Science.gov

Sample records for acid mmaiii leads

  1. Comparative Functional Genomic Analysis Identifies Distinct and Overlapping Sets of Genes Required for Resistance to Monomethylarsonous Acid (MMAIII) and Arsenite (AsIII) in Yeast

    PubMed Central

    Jo, William J.; Loguinov, Alex; Wintz, Henri; Chang, Michelle; Smith, Allan H.; Kalman, Dave; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2009-01-01

    Arsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (AsIII) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMAIII) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMAIII and AsIII in the yeast Saccharomyces cerevisiae. Functional profiling using homozygous deletion mutants provided evidence of the requirement of highly conserved biological processes in the response against both arsenicals including tubulin folding, DNA double-strand break repair, and chromatin modification. At the equitoxic doses of 150μM MMAIII and 300μM AsIII, genes related to glutathione metabolism were essential only for resistance to the former, suggesting a higher potency of MMAIII to disrupt glutathione metabolism than AsIII. Treatments with MMAIII induced a significant increase in glutathione levels in the wild-type strain, which correlated to the requirement of genes from the sulfur and methionine metabolic pathways and was consistent with the induction of oxidative stress. Based on the relative sensitivity of deletion strains deficient in GSH metabolism and tubulin folding processes, oxidative stress appeared to be the primary mechanism of MMAIII toxicity whereas secondary to tubulin disruption in the case of AsIII. Many of the identified yeast genes have orthologs in humans that could potentially modulate arsenic toxicity in a similar manner as their yeast counterparts. PMID:19635755

  2. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  3. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture

    SciTech Connect

    Eblin, K.E. . E-mail: eblin@pharmacy.arizona.edu; Bowen, M.E.; Cromey, D.W.; Bredfeldt, T.G.; Mash, E.A.; Lau, S.S.; Gandolfi, A.J.

    2006-11-15

    Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 {mu}M and 10 {mu}M As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 {mu}M MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer

  4. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  5. Lead-acid battery

    SciTech Connect

    Rowlette, J.J.

    1983-09-20

    A light weight lead-acid battery is disclosed having a positive terminal and a negative terminal and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars are provided on opposite sides of the battery cell for connecting the monoplates with positive active material together in parallel current conducting relation. In addition, two negative bus bars on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates with negative active material together in parallel current conducting relation. The positive and negative bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  6. Lead-acid battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1983-01-01

    A light weight lead-acid battery (30) having a positive terminal (36) and a negative terminal (34) and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates (10, 20) with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers (26, 28) positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars (42, 43) are provided on opposite sides of the battery cell for connecting the monoplates (10) with positive active material together in parallel current conducting relation. In addition, two negative bus bars (38, 39) on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates (20) with negative active material together in parallel current conducting relation. The positive (42, 43) and negative (38, 39) bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals (36, 34) but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates (10, 20) is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  7. Bipolar lead acid battery development

    NASA Technical Reports Server (NTRS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  8. Rigid separator lead acid batteries

    SciTech Connect

    Cannone, A.G.; Salkind, A.J.; Stempin, J.L.; Wexell, D.R.

    1996-11-01

    Lead acid cells assembled with extruded separators displayed relatively uniform capacity and voltage parameters through 100{sup +} cycles of charge/discharge. This contrasts to failure of control cells with glass mat separators after 60 cycles. The mullite/alumina separators with 50, 60, and 70% porosity separators appear suitable for both flooded and sealed lead acid cell applications. The advantages of the rigid ceramic separators over fiber mat materials are in the uniformity of capacity and voltage, the ease of cell assembly, and the probability that firm stacking pressure on the active material will yield greater cycle life, especially at elevated temperatures.

  9. Bipolar lead acid battery development

    NASA Astrophysics Data System (ADS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  10. Rechargeable lead-acid batteries.

    PubMed

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

  11. Lead-acid battery construction

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1988-01-01

    The power characteristics of a lead-acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). The avoiding of positive plate reversal to prevent reduction of the tin oxide is accomplished by (a) employing an oversized positive plate and pre-charging it; (b) by pre-discharging the negative plate; and/or (c) by placing a circuit breaker (26) in combination with the plates (16, 18) and terminals (22, 24) to remove the load when the voltage of the positive plate falls below a pre-selected level.

  12. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III

  13. GENE EXPRESSION PROFILING OF MOUSE SKIN AND PAPILLOMAS FOLLOWING CHRONIC EXPOSURE TO MONOMETHYLARSONOUS ACID IN K6/ODC TRANSGENIC MICE

    EPA Science Inventory

    Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...

  14. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    SciTech Connect

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  15. Lead exposure among lead-acid battery workers in Jamaica.

    PubMed

    Matte, T D; Figueroa, J P; Burr, G; Flesch, J P; Keenlyside, R A; Baker, E L

    1989-01-01

    To assess lead exposure in the Jamaican lead-acid battery industry, we surveyed three battery manufacturers (including 46 production workers) and 10 battery repair shops (including 23 battery repair workers). Engineering controls and respiratory protection were judged to be inadequate at battery manufacturers and battery repair shops. At manufacturers, 38 of 42 air samples for lead exceeded a work-shift time-weighted average concentration of 0.050 mg/m3 (range 0.030-5.3 mg/m3), and nine samples exceeded 0.50 mg/m3. Only one of seven air samples at repair shops exceeded 0.050 mg/m3 (range 0.003-0.066 mg/m3). Repair shop workers, however, had higher blood lead levels than manufacturing workers (65% vs. 28% with blood lead levels above 60 micrograms/dl, respectively). Manufacturing workers had a higher prevalence of safe hygienic practices and a recent interval of minimal production had occurred at one of the battery manufacturers. Workers with blood lead levels above 60 micrograms/dl tended to have higher prevalences of most symptoms of lead toxicity than did workers with lower blood lead levels, but this finding was not consistent or statistically significant. The relationship between zinc protoporphyrin concentrations and increasing blood lead concentrations was consistent with that described among workers in developed countries. The high risk of lead toxicity among Jamaican battery workers is consistent with studies of battery workers in other developing countries. PMID:2773946

  16. Primer on lead-acid storage batteries

    SciTech Connect

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  17. Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix.

    PubMed

    Yathavakilla, Santha Ketavarapu V; Fricke, Michael; Creed, Patricia A; Heitkemper, Douglas T; Shockey, Nohora V; Schwegel, Carol; Caruso, Joseph A; Creed, John T

    2008-02-01

    Anion-exchange chromatography was utilized for speciation of arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), and the new As species monomethylthioarsonic acid (MMTA), using inductively coupled plasma mass spectrometric (ICPMS) detection. MMA(III) and MMTA were identified for the first time in freeze-dried carrot samples that were collected over 25 years ago as part of a joint U.S. EPA, U.S. FDA, and USDA study on trace elements in agricultural crops. The discovery of MMA(III) and MMTA in terrestrial foods necessitated the analytical characterization of synthetic standards of both species, which were used for standard addition in carrot extracts. The negative ion mode, high-resolution electrospray mass spectrometry (HR-ESI-MS) data produced molecular ions of m/z 122.9418 and 154.9152 for MMA(III) and MMTA, respectively. However, ESI-MS was not sensitive enough to directly identify MMA(III) and MMTA in the carrot extracts. Therefore, to further substantiate the identification of MMA(III) and MMTA, two additional separations using an Ion-120 column were developed using the more sensitive ICPMS detection. The first separation used 20 mM tetramethylammonium hydroxide at pH 12.2 with MMA(III) eluting in less than 7 min. In the second separation, MMTA eluted at 11.2 min by utilizing 40 mM ammonium carbonate at pH 9.0. Oxidation of MMA(III) and MMTA to MMA(V) with hydrogen peroxide was observed for standards and carrot extracts alike. Several samples of carrots collected from local markets in 2006 were also analyzed and found to contain low levels of inorganic arsenic species. PMID:18181583

  18. Developments in lead-acid batteries: a lead producer's perspective

    NASA Astrophysics Data System (ADS)

    Frost, P. C.

    Rapid progress is being made in many aspects of materials, design and construction for lead-acid batteries. Much of this work has taken place under the auspices of the Advanced Lead-Acid Battery Consortium (ALABC). From the general tone of the literature, it seems likely that several of these developments will be adopted in commercial products, and that there will be cross-fertilization between the emerging electric vehicle (EV) battery technology and the starting, lighting and ignition (SLI) battery. Given the impetus for improvement from several different factors, the development process appears to be accelerating. To those not intimately involved in the battery design and specification process, it is not clear which of the possible developments will make it from the laboratory to general commercial adoption. Some of the possible changes in materials, design and construction could have an impact on the recovery, recycling, smelting and refining of lead-acid batteries. Some of the possible developments are outlined and their possible impact is discussed. It is likely that negative effects may be minimized if battery developments are considered from other perspectives, largely based on the overall life-cycle, as early in the design phase of new products as possible. Three strategies for minimizing undesirable effects are advocated: first, improved communication between car manufacturers, battery manufacturers and lead producers second, use of life-cycle analysis (LCA) to identify and optimize all attributes of the product throughout its life-cycle third, concerted and coordinated action to deal with issues important to the industry once trends are identified.

