Science.gov

Sample records for acid microsphere radioembolisation

  1. Protocell-like Microspheres from Thermal Polyaspartic Acid

    NASA Astrophysics Data System (ADS)

    Bahn, Peter R.; Pappelis, Aristotel; Bozzola, John

    2006-12-01

    One of the most prominent amino acids to appear in monomer-generating origin-of-life experiments is aspartic acid. Hugo Schiff found in 1897 that aspartic acid polymerizes when heated to form polyaspartylimide which hydrolyzes in basic aqueous solution to form thermal polyaspartic acid which is a branched polypeptide. We recently reported at the ISSOL 2005 Conference that commercially made thermal polyaspartic acid forms microspheres when heated in boiling water and allowed to cool. In a new experiment we heated aspartic acid at 180°C for up to 100 h to form thermal polyaspartylimide which when heated in boiling water without addition of base hydrolyzed to form thermal polyaspartic acid which upon cooling formed microspheres. Thermal polyaspartic acid microspheres appear protocell-like in the sense of being prebiotically plausible lattices or containers that could eventually have been filled with just the right additions of primordial proteins, nucleic acids, lipids, and metabolites so as to constitute protocells capable of undergoing further chemical and biological evolution. Thermal polyaspartic acid microspheres are extremely simple models of protocells that are more amenable to precise quantitative experimental investigation than the proteinoid microspheres of Sidney W. Fox. We present here scanning electron microscope images of such thermal polyaspartic acid microspheres. Figure 1 shows thermal polyaspartic acid microspheres from l-aspartic acid heated at 180°C for 50 h, at a magnification of 3,500×. Figure 2 shows thermal polyaspartic acid microspheres from the same sample at a magnification of 7,000×. The thermal polyaspartic acid microspheres have a diameter of approximately 1 μm These images were viewed with a Hitachi S2460N scanning electron microscope at 20 kV acceleration voltage. [Figure not available: see fulltext.][Figure not available: see fulltext.

  2. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  3. Aldocyanoin microspheres: partial amino acid analysis of the microparticulates formed from simple reactants under various conditions.

    PubMed

    Pollock, G E; Heiderer, R

    1979-10-01

    The work of Kenyon and Nissenbaum on aldocyanoin microspheres was repeated and extended. It was determined that the microspheres contained amino acids and that specific amino acids could be incorporated into the microspheres by adding the requisite aldehyde or ketone precursor to the model mixture. Microsphere formation was found to be dependent on the availability of oxygen. Under anaerobic conditions of synthesis, no microspheres formed in the time allotted and the amino acid composition of the macromolecular material was simple. Microparticulate material synthesized by C. Folsome using a quenched spark technique was analyzed and found to contain amino acids that had a qualitative composition similar to both a Miller-Urey discharge and the Kenyon-Nissenbaum microspheres. PMID:501747

  4. Production and characterization of 166Ho polylactic acid microspheres.

    PubMed

    Yavari, Kamal; Yeganeh, Ehsan; Abolghasemi, Hossein

    2016-01-01

    Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization. PMID:26691104

  5. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  6. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  7. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sharma, Aditya; Sumana, Gajjala; Tiwari, Ida; Malhotra, Bansi Dhar

    2013-04-01

    Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (ks) of 61.73 s-1. Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10-14 M and is found to retain about 81% of the initial activity after 9 cycles of use.Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the

  8. Release of FITC-BSA from poly(l-lactic acid) microspheres analysis using flow cytometry.

    PubMed

    Kuo, Chih-Feng; Tsao, Nina; Chou, Hsin-Hao; Liu, Yi-Ling; Hsieh, Wen-Chuan

    2012-01-01

    In this investigation, biodegradable polymer poly(L-lactic acid) (PLA) microspheres were prepared by the W(1)/O/W(2) solvent evaporation method. The inner phase was aqueous solution (W(1)) that contained bovine serum albumin that was labeled with fluorescein isothiocyanate (FITC-BSA). PLA was dissolved in chloroform with emulsifier sorbitan monooleate (span 80) as the dispersed phase (O). These two solutions (W(1)/O) were emulsified by a homogenizer to form a primary emulsion. Polyvinyl alcohol (PVA) used as surfactant, was applied in the formation of microspheres (W(2)). 0.5% (w/v) PLA was stirred at 3000 rpm using a homogenizer. Microspheres with sizes of up to around 10 μm were produced. These microspheres were separated by the glycerol gradient method, and take microspheres at part of 25% glycerol gradient concentration was analyzed by flow cytometry, indicating a more homogeneous particle size distribution than that not separated. The microspheres were degraded using several enzymes, and around 40% was degraded by 72 h. This result reveals the effectiveness of drug delivery by PLA microspheres, which was evaluated by performing a drug release test and flow cytometric analysis. The FITC-BSA concentration in the supernatant increased with the experimental time. At the phagocytosis experiments, encapsulated with FITC-BSA drug of microspheres can be used by the cell, as particle size approximately 1 μm. PMID:21992796

  9. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. PMID:26954089

  10. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  11. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  12. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits

    PubMed Central

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery. PMID:25028546

  13. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres.

    PubMed

    Xu, Qingguo; Crossley, Alison; Czernuszka, Jan

    2009-07-01

    Negatively charged poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulated with hydrophilic drugs have been successfully prepared by a solid-in-oil-in-water (s/o/w) solvent evaporation method in the presence of anionic surfactants, sodium dodecyl sulfate (SDS), and dioctyl sodium sulfosuccinate (DSS), and nonionic surfactant polyvinyl alcohol (PVA). The effects of microencapsulation methods, surfactants types, and surfactant concentrations on the properties of microspheres were studied. Amoxicillin (AMX) was chosen as a hydrophilic model drug, and its encapsulation efficiency (EE) and in vitro release profiles were measured. The s/o/w method achieved higher EE of 40% in PLGA microspheres using surfactant SDS compared with the conventional water-in-oil-in-water (w/o/w) method (about 2%). Triphasic release profiles were observed for all PLGA microspheres (s/o/w) with slight drug burst, a slow diffusion-controlled release within the period of about 7 days and followed by the degradation-controlled sustained release for further 30 days. Smaller particle size and surface charge were achieved for s/o/w method than w/o/w method using the same anionic surfactants, and smooth surface and less porous interior matrix. The s/o/w method effectively encapsulated AMX into anionic PLGA microspheres using anionic surfactants, and these negatively charged PLGA microspheres represented an attractive approach for the controlled release of hydrophilic drugs. PMID:19009589

  14. Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures.

    PubMed

    Xia, Huiyun; Zhang, Ying; Peng, Junxia; Fang, Yu; Gu, Zhongze

    2006-01-01

    Acrylamide (AM) and methacrylic acid (MAA) copolymer microgels were prepared by a reverse suspension polymerization technique. The microgels were used as templates for the preparation of silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres. The surface structures of the microspheres prepared in this way are characterized by zigzag-like structures. It was found that the composition of the microgels, the nature and dosage of surfactants, the quantity of the metal, and even the reduction methods employed have a significant effect upon the surface structures of the microspheres. X-ray diffraction analysis confirmed that Ag formed during the process is in a crystal state of a face-centered cubic structure. PMID:24058232

  15. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres

    PubMed Central

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D

    2015-01-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  16. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

    PubMed

    Laus, Rogério; Geremias, Reginaldo; Vasconcelos, Helder L; Laranjeira, Mauro C M; Fávere, Valfredo T

    2007-10-22

    Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated. PMID:17499431

  17. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  18. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  19. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  20. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  1. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  2. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation.

    PubMed

    Chatterjee, Niladri Sekhar; Anandan, Rangasamy; Navitha, Mary; Asha, K K; Kumar, K Ashok; Mathew, Suseela; Ravishankar, C N

    2016-01-01

    Therapeutic potential of water soluble vitamins has been known for long and in recent times they are being widely supplemented in processed food. Phenolic acid-grafted chitosan derivatives can serve as excellent biofunctional encapsulating materials for these vitamins. As a proof of concept, thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres were developed. Ferulic acid was successfully grafted on chitosan by a free radical mediated reaction and the structure was confirmed by FTIR and NMR analysis. When compared to FTIR spectra of chitosan, intensity of amide I (at around 1644 cm(-1)) and amide II (at around 1549 cm(-1)) bands in spectra of ferulic acid-grafted chitosan were found increased, indicating formation of new amide linkage. Strong signals at δ = 6.3-7.9 ppm corresponding to methine protons of ferulic acid were observed in NMR spectra of ferulic acid-grafted chitosan, suggesting the successful grafting of ferulic acid onto chitosan. Grafting ratio of the derivative was 263 mg ferulic acid equivalent/g polymer. Positively charged particles (zeta potential 31 mv) of mean diameter 4.5 and 4.8 μ, corresponding to number distribution and area distribution respectively were observed. Compact microspheres with smooth surfaces and no apparent cracks or pores were observed under scanning electron microscope. Efficient microencapsulation was further proved by X-ray diffraction patterns and thermal analysis. Preliminary anti-inflammatory activity of the vitamin-loaded microspheres was demonstrated. PMID:26787974

  3. Poly(D,L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin.

    PubMed

    Ertl, B; Platzer, P; Wirth, M; Gabor, F

    1999-09-20

    Camptothecin (CPT) and its water-insoluble derivatives are known as topoisomerase-I inhibitors exhibiting high antitumoral activity against a wide spectrum of human malignancies. Until now clinical application of CPT is restricted by insolubility and instability of the drug in its active lactone form resulting in less antitumor potency and poor bioavailability. For these reasons CPT-loaded-microspheres were prepared by the solvent evaporation method using the H-series of poly(D,L-lactide-co-glycolide) (H-PLGA), which contain more carboxylic acid end chains and hydrate faster than the non-H-series. At 1.2% CPT-payload the drug was molecular dispersed throughout the matrix whereas at higher CPT-payload the amount of crystalline CPT-islets increased with the CPT content. The release pattern of CPT was biphasic comprising a first burst effect delivering 20-35% of the payload and increasing with drug-loading. This phase was followed by sustained delivery of CPT releasing 40-75% of the payload within 160 h. In comparison to PLGA-microspheres, the CPT-release rate from H-PLGA was twofold higher and accelerated. The active CPT-lactone was maintained during preparation, storage and release due to hindered diffusion of acidic oligomers among other mechanisms. Thus stabilization and sustained release of CPT from PLGA-microspheres might reduce local toxicity combined with prolonged efficacy offering new perspectives in CPT chemotherapy. PMID:10477803

  4. Tunable delivery of niflumic acid from resorbable embolization microspheres for uterine fibroid embolization.

    PubMed

    Bédouet, Laurent; Moine, Laurence; Servais, Emeline; Beilvert, Anne; Labarre, Denis; Laurent, Alexandre

    2016-09-10

    Uterine arteries embolization (UAE) is a recent technique that aims, by means of particles injected percutaneously, to stifle fibroids (leiomyomas). This treatment is non-invasive, compared with uterine ablation, but generates pelvic pain for a few days. A strategy to reduce the post-embolization pain would be to use calibrated embolization microspheres preloaded with a non-steroidal inflammatory drug (NSAID). In this study, we first compared four drugs, all active at low concentration on cyclooxygenase-2, i.e. ketoprofen, sodium diclofenac, flurbiprofen and niflumic acid (NFA), for their capacity to be loaded on resorbable embolization microspheres (REM) 500-700μm. NFA had the highest capacity of loading (5mg/mL) on resorbable microspheres. Then, we evaluated in vitro the NFA release profiles from REM having various degradation times of one, two or five days. NFA release was biphasic, with an initial burst (about 60% of the loading) followed by a sustained release that correlated significantly to REM's hydrolysis (rho=0.761, p<0.0001). For each group of beads, the size distribution was not modified by the loading of NFA and their delivery through microcatheter was not impaired by the drug. NFA eluted from REM inhibited the synthesis of prostaglandin E2 from rabbit uterus explants. In summary, NFA is loadable on REM in significant amount and its delivery can be tuned according to the degradation rate of REM to provide an antalgic effect for a few days after UAE. PMID:27374196

  5. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.

    PubMed

    Pan, Miaorong; Sun, Yangfei; Zheng, Jin; Yang, Wuli

    2013-09-11

    In this work, core-shell-shell-structured boronic acid-functionalized magnetic composite microspheres Fe3O4@SiO2@poly (methyl methacrylate-co-4-vinylphenylbornoic acid) (Fe3O4@SiO2@P(MMA-co-VPBA)) with a uniform size and fine morphology were synthesized. Here, Fe3O4 magnetic particles were prepared by a solvothermal reaction, whereas the Fe3O4@SiO2 microspheres with a core-shell structure were obtained by a sol-gel process. 3-(Trimethoxysilyl) propyl methacrylate (MPS)-modified Fe3O4@SiO2 was used as the seed in the emulsion polymerization of MMA and VPBA to form the core-shell-shell-structured magnetic composite microspheres. As the boronic acid groups on the surface of Fe3O4@SiO2@P(MMA-co-VPBA) could form tight yet reversible covalent bonds with the cis-1,2-diols groups of glycoproteins, the magnetic composite microspheres were applied to enrich a standard glycoprotein, horseradish peroxidase (HRP), and the results demonstrated that the composite microspheres have a higher affinity for the glycoproteins in the presence of the nonglycoprotein bovine serum albumin (BSA) over HRP. Additionally, different monomer mole ratios of MMA/VPBA were studied, and the results implied that using MMA as the major monomer could reduce the amount of VPBA with a similar glycoprotein enrichment efficiency but a lower cost. PMID:23924282

  6. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  7. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. PMID:26642446

  8. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    PubMed

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  9. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  10. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  11. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  12. Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure.

    PubMed

    Yang, Song; Liu, Huarong; Huang, Haofeng; Zhang, Zhicheng

    2009-10-15

    We herein report a novel and facile approach to the fabrication of the superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure via gamma-ray radiation induced inverse emulsion polymerization under room temperature and at ambient pressure. 12-Acryloxy-9-octadecenoic acid (AOA, containing part of sodium salts Na-AOA) as a surfactant can also copolymerize with the styrene. It is interesting that just by changing the added amount of styrene, the magnetic hollow spheres with different wall thickness and various sizes of core, up to the magnetic solid spheres, can be obtained. The final products were thoroughly characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron diffraction (TEM), field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) which showed the formation of magnetite/poly(styrene-co-AOA) nanocomposite microspheres. Magnetic hysteresis loop measurements showed that the magnetic nanocomposite microspheres exhibited superparamagnetism, which should make them have potential applications in biotechnology and biomedicine. Furthermore, we also proposed a possible formation mechanism of these magnetic microspheres with different morphologies. PMID:19640548

  13. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    SciTech Connect

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.; Sim, E.H.; Macklis, R.M. . Joint Center for Radiation Therapy)

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity is completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.

  14. Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug.

    PubMed

    D'Aurizio, E; van Nostrum, C F; van Steenbergen, M J; Sozio, P; Siepmann, F; Siepmann, J; Hennink, W E; Di Stefano, A

    2011-05-16

    L-dopa-α-lipoic acid (LD-LA) is a new multifunctional prodrug for the treatment of Parkinson's disease. In human plasma, LD-LA catechol esters and amide bonds are chemically and enzymatically cleaved, respectively, resulting in a half-life time of about fifty minutes. In the present work, the unstable LD-LA was entrapped into biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres designed as depot systems to protect this prodrug against degradation and to obtain a sustained release of the intact compound. The microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique and the effect of formulation and processing parameters (polymer concentration in the organic solvent, volumes ratio of the phases, rate of the organic solvent evaporation) on microspheres characteristics (size, loading, morphology, release) was investigated. Also emphasis was given on the stability of the drug before and after release as well as on the underlying mass transport mechanisms controlling LD-LA release. Interestingly, when encapsulated in appropriate conditions into PLGA microspheres, the labile prodrug was stabilized and released via Fickian diffusion up to more than one week. PMID:21356295

  15. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    SciTech Connect

    Daghir, Ahmed A.; Gungor, Hatice; Haydar, Ali A.; Wasan, Harpreet S.; Tait, Nicholas P.

    2012-08-15

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y{sup 90}) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y{sup 90} radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 months of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y{sup 90} radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.

  16. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy.

