhamnose O-methyltransferase based on gene sequence homology, was cloned from the wild-type Saccharopolyspora spinosa and from a spinosyn K-producing mutant that was defective in the 4'-O-methylation of 2', 3'-tri-O-methylrhamnose. DNA sequencing confirmed a mutation resulting in an amino acid substitution of G-165 to A-165 in the rhamnosyl 4'-O-methyltransferase of the mutant strain, and the subsequent sequence analysis showed that the mutation occurred in a highly conserved region of the translated amino acid sequence. Both spnH and the gene defective in 4'-O-methylation activity (spnH165A) were expressed heterologously in E. coli and were then purified to homogeneity using a His-tag affinity column. Substrate bioconversion studies showed that the enzyme encoded by spnH, but not spnH165A, could utilize spinosyn K as a substrate. When the wild-type spnH gene was transformed into the spinosyn K-producing mutant, spinosyn A production was restored. These results establish that the enzyme encoded by the spnH gene in wild-type S. spinosa is a rhamnosyl 4'-O-methyltransferase that is responsible for the final rhamnosyl methylation step in the biosynthesis of spinosyn A. PMID:18704529

  13. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid soybeans were produced by combining a mutant FAD2-1A and a mutant FAD2-1B gene. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6%. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high ...

  14. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase.

    PubMed

    Owings, Joshua P; Kuiper, Emily G; Prezioso, Samantha M; Meisner, Jeffrey; Varga, John J; Zelinskaya, Natalia; Dammer, Eric B; Duong, Duc M; Seyfried, Nicholas T; Albertí, Sebastián; Conn, Graeme L; Goldberg, Joanna B

    2016-02-12

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  15. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    SciTech Connect

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-07-11

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.

  16. Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

    PubMed Central

    2015-01-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  17. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.

    PubMed

    Chen, Jian; Sun, Guo-Xin; Wang, Xiao-Xue; Lorenzo, Víctor de; Rosen, Barry P; Zhu, Yong-Guan

    2014-09-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  18. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  19. Studies on the function and catalytic mechanism of O-methyltransferases SviOMT02, SviOMT03 and SviOMT06 from Streptomyces virginiae IBL14.

    PubMed

    Zhang, Yan; Han, Mao-Zhen; Zhu, Shu-Liang; Li, Man; Dong, Xiang; Luo, Xue-Cai; Kong, Zhe; Lu, Yun-Xia; Wang, Shu-Yan; Tong, Wang-Yu

    2015-06-01

    To identify the fuctions of the nine putative O-methyltransferase genes in Streptomyces virginiae IBL14, the evolutionary and functional relationship of these genes in its 8.0 Mb linear chromosome was set up via sequence comparison with those of other Streptomyces species. Further, the functions and catalytic mechanism of the three genes sviOMT02, sviOMT03 and sviOMT06 from this strain were studied through experimental and computational approaches. As a result, the nine putative O-methyltransferases belong to methyltransf_2 superfamily, amdomet-MTases superfamily, and leucine carboxyl methyltransferase superfamily, and are phylogenetically close to those of Streptomyces sp. C. The products of genes sviOMT03 and sviOMT06 could catalyze O-methylation of caffeic acid to form ferulic acid. Computational analysis indicated that the O-methylation mechanism of SviOMT03 and SviOMT06 proceeds from a direct transfer of the SAM-methyl group to caffeic acid with inversion of symmetry aided by a divalent metal ion in a SN2-like mechanism. Particularly, the conservative polar amino acid residues in SviOMT03 and SviOMT06, including Lys143 that reacts with caffeic acid, Ser74, Asp140 and Tyr149 that react with S-adenosyl methionine, and His142 (SviOMT03) or His171 (SviOMT06) that transfers the 3-hydroxyl proton of substrate caffeic acid, probably be essential in their O-methylation. PMID:26002507

  20. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  1. Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic acid.

    PubMed

    Hu, Wenyue; Jones, Paul D; Decoen, Wim; Newsted, John L; Giesy, John P

    2005-01-01

    Genome-wide expression techniques are being increasingly used to assess the effects of environmental contaminants. Oligonucleotide or cDNA microarray methods make possible the screening of large numbers of known sequences for a given model species, while differential display analysis makes possible analysis of the expression of all the genes from any species. We report a comparison of two currently popular methods for genome-wide expression analysis in rat hepatoma cells treated with perfluorooctane sulfonic acid. The two analyses provided 'complimentary' information. Approximately 5% of the 8000 genes analyzed by the GeneChip array, were altered by a factor of three or greater. Differential display results were more difficult to interpret, since multiple gene products were present in most gel bands so a probabilistic approach was used to determine which pathways were affected. The mechanistic interpretation derived from these two methods was in agreement, both showing similar alterations in a specific set of genes. PMID:21783471

  2. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export.