  19. Developments in lead/acid stationary batteries

    NASA Astrophysics Data System (ADS)

    Hosking, Don

    1993-05-01

    Valve-regulated designs of the lead/acid system are securing significant shares of the markets for stationary batteries. This paper discusses the major problems that have been encountered with the introduction of valve-generated technology. Areas that have provided particular difficulties include: (1) acid leakage (container-cover, post-seal and vent leaks); (2) adverse effects of ripple current; (3) variations in float voltage, and (4) initial value of recharge current.

  20. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  1. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O.; Dudney, Nancy J.; Contescu, Cristian I.; Baker, Frederick S.; Armstrong, Beth L.

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  2. High power bipolar lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  3. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts.

    PubMed

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. PMID:24625837

  4. Closure device for lead-acid batteries

    DOEpatents

    Ledjeff, Konstantin

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  5. Relativity and the lead-acid battery.

    PubMed

    Ahuja, Rajeev; Blomqvist, Andreas; Larsson, Peter; Pyykkö, Pekka; Zaleski-Ejgierd, Patryk

    2011-01-01

    The energies of the solid reactants in the lead-acid battery are calculated ab initio using two different basis sets at nonrelativistic, scalar-relativistic, and fully relativistic levels, and using several exchange-correlation potentials. The average calculated standard voltage is 2.13 V, compared with the experimental value of 2.11 V. All calculations agree in that 1.7-1.8 V of this standard voltage arise from relativistic effects, mainly from PbO2 but also from PbSO4. PMID:21231773

  6. Valve-regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Holden, L. S.; May, G. J.; Newnham, R. H.; Peters, K.

    Given the growing importance of valve-regulated lead/acid technology in many existing and emerging market areas, an expert panel was assembled at the Sixth Asian Battery Conference to answer questions from delegates on various technical and operational aspects of such batteries. Key issues included: advantantages; performance and reliability; thermal runaway; and failure modes. The interaction between the audience and the panel was both vigorous and informative. Overwhelmingly, it was agreed that valve-regulated technology has come of age and offers a dynamic solution to many of the world's energy-storage requirements and opportunities.

  7. Failure modes of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Culpin, B.; Rand, D. A. J.

    The delivery and storage of electrical energy in lead/acid batteries via the conversion of lead dioxide and lead to, and from, lead sulphate is deceptively simple. In fact, battery performance depends upon the cell design, the materials of construction, a complex interplay between the multitudinous parameters involved in plate preparation, the chemical composition/structure of the active materials, and the duty/conditions of battery operation. It is not surprising, therefore, that the factors responsible for the degradation of battery performance, and eventual failure, are many and varied. Apart from occasional field surveys of automotive batteries in the U.S.A., comprehensive failure analyses of units removed from service are rarely published. In general, the information is kept proprietary, or appears as a post mortem report that is subsidiary to some other topic of interest. By contrast, the literature abounds with detailed laboratory investigations of phenomena that are likely to contribute, wholly or in part, to the demise of batteries. In broad terms, this review draws together the fragmented and scattered data presently available on the failure mechanisms of lead/acid batteries in order to provide a platform for further exploration of the phenomena, and for the planning of remedial strategies. The approach taken is to classify, first, the different lead/acid technologies in terms of required duty (i.e., float, cycling and automotive applications), unit design (i.e., flat or tubular plate, flooded or immobilized electrolyte), and grid alloy (i.e., leadantimony or leadcalcium system). A distinction is then made between catastrophic failure, as characterized by a sudden inability of the battery to function, and progressive failure, as demonstrated by some more subtle deviation from optimum performance. Catastrophic failure is attributed to incorrect cell design, poor manufacturing practice, abuse, or misuse. These problems are obvious and, accordingly

  8. Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine.

    PubMed Central

    Le, X C; Ma, M; Cullen, W R; Aposhian, H V; Lu, X; Zheng, B

    2000-01-01

    In this study we report on the finding of monomethylarsonous acid [MMA(III)] in human urine. This newly identified arsenic species is a key intermediate in the metabolic pathway of arsenic biomethylation, which involves stepwise reduction of pentavalent to trivalent arsenic species followed by oxidative addition of a methyl group. Arsenic speciation was carried out using ion-pair chromatographic separation of arsenic compounds with hydride generation atomic fluorescence spectrometry detection. Speciation of the inorganic arsenite [As(III)], inorganic arsenate [As(V)], monomethylarsonic acid [MMA(V)], dimethylarsinic acid [DMA(V)], and MMA(III) in a urine sample was complete in 5 min. Urine samples collected from humans before and after a single oral administration of 300 mg sodium 2,3-dimercapto-1-propane sulfonate (DMPS) were analyzed for arsenic species. MMA(III) was found in 51 out of 123 urine samples collected from 41 people in inner Mongolia 0-6 hr after the administration of DMPS. MMA(III )in urine samples did not arise from the reduction of MMA(V) by DMPS. DMPS probably assisted the release of MMA(III) that was formed in the body. Along with the presence of MMA(III), there was an increase in the relative concentration of MMA(V) and a decrease in DMA(V) in the urine samples collected after the DMPS ingestion. PMID:11102289

  9. Valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  10. The lead and lead-acid battery industries during 2002 and 2007 in China

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Li, A. J.; Finlow, D. E.

    In the past 15 years, the center of the international lead market has shifted to China. China has become the largest producer of raw and refined lead, plus the largest consumer. This paper reviews the status of the lead and lead-acid battery industries in China, including lead mining, lead refining, secondary lead production, the lead-acid battery industry, new opportunities for lead-acid batteries, and the environmental problems associated with lead and lead-acid batteries. The output of raw and refined lead has increased annually in China, and now accounts for more than 30% of the world total. As a result of a change in the Chinese government's policy regarding the export of lead, plus an increase in the price of lead, the profits of Chinese lead manufacturers were significantly reduced, the trade deficit of the Chinese lead industry increased, the operating rates of lead smelter enterprises greatly reduced, and some small enterprises were forced to shut down. At the present time, an increasing number of enterprises have begun to produce secondary lead, and the scale of production has expanded from tens of tons to tens of thousands of tons. In 2006, the output of secondary lead in China reached 700,000 tons, but outdated technology and equipment limited development of the secondary lead industry. Because of serious pollution problems, raw material shortages, and fierce price competition in the battery market, changes in the development of the lead-acid battery industry have been dramatic; approximately one thousand medium-sized and small lead-acid battery producers have been closed in the past 3 years. The output of large lead-acid battery enterprises has not been reduced, however, as a result of their manufacturing technology and equipment being comparable to those in other advanced industrial countries. In China, the flourishing development of electric bicycles, electric tricycles, and photovoltaic energy systems should provide ongoing opportunities for the

  11. Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.

    PubMed

    Pace, Clare; Banerjee, Tania Das; Welch, Barrett; Khalili, Roxana; Dagda, Ruben K; Angermann, Jeff

    2016-09-01

    Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS. PMID:27327130

  12. Lead electrowinning in an acid chloride medium

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Iniesta, J.; González-García, J.; Montiel, V.; Aldaz, A.

    The results of an investigation of the electrowinning of lead employing a chloride medium are reported. The electro-deposition lead reaction was studied by voltammetric methods and scanning electron microscope (SEM) microphotographs of the electro-deposited lead were taken. The effects of current density, temperature, catholyte flow and H + concentration were investigated at laboratory scale to optimise operating conditions in order to found adequate values for industrial purposes of the parameters energetic cost and production. For a working current density of 100 mA/cm 2 the current efficiency, energy consumption and production were 90%, 1.32 kW h/kg Pb and 83.4 kg Pb/m 2 per day, respectively.

  13. High-Performance Positive Paste For Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Kao, Wen-Hong

    1992-01-01

    Newly formulated paste for application to positive plates of lead/acid batteries imparts higher discharge currents and higher specific energy. Other disadvantages of paste, designated F2: contains no acid or free lead, no extra curing process required, and paste has high porosity, high surface area, and good strength.

  14. Lead exposure assessment from study near a lead-acid battery factory in China.

    PubMed

    Chen, Laiguo; Xu, Zhencheng; Liu, Ming; Huang, Yumei; Fan, Ruifang; Su, Yanhua; Hu, Guocheng; Peng, Xiaowu; Peng, Xiaochun

    2012-07-01

    The production of lead-acid battery in China covered about one-third of the world total output and there are more than 2000 lead-acid battery factories. They may cause the major environment lead pollution. Blood lead levels of several hundreds of residents were over 100 μg/L due to the waste discharges from a lead-acid battery factory in Heyuan, Guangdong province. This study aimed to find out the environmental lead sources, the human lead exposure pathways, and the amplitudes from a lead-acid battery factory. The study results showed that lead levels in soil, dust, tree leaves and human blood declined with the distances increased from the production site. Twenty nine of 32 participants had blood lead levels of over 100 μg/L with an exceptional high value of 639 μg/L for one child. This result suggested that the lead-acid battery production from this factory has caused the elevated lead levels in its neighboring environment and residents. Dust intake was the dominant exposure pathway for humans (over 90%). The lead levels found in adult and toddler (6.19 and 50.1 μg/kg/d, respectively) in the polluted area were far higher than the provisional tolerable weekly intake (PTWI) of 25 μg/kg body weight (translated into 3.5 μg/kg/d), which was established by the joint FAO/WHO Expert Committee. Blood lead levels within the family members were strongly correlated with the house dust lead levels. Our results in this study suggested that further studies in this area should be performed to assess human exposure and relevant human health risks from living close to lead-acid battery factories. PMID:22578522

  15. Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice.