    PubMed

    Lim, Sung Mook; Eom, Ha Na; Jiang, Hai Hua; Sohn, Minji; Lee, Kang Choon

    2015-01-01

    Peptide-based therapies have the potential to induce antibody formation if the molecules differ from a native human peptide. Several reports have disclosed the occurrence of antibody generation in a patient treated with exenatide. The immune response can be problematic from a clinical stand point, particularly if the antibodies neutralize the efficacy of the biotherapeutic agent or cause a general immune reaction. To overcome this limit, PEGylated exendin-4 analogs were designed and examined for metabolic stability and biological activity. To develop an extended release delivery system for exendin-4 for the safe and effective delivery of bioactive exendin-4 without peptide acylation and immunogenicity, PEGylated exendin-4 was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres by w/o/w double emulsion solvent evaporation method. Peptide-loaded microspheres were characterized in terms of morphology, particle diameter, and peptide encapsulation efficiency. Then, the release profile of the peptide from PLGA microspheres and the acylated products from PLGA polymer degradation was determined. The results obtained showed that the stability of exendin-4 was greatly improved by PEGylation. Moreover, eliminated acylation during PLGA polymer degradation in vitro and reduced immunogenicity in vivo were observed. The findings demonstrate that PEGylated exendin-4-loaded microspheres may be a safe and biocompatible system for clinical development. PMID:25407390

  17. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  18. Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates

    NASA Astrophysics Data System (ADS)

    Sorge, Matthew; Bean, Thomas; Woodland, Travis; Canning, John; Cheng, I. Frank; Edwards, Dean B.

    2014-11-01

    Porous, hollow, glass microspheres (PHGMs) can be used to increase porosity in lead acid battery electrodes to improve the battery's power and energy performance at higher discharge rates. As reported in this paper, the PHGM additives did improve electrolyte storage and porosity in the electrodes. However, the nonconductive PHGMs do reduce the critical volume fraction (CVF) of the electrodes as predicted from conductivity models. The increase in electrode performance due to increased porosity may therefore be partially offset by the drop in capacity due to a lower critical volume fraction. Empirical equations are developed that relate the CFV and porosity of an electrode to the amount, size, and porosity of the additives in that electrode. The porosity estimates made from the empirical equations compare favorably with the experimental data from plates fabricated with these additives. The performance of electrodes with additives is estimated from computer models using the electrode's CVF and porosity as provided by the equations. Tests were performed on plates having volume loadings of PHGMs from 11% to 44% of total solids in positive electrodes to determine their effect on active material utilizations. The results from these discharge tests are reported and compared with theoretical models.

  19. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. PMID:23755995

  20. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  1. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  2. Metabolic microspheres

    NASA Astrophysics Data System (ADS)

    Fox, Sidney W.

    1980-08-01

    A systematic review of catalytic activities in thermal proteinoids and microspheres aggregated therefrom yields some new inferences on the origins and evolution of metabolism. Experiments suggest that, instead of being inert, protocells were already biochemically and cytophysically competent. The emergence and refinement of metabolism ab initio is thus partly traced conceptually. When the principle of molecular self-instruction, as of amino acids in peptide synthesis, is taken into account as a concomitant of natural selection, an expanded theory of organismic evolution, including saltations, emerges.

  3. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  4. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction. PMID:19616218

  5. Effect of Dexamethasone-Loaded Poly(Lactic-Co-Glycolic Acid) Microsphere/Poly(Vinyl Alcohol) Hydrogel Composite Coatings on the Basic Characteristics of Implantable Glucose Sensors

    PubMed Central

    Wang, Yan; Vaddiraju, Santhisagar; Qiang, Liangliang; Xu, Xiaoming; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2012-01-01

    Background Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can successfully prevent foreign body response at the implantation site. The objective of this study was to investigate the effect of this composite coating on sensor functionality. Methods The PLGA microsphere/PVA hydrogel coatings were prepared and applied to glucose biosensors. The swelling properties of the composite coatings and their diffusivity to glucose were evaluated as a function of microsphere loading. Sensor linearity, response time, and sensitivity were also evaluated as a function of coating composition. Results The PLGA microsphere/PVA hydrogel composite coating did not compromise sensor linearity (sensors were linear up to 30 mM), which is well beyond the physiological glucose range (2 to 22 mM). The sensor response time did increase in the presence of the coating (from 10 to 19 s); however, this response time was still less than the average reported values. Although the sensitivity of the sensors decreased from 73 to 62 nA/mM glucose when the PLGA microsphere loading in the PVA hydrogel changed from 0 to 100 mg/ml, this reduced sensitivity is acceptable for sensor functionality. The changes in sensor response time and sensitivity were due to changes in glucose permeability as a result of the coatings. The embedded PLGA microspheres reduced the fraction of bulk water present in the hydrogel matrix and consequently reduced glucose diffusion. Conclusions This study demonstrates that the PLGA microsphere/PVA hydrogel composite coatings allow sufficient glucose diffusion and sensor functionality and therefore may be utilized as a smart coating for implantable

  6. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  7. Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics.

    PubMed

    Gabor, F; Ertl, B; Wirth, M; Mallinger, R

    1999-01-01

    The effect of manufacturing parameters on the size and drug-loading of ketoprofen-containing biodegradable and biocompatible poly(DL-lactic-co-glycolic acid) (PLGA) microspheres prepared by the solvent evaporation method was investigated. For both drug-free and drug-loaded microspheres, smaller microspheres with a narrower size distribution were obtained when the stirring rate or the volume of the organic phase was increased. Incorporation of ketoprofen was found to increase with increasing volume of the organic phase and decreasing pH of the aqueous phase, but was independent of the acidity and the inherent viscosity of the PLGA used. The biphasic release profile of ketoprofen from the microspheres was dependent on the type of PLGA as well as the size and drug-loading, two parameters governed by the manufacturing process. The first burst effect was found to increase with the drug content, reduction of size of the microspheres and increasing inherent viscosity of the matrix, whereas acidity of the PLGA had no effect on the release of this acidic drug. A vigorous first burst effect was associated with reduced sustained delivery of ketoprofen, the rate of the delayed release phase being dependent on the inherent viscosity of the matrix, the size, the payload and the pH during preparation of the microspheres. Thus, by selection of the manufacturing parameters and the type of PLGA, it is possible to design a controlled drug delivery system for the prolonged release of ketoprofen, improving therapy by possible reduction of time intervals between peroral administration and reduction of local gastrointestinal side effects. PMID:9972498

  8. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycaprolactone fumarate nerve conduits

    PubMed Central

    Rui, Jing; Dadsetan, Mahrokh; Runge, M. Brett; Spinner, Robert J.; Yaszemski, Michael J.; Windebank, Anthony J.; Wang, Huan

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator. Controlled release of such stimulators may enhance and guide the vascularization process, and when applied in a nerve conduit may play a role in nerve regeneration. We report the fabrication and in vitro characterization of VEGF encapsulating poly-lactic-co-glycolic acid (PLGA) microspheres and the in vivo application of nerve conduits supplemented with VEGF-containing microspheres. PLGA microspheres containing VEGF were prepared by the double emulsion-solvent evaporation technique. This yielded 83.16% of the microspheres with a diameter < 53 µm. VEGF content measured by ELISA indicated 93.79 ±10.64% encapsulation efficiency. Release kinetics were characterized by an initial burst release of 67.6±8.25% within the first 24 hours, followed by consistent release of approximately 0.34% per day for 4 weeks. Bioactivity of the released VEGF was tested by human umbilical vein endothelial cell (HUVEC) proliferation assay. VEGF released at all time points enhanced HUVEC proliferation confirming that VEGF retained its bioactivity through the 4-week time period. When the microsphere delivery system was placed in a biosynthetic nerve scaffold, robust nerve regeneration was observed. This study established a novel system for controlled release of growth factors and enables in vivo studies of nerve conduits conditioned with this system. PMID:22019759

  9. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  10. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  11. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery.

    PubMed

    Lautner, Gergely; Meyerhoff, Mark E; Schwendeman, Steven P

    2016-03-10

    Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission. PMID:26763376

  12. Citric Acid Induced Synthesis of a Series of Morphology-Controllable Ag Microspheres and Their Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Hu, J.; Wang, F.; Li, Y.; Li, Q.

    2015-11-01

    A facile route has been used to synthesize a series of morphology-controllable 3D hierarchical Ag microspheres (AgMS) by using citric acid as a morphology directing-reagent. The AgMS are self-assembled by Ag nanosheets which can be controlled, including the thickness of the nanosheets and the distance between two nanosheets by varying the concentration of citric acid. The average thickness of the Ag nanosheets decreased from ~107 to ~22 nm with increasing citric acid concentration. The distance between two of Ag nanosheets is at a range of 15 to 35 nm. The SERS activity of the products has been investigated in detail by using rhodamine 6G (R6G). The results show that R6G can be detected in a concentration as low as 10-7 M. The appropriate interstitial sites of interlaced Ag nanosheets assembled on AgMS provide "hot spots" which result in a strong SERS response, and the electromagnetic enhancement may play the main role in SERS. The SERS activity of a sample has been studied by using melamine, and the limit of detection is found to be 0.6 ppm.

  13. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  14. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres

    PubMed Central

    Robinson, Rebecca; Bertram, James P.; Reiter, Jill L.; Lavik, Erin B.

    2015-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) has been shown to reduce tumor growth and metastases and promote axon regeneration in the central nervous system. Current strategies for inhibiting EGFR include the administration of reversible or irreversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo constant and sustained delivery is required. This study explored the feasibility of encapsulating the tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) in poly(lactic-co-glycolic acid) (PLGA) microspheres to achieve sustained delivery of the TKI. We characterized microspheres prepared using three different emulsion methods: solid-in-oil-in-water, oil-in-water, and oil-in-water with co-solvent. Addition of a co-solvent increased the loading and release of AG1478, and significantly (P<0.001) decreased the size of the microspheres which facilitates administration of the spheres. On average, sustained delivery of AG1478 from microspheres was achieved for six months. However, the addition of a co-solvent prolonged release for over nine months (266 days). In addition, AG1478 retained its bioactivity upon delivery, and inhibited EGFR in both immortalized rat fibroblasts and in EGFR-amplified human carcinoma cells. These results demonstrate that AG1478 can be encapsulated in PLGA and retain bioactivity; thereby providing a new platform for controlled administration of EGFR TKIs. PMID:20055747

  15. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    SciTech Connect

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  16. Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat.

    PubMed

    Wen, Yujun; Yu, Shukui; Wu, Yanhong; Ju, Rongkai; Wang, Hao; Liu, Yujun; Wang, Ying; Xu, Qunyuan

    2016-04-01

    In order to create an optimal microenvironment for neural regeneration in the lesion area after spinal cord injury (SCI), we fabricated a novel scaffold composed of a hyaluronic acid (HA) hydrogel with a longitudinal multi-tubular conformation. The scaffold was modified by binding with an anti-Nogo receptor antibody (antiNgR) and mixed further with poly(lactic-co-glycolic acid) (PLGA) microspheres containing brain-derived neurotrophic factor and vascular endothelial growth factor (HA+PLGA). In the rat, after implantation of this composite into an injured area created by a dorsal hemisection at T9-10 of the spinal cord, favorable effects were seen with regard to the promotion of spinal repair, including excellent integration of the implants with host tissue, inhibition of inflammation, and gliosis. In particular, large numbers of new blood vessels and regenerated nerve fibers were found within and around the implants. Simultaneously, the implanted rats exhibited improved locomotor recovery. Thus, this novel composite material might provide a suitable microenvironment for neural regeneration following SCI. PMID:26463048

  17. In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor – poly(lactic-co-glycolic-acid) microsphere

    PubMed Central

    Xiong, Yan; Yu, Zeping; Lang, Yun; Hu, Juanyu; Li, Hong; Yan, Yonggang; Tu, Chongqi; Yang, Tianfu; Song, Yueming; Duan, Hong; Pei, Fuxing

    2016-01-01

    Objective To study the degradation and basic fibroblast growth factor (bFGF) release activity of bFGF – poly(lactic-co-glycolic-acid) microsphere (bFGF-PLGA MS) under stress in vitro, including the static pressure and shearing force-simulating mechanical environment of the joint cavity. Method First, bFGF-PLGA MSs were created. Meanwhile, two self-made experimental instruments (static pressure and shearing force loading instruments) were initially explored to provide stress-simulating mechanical environment of the joint cavity. Then, bFGF-PLGA MSs were loaded into the two instruments respectively, to study microsphere degradation and drug release experiments. In the static pressure loading experiment, normal atmospheric pressure loading (approximately 0.1 MPa), 0.35 MPa, and 4.0 MPa pressure loading and shaking flask oscillation groups were designed to study bFGF-PLGA MS degradation and bFGF release. In the shearing force loading experiment, a pulsating pump was used to give the experimental group an output of 1,000 mL/min and the control group an output of 10 mL/min to carry out bFGF-PLGA MS degradation and drug release experiments. Changes of bFGF-PLGA MSs, including microsphere morphology, quality, weight-average molecular weight of polymer, and microsphere degradation and bFGF release, were analyzed respectively. Results In the static pressure loading experiment, bFGF-PLGA MSs at different pressure were stable initially. The trend of molecular weight change, quality loss, and bFGF release was consistent. Meanwhile, microsphere degradation and bFGF release rates in the 4.0 MPa pressure loading group were faster than those in the normal and 0.35 MPa pressure loading groups. It was the fastest in the shaking flask group, showing a statistically significant difference (P<0.0001). In the shearing force loading experiment, there were no distinctive differences in the rates of microsphere degradation and bFGF release between experimental and control group. Meanwhile

  18. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  19. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  20. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  1. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  2. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Gloria, Antonio; Russo, Teresa; Anspach, Laura; De Santis, Roberto; Ghanaati, Shahram; Unger, Ronald E; Ambrosio, Luigi; Kirkpatrick, C James

    2015-07-01

    Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did not induce cytotoxicity or inflammation. Importantly, it supported the growth and chondrogenic differentiation potential of mesenchymal stem cells (MSC) and nasal chondrocytes (NC) in vitro and in vivo. These properties of the hydrogel were successfully combined with TGF-β3 delivery by gelatin microspheres, which promoted the chondrogenic phenotype. Altogether, collagen-LMW HA loaded with gelatin microspheres represents a good candidate material for NP tissue engineering as it combines important rheological, functional and biological features. PMID:25861947

  3. Poly(lactic-co-glycolic) Acid/Nanohydroxyapatite Scaffold Containing Chitosan Microspheres with Adrenomedullin Delivery for Modulation Activity of Osteoblasts and Vascular Endothelial Cells

    PubMed Central

    Li, Chunyan; Chen, Yingxin; Dong, Shujun; Chen, Xuesi; Zhou, Yanmin

    2013-01-01

    Adrenomedullin (ADM) is a bioactive regulatory peptide that affects migration and proliferation of diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. This study investigated the effects of sustained release of ADM on the modulation activity of osteoblasts and vascular endothelial cells in vitro. Chitosan microspheres (CMs) were developed for ADM delivery. Poly(lactic-co-glycolic) acid and nano-hydroxyapatite were used to prepare scaffolds containing microspheres with ADM. The CMs showed rough surface morphology and high porosity, and they were well-distributed. The scaffolds exhibited relatively uniform pore sizes with interconnected pores. The addition of CMs improved the mechanical properties of the scaffolds without affecting their high porosity. In vitro degradation tests indicated that the addition of CMs increased the water absorption of the scaffolds and inhibited pH decline of phosphate-buffered saline medium. The expression levels of osteogenic-related and angiogenic-related genes were determined in MG63 cells and in human umbilical vein endothelial cells cultured on the scaffolds, respectively. The expression levels of osteogenic-related and angiogenic-related proteins were also detected by western blot analysis. Their expression levels in cells were improved on the ADM delivery scaffolds at a certain time point. The in vitro evaluation suggests that the microsphere-scaffold system is suitable as a model for bone tissue engineering. PMID:23841075

  4. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation. PMID:24734511

  5. Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks.