    PubMed Central

    Sapperstein, S; Berkower, C; Michaelis, S

    1994-01-01

    Eukaryotic proteins initially synthesized with a C-terminal CAAX motif (C is Cys, A is aliphatic, and X can be one of several amino acids) undergo a series of modifications involving isoprenylation of the Cys residue, proteolysis of AAX, and alpha-carboxyl methyl esterification of the newly formed isoprenyl cysteine. We have previously demonstrated that STE14 encodes the enzyme which mediates carboxyl methylation of the Saccharomyces cerevisiae CAAX proteins a-factor, RAS1, and RAS2. Here we report the nucleotide sequence of STE14, which indicates that STE14 encodes a protein of 239 amino acids, predicted to contain multiple membrane-spanning segments. Mapping data indicate that STE14 resides on chromosome IV, tightly linked to ADE8. By analysis of ste14 null alleles, we demonstrated that MATa ste14 mutants are unable to mate but are viable and exhibit no apparent growth defects. Additional analysis of ste14 ras 1 and ste14 ras2 double mutants, which grow normally, reinforces our previous conclusion that RAS function is not significantly influenced by its methylation status. We examine a-factor biogenesis in a ste14 null mutant by metabolic labeling and immunoprecipitation and demonstrate that although proteolytic processing and membrane localization of a-factor are normal, the ste14 null mutant exhibits a profound block in a-factor export. This observation suggests that the methyl group is likely to be a critical recognition determinant for the a-factor transporter, STE6, thus providing insight into the substrate specificity of STE6 and also supporting the hypothesis that carboxyl methylation can have a dramatic impact on protein-protein interactions. Images PMID:8289819

  3. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.

    PubMed Central

    Bourgis, F; Roje, S; Nuccio, M L; Fisher, D B; Tarczynski, M C; Li, C; Herschbach, C; Rennenberg, H; Pimenta, M J; Shen, T L; Gage, D A; Hanson, A D

    1999-01-01

    All flowering plants produce S-methylmethionine (SMM) from Met and have a separate mechanism to convert SMM back to Met. The functions of SMM and the reasons for its interconversion with Met are not known. In this study, by using the aphid stylet collection method together with mass spectral and radiolabeling analyses, we established that l-SMM is a major constituent of the phloem sap moving to wheat ears. The SMM level in the phloem ( approximately 2% of free amino acids) was 1.5-fold that of glutathione, indicating that SMM could contribute approximately half the sulfur needed for grain protein synthesis. Similarly, l-SMM was a prominently labeled product in phloem exudates obtained by EDTA treatment of detached leaves from plants of the Poaceae, Fabaceae, Asteraceae, Brassicaceae, and Cucurbitaceae that were given l-(35)S-Met. cDNA clones for the enzyme that catalyzes SMM synthesis (S-adenosylMet:Met S-methyltransferase; EC 2.1.1.12) were isolated from Wollastonia biflora, maize, and Arabidopsis. The deduced amino acid sequences revealed the expected methyltransferase domain ( approximately 300 residues at the N terminus), plus an 800-residue C-terminal region sharing significant similarity with aminotransferases and other pyridoxal 5'-phosphate-dependent enzymes. These results indicate that SMM has a previously unrecognized but often major role in sulfur transport in flowering plants and that evolution of SMM synthesis in this group involved a gene fusion event. The resulting bipartite enzyme is unlike any other known methyltransferase. PMID:10449582

  4. Nucleic Acid Modifications in Regulation of Gene Expression.

    PubMed

    Chen, Kai; Zhao, Boxuan Simen; He, Chuan

    2016-01-21

    Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (Ψ), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones. PMID:26933737

  5. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  6. Daphnetin methylation by a novel O-methyltransferase is associated with cold acclimation and photosystem II excitation pressure in rye.