    PubMed

    Medina-Díaz, I M; Estrada-Muñiz, E; Reyes-Hernández, O D; Ramírez, P; Vega, L; Elizondo, G

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA(III) induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA(III) increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA(III) induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice. PMID:19084030

  16. Study on sources of charging lead acid batteries

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2015-06-01

    The paper presents the general characteristics of lead acid batteries and two charging methods of these batteries. For charging of lead batteries was used an intelligent power source K 8012 (from Velleman). The power source allows fixing the level of the battery voltage and battery capacity. The intelligent power source uses the joint method (at constant current and, then, at constant voltage) and warning that indicates different situations in the charging process. Other method of charging presented in the paper is at constant voltage using a stabilized power source. In the paper experimental measurements were carried out using data acquisition card SER 10 BIT (from Conrad) for charging/ discharging of a lead acid battery 12V/9Ah (using an intelligent power source) and charging of another high capacity lead acid battery 12V/47Ah/390 A (using a stabilized power source). At the discharging of the lead acid batteries it were used automotive lamps as electric loads.

  17. Lightweight, High-Energy Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1991-01-01

    Concept for lead/acid battery calls for woven-grid bipolar electrodes. Stack of bipolar cells form lead/acid battery. Each cell contains pair of folded electrodes, negative on one side of fold, positive on other. In high-voltage configuration, battery has higher specific energy and power. Rugged, longlived, and maintenance-free. Made from readily available, low-cost materials by standard lead/acid production methods, well suited for use in electronic equipment, aircraft, and electric vehicles for industrial and passenger service.

  18. Computer aided design of a bipolar lead/acid battery

    NASA Astrophysics Data System (ADS)

    Kao, Wen-Hong

    Statistical design of experiments, coupled with the proprietary mathematical lead/acid model of Johnson Controls, Inc., were used to derive the design of a very high power bipolar lead/acid battery for the Jet Propulsion Laboratory. The effects of some battery component factors and discharge rate on the battery performance, predicted by the lead/acid model, were evaluated. The strategy to derive the optimum battery design, the roles of each battery component, limitations of the system, and the directions to improve the battery performance are discussed.

  19. Development of new sealed bipolar lead-acid battery

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.; Rowlette, J. J.

    1987-01-01

    New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.

  20. "Stratifiability index" - A quantitative assessment of acid stratification in flooded lead acid batteries

    NASA Astrophysics Data System (ADS)

    Schulte, Dominik; Sauer, Dirk Uwe; Ebner, Ellen; Börger, Alexander; Gose, Sven; Wenzl, Heinz

    2014-12-01

    A methodology is presented to quantify acid stratification in flooded lead acid batteries and compare different types of batteries regardless of their design features and size by means of the proposed "stratifiability index". This index describes to what degree acid stratification develops in flooded lead acid batteries. Different test procedures are proposed which induce severe acid stratification within 48 h and lead to significantly different degrees of acid stratification. The test procedures are intended to assist in the development and selection of batteries which are less prone to develop severe acid stratification.

  1. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  2. Recent developments in lead-acid battery technology in Japan

    SciTech Connect

    Shimizu, K.

    1987-12-01

    Japan ranks second to the US in the free world in battery manufacturing. This is a result of the rapid growth in production volume resulting from quick acceleration of equipment investment and manpower reduction to meet the market demand. It has also gotten closer to the development activities to open new markets for battery applications, since the lead-acid battery industry has been bolstered and has benefited from the explosion in demand and production within recent years. Keeping pace with a wide diversity of customized requirements, a demanding schedule has been started in order to promote high-energy-density lead-acid battery development. This article reviews the battery situation in Japan in sections devoted to the following: automotive lead-acid batteries; industrial lead-acid batteries; electric-vehicle batteries; and load-leveling batteries. 9 references, 7 figures, 10 tables.

  3. EFFECT OF LEAD ON GAMMA AMINO BUTYRIC ACID SYNTHESIS

    EPA Science Inventory

    The project studies the inhibitory effect of lead on the enzymatic activity of brain glutamic amino acid decarboxylase (GADC). The enzyme is responsible for the catalytic formation of gamma amino butyric acid (GABA) inhibitory neurons which is believed to be involved with the tra...

  4. Durable Bipolar Plates For Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Clough, Thomas J.; Pinsky, Naum

    1990-01-01

    New structure for positive faces of bipolar plates increases longevity of lead/acid batteries. Divides positive-electrode layer into many isolated segments so defects cannot spread across layer. Surfaces treated before assembly to promote adhesion. Ridges on body divide possible electrode into isolated squares, each typically 1 in. on side. Materials supporting electrochemically active components lightweight and resistant to acid.

  5. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.

    PubMed

    Ma, Yunjian; Qiu, Keqiang

    2015-06-01

    Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. PMID:25818382

  6. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  7. Recent advances in lead-acid cell research and development

    SciTech Connect

    Voss, E.

    1980-01-01

    During the last decade it was demonstate that the lead-acid system is capable of proving an attractive energy source of sufficient energy and power per unit weight and volume which allows its sucessful application for electric vehicle propulsion. This is shown by a number of typical examples, such as the relationship between active material properties and capacity at high rates of discharge the effect of acid stratification and others. Simultaneously, the expenditure for the maintenance of lead-acid batteries was minimized by the development of peripheric equipment, as there are means for central-automatic water refill and recombination devices. It is shown that there is still a considerable potential for further improvement which might again strengthen the unique position of the lead-acid system in the market in comparison to competitive systems.

  8. High performance positive electrode for a lead-acid battery

    NASA Technical Reports Server (NTRS)

    Kao, Wen-Hong (Inventor); Bullock, Norma K. (Inventor); Petersen, Ralph A. (Inventor)

    1994-01-01

    An electrode suitable for use as a lead-acid battery plate is formed of a paste composition which enhances the performance of the plate. The paste composition includes a basic lead sulfate, a persulfate and water. The paste may also include lead oxide and fibers. An electrode according to the invention is characterized by good strength in combination with high power density, porosity and surface area.

  9. Characterization of nano-lead-doped active carbon and its application in lead-acid battery

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Jiang, Liangxing; Xue, Haitao; Liu, Fangyang; Jia, Ming; Li, Jie; Liu, Yexiang

    2014-12-01

    In this paper, nano-lead-doped active carbon (nano-Pb/AC) composite with low hydrogen evolution current for lead-acid battery was prepared by ultrasonic-absorption and chemical-precipitate method. The nano-Pb/AC composite was characterized by SEM, EDS and TEM. The electrochemical characterizations are performed by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in a three-electrode system. Since intermediate adsorption is the rate-determining step, the hydrogen evolution reaction (HER) is markedly inhibited as the intermediate adsorption impedance of nano-Pb/AC increased. Meanwhile, the working potential of nano-Pb/AC is widened to the whole potential region of Pb negative plate (from -1.36 V to -0.86 V vs. Hg/HgSO4) in lead-acid battery. In addition, nano-Pb can improve the interfacial compatibility between AC and Pb paste, accordingly relieve the symptoms of carbon floatation. Finally, 2.0 V single-cell flooded lead-acid batteries with 1.0 wt.% nano-Pb/AC or 1.0 wt.% AC addition in negative active materials are assembled. The cell performances test results show that the 3 h rate capacity, quick charging performance, high current discharging performance and cycling performance of nano-Pb/AC modified battery are all improved compared with regular lead-acid battery and AC modified lead-acid battery.

  10. Preparation and characterization of nano-structured lead oxide from spent lead acid battery paste.

    PubMed

    Li, Lei; Zhu, Xinfeng; Yang, Danni; Gao, Linxia; Liu, Jianwen; Kumar, R Vasant; Yang, Jiakuan

    2012-02-15

    As part of contribution for developing a green recycling process of spent lead acid battery, a nanostructural lead oxide was prepared under the present investigation in low temperature calcination of lead citrate powder. The lead citrate, the precursor for preparation of this lead oxide, was synthesized through leaching of spent lead acid battery paste in citric acid solution. Both lead citrate and oxide products were characterized by means of thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that the lead citrate was sheet-shape crystal of Pb(C(6)H(6)O(7)) · H(2)O. When the citrate was calcined in N(2) gas, β-PbO in the orthorhombic phase was the main product containing small amount of Pb and C and it formed as spherical particles of 50-60 nm in diameter. On combusting the citrate in air at 370°C (for 20 min), a mixture of orthorhombic β-PbO, tetragonal α-PbO and Pb with the particle size of 100-200 nm was obtained, with β-PbO as the major product. The property of the nanostructural lead oxide was investigated by electrochemical technique, such as cyclic voltammetry (CV). The CV measurements presented the electrochemical redox potentials, with reversibility and cycle stability over 15 cycles. PMID:22209588

  11. Closed loop recycling of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  12. High-power lead-acid batteries for different applications

    NASA Astrophysics Data System (ADS)

    Wagner, Rainer

    High-power lead-acid batteries have been used for a rather long time in various applications, especially for uninterruptible power supplies (UPSs) and starting of automobiles. Future automotive service requires, in addition to cold-cranking performance, the combination of high-power capability, a very good charge-acceptance, and an excellent cycle-life. Such applications include stop-start, regenerative braking, and soft, mild and full hybrid vehicles. For UPS, there has been a clear tendency to shorter discharge times and higher discharge rates. During the past decades, the specific power of lead-acid batteries has been raised steadily and there is still, room for further improvement. This paper gives an overview of the progress made in the development of high-power lead-acid batteries and focuses on stationary and automotive applications.