    PubMed

    Li, Qiang; Lei, Jiandu; Zhang, Rongyue; Li, Juan; Xing, Jianmin; Gao, Fei; Gong, Fangling; Yan, Xiaofeng; Wang, Dan; Su, Zhiguo; Ma, Guanghui

    2013-05-01

    Bio-waste cotton (Gossypium hirsutum L.) stalks were converted into succinic acid by simultaneous saccharification and fermentation (SSF) using Actinobacillus succinogenes 130Z. After 54 h SSF at 40 °C and pH 7.0, the production of succinic acid was 63 g/L, with 1.17 g/L/h productivity and 64% conversion yield. After SSF, a simple method for the decolorization and deproteinization of crude SSF broth was developed through adsorption tests of polystyrene (PSt) microspheres. Under optimized conditions (5% PSt loading (w/v), pH 4.0, 60 °C and adsorption time of 40 min), the ratios of decolorization, deproteinization and succinic acid loss ratios were 96.6, 84.5 and 4.1%, respectively. The method developed will provide a potential approach for large-scale production of succinic acid from the biomass waste. PMID:22985822

  6. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  7. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  8. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  9. Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin

    NASA Astrophysics Data System (ADS)

    Guo, Longxia; Hu, Xiaoling; Guan, Ping; Du, Chunbao; Wang, Dan; Song, Dongmen; Gao, Xumian; Song, Renyuan

    2015-12-01

    Novel superparamagnetic surface-imprinted microspheres (SIMs) with molecularly imprinted shell layer were controllably synthesized via fragment imprinting and surface imprinting technique. The SIMs-Arg and SIMs-Lys microspheres were prepared by using L-arginine (L-Arg) and L-lysine (L-Lys) as pseudo-template molecule for specific rebinding to thymopentin (TP5), respectively. The characterization results revealed that both SIMs-Arg and SIMs-Lys were successfully prepared and possessed a high magnetic sensitivity. The rebinding-isotherm analyses of SIMs-Arg and SIMs-Lys showed that the Langmuir isotherm model was well fitted to the equilibrium data, indicating that only one kind of rebinding site was present in SIMs-Arg and SIMs-Lys. Besides, the kinetic properties of SIMs-Arg and SIMs-Lys both were well described by the pseudo-second-order kinetics model, which indicated that a chemical process may be the rate-limiting step in the rebinding process. Moreover, the magnetic imprinted microspheres were found to have a higher specificity for TP5 than that for immunostimulating peptide human (IPH). What is more, SIMs-Arg and SIMs-Lys were successfully applied for TP5 determination in urine. According to the maximum adsorption capacity, the imprinting factor and real sample experiment, it was noted that SIMs-Arg had better specific adsorption property for TP5 than SIMs-Lys.

  10. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  11. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  12. Polymer microspheres carrying fluorescent DNA probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Dai, Zhao; Zhang, Jimei; Xu, Shichao; Wu, Chunrong; Zheng, Guo

    2010-07-01

    A polymer microspheres carried DNA probe, which was based on resonance energy transfer, was presented in this paper when CdTe quantum dots(QDs) were as energy donors, Au nanoparticles were as energy accepters and poly(4- vinylpyrindine-co-ethylene glycol dimethacrylate) microspheres were as carriers. Polymer microspheres with functional group on surfaces were prepared by distillation-precipitation polymerization when ethylene glycol dimethacrylate was as crosslinker in acetonitrile. CdTe QDs were prepared when 3-mercaptopropionic acid(MPA) was as the stabilizer in aqueous solution. Because of the hydrogen-bonding between the carboxyl groups of MPA on QDs and the pyrindine groups on the microspheres, the QDs were self-assembled onto the surfaces of microspheres. Then, the other parts of DNA probe were finished according to the classic method. The DNA detection results indicated that this novel fluorescent DNA probe system could recognize the existence of complementary target DNA or not.

  13. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  14. Pitch carbon microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  15. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin.

    PubMed

    Yoshida, Aya; Matumoto, Makoto; Hshizume, Hiroyuki; Oba, Yoshiro; Tomishige, Tatuo; Inagawa, Hiroyuki; Kohchi, Chie; Hino, Mami; Ito, Fuminori; Tomoda, Keishiro; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi; Hori, Hitoshi; Soma, Gen-Ichiro

    2006-08-01

    Macrophages and their phagocytotic abilities play a dominant role for defense against infected organisms. However, Mycobacterium tuberculosis can survive in the phagosomes of macrophages. In this study, the effective delivery of a drug and the killing effect of tubercle bacilli within macrophages were investigated utilizing the phagocytotic uptake of rifampicin (RFP) that had been incorporated into poly(DL-lactic-co-glycolic) acid (PLGA) microspheres. The microspheres were composed of PLGA that had a monomer ratio (lactic acid/glycolic acid) of either 50/50 or 75/25. They had molecular weights from 5000 to 20,000, and diameters of 1.5, 3.5, 6.2 and 8.9 microm. The most significant factor for phagocytotic activity of macrophages was the diameter of the microspheres. By contrast, molecular weight and monomer ratio of PLGA did not influence phagocytosis. The amount of RFP delivered into cells was also investigated. RFP-PLGA microspheres composed of PLGA with a molecular weight of 20,000 and monomer ratio of 75/25 showed the highest amount of delivery (4 microg/1 x 10(6) cells). Fourteen days after infection, the survival rate of treated intracellular bacilli was 1% when compared with untreated cells. There was almost no killing effect of free RFP (4 or 15 microg/ml) on intracellular bacilli. In vivo efficacy of RFP-PLGA was also examined in rats infected with M. tuberculosis Kurono. Intratracheal administration of RFP-PLGA microspheres was shown to be superior to free RFP for killing of intracellular bacilli and preventing granuloma formation in some lobes. These results suggest that phagocytotic activity could be part of a new drug delivery system that selectively targeted macrophages. PMID:16879999

  16. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  17. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release.

    PubMed

    Huang, Xiaozhou; Li, Na; Wang, Dajiang; Luo, Yuyan; Wu, Ziyu; Guo, Zhefei; Jin, Qixing; Liu, Zhuying; Huang, Yafei; Zhang, Yongming; Wu, Chuanbin

    2015-08-10

    The objective of this study was to investigate the use of transmission hard X-ray nano-computed-tomography (nano-CT) for characterization of the pore structure and drug distribution in poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating bovine serum albumin and to study the correlation between drug distribution and burst release. The PLGA microspheres were fabricated using a double-emulsion method. The results of pore structure analysis accessed with nano-CT were compared with those acquired by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface pore interconnectivity and surface protein interconnectivity were obtained using combined nano-CT and pixel analysis. The correlation between surface protein interconnectivity with the initial burst release across various tested formulations was also analyzed. The size, shape, and distribution of the pores and protein could be clearly observed in the whole microsphere using nano-CT, whereas only the sectional information was observed using SEM or CLSM. Interconnected pores and surface connected pores could be clearly distinguished in nano-CT, which enables the quantitative analysis of surface pore interconnectivity and surface protein interconnectivity. The surface protein interconnectivity in different formulations correlated well with the burst release at 5-10h. Nano-CT provided a nondestructive, high-resolution, and three-dimensional analysis method to characterize the porous microsphere. PMID:25951620

  18. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  19. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    SciTech Connect

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  20. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. PMID:26249587

  1. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis

    PubMed Central

    Qiao, Chunyan; Zhang, Kai; Sun, Bin; Liu, Jinzhong; Song, Jiyu; Hu, Yue; Yang, Shihui; Sun, Hongchen; Yang, Bai

    2015-01-01

    Bone regeneration often requires continuous stimulation to promote local bone formation. In the present study, calcium phosphate (CaPi) was used to promote transfection of human bone morphogenetic protein 2 (BMP-2) cDNA plasmid, and poly (lactic-co-glycolic acid) (PLGA) was used to prepare microspheres of pBMP-2/CaPi (i.e., PLGA@pBMP-2/CaPi) using W/O/W double emulsion solvent evaporation method. We showed that PLGA@pBMP-2/CaPi microspheres were spherical with smooth surface, and the particle size ranged from 0.5 to 35 μm. Encapsulation efficiency was up to 30~50%. The release of BMP-2 cDNA from microspheres continued more than 30 days and constituted, less than 7.5% of total plasmid amount within the first 24 h. Real-time PCR results showed that co-culturing of PLGA@pBMP-2/CaPi with bone marrow-derived mesenchymal stem cells (BMSCs) increased calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7, and collagen type I (COLL I) in a time-dependent manner. Finally, X-ray analysis demonstrated that in vivo delivery of PLGA@pBMP-2/CaPi microspheres into the tibialis anterior muscles of rats promoted the generation of osteoblasts, bone tissue, and bone structure. The findings suggested that PLGA@pBMP-2/CaPi microspheres can promote ectopic osteogenesis in non-bone tissues, with strong prospects in promoting bone regeneration. PMID:26885257

  2. Stabilization of layer-by-layer engineered multilayered hollow microspheres.

    PubMed

    Liu, Peng

    2014-05-01

    Polymer multilayered hollow microspheres prepared by layer-by-layer (LbL) self-assembly attract more and more interest due to their unique application, especially as drug delivery system (DDS). Unfortunately, the multilayered hollow microspheres assembled via weak linkages could fuse and/or aggregate in high ionic strength media or strong acidic or basic media. This severely restricts the practical applications of the multilayered hollow microspheres as DDS in human physiological medium. In the present work, the progress in stabilization of the multilayered hollow microspheres is reviewed, with emphasis on the assembling process and their crosslinking mechanism. PMID:24321861

  3. Treatment of hepatocellular carcinoma (HCC) by intra-arterial infusion of radio-emitter compounds: trans-arterial radio-embolisation of HCC.

    PubMed

    Andreana, Lorenzo; Isgrò, Graziella; Marelli, Laura; Davies, Neil; Yu, Dominic; Navalkissoor, Shaunak; Burroughs, Andrew K

    2012-10-01

    Traditional radiotherapy is only effective in treating hepatocellular cancer (HCC) in doses above 50 Gy, but this is above the recommended liver radiation exposure of about 35 Gy, which is an important limitation making this treatment unsuitable for routine clinical practice. Trans-arterial radio-embolisation (TARE), consists of delivery of compounds linked to radio-emitter particles which end up in hepatic end-arterioles or show affinity for the neoplasm itself, allowing localised delivery of doses beyond 120 Gy. These are well tolerated in patients treated with this type of internal radiation therapy. TARE for HCC is used for palliative treatment of advanced disease which cannot be treated in other ways, or for tumour down-staging before liver transplantation, or as adjuvant therapy for surgically resected HCC. Tumour response after TARE is between 25% and 60% if assessed by using RECIST criteria, and 80% by EASL criteria. In this review we outline the advantages and limitations of radio-emitter therapy including 131-I, 90-Y and 188-Re. We include several observational, and all comparative studies using these compounds. In particular we compare TARE to trans-arterial chemo-embolisation and other intra-arterial techniques. PMID:22169503

  4. Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and pH-triggered anticancer drug delivery.

    PubMed

    Kang, Xiao-Jiao; Dai, Yun-Lu; Ma, Ping-An; Yang, Dong-Mei; Li, Chun-Xia; Hou, Zhi-Yao; Cheng, Zi-Yong; Lin, Jun

    2012-12-01

    Monodisperse poly(acrylic acid)-modified Fe(3)O(4) (PAA@Fe(3)O(4)) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe(3)O(4) hollow spheres by a vacuum-casting route and photo-initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe(3)O(4) spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as-prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell-uptake process of DOX-loaded PAA@Fe(3)O(4) was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX-loaded PAA@Fe(3)O(4) increased. These results indicate that pH-responsive magnetic PAA@Fe(3)O(4) spheres have the potential to be used as anticancer drug carriers. PMID:23080514

  5. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment. PMID:26497115

  6. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres

    PubMed Central

    Yan, Ling; Jiang, Dian-Ming; Cao, Zhi-Dong; Wu, Jun; Wang, Xin; Wang, Zheng-Long; Li, Ya-Jun; Yi, Yong-Fen

    2015-01-01

    Purpose The purpose of this study was to investigate the curative effect of bone-like hydroxyapatite/poly amino acid (BHA/PAA) as a carrier for poly(lactic-co-glycolic acid)-coated rifapentine microsphere (RPM) in the treatment of rabbit chronic osteomyelitis induced by Staphylococcus aureus. Methods RPM was prepared through an oil-in-water emulsion solvent evaporation method, and RPM was combined with BHA/PAA to obtain drug-loaded, slow-releasing materials. Twenty-six New Zealand white rabbits were induced to establish the animal model of chronic osteomyelitis. After debridement, the animals were randomly divided into three groups (n=8): the experimental group (with RPM-loaded BHA/PAA), the control group (with BHA/PAA), and the blank group. The RPM-loaded BHA/PAA was evaluated for antibacterial activity, dynamics of drug release, and osteogenic ability through in vitro and in vivo experiments. Results In vitro, RPM-loaded BHA/PAA released the antibiotics slowly, inhibiting the bacterial growth of S. aureus for up to 5 weeks. In vivo, at week 4, the bacterial colony count was significantly lower in the experimental group than in the control and blank groups (P<0.01). At week 12, the chronic osteomyelitis was cured and the bone defect was repaired in the experimental group, whereas the infection and bone defect persisted in the control and blank groups. Conclusion In vitro and in vivo experiments demonstrated that RPM-loaded BHA/PAA effectively cured S. aureus-induced chronic osteomyelitis. Therefore, BHA/PAA has potential value as a slow-releasing material in clinical setting. Further investigation is needed to determine the optimal dosage for loading rifapentine. PMID:26213463

  7. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  8. Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples.

    PubMed

    Zhang, Wenmin; Yan, Zhiming; Gao, Jia; Tong, Ping; Liu, Wei; Zhang, Lan

    2015-06-26

    Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry, nitrogen adsorption porosimetry and zeta potential analyzer. The synthesized Fe3O4@SiO2@UiO-66 microspheres were first used for magnetic solid-phase extraction (MSPE) of domoic acid (DA) in shellfish samples. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a fast, simple and sensitive method for the determination of DA was established successfully. Under the optimized conditions, the developed method showed short analysis time, good linearity (r(2) = 0.9990), low limit of detection (1.45 pg mL(-1); S/N = 3:1), low limit of quantification (4.82 pg mL(-1); S/N = 10:1), and good extraction repeatability (RSD ≤ 5.0%; n = 5). Real shellfish samples were processed using the developed method, and trace level of DA was detected. The results demonstrate that Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres are the promising sorbents for rapid and efficient extraction of polar analytes from complex biological samples. PMID:25997847

  9. Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation

    PubMed Central

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-01-01

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties. PMID:25028198

  10. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  11. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  12. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    SciTech Connect

    Zhou, Xiaoliang; Yan, Zhengguang Han, Xiaodong

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  13. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  14. Polymer-functionalised microspheres for immunosensing applications

    NASA Astrophysics Data System (ADS)

    Soria, S.; Baldini, F.; Berneschi, S.; Brenci, M.; Cosi, F.; Giannetti, A.; Nunzi conti, G.; Pelli, S.; Righini, G. C.; Tiribilli, B.

    2010-02-01

    Homogeneous polymeric thin layers have been used as functionalising agents on silica microresonators in view of immunosensing applications. We have characterised the microspheres functionalised with poly-L-lactic acid and Eudragit® L100, as an alternative to the commonly used silanes. It is shown that after polymeric functionalization the quality factor of the silica microspheres remains around 107, and that the Q factor is still about 3x105 after chemical activation and covalent binding of immunogammaglobulin. This functionalising process of the microresonator constitutes a promising step towards the achievement of a highly sensitive immunosensor.

  15. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  16. Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity.