    PubMed

    NDong, Christian; Anzellotti, Dominique; Ibrahim, Ragai K; Huner, Norman P A; Sarhan, Fathey

    2003-02-28

    In plants, O-methylation of phenolic compounds plays an important role in such processes as lignin synthesis, flower pigmentation, chemical defense, and signaling. However, apart from phenylpropanoids and flavonoids, very few enzymes involved in coumarin biosynthesis have been identified. We report here the molecular and biochemical characterization of a gene encoding a novel O-methyltransferase that catalyzes the methylation of 7,8-dihydroxycoumarin, daphnetin. The recombinant protein displayed an exclusive methylation of position 8 of daphnetin. The identity of the methylated product was unambiguously identified as 7-hydroxy-8-methoxycoumarin by co-chromatography on cellulose TLC and coelution from high performance liquid chromatography, with authentic synthetic samples, as well as by UV, mass spectroscopy, (1)H NMR spectral analysis, and NOE correlation signals of the relevant protons. Northern blot analysis and enzyme activity assays revealed that the transcript and corresponding enzyme activity are up-regulated by both low temperature and photosystem II excitation pressure. Using various phenylpropanoid and flavonoid substrates, we demonstrate that cold acclimation of rye leaves increases O-methyltransferase activity not only for daphnetin but also for the lignin precursors, caffeic acid, and 5-hydroxyferulic acid. The significance of this novel enzyme and daphnetin O-methylation is discussed in relation to its putative role in modulating cold acclimation and photosystem II excitation pressure. PMID:12480941

  7. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia

    PubMed Central

    Du, Hui; Wu, Jie; Ji, Kui-Xian; Zeng, Qing-Yin; Bhuiya, Mohammad-Wadud; Su, Shang; Shu, Qing-Yan; Ren, Hong-Xu; Liu, Zheng-An; Wang, Liang-Sheng

    2015-01-01

    Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp. PMID:26208646

  8. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia.

    PubMed

    Du, Hui; Wu, Jie; Ji, Kui-Xian; Zeng, Qing-Yin; Bhuiya, Mohammad-Wadud; Su, Shang; Shu, Qing-Yan; Ren, Hong-Xu; Liu, Zheng-An; Wang, Liang-Sheng

    2015-11-01

    Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp. PMID:26208646

  9. Associations between a fatty acid desaturase gene polymorphism and blood arachidonic acid compositions in Japanese elderly.

    PubMed

    Horiguchi, Sayaka; Nakayama, Kazuhiro; Iwamoto, Sadahiko; Ishijima, Akiko; Minezaki, Takayuki; Baba, Mamiko; Kontai, Yoshiko; Horikawa, Chika; Kawashima, Hiroshi; Shibata, Hiroshi; Kagawa, Yasuo; Kawabata, Terue

    2016-02-01

    We investigated whether the single nucleotide polymorphism rs174547 (T/C) of the fatty acid desaturase-1 gene, FADS1, is associated with changes in erythrocyte membrane and plasma phospholipid (PL) long-chain polyunsaturated fatty acid (LCPUFA) composition in elderly Japanese participants (n=124; 65 years or older; self-feeding and oral intake). The rs174547 C-allele carriers had significantly lower arachidonic acid (ARA; n-6 PUFA) and higher linoleic acid (LA, n-6 PUFA precursor) levels in erythrocyte membrane and plasma PL (15% and 6% ARA reduction, respectively, per C-allele), suggesting a low LA to ARA conversion rate in erythrocyte membrane and plasma PL of C-allele carriers. α-linolenic acid (n-3 PUFA precursor) levels were higher in the plasma PL of C-allele carriers, whereas levels of the n-3 LCPUFAs eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were unchanged in erythrocyte membrane and plasma PL. Thus, rs174547 genotypes were significantly associated with different ARA compositions of the blood of elderly Japanese. PMID:26869086

  10. Cationic liposome–nucleic acid complexes for gene delivery and gene silencing

    PubMed Central

    Ewert, Kai K.; Majzoub, Ramsey N.; Leal, Cecília

    2014-01-01

    Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL–nucleic acid complexes and the nature of their interactions with cell membranes as well as events leading to release of active nucleic acids within the cytoplasm. Synchrotron x-ray scattering has revealed that CL–nucleic acid complexes spontaneously assemble into distinct liquid crystalline phases including the lamellar, inverse hexagonal, hexagonal, and gyroid cubic phases, and fluorescence microscopy has revealed CL–DNA pathways and interactions with cells. The combining of custom synthesis with characterization techniques and gene expression and silencing assays has begun to unveil structure–function relations in vitro. As a recent example, this review will briefly describe experiments with surface-functionalized PEGylated CL–DNA nanoparticles. The functionalization, which is achieved through custom synthesis, is intended to address and overcome cell targeting and endosomal escape barriers to nucleic acid delivery faced by PEGylated nanoparticles designed for in vivo applications. PMID:25587216