  13. Simulation of lead-acid battery using model order reduction

    NASA Astrophysics Data System (ADS)

    Esfahanian, Vahid; Ansari, Amir Babak; Torabi, Farschad

    2015-04-01

    In this study, a reduced order model (ROM) based on proper orthogonal decomposition (POD) method has been applied to the coupled one-dimensional electrochemical transport equations in order to efficiently simulate lead-acid batteries, numerically. The governing equations, including conservation of charge in solid and liquid phases and conservation of species are solved simultaneously. The POD-based method for a lead-acid cell is used to simulate a discharge process to show the capability of the present method. The obtained results show that not only the POD-based ROM of lead-acid battery significantly decreases the computational time but also there is an excellent agreement with the results of previous computational fluid dynamics (CFD) models.

  14. Microstructure and properties of continuously cast, lead-alloy strip for lead/acid battery grids

    NASA Astrophysics Data System (ADS)

    Tang, N.-Y.; Valeriote, E. M. L.; Sklarchuk, J.

    Lead/acid battery grid alloys, such as low-antimony-lead and lead-calcium-tin alloys with and without silver, are successfully continuously cast into strip using Cominco's Multi-Alloy Caster™. The mechanical and electrochemical properties of the continuously cast, low-antimony-lead strip are strongly dependent on the arsenic content in the alloys. On the other hand, the tin:calcium (Sn:Ca) ratio in the PbCaSn alloys plays an important role in the development of the microstructure and the mechanical properties of these alloys.

  15. Bipolar lead-acid battery for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, M.; Woortmeijer, R.; Schmal, D.

    Within the framework of the European project bipolar lead-acid power source (BILAPS), a new production route is being developed for the bipolar lead-acid battery. The performance targets are 500 W kg -1, 30 Wh kg -1 and 100 000 power-assist life cycles (PALCs). The operation voltage of the battery can be, according to the requirements, 12, 36 V or any other voltage. Tests with recently developed 4 and 12 V prototypes, each of 30 Ah capacity have demonstrated that the PALC can be operated using 10 C discharge and 9 C charge peaks. The tests show no overvoltage or undervoltage problems during three successive test periods of 16 h with 8 h rest in between. The temperature stabilizes during these tests at 40-45 °C using a thermal-management system. The bipolar lead acid battery is operated at an initial 50% state-of-charge. During the tests, the individual cell voltages display only very small differences. Tests are now in progress to improve further the battery-management system, which has been developed at the cell level, during the period no PALCs are run in order to improve the hybrid behaviour of the battery. The successful tests show the feasibility of operating the bipolar lead-acid battery in a hybrid mode. The costs of the system are estimated to be much lower than those for nickel-metal-hydride or Li-ion based high-power systems. An additional advantage of the lead-acid system is that recycling of lead-acid batteries is well established.

  16. Additive for electrolyte of lead-acid batteries

    SciTech Connect

    Greene, R.M.

    1986-10-14

    This patent describes a lead-acid storage battery containing as an electrolyte for each cell, an aqueous sulfuric acid solution containing an activating amount of an additive comprising a mixture of an iron chelate and a magnesium salt or chelate. The chelates for the iron and magnesium are formed from the chelating agents which form 4 to 6 membered rings with the iron and magnesium and which contain a member of the group consisting of amine groups, phenol groups and aldehyde groups.

  17. Recent advances in lead-acid cell research and development

    SciTech Connect

    Voss, E.

    1980-01-01

    The lead-acid battery still is and will be for the foreseeable future the most widely used secondary energy storage system. It will maintain this predominant role because of its highly developed technology, its low costs as compared to other secondary systems and its high reliability. During the last decade it has been demonstrated that the lead-acid system is capable of providing an attractive energy source of sufficient energy and power per unit weight and volume which allows its successful application for electric vehicle propulsion. Basic research has contributed in a worldwide effort to the improvement of active material utilization and cycle life as well. This is shown by a number of typical examples, such as the relationship between active material properties and capacity at high rates of discharge, the effect of acid stratification and others. Simultaneously, the expenditure for the maintenance of lead-acid batteries has been minimized by the development of peripheric equipment, as there are means for central-automatic water refill and recombination devices. It is shown that there is still a considerable potential for further improvement which might again strengthen the unique position of the lead-acid system in the market in comparison to competitive systems.

  18. Progress in polyethylene separators for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Wada, T.; Hirashima, T.

    The types and properties of separators used for lead-acid batteries are reviewed. Attention is focused on the pocket-type polyethylene (PE) separator as this is widely used in present-day automotive batteries, i.e. in low-maintenance batteries with expanded lead-calcium grids. An improved PE separator has been developed by using a PE resin of high molecular weight. The resistance of the separator to attack by hot sulphuric acid is increased by a factor of 1.5. Batteries using the improved separator show a 40% increase in lifetime under the SAE 75 °C life-cycle test.

  19. A sealed bipolar lead acid battery for small electric vehicles

    SciTech Connect

    Arias, J.L.; Harbaugh, D.L.; Drake, E.D.; Boughn, D.W.

    1996-11-01

    Arias Research Associates (ARA) has been developing it`s sealed bipolar lead-acid (SBLA) battery technology since 1990 for eventual application in electric vehicles (EVs). The successful development of small SBLA batteries (up to 48V, 10Ah) for use in small electric vehicles (electric powered bicycles, motor scooters, wheelchairs, etc), is reported together with specifications and preliminary test data. Performance and cost comparisons are made with commercially available sealed lead-acid and nickel-cadmium battery packs for an electric power-assist bicycle.

  20. The LABAT '99 international conference on lead-acid batteries

    SciTech Connect

    1999-11-01

    LABAT'99, the fourth in the series of lead-acid battery conferences held every three years and organized by Professor Pavlov and his Committee from the Central Laboratory of Electrochemical Power Sources (Bulgarian Academy of Science) was held in Sofia on 7--10 June, 1999. Many excellent papers were presented over the four days, reporting the latest achievements in the theory, design and technology of lead-acid batteries as well as new findings, elucidating the processes during battery operation. The full texts of 25 selected papers will be included in a special volume of the Journal of Power Sources, dedicated to the Conference.

  1. Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery

    NASA Astrophysics Data System (ADS)

    Egan, D. R. P.; Low, C. T. J.; Walsh, F. C.

    Thin films of nanostructured lead dioxide are investigated as a positive electrode material for a lightweight lead-acid battery. The films are obtained by constant current deposition from electrolytes of lead methanesulfonate in methanesulfonic acid. The films are tested in two conditions namely (a) cyclic voltammetry and (b) constant current battery cycling in sulfuric acid. The charge and discharge current density, charge density and charge efficiency are measured as a function of cycle number. The effect of deposition conditions, such as solution temperature (295 and 333 K), type of substrate and electrolyte additive (hexadecyltrimethylammonium hydroxide), on the electrochemical performance of the PbO 2 in sulfuric acid is investigated. It is found that the as-deposited lead dioxide film is compact and nanostructured β-phase structure. Following successive cycling in sulfuric acid, the compact thin film gradually transforms into a porous microstructure consisting of positive active material (PbO 2 and PbSO 4), several tens of nanometres size. The charge density, discharge density and peak discharge current density of the PbO 2 improve with cycling of the thin film electrode.

  2. Therapeutic efficacy of dimercaptosuccinic acid and thiamine/ascorbic acid on lead intoxication in rats

    SciTech Connect

    Tandon, S.K.; Flora, S.J.S. )

    1989-11-01

    Thiamine, folic acid, pyridoxine and ascorbic acid either individually or in combination have been proven to be effective in reducing the toxic manifestations of lead and in enhancing the antidotal efficacy of CaNa{sub 2}EDTA. In a recent report from the authors' laboratory, it was observed that given combination of thiamine and ascorbic acid with thiol chelators improved the ability of the animals to excrete lead thereby reducing body lead burden. In view of the beneficial effect of these two vitamins, it was considered of interest to evaluate their potential to modify the prophylactic action of DMS in lead intoxication in rat after repeated administration.