    PubMed

    Zhao, Liang; Chi, Yue; Yuan, Qing; Li, Nan; Yan, Wenfu; Li, Xiaotian

    2013-01-15

    H(3)PW(12)O(40) was successfully anchored to the surface of amino-functionalized Fe(3)O(4)@SiO(2)@meso-SiO(2) microspheres by means of chemical bonding to aminosilane groups, aiming to remove unwanted organic compounds from aqueous media. The resultant multifunctional microspheres were thoroughly characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, inductively coupled plasma, and N(2) adsorption-desorption. The as-prepared microspheres possess unique properties including high magnetization (46.8 emu g(-1)), large BET surface area (135 m(2) g(-1)), and highly open mesopores (~5.0 nm), and H(3)PW(12)O(40) loading is calculated to be ~16.8%; and as a result, the as-prepared microspheres exhibit enhanced performance in degrading dyes under UV irradiation compared with pure H(3)PW(12)O(40). Additionally, the photocatalyst can be easily recycled using an external magnetic field without losing the photocatalytic activity. PMID:23083769

  17. Superparamagnetic folate-immobilized dye labeled microspheres for oral cancer screening

    NASA Astrophysics Data System (ADS)

    Liesenfeld, Bernd

    A design concept is presented and developed for a screening test for oral cancer. The application is based on generating specific binding between microspheres and receptors known to be expressed specifically on malignant cells. Quantification of the test is derived from a ratiometric determination of test microspheres immobilized with folate against control microspheres. Microspheres were suspension copolymerized polymethyl methacrylate and aminoethyl methacrylate, and were doped with superparamagnetic iron oxide to permit magnetic separation of microspheres from testing suspension. Magnetic separation was demonstrated. Specific binding was provided by folic acid that was immobilized on the microsphere surface by carbodiimide chemistry. Microsphere labeling was performed by covalent bonding of fluorophores to monomers prior to polymerization, permitting spatial imaging of microspheres by fluorescence microscopy. Testing of specific binding of folate to tumorous cell lines was performed using cell lines known to overexpress folate receptors. Cell lines used included NCI-H23 human lung adenocarcinoma, with controls provided by normal human dermal fibroblasts. It was found that the folate-immobilized microspheres were preferentially retained by the tumourous cell line, relative to control microspheres (p = 0.0074). There was no significant difference between the retention of folate-immobilized microspheres by the cancerous cell line as compared to the control cell line (p = 0.90) as determined by pooled data. Testing of specific binding to relevant tissue was performed using excised oral cancer tissue that had been frozen and sectioned onto slides. It was found that the folate immobilized microspheres were retained by the cancerous tissue at a higher rate than the control microspheres (p = 0.037). Controls performed with normal tissue shows that the folate-immobilized microspheres were retained by normal tissue at a higher rate than the cancerous tissue. Both cell

  18. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  19. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  20. The influence of magnesium stearate on the characteristics of mucoadhesive microspheres.

    PubMed

    Bogataj, M; Mrhar, A; Grabnar, I; Rajtman, Z; Bukovec, P; Srcic, S; Urleb, U

    2000-01-01

    Microspheres containing the mucoadhesive polymer chitosan hydrochloride, with matrix polymer Eudragit RS, pipemidic acid as a model drug and agglomeration preventing agent magnesium stearate were prepared by the solvent evaporation method. The amount of magnesium stearate was varied and the following methods were used for microsphere evaluation: sieve analysis, drug content and dissolution determination, scanning electron microscopy, x-ray diffractometry, DSC and FTIR spectroscopy. The results showed that average particle size decreased with increasing amount of magnesium stearate used for microsphere preparation. This is probably a consequence of stabilization of the emulsion droplets with magnesium stearate. Higher pipemidic acid content in the microspheres was observed in larger particle size fractions and when higher amounts of magnesium stearate were used. It was also found that these two parameters significantly influenced the dissolution rate. The important reason for the differences in drug content in microspheres of different particle sizes is the diffusion of pipemidic acid from the acetone droplets in liquid paraffin during the preparation procedure. The physical state of pipemidic acid changed from crystalline to mostly amorphous with its incorporation in microspheres, as shown by x-ray diffractometry and differential scanning calorimetry. No differences were observed in the physical state of pipemidic acid and in microsphere shape and surface between different size fractions of microspheres, prepared with different amounts of magnesium stearate. Additionally, no correlation between the physical state of the drug in different microspheres and their biopharmaceutical properties was found. PMID:10898089

  1. Experimental Embolization of Rabbit Renal Arteries to Compare the Effects of Poly L-Lactic Acid Microspheres With and Without Epirubicin Release Against Intraarterial Injection of Epirubicin

    SciTech Connect

    Fujiwara, Kazuhisa; Hayakawa, Katsumi; Nagata, Yasushi; Hiraoka, Masahiro; Nakamura, Tatsuo; Shimizu, Yoshihiko; Ikada, Yoshito

    2000-03-15

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with 1 mg of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI 1.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemoembolizing material, maintained high local concentrations of the

  2. Experimental embolization of rabbit renal arteries to compare the effects of poly L-lactic acid microspheres with and without epirubicin release against ntraarterial injection of epirubicin

    SciTech Connect

    Fujiwara, Kazuhisa; Hayakawa, Katsumi; Nagata, Yasushi; Hiraoka, Masahiro; Nakamura, Tatsuo; Shimizu, Yoshihiko; Ikada, Yoshito

    2000-05-15

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with l m g of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI l.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemo-embolizing material, maintained high local concentrations of the

  3. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy.

    PubMed

    Floyd, J Alaina; Galperin, Anna; Ratner, Buddy D

    2016-02-01

    The grim prognosis for patients diagnosed with malignant gliomas necessitates the development of new therapeutic strategies for localized and sustained drug delivery to combat tumor drug resistance and regrowth. Here we introduce drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy (DREAM BIG therapy). DREAM BIG therapy is envisioned to deliver three chemotherapeutics, temporally staged over one year, via a bioadhesive, biodegradable spray directly to the brain surgical site after tumor excision. In this proof-of-principle article exploring key components of the DREAM BIG therapy prototype, rhodamine B (RB) encapsulated poly(lactic-co-glycolic acid) and immunoglobulin G (IgG) encapsulated poly(lactic acid) microspheres were formulated and characterized. The encapsulation efficiency of RB and IgG and the release kinetics of the model drugs from the microspheres were elucidated in addition to the release kinetics of RB from poly(lactic-co-glycolic acid) microspheres formulated in a degradable poly(N-isopropylacrylamide) solution. The successful aerosolized application onto brain tissue ex-vivo demonstrated the conformal adhesion of the RB encapsulated poly(lactic-co-glycolic acid) microspheres to the convoluted brain surface mediated by the thermoresponsive carrier, poly(N-isopropylacrylamide). These preliminary results suggest the potential of the DREAM BIG therapy for future use with multiple chemotherapeutics and microsphere types to combat gliomas at a localized site. PMID:26238392

  4. Polymeric microspheres as protein transduction reagents.

    PubMed

    Nagel, David; Behrendt, Jonathan M; Chimonides, Gwen F; Torr, Elizabeth E; Devitt, Andrew; Sutherland, Andrew J; Hine, Anna V

    2014-06-01

    nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. PMID:24692642

  5. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  6. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  7. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis.

    PubMed

    Zielhuis, S W; Nijsen, J F W; Dorland, L; Krijger, G C; van Het Schip, A D; Hennink, W E

    2006-06-01

    Radioactive holmium-166 loaded poly(l-lactic acid) microspheres are promising systems for the treatment of liver malignancies. These microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method using chloroform. After preparation the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. It was observed that relatively large amounts of residual chloroform (1000-6000 ppm) remained in the microspheres before neutron irradiation. Since it is known that chloroform is susceptible for high-energy radiation, we investigated whether neutron and gamma irradiation could result in the removal of residual chloroform in HoAcAc-loaded and placebo PLLA-MS by radiolysis. To investigate this, microspheres with relatively high and low amounts of residual chloroform were subjected to irradiation. The effect of irradiation on the residual chloroform levels as well as other microsphere characteristics (morphology, size, crystallinity, molecular weight of PLLA and degradation products) were evaluated. No chloroform in the microspheres could be detected after neutron irradiation. This was also seen for gamma irradiation at a dose of 200 kGy phosgene, which can be formed as the result of radiolysis of chloroform, was not detected with gas chromatography-mass spectrometry (GC-MS). A precipitation titration showed that radiolysis of chloroform resulted in the formation of chloride. Gel permeation chromatography and differential scanning calorimetry showed a decrease in molecular weight of PLLA and crystallinity, respectively. However, no differences were observed between irradiated microsphere samples with high and low initial amounts of chloroform. In conclusion, this study demonstrates that neutron and gamma irradiation results in the removal of residual chloroform in PLLA-microspheres. PMID:16549282

  8. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content. PMID:11808537

  9. Abiogenic photophosphorylation of ADP to ATP sensitized by flavoproteinoid microspheres.

    PubMed

    Kolesnikov, Michael P; Telegina, Taisiya A; Lyudnikova, Tamara A; Kritsky, Mikhail S

    2008-06-01

    A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10-20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer (F1H*) and ADP are involved. PMID:18386156

  10. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  11. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials

    NASA Astrophysics Data System (ADS)

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-02-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature.

  12. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials.

    PubMed

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-12-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature. PMID:26925862

  13. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    PubMed Central

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  14. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-03-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.

  15. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications.

    PubMed

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  16. Polymeric Microspheres as Protein Transduction Reagents*

    PubMed Central

    Nagel, David; Behrendt, Jonathan M.; Chimonides, Gwen F.; Torr, Elizabeth E.; Devitt, Andrew; Sutherland, Andrew J.; Hine, Anna V.

    2014-01-01

    to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. PMID:24692642

  17. Fusion microsphere targets

    SciTech Connect

    Koo, J.C.

    1980-07-28

    It was shown that a microsphere within the structure limitations is hydrodynamically stable. To insure its perfect formation, the initial chemical compositions must have a blowing capability, more important, the resultant liquid compositions must also have sufficient surface tension and low viscosity.

  18. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  19. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  20. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  1. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  2. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  3. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    PubMed

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug. PMID:26160668

  4. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    PubMed

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity. PMID:27378617

  5. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  6. [Relation between drug release and the drug status within curcumin-loaded microsphere].

    PubMed

    Chen, De; Liu, Yi; Fan, Kai-yan; Xie, Yi-qiao; Yu, An-an; Xia, Zi-hua; Yang, Fan

    2016-01-01

    To study the relation between drug release and the drug status within curcumin-loaded microsphere, SPG (shirasu porous glass) membrane emulsification was used to prepare the curcumin-PLGA (polylactic-co-glycolic acid) microspheres with three levels of drug loading respectively, and the in vitro release was studied with high-performance liquid chromatography (HPLC). The morphology of microspheres was observed with scanning electron microscopy (SEM), and the drug status was studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and infrared analysis (IR). The drug loading of microspheres was (5.85 ± 0.21)%, (11.71 ± 0.39)%, (15.41 ± 0.40)%, respectively. No chemical connection was found between curcumin and PLGA. According to the results of XRD, curcumin dispersed in PLGA as amorphous form within the microspheres of the lowest drug loading, while (2.12 ± 0.64)% and (5.66 ± 0.07)% curcumin crystals was detected in the other two kinds of microspheres, respectively, indicating that the drug status was different within three kinds of microspheres. In the data analysis, we found that PLGA had a limited capacity of dissolving curcumin. When the drug loading exceeded the limit, the excess curcumin would exist in the form of crystals in microspheres independently. Meanwhile, this factor contributes to the difference in drug release behavior of the three groups of microspheres. PMID:27405176

  7. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Landel, Robert F. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  8. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  9. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc. PMID:25731098

  10. Immunofluorescence detection methods using microspheres

    NASA Astrophysics Data System (ADS)

    Szurdoki, Ferenc; Michael, Karri L.; Agrawal, Divya; Taylor, Laura C.; Schultz, Sandra L.; Walt, David R.

    1999-01-01

    Microsphere-based immunoassays were devised for compounds of agricultural and biomedical interest (e.g., digoxin, theophylline, and zearalenone). Commercially available microspheres with surface functional groups for chemical derivatization were used as solid carriers. After immobilizing the target substances, the surface of the haptenized microspheres was blocked by a protein to reduce aspecific binding. Competitive immunoassays were performed using the functionalized microspheres and antibodies labeled with horseradish peroxidase. Immunofluorescence signal amplification was achieved by enzyme-catalyzed reporter deposition (CARD). An epifluorescence microscope, a CCD camera interfaced with a computer, and microscopy image analysis software were employed for quantitative detection of fluorescent light emitted from individual microspheres. Integration of several such immunoassays and application of an optical encoding method enabled multianalyte determination. These immunoassays can also be utilized in an immunosensor array format. This immunoarray format could facilitate miniaturization and automation of multianalyte immunoassays.

  11. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  12. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-01

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels. PMID:25498702

  13. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-01

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action. PMID:21165022

  14. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  15. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    PubMed Central

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting. PMID:17407608

  16. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes. PMID:24845476

  17. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres.

    PubMed

    Shen, Jie; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2015-11-28

    The objective of the present study was to determine whether an in vitro-in vivo correlation (IVIVC) can be established for polymeric microspheres that are equivalent in formulation composition but prepared with different manufacturing processes. Risperidone was chosen as a model therapeutic and poly(lactic-co-glycolic acid) (PLGA) with similar molecular weight as that used in the commercial product Risperdal® Consta® was used to prepare risperidone microspheres. Various manufacturing processes were investigated to produce the risperidone microspheres with similar drug loading (approx. 37%) but distinctly different physicochemical properties (e.g. porosity, particle size and particle size distribution). In vitro release of the risperidone microspheres was investigated using different release testing methods (such as sample-and-separate and USP apparatus 4). In vivo pharmacokinetic profiles of the risperidone microsphere formulations following intramuscular administration were determined using a rabbit model. Furthermore, the obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method and the calculated in vivo release was compared with the in vitro release of these microspheres. Level A IVIVCs were established and validated for the compositionally equivalent risperidone microspheres based on the in vitro release data obtained using USP apparatus 4. The developed IVIVCs demonstrated good predictability and were robust. These results showed that the developed USP apparatus 4 method was capable of discriminating PLGA microspheres that are equivalent in formulation composition but with manufacturing differences and predicting their in vivo performance in the investigated animal model. PMID:26423236

  18. Functional motor recovery is improved due to local placement of GDNF microspheres after delayed nerve repair.

    PubMed

    Wood, Matthew D; Gordon, Tessa; Kemp, Stephen W P; Liu, Edward H; Kim, Howard; Shoichet, Molly S; Borschel, Gregory H

    2013-05-01

    The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide-glycolic acid (PLGA) microspheres with GDNF to treat delayed nerve repair, where ELISA verified GDNF release. We determined the formulation of microspheres containing GDNF that optimized nerve regeneration and functional recovery in a rat model of delayed nerve repair. Experimental groups underwent delayed nerve repair and treatment with GDNF microspheres in fibrin glue at the repair site or control treatments (empty microspheres or free GDNF without microspheres). Contractile muscle force, muscle mass, and MUNE were measured 12 weeks following treatment, where GDNF microspheres (2 weeks formulation) were superior compared to either no GDNF or short-term release of free GDNF to nerve. Nerve histology distal to the repair site demonstrated increased axon counts and fiber diameters due to GDNF microspheres (2 weeks formulation). GDNF microspheres partially reversed the deleterious effects of chronic nerve injury, and recovery was slightly favored with the 2 weeks formulation compared to the 4 weeks formulation. PMID:23239194

  19. Protein adsorption using novel carboxymethyl-curdlan microspheres.

    PubMed

    Rafigh, Sayyid Mahdi; Vaziri Yazdi, Ali; Safekordi, Ali Akbar; Heydari Nasab, Amir; Ardjmand, Mehdi; Naderi, Fereshteh; Mozafari, Hamid

    2016-06-01

    Carboxymethyl-curdlan as a water soluble curdlan derivative, was synthesized in an aqueous alkaline medium using monochloroacetic acid. Novel carboxymethyl-curdlan (CC) microspheres were prepared by the method of W/O/W emulsion. The chemical and morphological structures of CC microspheres were investigated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and particle size analysis. The CC microspheres were spherical, free flowing, non-aggregated and uniform mono-disperse with diameter of 260μm. The prepared CC microspheres were applied to adsorbing Bovine serum albumin (BSA) as model protein. Factors influencing the adsorption of BSA such as solution pH, temperature, initial BSA concentration and ionic strength were examined by batch experiments. The maximum adsorption capacity was calculated as 168mg/g under optimal conditions including BSA initial concentration (4mg/mL), pH (4.7), adsorption time (9h) and temperature (35°C). The adsorption isotherm followed the Langmuir model and the adsorption kinetics fitted the pseudo-second-order model. In addition, the CC microspheres can be also regenerated and re-used. PMID:26964526

  20. Particle Tracking of Fluorescent Microspheres

    NASA Astrophysics Data System (ADS)

    Kaminski, Zofia; Mueller, Joachim; Berk, Serkan

    2010-10-01

    In this research, the diffusion coefficients of the fluorescent microspheres and the relation of those coefficients to particle radius were investigated. An additional focus was to see how well the measured radius of the microspheres compared to the radius as reported by the manufacturer and to measure the distribution of radii in a sample. This study further developed the critical process of ensuring particle movement within the sample volume and made preliminary sample measurements.The methods developed for tracking microspheres will later be used to determine the radii of virus like particles (VLPs), which are a non-infectious model system of the HIV virus. Results from our measurements will be reported.

  1. Microsphere based saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Rissin, David M.; DiCesare, Christopher; Hayman, Ryan B.; Blicharz, Timothy M.; Walt, David R.

    2005-11-01

    Saliva presents a minimally invasive alternative medium to blood for performing diagnostics1. Microsphere sensors for ions, small organic molecules, and proteins are currently being developed and optical microarrays containing thousands of these sensors will be used for simultaneous multi-analyte analysis. The fiber bundle platform in use is 1mm in diameter and contains approximately 50,000 individually addressable 3.1μm fibers, each with an etched well capable of housing a single 3.1μm microsphere sensor. Micron-sized bead-based chemistries are produced in house, followed by deposition onto a fiber-optic bundle platform, allowing for multiplexed analysis. The ultimate goal is to develop a universal diagnostic system using saliva as the diagnostic medium. This platform will permit multiplexed analysis of a sample by integrating microfluidics with the optical arrays loaded with sensors capable of detecting relevant biomarkers associated with a wide range of disease states. Disease states that are currently under investigation include end stage renal disease (ESRD) and Sjoegrens Syndrome (SS).

  2. Glass microsphere lubrication

    NASA Technical Reports Server (NTRS)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  3. Enhancement of Poly(orthoester) Microspheres for DNA Vaccine Delivery by Blending with Poly(ethylenimine)

    PubMed Central

    Nguyen, David N.; Raghavan, Shyam S.; Tashima, Lauren M.; Lin, Elizabeth C.; Fredette, Stephen J.; Langer, Robert S.; Wang, Chun

    2008-01-01

    Poly(ortho ester) (POE) microspheres have been previously shown to possess certain advantages for the in vivo delivery of DNA vaccines. In particular, timing of DNA release from POE microspheres in response to acidic phagosomal pH was shown to be an important factor in determining immunogenicity, which was hypothesized to be linked to the natural progression of antigen presenting cell uptake, transfection, maturation, and antigen presentation. Here we report in vitro characterization of the enhanced the efficacy of POE microspheres by blending poly(ethylenimine) (PEI), a well-characterized cationic transfection agent, into the POE matrix. Blending of a tiny amount of PEI (approximately 0.04 wt%) with POE caused large alterations in POE microsphere properties. PEI provided greater control over the rate of pH-triggered DNA release by doubling the total release time of plasmid DNA and enhanced gene transfection efficiency of the microspheres up to 50-fold without any significant cytotoxicity. Confocal microscopy with labeled PEI and DNA plasmids revealed that PEI caused a surface-localizing distribution of DNA and PEI within the POE microsphere as well as focal co-localization of PEI with DNA. We provide evidence that upon degradation, the microspheres of POE-PEI blends released electrostatic complexes of DNA and PEI, which are responsible for the enhanced gene transfection. Furthermore, blending PEI into the POE microsphere induced 50% to 60% greater phenotypic maturation and activation of bone marrow-derived dendritic cells in vitro, judged by up-regulation of co-stimulatory markers on the cell surface. Physically blending PEI with POE is a simple approach for modulating the properties of biodegradable microspheres in terms of gene transfection efficiency and DNA release kinetics. Combined with the ability to induce maturation of antigen-presenting cells, POE-PEI blended microspheres may be excellent carriers for DNA vaccines. PMID:18400294

  4. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres.

    PubMed

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W; Wang, Chi-Hwa

    2013-12-18

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  5. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres

    PubMed Central

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  6. Cephradin-plaga microspheres for sustained delivery to cattle.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  7. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C. PMID:24519488

  8. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional Selective Internal Radiation Therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer

    PubMed Central

    2014-01-01

    Background Colorectal cancer (CRC) is the second most common malignancy in Europe and a leading cause of cancer-related death. Almost 50% of patients with CRC develop liver metastases, which heralds a poor prognosis unless metastases can be downsized to surgical resection or ablation. The FOXFIRE trial examines the hypothesis that combining radiosensitising chemotherapy (OxMdG: oxaliplatin, 5-fluorouracil and folic acid) with Selective Internal Radiation Therapy (SIRT or radioembolisation) using yttrium-90 resin microspheres (SIR-Spheres®; Sirtex Medical Limited, North Sydney, Australia) as a first-line treatment for liver-dominant metastatic CRC will improve clinical outcomes when compared to OxMdG chemotherapy alone. Methods/Design FOXFIRE is an open-label, multicentre, randomised controlled trial of OxMdG with or without the addition of SIRT (1:1 randomisation). Eligible adult patients have histologically confirmed colorectal adenocarcinoma, liver metastases measurable on computed tomography scan and untreatable by either surgical resection or local ablation, and they may have limited extra-hepatic disease, defined as ≤5 nodules in the lung and/or one other metastatic site which is amenable to future definitive treatment. Eligible patients may have received adjuvant chemotherapy following resection of the primary tumour, but are not permitted to have previously received chemotherapy for metastatic disease, and must have a life expectancy of ≥3 months and a WHO performance status of 0–1. The primary outcome is overall survival. Secondary outcomes include progression free survival (PFS), liver-specific PFS, patient-reported outcomes, safety, response rate, resection rate and cost-effectiveness. FOXFIRE shares a combined statistical analysis plan with an international sister trial called SIRFLOX. Discussion This trial is establishing a network of SIRT centres and ‘feeder’ chemotherapy-only centres to standardise the delivery of SIRT across the whole of

  9. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  10. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  11. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone.

    PubMed

    Kim, Hong Kee; Chung, Hyun Jung; Park, Tae Gwan

    2006-05-15

    A new approach for attaining sustained release of protein is introduced, involving a pore-closing process of preformed porous PLGA microspheres. Highly porous biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were fabricated by a single water-in-oil emulsion solvent evaporation technique using Pluronic F127 as an extractable porogen. Recombinant human growth hormone (rhGH) was incorporated into porous microspheres by a simple solution dipping method. For their controlled release, porous microspheres containing hGH were treated with water-miscible solvents in aqueous phase for production of pore-closed microspheres. These microspheres showed sustained release patterns over an extended period; however, the drug loading efficiency was extremely low. To overcome the drug loading problem, the pore-closing process was performed in an ethanol vapor phase using a fluidized bed reactor. The resultant pore-closed microspheres exhibited high protein loading amount as well as sustained rhGH release profiles. Also, the released rhGH exhibited structural integrity after the treatment. PMID:16542746

  12. Bacterial protease triggered release of biocides from microspheres with an oily core.

    PubMed

    Craig, Marina; Amiri, Mona; Holmberg, Krister

    2015-03-01

    This study deals with controlled release of drugs to a Staphylococcus aureus infected site from microspheres with an oily core and a polymeric shell. The intended use of the microspheres is for chronic wounds and the microspheres may be administered in the form of a wash liquid or incorporated in a gel. Chronic wounds often carry infection, and the use of microspheres with drug release triggered by the bacterial infection is therefore of interest. A lipophilic drug or a model of the drug was dissolved in an oil and the oil phase was dispersed into an o/w emulsion. A nanofilm shell was then assembled around the oil droplets with the layer-by-layer technique using the two biodegradable polypeptides anionic poly-L-glutamic acid (PLGA) and cationic poly-L-lysine (PLL). Since S. aureus exudes proteases such as glutamyl endopeptidase (V8) during colonization and infection, its substrate specificity was key when assembling the nanofilm. Since V8 is known to be substrate specific to the Glu-X bond, PLGA was chosen as the terminating layer of the nanofilm. Crosslinking the nanofilm after assembly lead to increased stability of the microspheres. It was shown that in a non-infectious environment, i.e. when a human wound enzyme, HNE (human neutrophile elastase), was present, the microspheres remained intact. The staphylococcal protease V8, on the other hand, readily catalyzed degradation of the microspheres, thus releasing the drug when triggered by the infectious environment. PMID:25679492

  13. Biodegradable and injectable paclitaxel-loaded poly(ester amide)s microspheres: fabrication and characterization.

    PubMed

    Guo, Kai; Chu, C C

    2009-05-01

    Novel biodegradable submicron microspheres of amino acid based poly(ester amide)s (PEAs) were fabricated by an oil-in-water (O/W) emulsion/solvent evaporation technique and their morphology and drug loading efficiency were examined. PEAs microspheres of mean diameter <1 microm with very narrow size distribution were obtained at a fair yield about 80%. The effects of PEA polymer concentration, polyvinyl alcohol emulsifier concentration, and the homogenizer speed on the size and morphology of final PEA microspheres were examined by analyzing their SEM images. It is found that a low PEA concentration, a high PVA concentration, and a high homogenizer speed are the optimal conditions for obtaining smaller microspheres. The biodegradation behaviors of these PEA microspheres at 37 degrees C were investigated as a function of enzyme (alpha-chymotrypsin) concentration and incubation time. The data showed similar surface erosion degradation mechanism as PEA polymers reported previously. Paclitaxel loaded PEA microspheres with high encapsulation efficiency were obtained without significantly affecting their size and surface morphology. The high drug loading efficiency close to 100% suggested that PEA microspheres may have the potential for the injection administration of highly hydrophobic anticancer drugs. PMID:18937264

  14. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    PubMed

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  15. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  16. Multilayered polymer microspheres by thermal imprinting during microsphere growth.

    PubMed

    Takekoh, Ryu; Li, Wen-Hui; Burke, Nicholas A D; Stöver, Harald D H

    2006-01-11

    Modulation of the polymerization temperature in precipitation polymerizations was used to form onion-type polymer microspheres consisting of multiple nested layers. Specifically, the copolymerization of chloromethylstyrene and divinylbenzene-55 in acetonitrile, at temperatures ramping between 65 and 75 degrees C, led to monodisperse, cross-linked microspheres of about 10 mum diameter that have radial density profiles closely reflecting the thermal profiles used. This thermal imprinting is attributed to the copolymer formed being close to its theta point during the polymerization. As the microspheres grow by continuously capturing oligomers from solution, the resulting transient surface gel layer expands and contracts with temperature, and thus records the reaction temperature profile in the form of a corresponding density profile, even as it cross-links. PMID:16390152

  17. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  18. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  19. Diclofenac salts, part 6: release from lipid microspheres.

    PubMed

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. PMID:21523784

  20. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Brown, Roger F

    2011-03-01

    Hollow hydroxyapatite (HA) microspheres were prepared by reacting solid microspheres of Li(2)O-CaO-B(2)O(3) glass (106-150 μm) in K(2)HPO(4) solution, and evaluated as a controlled delivery device for a model protein, bovine serum albumin (BSA). Reaction of the glass microspheres for 2 days in 0.02 M K(2)HPO(4) solution (pH = 9) at 37°C resulted in the formation of biocompatible HA microspheres with a hollow core diameter equal to 0.6 the external diameter, high surface area (~100 m(2)/g), and a mesoporous shell wall (pore size ≈ 13 nm). After loading with a solution of BSA in phosphate-buffered saline (PBS) (5 mg BSA/ml), the release kinetics of BSA from the HA microspheres into a PBS medium were measured using a micro bicinchoninic acid (BCA) protein assay. Release of BSA initially increased linearly with time, but almost ceased after 24-48 h. Modification of the BSA release kinetics was achieved by modifying the microstructure of the as-prepared HA microspheres using a controlled heat treatment (1-24 h at 600-900°C). Sustained release of BSA was achieved over 7-14 days from HA microspheres heated for 5 h at 600°C. The amount of BSA released at a given time was dependent on the concentration of BSA initially loaded into the HA microspheres. These hollow HA microspheres could provide a novel inorganic device for controlled local delivery of proteins and drugs. PMID:21290170

  1. Electrosprayed 4-carboxybenzenesulfonamide-chitosan microspheres for acetazolamide delivery.

    PubMed

    Suvannasara, Phruetchika; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-03-01

    4-Carboxybenzensulfonamide-chitosan (4-CBS-chitosan) microspheres were prepared by electrospraying with acetazolamide (ACZ) as a model drug. The obtained 4-CBS-chitosan microspheres with or without ACZ-loading were characterized by Fourier transform infrared spectroscopy, differential scanning colorimetry, scanning electron microscopy and particle size analyses. The crystalline form and the stability of ACZ in a basic solution was determined using X-ray single crystal analysis. 4-CBS-chitosan had 90% encapsulation efficiency for ACZ compared to 47% of encapsulation efficiency (EE) obtained from native chitosan, forming 3.1 μm diameter microspheres with a low polydispersity index (0.4). After an initial burst release (58% in 5 min), ACZ-loaded 4-CBS-chitosan gave a sustained release of ACZ (∼ 100% over 3h) in simulated gastric fluid (0.1N HCl; pH 1.2), which was better than that seen for the release from ACZ-loaded chitosan (44% over 1.5h). Thus, 4-CBS-chitosan microspheres are a possible drug carrier in acidic conditions, such as at the gastric mucosal wall. PMID:24360896

  2. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  3. Modeling the Formation of Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Weiser, E. S.; Gonsoulin, B.; Hubert, P.

    2002-01-01

    High temperature polyimide microspheres have been developed from polyimide solid residuum by a simple inflation process. Microspheres have been fabricated from several polyimide precursors through the use of a circulating air oven. Microsphere formation and final physical property characterization have been limited to simple mechanical and thermal testing. The present paper focuses on developing an understanding of microsphere formation through simple geometric rules for an incompressible polymeric material and microscopic observations of precursor residuum inflation. Inflation kinematics of the hollow polyimide microspheres as a function of time and temperature is discussed.

  4. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug.

    PubMed

    Wang, Lian-Yan; Ma, Guang-Hui; Su, Zhi-Guo

    2005-08-18

    The control of size and size distribution of microspheres is necessary for obtaining repeatable controlled release behavior. The chitosan microspheres were prepared by a membrane emulsification technique in this study. Chitosan was dissolved in 1 wt.% aqueous acetic acid containing 0.9 wt.% sodium chloride, which was used as a water phase. A mixture of liquid paraffin and petroleum ether 7:5 (v/v) containing PO-500 emulsifier was used as an oil phase. The water phase was permeated through the uniform pores of a porous glass membrane into the oil phase by the pressure of nitrogen gas to form W/O emulsion. Then GST (Glutaraldehyde Saturated Toluene) as crosslinking agent was slowly dropped into the W/O emulsion to solidify the chitosan droplets. The preparation condition for obtaining uniform-sized microspheres was optimized. The microspheres with different size were prepared by using the membranes with different pore size, and there was a linear relationship between the diameter of microspheres and pore size of the membranes when the microspheres were in the range of micron size. The smallest chitosan microspheres obtained was 0.4 mum in diameter. This is the first report for preparing the uniform-sized chitosan microspheres by membrane emulsification technique. Uniform chitosan microspheres were further used as a carrier of protein drug. Bovine serum albumin (BSA) as a model drug was loaded in the microspheres and released in vitro. The effects of pH value, diameter and crosslinking degree of microspheres, and BSA concentration on loading efficiency and release behavior were discussed. PMID:15922472

  5. Melanoidin and aldocyanoin microspheres - Implications for chemical evolution and early Precambrian micropaleontology

    NASA Technical Reports Server (NTRS)

    Kenyon, D. H.; Nissenbaum, A.

    1976-01-01

    Two new classes of organic microspheres are described. One of them (melanoidin) is synthesized from amino acids and sugars in heated aqueous solutions. The other (aldocyanoin) is formed in aqueous solutions of ammonium cyanide and formaldehyde at room temperature. The general properties of these microspheres, including conditions of synthesis, size and shape, mechanical and pH stability, and solubility, are compared with corresponding properties of other protocell model systems. It is concluded that melanoidin and aldocyanoin microspheres are plausible candidates for precellular units in the primitive hydrosphere. Since the bulk of the organic carbon in early Precambrian sediments is insoluble kerogen-melanoidin, it is suggested that some Precambrian microfossils may be abiotic melanoidin microspheres.

  6. The preparation and properties of monodisperse core-shell silica magnetic microspheres.

    PubMed

    Lou, Min-yi; Jia, Qiu-ling; Wang, De-ping; Liu, Bing; Huang, Wen-hai

    2008-01-01

    The monodisperse core-shell silica magnetic microspheres (MMS) were synthesized by sol-gel method gelling in the emulsion. Optical microscope (OM), field emission scanning electron microscope (FESEM), nitrogen adsorption and desorption Brunauer Emmett Teller Procedure (BET) isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution measurements, X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and vibrating sample magnetometer (VSM) were used to characterize the appearance, size distribution, phase, specific surface area, chemical composition and magnetic property of silica MMS. The results showed that silica MMS prepared through sol-gel method with acid-alkali two-step catalyze and gelling in emulsion exhibited the superior core-shell structure and size distribution of the microspheres concentrated in about 20 mum. The main phase of microspheres was amorphous silica and spinel ferroferric oxide. Meanwhile, the microspheres remained the superparamagnetic behavior and could be used as biomaterials. PMID:17597357

  7. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  8. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions.