  3. Technical trends in industrial lead/acid batteries in Japan

    NASA Astrophysics Data System (ADS)

    Iwata, Masashi; Tagawa, Yahachiro

    1994-02-01

    Although there have been only a few major technological changes in stationary lead/acid batteries in the past, some rapid and remarkable developments have occurred recently. The latter have included the introduction of catalyst plugs and valve-regulated lead/acid batteries (VRBs). Catalyst plugs have been used to avoid water addition with stationary lead/acid batteries. By virtue of their advantages (i.e., the elements retain electrolyte and equalizing charging and water addition are unnecessary), VRBs are being developed up to a maximum capacity of 3000 Ah. These designs have now captured about 50% of the stationary lead/acid battery market. The VRB technology has excellent characteristics, such as plate construction that can accommodate grid growth, explosion-resistant plugs, good discharge characteristics, and minimal electrolyte stratification. In addition, by utilizing the benefits of VRBs, horizontal and multistoried systems can be assembled, though in early stages of development the construction was only for interchangeability with flooded-electrolyte type batteries.

  4. Charge Efficiency Tests of Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Current, voltage, and gas evolution measured during charge/discharge cycles. Series of standarized tests for evaluating charging efficiency of lead/acid storage batteries described in report. Purpose of tests to provide information for design of battery charger that allows maximum recharge efficiency for electric-vehicle batteries consistent with other operating parameters, such as range, water loss, and cycle life.

  5. Abuse tests on sealed lead-acid batteries

    SciTech Connect

    LOESCHER,DOUGLAS H.; CRAFTS,CHRIS C.; UNKELHAEUSER,TERRY M.

    2000-03-01

    Abuse tests were conducted on the lead-acid batteries used to power electrical testers used at the Department of Energy's Pantex Plant. Batteries were subjected to short circuits, crushes, penetrations, and drops. None of the observed responses would be a threat to nuclear explosive safety in a bay or cell at Pantex. Temperatures, currents, and damage were measured and recorded during the tests.

  6. Ocular trauma from lead-acid vehicle battery explosions.

    PubMed

    Siebert, S

    1982-02-01

    Ocular trauma caused by lead-acid car battery explosions has been seen in a number of cases presenting to the major teaching hospitals in Adelaide. Injuries range from superficial acid burns to penetrating eye injury and retinal haemorrhage. The cause of the explosions has been ignition of the hydrogen-oxygen gas mixture generated by lead-acid batteries. The risk of explosion is known to battery manufacturing and distributing bodies and methods of avoiding explosions are well known to the industry. It is suggested that efforts should be made to design safe car batteries, and that there is an urgent need to educate the public to the risks involved with the present batteries. PMID:7103864

  7. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    PubMed

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes. PMID:23500418

  8. Blood Lead Levels and Health Problems of Lead Acid Battery Workers in Bangladesh

    PubMed Central

    Ahmad, Sk. Akhtar; Khan, Manzurul Haque; Khandker, Salamat; Sarwar, A. F. M.; Yasmin, Nahid; Faruquee, M. H.; Yasmin, Rabeya

    2014-01-01

    Introduction. Use of lead acid battery (LAB) in Bangladesh has risen with sharp rise of motor vehicles. As result, manufacture of LAB is increasing. Most of the lead used by these industries comes from recycling of LAB. Workers in LAB industry are at risk of exposure lead and thus development of lead toxicity. Objective. The objective of this study was to measure the blood lead concentration and to assess the magnitude of health problems attributable to lead toxicity among the LAB manufacturing workers. Methods. A cross-sectional study was conducted among the workers of LAB manufacturing industries located in Dhaka city. Result. Mean blood lead level (BLL) among the workers was found to be high. They were found to be suffering from a number of illnesses attributable to lead toxicity. The common illnesses were frequent headache, numbness of the limbs, colic pain, nausea, tremor, and lead line on the gum. High BLL was also found to be related to hypertension and anemia of the workers. Conclusion. High BLL and illnesses attributable to lead toxicity were prevalent amongst workers of the LAB manufacturing industries, and this requires attention especially in terms of occupational hygiene and safety. PMID:24707223

  9. Lead/acid batteries in systems to improve power quality

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  10. Evaluation of lead anode reactions in acid sulfate electrolytes. 1: Lead alloys with cobalt additives

    SciTech Connect

    Yu, P.; O`Keefe, T.J.

    1999-04-01

    Lead alloys, such as lead-calcium-tin and lead-silver, are the primary insoluble anodes used in the electrowinning of metals. While some difficulties are encountered in their use, there is no obvious replacement that is economically and technically competitive. Two of the specific problems with lead include decreased cathode purity due to incorporation from corrosion products and the relatively high overpotential which increases cell voltage. To gain an improved understanding of the fundamental behavior of lead anodes, the polarization behavior of six different alloys in sulfuric acid was evaluated. Some tests were also made with Co(II) in the acid sulfate electrolyte. Notable differences were found in the multiple activation-passivation cycles, stability, and relative activity for oxygen evolution for the alloys, and the relative trends in behavior were established. Electrochemical impedance spectroscopy studies were also conducted at selected potentials. Overall, the data show that the electrochemical response, particularly the degree of polarization for the oxygen evolution reaction, of the lead alloy anodes are dependent on the surface phases and structures present. The ability to depolarize the anode reaction using Co(II) was particularly sensitive to the lead composition.

  11. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    PubMed

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  12. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  13. Genomic-wide analysis of BEAS-2B cells exposed to Trivalent Arsenicals and Dimethylthioarsinic acid

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (D...

  14. Lead exposure in the lead-acid storage battery manufacturing and PVC compounding industries.

    PubMed

    Ho, S F; Sam, C T; Embi, G B

    1998-09-01

    This study was conducted as part of the Human Exposure Assessment Location (HEAL) Project which comes under the United Nations Environment Programme/World Health Organisation (UNEP/WHO) Global environmental Monitoring System (GEMS). The objective of the study was to evaluate workers' exposure to lead in industries with the highest exposure. All subjects were interviewed about their occupational and smoking histories, the use of personal protective equipment and personal hygiene. The contribution of a dietary source of lead intake from specified foods known to contain lead locally and personal air sampling for lead were assessed. A total of 61 workers from two PVC compounding and 50 workers from two lead acid battery manufacturing plants were studied together with 111 matched controls. In the PVC compounding plants the mean lead-in-air level was 0.0357 mg/m3, with the highest levels occurring during the pouring and mixing operations. This was lower than the mean lead-in-air level of 0.0886 mg/m3 in the lead battery manufacturing plants where the highest exposure was in the loading of lead ingots into milling machines. Workers in lead battery manufacturing had significantly higher mean blood lead than the PVC workers (means, 32.51 and 23.91 mcg/100 ml respectively), but there was poor correlation with lead-in-air levels. Among the lead workers, the Malays had significantly higher blood lead levels than the Chinese (mean blood levels were 33.03 and 25.35 mcg/100 ml respectively) although there was no significant difference between the two ethnic groups in the control group. There were no significant differences between the exposed and control group in terms of dietary intake of specified local foods known to contain lead. However, Malays consumed significantly more fish than the Chinese did. There were no ethnic differences in the hours of overtime work, number of years of exposure, usage of gloves and respirators and smoking habits. Among the Malays, 94.3% eat with

  15. Aging mechanisms and service life of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    In lead-acid batteries, major aging processes, leading to gradual loss of performance, and eventually to the end of service life, are: Anodic corrosion (of grids, plate-lugs, straps or posts). Positive active mass degradation and loss of adherence to the grid (shedding, sludging). Irreversible formation of lead sulfate in the active mass (crystallization, sulfation). Short-circuits. Loss of water. Aging mechanisms are often inter-dependent. For example, corrosion of the grids will lead to increased resistance to current flow, which will in turn impede proper charge of certain parts of the active mass, resulting in sulfation. Active mass degradation may lead to short-circuits. Sulfation may be the result of a loss of water, and so forth. The rates of the different aging processes strongly depend on the type of use (or misuse) of the battery. Over-charge will lead to accelerated corrosion and also to accelerated loss of water. With increasing depth-of-discharge during cycling, positive active mass degradation is accelerated. Some aging mechanisms are occurring only upon misuse. Short-circuits across the separators, due to the formation of metallic lead dendrites, for example, are usually formed only after (excessively) deep discharge. Stationary batteries, operated under float-charge conditions, will age typically by corrosion of the positive grids. On the other hand, service life of batteries subject to cycling regimes, will typically age by degradation of the structure of the positive active mass. Starter batteries are usually aging by grid corrosion, for instance in normal passenger car use. However, starter batteries of city buses, making frequent stops, may age (prematurely) by positive active mass degradation, because the batteries are subject to numerous shallow discharge cycles. Valve-regulated batteries often fail as a result of negative active mass sulfation, or water loss. For each battery design, and type of use, there is usually a characteristic

  16. Testing and evaluation of tubular positive lead-acid batteries

    SciTech Connect

    Roberge, P.R.; Salvador, J.P.