    PubMed

    Yang, Song; Liu, Huarong; Zhang, Zhicheng

    2008-09-16

    We herein present a novel and simple synthetic strategy for fabricating multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions. Amphipathic magnetite nanoparticles surface-modified with oleic acid act as an oil-soluble emulsifier and sodium dodecyl sulfate acts as a water-soluble surfactant in the system. The final products were thoroughly characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and field-emission scanning electron microscopy, which showed the formation of multihollow magnetite/polystyrene nanocomposite microspheres. Preliminary results of magnetic properties of multihollow magnetite/polystyrene microspheres were reported. The effect of the content of amphipathic magnetite nanoparticles on the morphology of nanocomposite microspheres was studied. Furthermore, the mechanism of formation of multihollow magnetic nanocomposite microspheres was also discussed. PMID:18715023

  9. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  10. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  11. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  12. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process.

    PubMed

    Han, Pingping; Shi, Jiafu; Nie, Teng; Zhang, Shaohua; Wang, Xueyan; Yang, Pengfei; Wu, Hong; Jiang, Zhongyi

    2016-03-01

    In this study, multifunctional chitin microspheres are synthesized and utilized as a platform for multiple potential applications in enzyme immobilization, catalytic reduction and adsorption. Porous chitin microspheres with an average diameter of 111.5 μm and a porous architecture are fabricated through a thermally induced phase separation method. Then, the porous chitin microspheres are conferred with surface multifunctionality through facile coordination-enabled self-assembly of tannic acid (TA) and titanium (Ti(IV)) bis(ammonium lactate)dihydroxide (Ti-BALDH). The multipoint hydrogen bonds between TA and chitin microspheres confer the TA-Ti(IV) coating with high adhesion capability to adhere firmly to the surface of the chitin microspheres. In view of the biocompatibility, porosity and surface activity, the multifunctional chitin microspheres are used as carriers for enzyme immobilization. The enzyme-conjugated multifunctional porous microspheres exhibit high catalytic performance (102.8 U·mg(-1) yeast alcohol dehydrogenase). Besides, the multifunctional chitin microspheres also find potential applications in the catalytic reduction (e.g., reduction of silver ions to silver nanoparticles) and efficient adsorption of heavy metal ions (e.g., Pb(2+)) taking advantages of their porosity, reducing capability and chelation property. PMID:26963907

  13. Preparation of metal sulfide-polymer composite microspheres with patterned surface structures.

    PubMed

    Fang, Yu; Bai, Chaoliang; Zhang, Ying

    2004-04-01

    CuS-poly(N-isopropylacrylamide), CuS-poly(N-isopropylacrylamide-co-methacrylic acid), Ag(2)S-poly(N-isopropylacrylamide) and Ag(2)S-poly(N-isopropylacrylamide-co-methacrylic acid) composite microspheres exhibiting complex surface morphologies were prepared by employing the minigel template method. PMID:15045072

  14. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  15. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  16. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    PubMed

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. PMID:26803601

  17. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method.

    PubMed

    You, J O; Park, S B; Park, H Y; Haam, S; Chung, C H; Kim, W S

    2001-01-01

    Monodisperse Ca-alginate microspheres were prepared using the membrane emulsification method. Three ionic types of drugs (anionic, cationic and non-ionic) were incorporated into the microspheres, and the effects of sodium alginate concentration and the pressure applied during the dispersing process on the properties of the microspheres were examined. Monodisperse microspheres were obtained when the concentration of alginate solution was 2 wt% and the pressure applied was 0.4 x 10(5) Pa. The mean size of microspheres was approximately 4 microm. Lidocaine x HCl (cationic), sodium salicylate (anionic) and 4-acetamidophenol (non-ionic) were selected as ionic model drugs and included in the alginate microspheres. Lidocaine x HCl (cationic drug) release was more retarded than that of the anionic drug, because of the electrostatic attraction between the negative charge of the ionized carboxyl group in the alginate chain and the positive charge of the cationic drug. In acidic release medium, a slow release was observed due to the low swelling characteristic and the increased viscosity of alginate, regardless of ionic type of drug. PMID:11428680

  18. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.

    PubMed

    Wang, Shanshan; Chen, Yuying; Liang, Hao; Chen, Yiming; Shi, Mengxuan; Wu, Jiande; Liu, Xianwu; Li, Zuseng; Liu, Bin; Yuan, Qipeng; Li, Yuan

    2015-10-01

    An intestine-specific delivery system for hydrophobic bioactives with improved stability was developed. It consists of oxidized potato starch polymers, where the carboxyl groups were physically cross-linked via ferric ions. The model hydrophobic ingredients (β-carotene) were incorporated inside the starch microspheres via a double-emulsion method. Confocal laser scanning microscopy images showed that β-carotene were distributed homogeneously in the inner oil phase of the starch microspheres. The negative value of the ζ-potential of microspheres increased with increasing pH and decreasing ionic strength. In vitro release experiments showed that the microspheres were stable at acidic stomach conditions (pH < 2), whereas at neutral intestinal conditions (pH 7.0), they rupture to release the loaded β-carotene. The 1,1-diphenyl-2-picrylhydrazyl radical, 2,2-diphenyl-1-(2,4,6-trinitriphenyl), scavenging activity results suggested that microsphere-encapsulated β-carotene had an improved activity after thermal treatment at 80 °C. The storage stability of encapsulated β-carotene at room temperature was also enhanced. The starch microspheres showed potential as intestine-specific carriers with an enhanced stability. PMID:26414436

  19. The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres.

    PubMed

    Mateovic, T; Kriznar, B; Bogataj, M; Mrhar, A

    2002-01-01

    Eudragit RS microspheres containing pipemidic acid, as a model drug, were prepared by the solvent evaporation method using an acetone/liquid paraffin solvent system. The aim of the work was to evaluate the influence of stirring rate on the average particle size, particle morphology, drug content and release kinetics, as well as the influence of particle size on microsphere morphology, drug content and release kinetics. Stirring rate has been found to significantly influence the average diameter of microspheres. The average diameter decreases as the stirring rate increases. This can be explained by production of a finer dispersion of droplets when higher stirring rates are applied and, consequently, by the formation of smaller microspheres. With increasing stirring rate and increasing fraction particle size the drug content also increases. It is assumed that this dependence is a consequence of an uneven diffusion of the drug from the inner to the outer emulsion phase, and an uneven encapsulation of drug particles during the preparation. Drug release follows the Higuchi model. As seen from SEM photographs, larger microspheres are more porous and the microspheres produced at higher stirring rates are more porous than those produced at lower stirring rates. This explains the unexpected finding that the release rate increases as the fraction particle size and the stirring rate increase. PMID:11811756

  20. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  1. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  2. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)

    2002-01-01

    A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.

  3. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage.

    PubMed

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-09-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  4. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  5. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  6. Design of polypeptide-functionalized polystyrene microspheres.

    PubMed

    Bousquet, A; Perrier-Cornet, R; Ibarboure, E; Papon, E; Labrugère, C; Héroguez, V; Rodríguez-Hernández, J

    2008-07-01

    In this contribution, the principle of spontaneous surface segregation has been applied for the preparation of polypeptide-functionalized polystyrene microspheres. For that purpose, an amphiphilic diblock copolymer was introduced in the mixture styrene/divinylbenzene and polymerized using AIBN as initiator. During the polymerization, cross-linked particles were obtained in which the diblock copolymer was encapsulated. The amphiphilic diblock copolymers used throughout this study contain a hydrophilic polypeptide segment, either poly(L-lysine) or poly(L-glutamic acid) and a hydrophobic polystyrene block. After 4 h of polymerization, rather monodisperse particles with sizes of approximately 3-4 microm were obtained. Upon annealing in hot water, the hydrophilic polypeptides migrate to the interface, hence, either positively charged or neutral particles were obtained when poly(L-lysine) is revealed at the surface and exposed to acidic or basic pH, respectively. On the opposite, negatively charged particles were achieved in basic pH water by using poly(L-glutamic acid) as additive. The surface chemical composition was modified by changing the environment of the particles. Thus, exposure in toluene provoked a surface rearrangement, and due to its affinity, the polystyrene block reorients toward the interface. PMID:18517246

  7. Controllable synthesis of CuS-P(AM-co-MAA) composite microspheres with patterned surface structures.

    PubMed

    Zhang, Ying; Liu, Huijin; Zhao, Ya; Fang, Yu

    2008-09-15

    Copper sulfide-poly(acrylamide-co-methacrylic acid) (CuS-P(AM-co-MAA)) composite microspheres with patterned surface structures have been synthesized in a controllable manner by means of the polymer microgel template method. The formation of CuS particles can be regulated by controlling the decomposition of thioacetamide (TAA) in acidic solution. Compared with the microgel template, the surface morphologies of the composite microspheres are characterized by compact and creased textures. The surface morphology of the composite microspheres has been found to be mainly influenced by the amount of copper sulfide precipitated and hence by the rate of H(2)S gas generation. This study might provide a potential route for controlling the synthesis of various metal sulfide-polymer composites with patterned surface structures. PMID:18649893

  8. Biodegradable microspheres for parenteral delivery.

    PubMed

    Sinha, V R; Trehan, A

    2005-01-01

    Nowadays, emphasis is being laid to development of controlled release dosage forms. Interest in this technology has increased steadily over the past few years. Although oral administration of drugs is a widely accepted route of drug delivery, bioavailability of drug often varies as a result of gastrointestinal absorption, degradation by first-pass effect, and hostile environment of gastrointestinal tract. Transdermal administration for percutaneous absorption of drug is limited by the impermeable nature of the stratum corneum. Ocular and nasal delivery is also unfavorable because of degradation by enzymes present in eye tissues and nasal mucosa. Hence, the parenteral route is the most viable approach in such cases. Of the various ways of achieving long-term parenteral drug delivery, biodegradable microspheres are one of the better means of controlling the release of drug over a long time. Because of the lipidic nature of liposomes, problems such as limited physical stability and difficulty of freeze-drying are encountered. Similarly, for emulsions, stability on long-term basis and in suspensions, rheological changes during filling, injecting, and storage poses limitation. Also, in all these systems, the release rate cannot be tailored to the needs of the patient. Parenteral controlled-release formulations based on biodegradable microspheres can overcome these problems and can control the release of drug over a predetermined time span, usually in the order of days to weeks to months. Various FDA-approved controlled-release parenteral formulations based on these biodegradable microspheres are available on the market, including Lupron Depot Nutropin Depot and Zoladex. This review covers various molecules encapsulated in biodegradable microspheres for parenteral delivery. PMID:16566705

  9. Microspheres in Plasma Display Panels

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Filling small bubbles of molten glass with gases is just as difficult as it sounds, but the technical staff at NASA is not known to shy away from a difficult task. When Microsphere Systems, Inc. (MSI), of Ypsilanti, Michigan, and Imaging Systems Technology, Inc. (IST), of Toledo, Ohio, were trying to push the limits of plasma displays but were having difficulty with the designs, NASA s Glenn Garrett Morgan Commercialization Initiative (GMCI) assembled key personnel at Glenn Research Center and Ohio State University for a brainstorming session to come up with a solution for the companies. They needed a system that could produce hollow, glass micro-sized spheres (microspheres) that could be filled with a variety of gasses. But the extremely high temperature required to force the micro-sized glass bubbles to form at the tip of a metal nozzle resulted in severe discoloration of the microspheres. After countless experiments on various glass-metal combinations, they had turned to the GMCI for help. NASA experts in advanced metals, ceramics, and glass concluded that a new design approach was necessary. The team determined that what was needed was a phosphate glass composition that would remain transparent, and they went to work on a solution. Six weeks later, using the design tips from the NASA team, Tim Henderson, president of MSI, had designed a new system in which all surfaces in contact with the molten glass would be ceramic instead of metal. Meanwhile, IST was able to complete a Phase I Small Business Innovation Research (SBIR) grant supported by the National Science Foundation (NSF) and supply a potential customer with samples of the microspheres for evaluation as filler materials for high-performance insulations.

  10. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification.

    PubMed

    Qi, Feng; Wu, Jie; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2014-10-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) microspheres have been widely prepared by many methods, including solvent evaporation, solvent extraction and the co-solvent method. However, very few studies have compared the properties of microspheres fabricated by these methods. This is partly because the broad size distribution of the resultant particles severely complicates the analysis and affects the reliability of the comparison. To this end, uniform-sized PLGA microspheres have been prepared by Shirasu porous glass premix membrane emulsification and used to encapsulate exenatide, a drug for treating Type 2 diabetes. Based on this technique, the influences on the properties of microspheres fabricated by the aforementioned three methods were intensively investigated, including in vitro release, degradation and pharmacology. We found that these microspheres presented totally different release behaviors in vitro and in vivo, but exhibited a similar trend of PLGA degradation. Moreover, the internal structural evolution visually demonstrated these release behaviors. We selected for further examination the microsphere prepared by solvent evaporation because of its constant release rate, and explored its pharmacodynamics, histology, etc., in more detail. This microsphere when injected once showed equivalent efficacy to that of twice-daily injections of exenatide with no inflammatory response. PMID:24952071

  11. Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres.

    PubMed

    An, Zhenguo; Zhang, Jingjie

    2016-02-21

    Silica-nickel-carbon composite microspheres with shelly hollow structures and tunable electromagnetic properties were prepared in large scale through a three-step route. Micron-sized precursor microspheres were prepared firstly by spray drying of water glass. Then a subsequent acid leaching with diluted hydrochloric acid was carried out to eliminate the Na2O in the precursor microspheres to get single shell silica hollow microspheres (SHMs). Afterwards, Ni-C composite shells were assembled on the surface of the previously formed SHMs through a calcination route in an inert atmosphere to form silica-nickel-carbon composite shelly hollow microspheres (CSHMs) through decomposition of the reactants and carbon thermal reduction. By properly tuning the calcination conditions, silica-nickel CSHMs with gradients in composition can also be prepared. The electromagnetic properties of the CSHMs were studied and the results demonstrate that they present ferromagnetic and microwave absorbing properties related to the shell composition. The DSHPs thus obtained may have some promising applications in the fields of low-density magnetic materials and microwave absorbers. This work provides a new strategy to fabricate shelly hollow particles, which can be expected to be extended to the controlled preparation of similar structures with various compositions. PMID:26726765

  12. Urchin-like LaVO₄/Au composite microspheres for surface-enhanced Raman scattering detection.

    PubMed

    Chen, Limiao; Wu, Min; Xiao, Chengyuan; Yu, Yifan; Liu, Xiaohe; Qiu, Guanzhou

    2015-04-01

    The availability of sensitive, reproducible and stable substrate is critically important for surface enhanced Raman scattering (SERS)-based application, but it still remains a challenge up to now. In this work, urchin-like LaVO4 microspheres prepared by a hydrothermal method were used as a template to fabricate SERS substrate by deposition of Au nanoparticle onto the surfaces of LaVO4 microspheres. The coverage of Au nanoparticles on the surfaces of LaVO4 microspheres can be easily controlled by varying the amount of Au precursor. SERS measurement showed that the coverage of Au nanoparticles on the surfaces of LaVO4 microspheres had a great effect on SERS activity. The SERS signals collected from 80 microspheres indicated that as-prepared SERS substrate exhibited a good reproducibility. Detection of melamine molecules with a low concentration (1.0×10(-9)M) was used as an example to show the possible application of such substrate. In addition, the effect of iron ion (Fe(3+)) on detection melamine from the mixture of melamine and benzoic acid was also investigated. It was found that the interference of benzoic acid in detecting melamine from the mixture can be removed by adding Fe(3+). PMID:25540824

  13. Controlled release of imatinib mesylate from PLGA microspheres inhibit craniopharyngioma mediated angiogenesis.

    PubMed

    Karal-Yilmaz, Oksan; Ozkan, Abdulkadir; Akgun, Emel; Kukut, Manolya; Baysal, Kemal; Avsar, Timucin; Kilic, Turker

    2013-01-01

    Poly(lactic-co-glycolic acid) microspheres loaded with imatinib mesylate has been developed as a new therapeutic strategy to prevent craniopharyngioma recurrence. Microspheres composed of different lactic/glycolic acid ratios, molecular weights and drug compositions were synthesized and loaded with imatinib mesylate by modified double-emulsion/solvent evaporation technique and subsequently characterized by particle-size distribution, scanning electron microscopy, encapsulation efficiency and in vitro drug release. Inhibitory potential of imatinib containing microspheres on tumor neovascularization was investigated on craniopharyngioma tumor samples by rat cornea angiogenesis assay. Results showed that microspheres in different LA:GA ratios [LA:GA 50:50 (G50), 75:25 (G25), 85:15 (G15)] considerably reduced neovascularization induced by recurrent tumor samples in an in vivo angiogenesis assay (P < 0.01). Our data indicate that local delivery of imatinib mesylate to the post-surgical tumoral cavity using biodegradable microspheres may be a promising biologically selective approach to prevent the recurrence of craniopharyngiomas, via inhibition of neovascularization. PMID:23053813

  14. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  15. Photonic detection and characterization of DNA using sapphire microspheres.

    PubMed

    Murib, Mohammed Sharif; Yeap, Weng-Siang; Martens, Daan; Bienstman, Peter; De Ceuninck, Ward; van Grinsven, Bart; Schöning, Michael J; Michiels, Luc; Haenen, Ken; Ameloot, Marcel; Serpengüzel, Ali; Wagner, Patrick

    2014-09-01

    A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500 µm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q . ≈ 04) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants. PMID:25260868

  16. Integrated Cryogenic Experiment (ICE) microsphere investigation

    NASA Technical Reports Server (NTRS)

    Spradley, I.; Read, D.

    1989-01-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  17. Gas foamed open porous biodegradable polymeric microspheres.

    PubMed

    Kim, Taek Kyoung; Yoon, Jun Jin; Lee, Doo Sung; Park, Tae Gwan

    2006-01-01

    Highly open porous biodegradable polymeric microspheres were fabricated for use as injectable scaffold microcarriers for cell delivery. A modified water-in-oil-in-water (W1/O/W2) double emulsion solvent evaporation method was employed for producing the microspheres. The incorporation of an effervescent salt, ammonium bicarbonate, in the primary W1 droplets spontaneously produced carbon dioxide and ammonia gas bubbles during the solvent evaporation process, which not only stabilized the primary emulsion, but also created well inter-connected pores in the resultant microspheres. The porous microspheres fabricated under various gas foaming conditions were characterized. The surface pores became as large as 20 microm in diameter with increasing the concentration of ammonium bicarbonate, being sufficient enough for cell infiltration and seeding. These porous scaffold microspheres could be potentially utilized for cultivating cells in a suspension manner and for delivering the seeded cells to the tissue defect site in an injectable manner. PMID:16023197

  18. Integrated Cryogenic Experiment (ICE) microsphere investigation

    SciTech Connect

    Spradley, I.; Read, D.

    1989-09-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  19. Multiplexed Microsphere Suspension Array-Based Immunoassays.

    PubMed

    Lin, Andrew; Salvador, Alexandra; Carter, J Mark

    2015-01-01

    ELISA is an extremely powerful tool to detect analytes because of its sensitivity, selectivity, reproducibility and ease of use. Here we describe sandwich immunoassays performed in suspension on spectrally unique microspheres developed by Luminex. Luminex assays offer the benefit of multiplex analysis of large numbers of analytes in a single reaction. Because the microspheres are spectrally unique, many microspheres, each attached to various antibodies, can be added to a single sample. Luminex instruments can distinguish each microsphere and detect the intensity of a reporter signal for each microsphere. Results are reported in Median Fluorescent Intensities for each analyte. Luminex assays can be used to detect up to 500 analytes in a high-throughput format. Luminex refers to this technology as xMAP(®). Here we describe a routine protocol for a Luminex immunoassay. Other Luminex assays would have to be optimized for specific conditions according to their use. PMID:26160569

  20. Laser-Induced Spallation of Microsphere Monolayers.

    PubMed

    Hiraiwa, Morgan; Stossel, Melicent; Khanolkar, Amey; Wang, Junlan; Boechler, Nicholas

    2016-08-01

    The detachment of a semiordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained using an adhesive contact model together with interferometric measurements of the out-of-plane microsphere contact resonance, and with estimated work of adhesion values for the polystyrene-aluminum interface. Scanning electron microscope images of detached monolayer regions reveal a unique morphology, namely, partially detached monolayer flakes composed of single hexagonal close packed crystalline domains. This work contributes to the fields of microsphere adhesion and contact dynamics, and demonstrates a unique monolayer delamination morphology. PMID:27409715

  1. Novel core-shell cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides.

    PubMed

    Wang, Zhi-Gang; Cheng, Gong; Liu, Yan-Lin; Zhang, Ji-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2014-03-01

    In this work, novel magnetic polymeric core-shell structured microspheres with immobilized Ce(IV), Fe3O4@SiO2@PVPA-Ce(IV), were designed rationally and synthesized successfully via a facile route for the first time. Magnetic Fe3O4@SiO2 microspheres were first prepared by directly coating a thin layer of silica onto Fe3O4 magnetic particles using a sol-gel method, a poly(vinylphosphonic acid) (PVPA) shell was then coated on the Fe3O4@SiO2 microspheres to form Fe3O4@SiO2@PVPA microspheres through a radical polymerization reaction, and finally Ce(IV) ions were robustly immobilized onto the Fe3O4@SiO2@PVPA microspheres through strong chelation between Ce(IV) ions and phosphate moieties in the PVPA. The applicability of the Fe3O4@SiO2@PVPA-Ce(IV) microspheres for selective enrichment and rapid separation of phosphopeptides from proteolytic digests of standard and real protein samples was investigated. The results demonstrated that the core-shell structured Fe3O4@SiO2@PVPA-Ce(IV) microspheres with abundant Ce(IV) affinity sites and excellent magnetic responsiveness can effectively purify phosphopeptides from complex biosamples for MS detection taking advantage of the rapid magnetic separation and the selective affinity between Ce(IV) ions and phosphate moieties of the phosphopeptides. Furthermore, they can be effectively recycled and show good reusability, and have better performance than commercial TiO2 beads and homemade Fe3O4@PMAA-Ce(IV) microspheres. Thus the Fe3O4@SiO2@PVPA-Ce(IV) microspheres can benefit greatly the mass spectrometric qualitative analysis of phosphopeptides in phosphoproteome research. PMID:24407680

  2. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  3. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells. PMID:22088755

  4. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma.

    PubMed

    González-Gómez, Pilar; Crecente-Campo, Jose; Zahonero, Cristina; de la Fuente, Maria; Hernández-Laín, Aurelio; Mira, Helena; Sánchez-Gómez, Pilar; Garcia-Fuentes, Marcos

    2015-05-10

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133(+), Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  5. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries.

    PubMed

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Zhang, Xiaoqiang; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2014-11-26

    Hierarchical ZnO-Ag-C composite porous microspheres are successfully synthesized by calcination of the preproduced zinc-silver citrate porous microspheres in argon. The carbon derives from the in situ carbonization of carboxylic acid groups in zinc-silver citrate during annealing treatment. The average particle size of ZnO-Ag-C composite porous microspheres is approximate 1.5 μm. When adopted as the electrode materials in lithium ion batteries, the obtained composite porous microspheres display high specific capacity, excellent cyclability, and good rate capability. A discharge capacity as high as 729 mA h g(-1) can be retained after 200 cycles at 100 mA g(-1). The excellent electrochemical properties of ZnO-Ag-C are ascribed to its unique hierarchical porous configuration as well as the modification of silver and carbon. PMID:25350718

  6. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  7. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption.

    PubMed

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-28

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe(3)O(4) composite microspheres composed of an inner cavity, PLGA inner shell and Fe(3)O(4) outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe(3)O(4) nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g(-1)) and high efficiency in lysozyme adsorption. PMID:24492410

  8. Nuclear fuel microsphere gamma analyzer

    DOEpatents

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  9. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  10. Anti-VEGFR2-conjugated PLGA microspheres as an x-ray phase contrast agent for assessing the VEGFR2 expression

    NASA Astrophysics Data System (ADS)

    Tang, Rongbiao; Chai, Wei-Min; Ying, Weihai; Yang, Guo-Yuan; Xie, Honglan; Liu, Hui-Qiang; Chen, Ke-Min

    2012-05-01

    The primary goal of this study was to evaluate the feasibility of using anti-vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated poly(lactic-co-glycolic acid) (PLGA) microspheres as an x-ray phase contrast agent to assess the VEGFR2 expression in cell cultures. The cell lines, mouse LLC (Lewis lung carcinoma) and HUVEC (human umbilical vein endothelial cell), were selected for cell adhesion studies. The bound PLGA microspheres were found to better adhere to LLC cells or HUVECs than unbound ones. Absorption and phase contrast images of PLGA microspheres were acquired and compared in vitro. Phase contrast imaging (PCI) greatly improves the detection of the microspheres as compared to absorption contrast imaging. The cells incubated with PLGA microspheres were imaged by PCI, which provided clear 3D visualization of the beads, indicating the feasibility of using PLGA microspheres as a contrast agent for phase contrast CT. In addition, the microspheres could be clearly distinguished from the wall of the vessel on phase contrast CT images. Therefore, the approach holds promise for assessing the VEGFR2 expression on endothelial cells of tumor-associated vessels. We conclude that PLGA microsphere-based PCI of the VEGFR2 expression might be a novel, promising biomarker for future studies of tumor angiogenesis.

  11. Solvothermal synthesis of three-dimensional microspherical bismuth oxychloride self-assembled by microspheres

    NASA Astrophysics Data System (ADS)

    Li, Tengfei; Lin, Liyang; Wei, Hongmei; Liang, Guoqiang; Kuang, Xinliang; Liu, Tianmo

    2016-02-01

    Uniform BiOCl microspheres have been synthesized via a facile solvothermal route. The structural features of the as-prepared BiOCl samples were systematically characterized by the X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The SEM characterization results indicated that BiOCl microspheres possessed a superstructure composed of several hierarchical microspheres, which were assembled by numerous two dimensional nanosheets. This kind of special BiOCl 3D microstructure exhibited a large BET surface area of about 14.24 m2 g-1. Besides, the photocatalytic properties of BiOCl hollow microsphere sample and sheet-like sample were investigated in detail. Significantly, BiOCl hollow microsphere sample presented faster degradation rate toward RhB even under visible light, which should be attributed to the unique BiOCl nanosheets self-assembled hollow microspheres.

  12. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres

    PubMed Central

    Ulianas, Alizar; Heng, Lee Yook; Hanifah, Sharina Abu; Ling, Tan Ling

    2012-01-01

    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 × 10−8 M with a lower limit of detection (LOD) of 9.46 × 10−17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices. PMID:22778594

  13. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhang, Li; Zhou, Jun; Zhao, Ziqi

    2016-08-01

    This study reported the improved Raman enhancement ability of silver nanoparticles (Ag NPs) decorated on surface mesoporous silica microspheres (MSiO2@Ag) than that of Ag NPs on solid silica microspheres (SSiO2@Ag). These two kinds of hybrid structures were prepared by a facile single-step hydrothermal reaction with polyvinylpyrrolidone (PVP) serves as both a reductant and stabilizer. The as-synthesized MSiO2@Ag microspheres show more significant surface-enhanced Raman scattering (SERS) activity for 4-mercaptobenzoic acid (4MBA) than SSiO2@Ag microspheres with enhancement factors as 9.20 × 106 and 4.39 × 106, respectively. The proposed reason for the higher SERS activity is estimated to be the contribution of more Raman probe molecules at the mesoporous channels where an enhanced electromagnetic field exists. Such a field was identified by theoretical calculation result. The MSiO2@Ag microspheres were eventually demonstrated for the SERS detection of a typical chemical toxin namely methyl parathion with a detection limit as low as 1 × 10-3 ppm, showing its promising potential in biosensor application.

  14. Lanthanide-Containing Polymer Microspheres by Multiple-Stage Dispersion Polymerization for Highly Multiplexed Bioassays

    PubMed Central

    Abdelrahman, Ahmed I.; Dai, Sheng; Thickett, Stuart C.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2009-01-01

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 µm and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of LnCl3 salts and excess acrylic acid or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, i.e., well after the particle nucleation stage was complete. Individual microspheres contain ca. 106 – 108 chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles, and its detection by an anti-mouse IgG bearing a metal-chelating polymer with Pr. PMID:19807075

  15. Bisphosphonate release profiles from magnetite microspheres.

    PubMed

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres. PMID:24854985

  16. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  17. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  18. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  19. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  20. Effects of different organic additives on the formation of YVO 4:Eu 3+ microspheres under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2011-07-01

    In this study, the effects of different organic additives on the formation of europium-doped yttrium orthovanadate (YVO 4:Eu 3+) microspheres under hydrothermal conditions were investigated. The organic additives employed were sodium dodecyl sulfate (SDS) as an ionic surfactant, polyvinylpyrrolidone (PVP) and ethylene glycol (EG) as nonionic surfactants, disodium ethylenediaminetetraacetic acid (Na 2EDTA) as an organic salt, and acetone as an organic solvent. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The experimental results demonstrated that the organic additives in the hydrothermal system played an important role in the formation of YVO 4:Eu 3+ powders with different morphologies and sizes, as follows: ellipsoids (SDS) → irregular microspheres (acetone) → inhomogeneous microspheres (EG) → uniform microspheres with the diameter of 4-5 μm (PVP) → uniform microspheres with the diameter of 1-3 μm (Na 2EDTA). The luminescence properties were greatly affected by the morphologies and sizes of the as-synthesized samples. The highest emission intensity was observed in the sample hydrothermally synthesized with Na 2EDTA due to the formation of uniform microspheres with less aggregation.

  1. Development of molecularly imprinted microspheres for the fast uptake of 4-cumylphenol from water and soil samples.

    PubMed

    Narula, Priyanka; Kaur, Varinder; Singh, Raghubir; Kansal, Sushil Kumar

    2014-11-01

    Molecularly imprinted microspheres containing binding sites for the extraction of 4-cumylphenol have been prepared for the first time. The imprinted microspheres were synthesized by a precipitation method using 4-cumylphenol as a template molecule, methacrylic acid as a functional monomer and divinylbenzene-80 as a cross-linker for polymer network formation. The formation and the morphology of molecularly imprinted microspheres were well characterized using infrared spectroscopy, thermogravimetric studies, and scanning electron microscopy. The Brunauer-Emmett-Teller analysis revealed the high surface area of the sorbent indicating formation of molecularly imprinted microspheres. The developed microspheres were employed as a sorbent for the solid-phase extraction of 4-cumylphenol and showed fast uptake kinetics. The sorption parameters were optimized to achieve efficient sorption of the template molecule, like pH, quantity of molecularly imprinted microspheres, time required for equilibrium set-up, sorption kinetics, and adsorption isotherm. A standard method was developed to analyze the sorbed sample quantitatively at 279 nm using high-performance liquid chromatography with diode array detection. It was validated by determining target analyte from synthetic samples, bottled water, spiked tap water, and soil samples. The prepared material is a selective and robust sorbent with good reusability. PMID:25196136

  2. Simultaneous nano- and micro-scale control of nanofibrous microspheres self-assembled from star-shaped polymers

    PubMed Central

    Zhang, Zhanpeng; Marson, Ryan L.; Ge, Zhishen; Glotzer, Sharon C.; Ma, Peter X.

    2015-01-01

    The mechanism underlying the multi-scale self-assembly of star-shaped polymers into non-hollow, hollow, and spongy nanofibrous microspheres is reported. Star-shaped poly(L-lactic acid) polymers with varying arm-numbers and arm-lengths are synthesized, dissolved in tetrahydrofuran, emulsified in glycerol, and thermally-induced to phase separate, resulting in microspheres that are either smooth or fibrous on the nano-scale, and either non-hollow, hollow, or spongy on the micro-scale. Molecular architecture and the hydroxyl density are shown to control assembly and morphology at both nano- and micro-scales. Nanofibers form only when the arm length is sufficiently long, while an increase in hydroxyl density causes the microspheres to change from non-hollow to hollow to spongy. We demonstrate via both experiments of capping or doubling the hydroxyl end groups and dissipative particle dynamics simulations that the affinity of hydroxyl to glycerol is critical to stabilizing the micro-scale structure. A “phase diagram” was constructed for the six types of microspheres in relation to the molecular structures of the star-shaped polymers. The proposed mechanism explains how star-shaped polymers self-assemble into various microspheres, and guides us to simultaneously control both nano- and micro-features of the microspheres. PMID:26009995

  3. Hydrogen transport and storage in engineered microspheres

    SciTech Connect

    Rambach, G.; Hendricks, C.