    1995-07-01

    The possibility of using lead-acid batteries in tandem with fuel cells in applications such as submarine propulsion require a strong understanding of the transient behavior of the lead-acid battery. One simple yet accurate method of describing the response at a given state-of-charge is as a resistor-capacitor model. Preliminary testing supports the model`s ability to describe the voltage response to load changes at a given state-of-charge. Furthermore, analysis of the steady state characteristics of the cells supports claims in the literature that the charge transfer resistance is partially a function of the inverse of the current. Once complete, the empirical relationship describing the circuit elements will be a useful tool to monitor the gassing effects during pulse charging.

  17. Automotive lead/acid battery separators: a global overview

    NASA Astrophysics Data System (ADS)

    Böhnstedt, W.

    This paper describes the present status and the future trends for separators for automotive lead/acid batteries. During the past decade, the design of modern automotive batteries has undergone a fundamental change. Whereas in 1980 almost all batteries used leaf separators, nowadays already two-thirds of the batteries produced worldwide have microporous polyethylene pocket separators. The extent of this conversion is quantified for the geographical regions. The impetus behind the change, as well as the future development trends, are outlined.

  18. Status of the lead/acid battery industry in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Richard

    Since 1985, the marked appreciation of the Taiwanese currency has exerted a strong influence on the local lead/acid battery industry. In particular, imports of automotive and motorcycle batteries have risen steadily. By contrast, there has been a significant increase in the production of small sealed batteries. The battery industry has recognized the need both to satisfy new environmental requirements and to invest in advanced equipment for battery manufacture.

  19. Prospects for lead-acid batteries in the new millenium

    NASA Astrophysics Data System (ADS)

    Razelli, Eugenio

    The European lead-acid battery industry has been adversely affected by the collapse of the telecommunications and information technology expansion of the last several years and by general economic conditions in other sectors. This has had a substantial effect on the industrial battery market, particularly standby batteries, but the automotive business has been less affected. The industry has reacted to these continuing changes by consolidation and specialisation within the different sectors but this alone is insufficient to ensure future success. The industry faces significant challenges to improve efficiencies through better manufacturing systems, but the development of new products for both existing and future applications is the greater priority. Advanced automotive batteries for Powernet applications and for hybrid electric vehicles, new types of standby and traction batteries and improvements to automotive batteries can all be achieved with lead-acid technology. This is a system with enormous potential for further improvement building on current strengths. This is a challenge to which the industry must respond in order to underpin the lead-acid battery as the most important electrical energy storage system.

  20. Heat tolerance of automotive lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  1. Advanced bipolar lead-acid battery for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Saakes, Michel; Kleijnen, Christian; Schmal, Dick; ten Have, Peter

    A large size 80 V bipolar lead acid battery was constructed and tested successfully with a drive cycle especially developed for a HEV. The bipolar battery was made using the bipolar plate developed at TNO and an optimised paste developed by Centurion. An empirical model was derived for calculating the Ragone plot from the results from a small size 12 V bipolar lead-acid battery. This resulted in a specific power of 340 W/kg for the 80 V module. The Ragone plot was calculated at t=5 and t=10 s after the discharge started for current densities varying from 0.02 to 1.2 A/cm 2. A further development of the bipolar lead-acid battery will result in a specific power of 500 W/kg or more. From the economic analysis we estimate that the price of this high power battery will be in the order of 500 US$/kWh. This price is substantially lower than for comparable high power battery systems. This makes it an acceptable candidate future for HEV.

  2. High-performance positive paste for lead-acid batteries

    SciTech Connect

    Kao, W.H.

    1996-09-01

    Positive lead-acid plates with high porosity and surface area, aiming to deliver a very high current density, about 1 A/cm{sup 2}, were developed. The high porosity and surface area were achieved by using a combination of fine particles of lead oxide and/or basic lead sulfates with an adequate amount of persulfate and water. The relationship between the positive paste phase composition and the high rate performance of the plate was studied. The highly porous plate is able to deliver a very high current owing to more acid being available in the plate structure. In the low rate applications when acid diffusion from the bulk becomes the limiting factor, the high-performance plate is not more advantageous than the conventional starting lighting, and ignition (SLI) plates. The cycle life of the high-performance plate is sensitive to depth of discharge. The deep discharge high rate capacity of the high-performance plates falls faster than that of the SLI plate. Nevertheless, the high-performance paste delivers at least 30% more energy, either to the same depth of discharge per cycle or for the entire service life with constant capacity removal in each cycle. One failure mode of the high-performance plates is the change of material morphology during deep discharge cycling, which results in material shedding.

  3. Progress and challenges in bipolar lead-acid battery development

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    1995-05-01

    Bipolar lead-acid batteries have higher power densities than any other aqueous battery system. Predicted specific powers based on models and prototypes range from 800 kW/kg for 100 ms discharge times to 1.6 kW/kg for 10 s. A 48 V automotive bipolar battery could have 2 1/2 times the cold cranking rate of a monopolar 12 V design in the same size. Problems which have precluded the development of commercial bipolar designs include the instability of substrate materials and enhanced side reactions. Design approaches include pseudo-bipolar configurations, as well as true bipolar designs in planar and tubular configurations. Substrate materials used include lead and lead alloys, carbons, conductive ceramics, and tin-oxide-coated glass fibers. These approaches are reviewed and evaluated.

  4. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  5. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  6. Stibine/arsine emissions from lead-acid batteries

    SciTech Connect

    Varma, R.; Cook, G. M.; Yao, N. P.

    1980-01-01

    Antimonial lead alloys, which also contain some arsenic, have traditionally been used for the fabrication of lead-acid battery electrodes. The possible generation of arsine and stibine during battery operation must be considered in the development of batteries for electric vehicles, utility load-leveling, and solar electricity storage. Research on generation of arsine and stibine is summarized, and exposure limits are given. Published analytical procedures for determination of arsine and stibine and their sensitivities are discussed. The design and testing of a stibine/arsine monitoring field kit are described. A hydrogen-oxygen recombination device can recombine stoichiometric H/sub 2/-O/sub 2/ with about 97% efficiency while scavenging the charge gas of much of the SbH/sub 3/ and AsH/sub 3/; its principles are illustrated. Experiments to estimate exposure of drivers to AsH/sub 3/ and SbH/sub 3/ from lead-acid batteries in electric vehicles are under way. 4 figures, 2 tables. (RWR)

  7. Elecrokinetic separation of sulphate and lead from sludge of spent lead acid battery.

    PubMed

    Maruthamuthu, S; Dhanibabu, T; Veluchamy, A; Palanichamy, S; Subramanian, P; Palaniswamy, N

    2011-10-15

    A novel electrokinetic (EK) technique is applied to separate lead and sulphate from the sludge of used/spent lead acid battery. XRD reveals that the sludge is a mixture of (PbO)(4) [Pb(SO(4))], Pb(2)O(3), PbSO(4), Pb(S(2)O(3)) and Pb(2)(SO(4)) which upon DC voltage application in a EK cell employing either titanium electrodes or titanium substrate insoluble anode as electrodes caused migration of sulphates and lead ions respectively into anode and cathode compartments, and accumulation of insoluble lead oxides at the central compartment. The insoluble lead oxides accumulated at the central compartment in the ratio 1:3, respectively for the high oxygen over-voltage Ti-anode (Ti-EK cell) and low oxygen over-voltage TSIA-anode (TSIA-EK cell) shows the superiority of Ti anode over TSIA anode. Also thermal investigation reveals Pb deposited at Ti-cathode is superior to that from TSIA cathode. This process does not release air/soil pollutants which are usually associated with high temperature pyrotechnic process. PMID:21820805

  8. An empirically based electrosource horizon lead-acid battery model

    SciTech Connect

    Moore, S.; Eshani, M.

    1996-09-01

    An empirically based mathematical model of a lead-acid battery for use in the Texas A and M University`s Electrically Peaking Hybrid (ELPH) computer simulation is presented. The battery model is intended to overcome intuitive difficulties with currently available models by employing direct relationships between state-of-charge, voltage, and power demand. The model input is the power demand or load. Model outputs include voltage, an instantaneous battery efficiency coefficient and a state-of-charge indicator. A time and current depend voltage hysteresis is employed to ensure correct voltage tracking inherent with the highly transient nature of a hybrid electric drivetrain.

  9. Strategies for enhancing lead-acid battery production and performance

    NASA Astrophysics Data System (ADS)

    Lambert, D. W. H.; Manders, J. E.; Nelson, R. F.; Peters, K.; Rand, D. A. J.; Stevenson, M.

    This paper is a record of the replies given by an expert panel to questions asked by delegates to the Eighth Asian Battery Conference. The subjects are as follows. Analysis of lead and lead compounds: accuracy; critical aspects of sampling. Grid alloys: influence of tin on microstructure and grain size; optimum combination of grid-alloy technologies for automotive batteries. Battery manufacture and design: quality-assurance monitoring; acid-spray treatment of plates; efficiency of tank formation; control of α-PbO 2/β-PbO 2 ratio; PbO 2 conversion level; positive/negative plate ratio; amount and type of separator for valve-regulated technology. Battery performance: use of cadmium reference electrode; influence of positive/negative plate ratio; local action; negative-plate expanders; gas-recombination catalysts; selective discharge of negative and positive plates.