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  4. Carbon microsphere-filled Pyrrone foams.

    NASA Technical Reports Server (NTRS)

    Kimmel, B. G.

    1973-01-01

    Syntactic foam formulations were prepared from mixtures of Pyrrone prepolymers and hollow carbon microspheres. Very low curing shrinkages were obtained for high volume loadings of microspheres. The resulting syntactic foams were found to be remarkably stable over a wide range in temperature. A technique was developed for the emplacement of these foam formulations in polyimide-fiberglass, titanium alloy and stainless steel honeycomb without sacrificing low curing shrinkage or thermal stability.

  5. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  6. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    PubMed

    Behrendt, Jonathan M; Nagel, David; Chundoo, Evita; Alexander, Lois M; Dupin, Damien; Hine, Anna V; Bradley, Mark; Sutherland, Andrew J

    2013-01-01

    The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins

  7. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration

    PubMed Central

    Xiao, Wei; Fu, Hailuo; Rahaman, Mohamed N.; Liu, Yonxing; Bal, B. Sonny

    2013-01-01

    The regeneration of large bone defects is a common and significant clinical problem. Limitations associated with existing treatments such as autologous bone grafts and allografts have increased the need for synthetic bone graft substitutes. The objective of this study was to evaluate the capacity of novel hollow hydroxyapatite (HA) microspheres to serve as a carrier for controlled release of bone morphogenetic-2 (BMP2) in bone regeneration. Hollow HA microspheres (106–150 μm) with a high surface area (>100 m2/g) and a mesoporous shell wall (pore size 10–20 nm) were created using a glass conversion technique. The release of BMP2 from the microspheres into a medium composed of diluted fetal bovine serum in vitro was slow, but it occurred continuously for over 2 weeks. When implanted in rat calvarial defects for 3 or 6 weeks, the microspheres loaded with BMP2 (1 μg/defect) showed a significantly better capacity to regenerate bone than those without BMP2. The amount of new bone in the defects implanted with the BMP2-loaded microspheres was 40% and 43%, respectively, at 3 and 6 weeks, compared to 13% and 17%, respectively, for the microspheres without BMP2. Coating the BMP2-loaded microspheres with a biodegradable polymer, poly(lactic-co-glycolic acid), reduced the amount of BMP2 released in vitro and, above a certain coating thickness, significantly reduced bone regeneration in vivo. The results indicate that these hollow HA microspheres could provide a bioactive and osteoconductive carrier for growth factors in bone regeneration. PMID:23747325

  8. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  9. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  10. Albumin microspheres for oral delivery of iron.

    PubMed

    Shivakumar, H N; Vaka, Siva Ram Kiran; Murthy, S Narasimha

    2010-01-01

    Bovine serum albumin (BSA) microspheres of ferric pyrophosphate (FPP) intended for passive targeting to the Peyer's patches has been proposed for oral iron supplementation. Microspheres prepared by emulsification chemical cross linking method were characterized for surface topography, entrapment efficiency, particle size, particle charge and in vitro drug release. Microspheres of batch C with FPP to BSA ratio of 1:5 were found to be most suitable for targeting as they exhibited high entrapment (83.88 +/- 4.31), high monodispersity (span = 1.24 +/- 0.01), and least particle size (d(vm) = 4.40 +/- 0.01). In addition the amount of iron retained in these microspheres despite exposure to simulated gastrointestinal conditions for 5 h was found to be 83.72 +/- 4.22%, the highest in the three batches. The in vivo serum iron profiles in normal rats following oral administration displayed a reduced T(max) (2 h), elevated C(max) (106.06 +/- 12.18 mug/dL) and increased AUC (0-16 h) (647.44 +/- 52.33 mug.h/dL) for these microspheres which significantly differed (P <0.05) from FPP solution indicating a higher iron repletion potential of the BSA microspheres. PMID:19635031

  11. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine.

    PubMed

    Cui, Chengji; Stevens, Vernon C; Schwendeman, Steven P

    2007-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid (TT), C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide to provide a depot effect, with MgCO(3) co-encapsulated in the polymer to neutralize acidity from the biodegrading PLGA polyester. A single immunization of encapsulated peptide in rabbits elicited a stronger antibody response with equivalent duration relative to a positive control--three injections of the peptide administered in a squalene-based water-in-oil emulsion. Surface-conjugated peptide was less effective but enhanced antibody levels at 1/5 the dose, relative to soluble antigen. Most remarkable and unexpected was the finding that co-encapsulation of base was essential to attain the powerful adjuvant effect of the PLGA-MgCO(3) system, as the MgCO(3)-free microspheres were completely ineffective. A promising contraceptive hCG peptide vaccine with acceptable side effects (i.e., local tissue reactions) was achieved by minimizing PLGA and MgCO(3) doses, without significantly affecting antibody response. PMID:16996662

  12. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  13. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  14. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  15. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy

    PubMed Central

    Liu, Yajun; Schwendeman, Steven P.

    2012-01-01

    The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to microclimate pH (μpH), is often uncontrolled ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue® dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The co-incorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two weeks incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO3, acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins. PMID:22428586

  16. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy.

    PubMed

    Liu, Yajun; Schwendeman, Steven P

    2012-05-01

    The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to as microclimate pH (μpH), is often uncontrolled, ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The coincorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two week incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO(3), acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins. PMID:22428586

  17. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation.

    PubMed

    Senuma, Y; Franceschin, S; Hilborn, J G; Tissières, P; Bisson, I; Frey, P

    2000-06-01

    Vesico-ureteral reflux, a common pathology in children, can be treated cystoscopically by injection of a bulking material underneath the most distal, intramural ureter, which forces the latter to do a detour, increasing its submucosal path. This increase of the length of the submucosal path of the ureter within the bladder is directly responsible for the anti-reflux effect. So far Teflon and collagen paste have been commonly used as bulking materials. We suggest replacing these materials by living tissue consisting of bladder smooth muscle, normally present at this location. The aim of this work is to provide a long-term effective treatment by producing bioresorbable microspheres which can act as a support matrix and an entrapment substance for bladder smooth muscle cells, with the goal of an in vivo transfer of the in vitro cultured cells with a minimal surgical procedure. By the use of Spinning Disk Atomization, which has specifically been developed for this purpose, we have shown two methods for the preparation of porous poly(lactic acid) microspheres with tunable sizes from 160 to 320 microm. The controlled solvent burst method has shown the advantage over the crystal leaching method in the direct creation of microspheres with large closed pores, by atomizing the polymer solution in controlled temperature conditions. Microspheres with various closed pore structures have thus been prepared. The innovation of this work is in the direct and rapid formation of porous microspheres with a pore morphology which is designed to create cavities suitable for adherence and growth of cells by adapting the temperature conditions of atomization. Injection tests have shown promising results in using these cell-loaded microspheres for future non-invasive tissue engineering. PMID:10817266

  18. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres.

    PubMed

    Sun, Fengying; Sui, Cheng; Teng, Lesheng; Liu, Ximing; Teng, Lirong; Meng, Qingfan; Li, Youxin

    2010-09-15

    In this study, poly(d,l-lactide-co-glycolide) (PLGA) microspheres of tolterodine depot formulation were prepared using oil in water (o/w) method to investigate their potential pharmacokinetic and pharmacodynamic advantages over tolterodine l-tartrate tablets. Morphological studies of the microspheres showed a spherical shape and smooth surface with mean size of 50.69-83.01 microm, and the encapsulation efficiency was improved from 62.55 to 79.10% when the polymer concentration increased from 180 to 230 mg/ml. The addition of stearic or palmitic acids could significantly raise the drug entrapment efficiency but only slightly affected the in vitro release. A low initial burst followed by a proximately constant release of tolterodine was noticed in the in vitro release profiles. The in vivo study was carried out by intramuscular (i.m.) administration of tolterodine-loaded microspheres on beagle dogs, and a sustained release of drug from the PLGA microspheres was achieved until the 18th day with a low initial burst. Since the absence of hepatic first pass metabolism, only a single active compound-tolterodine was detected in the plasma. This avoided the coexistence of two active compounds in plasma in the case of oral administration of tolterodine, which may lead to a difficulty in dose control due to the different metabolic capacity of patients. In the pharmacodynamic study, the influence of tolterodine PLGA microspheres on the inhibition of carbachol-induced rat urinary bladder contraction was more significant than that of tolterodine l-tartrate tablets. There were invisible changes in rat bladder slices between tolterodine-loaded PLGA microspheres group and tolterodine l-tartrate tablets group. These results indicate that the continuous inhibition of muscarinic receptor may offer an alternative therapy of urge incontinence. PMID:20600717

  19. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres

    PubMed Central

    Ford Versypt, Ashlee N.; Arendt, Paul D.; Pack, Daniel W.; Braatz, Richard D.

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  20. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

    PubMed

    Ford Versypt, Ashlee N; Arendt, Paul D; Pack, Daniel W; Braatz, Richard D

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  1. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    PubMed

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  2. Ethyl cellulose and hydroxypropyl methyl cellulose buoyant microspheres of metoprolol succinate: Influence of pH modifiers

    PubMed Central

    Raut, Neha S; Somvanshi, Sachin; Jumde, Amol B; Khandelwal, Harsha M; Umekar, Milind J; Kotagale, Nandkishor Ramdas

    2013-01-01

    Introduction: Incorporation of pH modifier has been the usual strategy employed to enhance the dissolution of weakly basic drug from floating microspheres. Microspheres prepared using a combination of both ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) which shows highest release were utilize to investigate the effect of fumaric acid (FA), citric acid (CA), ascorbic acid (AA) and tartaric acid (TA) (all 5-20% w/w) incorporation on metoprolol succinate (MS) release. Materials and Methods: EC, HPMC alone or in combination were used to prepare microspheres that floated in simulated gastric fluid and evaluated for a percent yield, drug entrapment, percent buoyancy and drug release. The higher drug release in combination (MS:HPMC:EC, 1:1:2) was selected for the evaluation of influence of pH modifiers on MS release. CA (5-20% w/w), AA (5-20% w/w), FA (5-20% w/w) and TA (5-20% w/w) were added and evaluated for drug release. Present investigation is directed to develop floating drug delivery system of MS by solvent evaporation technique. Results: The microspheres of MS:HPMC:EC (1:1:2) exhibited the highest entrapment (74.36 ± 2.18). The best percentage yield was obtained at MS:HPMC (1:1) (83.96 ± 1.50) and combination of MS:HPMC:EC (1:1:2) (79.23 ± 1.63). Conclusion: MS release from the prepared microspheres was influenced by changing MS-polymer, MS-polymer-polymer ratio and pH modifier. Although significant increment in MS release was observed with CA (20% w/w), TA (20% w/w) and AA (20% w/w), addition of 20% w/w FA demonstrated more pronounced and significant increase in drug entrapment as well as release from MS:HPMC:EC (1:1:2) buoyant microspheres. PMID:24167789

  3. Computational dynamics of acoustically driven microsphere systems.

    PubMed

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188

  4. Computational dynamics of acoustically driven microsphere systems

    NASA Astrophysics Data System (ADS)

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B.

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  5. Bioactive Microsphere-Based Scaffolds Containing Decellularized Cartilage.

    PubMed

    Sutherland, Amanda J; Detamore, Michael S

    2015-07-01

    The aim of this study was to fabricate mechanically functional microsphere-based scaffolds containing decellularized cartilage (DCC), with the hypothesis that this approach would induce chondrogenesis of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro. The DCC was derived from porcine articular cartilage and decellularized using a combination of physical and chemical methods. Four types of scaffolds were fabricated: poly(d,l-lactic-co-glycolic acid) (PLGA) only (negative control), TGF-β-encapsulated (positive control), PLGA surface coated with DCC, and DCC-encapsulated. These scaffolds were seeded with rBMSCs and cultured up to 6 weeks. The compressive modulus of the DCC-coated scaffolds prior to cell seeding was significantly lower than all other scaffold types. Gene expression was comparable between DCC-encapsulated and TGF-β-encapsulated groups. Notably, DCC-encapsulated scaffolds contained 70% higher glycosaminoglyan (GAG) content and 85% more hydroxyproline compared to the TGF-β group at week 3 (with baseline levels subtracted out from acellular DCC scaffolds). Certainly, bioactivity was demonstrated in eliciting a biosynthetic response from the cells with DCC, although true demonstration of chondrogenesis remained elusive under the prescribed conditions. Encapsulation of DCC appeared to lead to improved cell performance relative to coating with DCC, although this finding may be a dose-dependent observation. Overall, DCC introduced via microsphere-based scaffolds appears to be promising as a bioactive approach to cartilage regeneration, although additional studies will be required to conclusively demonstrate chondroinductivity. PMID:25821206

  6. Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres.

    PubMed

    Selek, H; Sahin, S; Ercan, M T; Sargon, M; Hincal, A A; Kas, H S

    2003-01-01

    Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres. The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting. PMID:12554379

  7. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  8. [Preparation and application of solid phase extraction packing of zirconia microsphere coated with sulfonated crosslinked polystyrene].

    PubMed

    Shen, Shuchang; Liu, Yuhui; Xiao, Xiaoxing

    2013-08-01

    Zirconia microsphere was prepared by polymerization-induced colloid aggregation (PICA) method and carbon-carbon double bond was grafted onto its surface by titanic acid ester coupling reagent. Poly(styrene-divinylbenzene) was synthesized by free radical polymerization by using styrene, divinylbenzene and carbon-carbon double bond on the microsphere surface in solution system, so the polymer was coated on the microsphere surface. After the benzene ring of the polymer was sulfonated, the cation exchange packing for solid phase extraction (SPE) was obtained. The material was characterized by Fourier transform infrared spectroscopy, scanning electron microscope and X-ray energy dispersive spectroscopy. Three herbicides of mesotrione, atrazine and acetochlor in water were determined by the SPE cartridge coupled with high performance liquid chromatography (HPLC). In the range of 0.5 - 3.0 mg/L, the relationships between the peak areas and mass concentrations of mesotrione, atrazine and acetochlor were linear with the correlation coefficients of 0.9936, 0.9925, 0.9919, respectively. The limits of detection were 5.41, 6.72 and 13.4 microg/L for mesotrione, atrazine and acetochlor, respectively. The results showed that the zirconium dioxide microspheres coated with polymer have diameters in the range of about 6 to 8 microm, the SPE cartridges of which have high adsorption rate for the targets. PMID:24369611

  9. Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres.

    PubMed

    Liu, Hongbo; Guo, Jia; Jin, Lan; Yang, Wuli; Wang, Changchun

    2008-03-20

    The synthesis of functionalized magnetic polymer microspheres was described by a process involving (1) preparation of the monodisperse magnetic seeds according to a two-step procedure including the preparation of bilayer-oleic acid-coated Fe3O4 nanoparticles followed by soap-free emulsion polymerization with methyl methacrylate (MMA) and divinyl benzene (a cross-linking agent, DVB); (2) seeded emulsion polymerization proceeding under the continuous addition of glycidyl methacrylate (GMA) monomers in the presence of the magnetic PMMA seeds; and (3) chemical modification of the PGMA shells with ethylenediamine (EDA) to yield amino groups. As such, the magnetic poly(MMA-DVB-GMA) microspheres were prepared possessing monodispersity, uniform magnetic properties, and abundant surface amino groups. Then, the dendritic poly(amidoamine) (PAMAM) shells were coated on the magnetic particles on the basis of the Michael addition of methyl acrylate and the amidation of the resulting ester with a large excess of EDA, which could achieve generational growth under such uniform stepwise reactions. For improving the luminescence properties of the composite particles, fluorescein isothiocyanate, which is a popular organic dye, was reacted with the terminal -NH2 groups from the dendritic PAMAM shells, resulting in the formation of multifunctional microspheres with excellent photoluminescence, superparamagnetic, and pH-sensitive properties. In this case, it can be expected that an extension of the functionalization of these microspheres is to immobilize other target molecules onto the PAMAM shells to introduce other desired functions for potential chemical and biological applications. PMID:18281972

  10. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    PubMed

    Zhu, Wei; Castro, Nathan J; Cheng, Xiaoqian; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP) treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone) electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin) loaded poly(lactic-co-glycolic) acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production). Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture) in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration. PMID:26222527