  10. Separators and organics for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    This review discusses various interactions between organic compounds, brought into the lead-acid battery via the separator, and their subsequent effect on battery performance. Historically, the interrelationship started with certain 'expander' actions on the lead morphology due to lignins, which leached out of the wooden separators of that time. Synthetic separator materials did not show this effect, but gained acceptance as they were far more stable in the hostile battery environment. The partially hydrophobic character of synthetic separators has been overcome by organic surfactants. Other organic compounds have been found to improve further the stability of separators against oxidation. Special organic molecules, namely aldehydes and ketones, have been identified to retard, or even suppress, the adverse effects of metals such as antimony, and thus prolong the cycle-life of traction batteries in heavy-duty applications or reduce water loss from automotive batteries. Knowledge about these interactions has opened ways to improve separators.

  11. Manufacturing and operational issues with lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.

    An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.

  12. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  13. Electrochemical and Mechanical Behavior of Lead-Silver and Lead-Bismuth Casting Alloys for Lead-Acid Battery Components

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri

    2015-09-01

    The present study focuses on the interrelation of microstructure, mechanical properties, and corrosion resistance of Pb-Ag and Pb-Bi casting alloys, which can be used in the manufacture of lead-acid battery components, as potential alternatives to alloys currently used. A water-cooled solidification system is used, in which vertical upward directional solidification is promoted permitting a wide range of microstructures to be investigated. Correlations between microstructural arrays, tensile strengths, and corrosion resistances of Pb-1 wt pct Ag, Pb-2.5 wt pct Ag, Pb-1 wt pct Bi, and Pb-2.5 wt pct Bi alloys are envisaged. It is shown that a compromise between corrosion resistance (represented by the corrosion current density) and mechanical properties (represented by the ultimate tensile strength) can be obtained. Comparisons between specific strengths and mechanical/corrosion ratios are also made. It is also shown that, for microstructures solidified under cooling rates higher than 10 K/s, the Pb-Ag alloys exhibit higher specific strength and mechanical/corrosion ratio. In contrast, for casting processes in which the cooling rates are lower than 5 K/s, the dilute Pb-Bi alloy ( i.e., 1 wt pct Bi) is shown to have more appropriate requirements for lead-acid battery components. Comparisons between specific strengths, mechanical/corrosion ratio, and relative weight and cost with Pb-Sn and Pb-Sb alloys are also made.

  14. Prenatal lead exposure, delta-aminolevulinic acid, and schizophrenia.

    PubMed Central

    Opler, Mark G A; Brown, Alan S; Graziano, Joseph; Desai, Manisha; Zheng, Wei; Schaefer, Catherine; Factor-Litvak, Pamela; Susser, Ezra S

    2004-01-01

    Schizophrenia is a severe mental disorder of unknown etiology. Recent reports suggest that a number of environmental factors during prenatal development may be associated with schizophrenia. We tested the hypothesis that environmental lead exposure may be associated with schizophrenia using archived serum samples from a cohort of live births enrolled between 1959 and 1966 in Oakland, California. Cases of schizophrenia spectrum disorder were identified and matched to controls. A biologic marker of lead exposure, delta-aminolevulinic acid (delta-ALA), was determined in second-trimester serum samples of 44 cases and 75 controls. delta-ALA was stratified into high and low categories, yielding 66 subjects in the high category, corresponding to a blood lead level (BPb) greater than or equal to 15 micro g/dL, and 53 in the low category, corresponding to BPb less than 15 micro g/dL. Using logistic regression, the odds ratio (OR) for schizophrenia associated with higher delta-ALA was 1.83 [95% confidence interval (CI), 0.87-3.87; p = 0.1]. Adjusting for covariates gave an OR of 2.43 (95% CI, 0.99-5.96; p = 0.051). This finding suggests that the effects of prenatal exposure to lead and/or elevated delta-ALA may extend into later life and must be further investigated as risk factors for adult psychiatric diseases. PMID:15064159

  15. The effects of lead sulfate on new sealed lead acid batteries.

    PubMed

    Cleland, M J; Maloney, J P; Rowe, B H

    2000-04-01

    Emergency Medical Services (EMS) rely on batteries to power external cardiac defibrillators. While maintenance protocols should be followed to ensure that batteries possess adequate capacity to power their defibrillator, they are not often applied to new batteries. This study examines the effects of prolonged storage on sealed lead acid (SLA) batteries, the number of batteries that are affected by lead sulfate, and the ability of a protocol to restore the capacity in SLA batteries. A prospective cohort of new batteries was subjected to testing and discharge protocols. Initial battery capacities were measured using a battery analyzer. An "over-discharge" protocol fully discharged the battery over a 24-h period, and batteries were recharged and reanalyzed. Capacity measurements were repeated twice. Sulfate buildup was defined a priori as final capacity measurements greater than predischarge measurements. There were 126 batteries studied, a mean of 14 months after manufacture. Overall, 47 batteries (36.5%) had measured capacity that was insufficient (< 65% capacity). Batteries possessing very low initial capacities (< 55%) responded with a significant improvement on average of 54.7% compared with batteries within a normal capacity range (> 65%) whose average improvement was 9.3%. After discharge, there was an average of 17% improvement in the measured capacity, with no differences in the final capacity readings in each battery type. In conclusion, sealed lead acid batteries are affected by prolonged storage. The loss of capacity created by accumulation of lead sulfate can be reversed if battery maintenance protocols are used as part of EMS quality assurance programs. PMID:10729667

  16. An Exploratory Study Of Lead Recovery In Lead-Acid Battery Lifecycle In US Market: An Evidence-Based Approach

    EPA Science Inventory

    Background: This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling ra...

  17. Porosity measurements of electrodes used in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, E. E.; Loyson, P.; Rust, N.

    A method is presented that determines the porosity of a complete electrode plate used in lead-acid batteries. It requires only elementary equipment and is simple to operate, so that laboratory workers can use it as a routine method during manufacturing to determine the complete electrode's average porosity over a range of electrode sizes and types of both flat plate and tubular configuration. The method makes use of Archimedes' principle and uses glycerol as displacement medium. This allows for the porosity determination of both cured and formed positive and negative electrodes, without the detrimental effect of lead oxidation, which is common when using water as a displacement medium. The study showed that the method of using glycerol as a displacement medium gave on average, good repeatable results for both cured and formed positive and negative electrode plates used in the manufacture of automotive lead-acid batteries. The porosity results of the method were compared to the results obtained using Hg porosimetry, where a statistical paired t-test showed the two techniques to produce comparable results for all types of plates analyzed. The porosity of various plates was compared to the surface area of the respective active material of both positive and negative electrodes. These results showed unusual trends in that, depending on the manufacturing conditions, the surface area of formed positive electrodes could vary significantly from sample to sample of different batches without little change in its respective porosity. The surface area of different formed negative electrodes, however, would only vary slightly with significant changes in their corresponding porosity. The glycerol displacement method was also shown to be suitable to determine the effective porosity of cured and formed positive tubular electrodes.

  18. Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Yolshina, V. A.; Yolshin, A. N.; Plaksin, S. V.

    2015-03-01

    Novel lead-graphene and lead-graphite metallic composites which melt at temperature of the melting point of lead were investigated as possible positive current collectors for lead acid batteries in sulfuric acid solution. Scanning electron microscopy, Raman spectroscopy, difference scanning calorimetry, cyclic voltammetry and prolonged corrosion tests were employed to characterize the effect of the newly proposed lead-carbon metallic composites on the structure and electrochemical properties of positive grid material. Both lead-graphene and lead-graphite metallic composite materials show the similar electrochemical characteristics to metallic lead in the voltage range where the positive electrodes of lead acid batteries operate. It has been shown that carbon both as graphene and graphite does not participate in the electrochemical process but improve corrosion and electrochemical characteristics of both metallic composite materials. No products of interaction of lead with sulfuric acid were formed on the surface of graphene and graphite so as it was not found additional peaks of carbon discharge on voltammograms which could be attributed to the carbon. Graphene inclusions in lead prevent formation of leady oxide nanocrystals which deteriorate discharge characteristics of positive electrode of LAB. Both lead-graphene alloy and lead-graphite metallic composite proved excellent electrochemical and corrosion behavior and can be used as positive grids in lead acid batteries of new generation.

  19. Oxide for valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Lim, O. V.; Haigh, N. P.; Rand, D. A. J.; Manders, J. E.; Rice, D. M.

    In order to meet the increasing demand for valve-regulated lead-acid (VRLA) batteries, a new soft lead has been produced by Pasminco Metals. In this material, bismuth is increased to a level that produces a significant improvement in battery cycle life. By contrast, other common impurities, such as arsenic, cobalt, chromium, nickel, antimony and tellurium, that are known to be harmful to VRLA batteries are controlled to very low levels. A bismuth (Bi)-bearing oxide has been manufactured (Barton-pot method) from this soft lead and is characterized in terms of phase composition, particle size distribution, BET surface area, and reactivity. An investigation is also made of the rates of oxygen and hydrogen evolution on pasted electrodes prepared from the Bi-bearing oxide. For comparison, the characteristics and performance of a Bi-free (Barton-pot) oxide, which is manufactured in the USA, are also examined. Increasing the level of bismuth and lowering those of the other impurities in soft lead produces no unusual changes in either the physical or the chemical properties of the resulting Bi-bearing oxide compared with Bi-free oxide. This is very important because there is no need for battery manufacturers to change their paste formulae and paste-mixing procedures on switching to the new Bi-bearing oxide. There is little difference in the rates of oxygen and hydrogen evolution on pasted electrodes prepared from Bi-bearing or Bi-free oxides. On the other hand, these rates increase on the former electrodes when the levels of all the other impurities are made to exceed (by deliberately adding the impurities as oxide powders) the corresponding, specified values for the Bi-bearing oxide. The latter behaviour is particularly noticeable for hydrogen evolution, which is enhanced even further when a negative electrode prepared from Bi-bearing oxide is contaminated through the deposition of impurities added to the sulfuric acid solution. The effects of impurities in the positive

  20. Hydrolysis kinetics of lead silicate glass in acid solution

    NASA Astrophysics Data System (ADS)

    Rahimi, Rafi Ali; Sadrnezhaad, Sayed Khatibuleslam; Raisali, Gholamreza; Hamidi, Amir

    2009-06-01

    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO 3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy obtained for hydrolysis reaction was Qche = 56.07 kJ/mole. The diffusion coefficient of the Pb ions from the gel layer was determined by using its concentration in solution and in LSG. The shrinkage of the sample and the gel layer thickness during dissolution process were determined.

  1. Electrochemical investigation of lead-calcium alloys in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Bass, K.; Ellis, S. R.; Johnson, M.; Hampson, N. A.

    The hydrogen evolution reaction from, and the cycle life (Pb /ar PbSO 4) of, a series of lead-calcium alloys (0 - 0.2 wt.% Ca) in sulphuric acid hav The exchange current density and Tafel slope for the H.R.E. increase with Ca content up to 0.05 wt.% then decrease to a value approaching that of pure The observed results are explained by: (i) preferential adsorption of calcium ions at the electrode surface; (ii) incorporation of Ca, to form a supersaturated solution, with alloys containing < 0.075 wt.% Ca; (iii) formation of an insoluble, non-conducting layer of calcium sulphate on the high content alloy.

  2. Maintenance free lead acid batteries with immobilized electrolyte

    SciTech Connect

    Tuphorn, H.

    1984-10-01

    The reducing of antimony in lead-acid batteries in the last 10 years to optimize the maintenance of the batteries on the other hand was to the detriment of the cycle life. In contrast to antimonyfree batteries in conventional construction the immobilization of the electrolyte by gelatinizing permits the production of sealed batteries with highly improved cycle life, high charge acceptance and deep dischargeability. Moreover those batteries do not have a problem of electrolyte stratification. During charging the O/sub 2/-recombination is approximately 75% depending upon the battery size. Because of the O/sub 2/-recombination in this system a wider range of charging potentials of single cells in the battery takes place, which is characteristic of this system.

  3. Wrought lead-calcium-tin alloys for tubular lead/acid battery grids

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead/acid batteries with tubular grids for the positive electrodes give flatter discharge curves and higher cycle life than batteries using flat plates. Most tubular grids for motive-power batteries contain 9-11 wt.% antimony. Recently, alloys with 1-6 wt.% antimony have been used for reduced maintenance batteries. Sealed, valve-regulated batteries with tubular positive grids for motive power, telecommunications, and UPS service are produced from cast lead-calcium-tin alloys. While these alloys permit the construction of such batteries, cast PbCaSn alloys are significantly inferior to cast PbSb alloys in mechanical properties. Wrought PbCaSn alloys, when used for tubular grids, permit the application of maintenance-free alloys with mechanical properties comparable with, or higher than, those of high-antimony alloys. Wrought materials increase life due to the absence of casting defects. Wrought lead-calcium alloys also offer a dramatic improvement in creep and corrosion resistance compared with conventional cast, tubular, PbCaSn alloys, as well as superior conductivity to cast PbSb. Wrought PbCaSn alloys permit the production of tubular grids at high speed in shapes and forms that are difficult to produce from cast materials. These grid shapes can lead to higher performance, higher discharge-rate, tubular plates. This paper discusses the mechanical properties, grain structure, and corrosion behaviour of cast and wrought PbCaSn and PbSb alloys for tubular grids. It also suggests manufacturing techniques for high performance, wrought, tubular plates.

  4. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  5. Improved lead recovery and sulphate removal from used lead acid battery through electrokinetic technique.

    PubMed

    Soundarrajan, C; Sivasankar, A; Maruthamuthu, S; Veluchamy, A

    2012-05-30

    This paper presents improvement in lead (Pb) recovery and sulphate removal from used Pb acid battery (ULAB) through Electrokinetic technique, a process aimed to eliminate environmental pollution that arises due to emission of gases and metal particles from the existing high temperature pyrometallurgical process. Two different cell configurations, (1) one with Nafion membrane placed between anode and middle compartments and Agar membrane between cathode and middle compartments and (2) another with only Agar membrane placed between both sides of the middle compartments were designed for the Pb and sulphate separation from ULAB. This paper concludes that the cell with only Agar membranes performed better than the cell with Nafion and Agar membranes in combinations and also explains the mechanism underlying the chemical and electrochemical processes in the cell. PMID:22483596

  6. A lead-film electrode on an aluminium substrate to serve as a lead-acid battery plate

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Kudyakov, V. Ya; Zyryanov, V. G.

    Compact lead layers have been deposited on the surfaces of aluminium and aluminium alloys. These coatings are uniform in thickness and have high porosity. The lead-film electrode produced on aluminium plate can be used as the positive electrode in a lead-acid battery.

  7. Recovery of discarded sulfated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Asadi, Raziyeh

    The aim of this research is to recover discarded sulfated lead-acid batteries. In this work, the effect of two methods (inverse charge and chemical charge) on the reactivation of sulfated active materials was investigated. At the inverse charge, the battery is deeply discharged and the electrolyte of battery is replaced with a new sulfuric acid solution of 1.28 g cm -3. Then, the battery is inversely charged with constant current method (2 A for the battery with the nominal capacity of 40 Ah) for 24 h. At the final stage, the inversely charged battery is directly charged for 48 h. Through these processes, a discarded battery can recover its capacity to more than 80% of a similar fresh and non-sulfated battery. At the chemical charge method, there are some effective parameters that including ammonium persulfate [(NH 4) 2S 2O 8] concentration, recovery temperature and recovery time. The effect of all parameters was optimized by one at a time method. The sulfated battery is deeply discharged and then, its electrolyte was replaced by a 40% ammonium persulfate solution (as oxidant) at temperature of 50 °C. By adding of oxidant solution, the chemical charging of positive and negative plates was performed for optimum time of 1 h. The chemically charged batteries were charged with constant voltage method (2.66 V for the battery with nominal voltage and nominal capacity of 2 V and 10 Ah, respectively) for 24 h. By performing of these processes, a discarded battery can recovers its capacity to more than 84% of the similar fresh and non-sulfated battery. Discharge and cyclelife behaviors of the recovered batteries were investigated and compared with similar healthy battery. The morphology and structure of plates was studied by scanning electron microscopy (SEM) before and after recovery.

  8. Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya.

    PubMed

    Were, Faridah H; Kamau, Geoffrey N; Shiundu, Paul M; Wafula, Godfrey A; Moturi, Charles M

    2012-01-01

    The concentration of airborne and blood lead (Pb) was assessed in a Pb acid battery recycling plant and in a Pb acid battery manufacturing plant in Kenya. In the recycling plant, full-shift area samples taken across 5 days in several production sections showed a mean value ± standard deviation (SD) of 427 ± 124 μg/m(3), while area samples in the office area had a mean ± SD of 59.2 ± 22.7 μg/m(3). In the battery manufacturing plant, full-shift area samples taken across 5 days in several production areas showed a mean value ± SD of 349 ± 107 μg/m(3), while area samples in the office area had a mean ± SD of 55.2 ± 33.2 μg/m(3). All these mean values exceed the U.S. Occupational Safety and Health Administration's permissible exposure limit of 50 μg/m(3) as an 8-hr time-weighted average. In the battery recycling plant, production workers had a mean blood Pb level ± SD of 62.2 ± 12.7 μg/dL, and office workers had a mean blood Pb level ± SD of 43.4 ± 6.6 μg/dL. In the battery manufacturing plant, production workers had a mean blood Pb level ± SD of 59.5 ± 10.1 μg/dL, and office workers had a mean blood Pb level ± SD of 41.6 ± 7.4 μg/dL. All the measured blood Pb levels exceeded 30 μg/dL, which is the maximum blood Pb level recommended by the ACGIH(®). Observations made in these facilities revealed numerous sources of Pb exposure due to inadequacies in engineering controls, work practices, respirator use, and personal hygiene. PMID:22512792

  9. Computer formation of sealed lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Mills, John A.

    The desire of many companies to enter the growing market of valve-regulated batteries (also known as sealed lead/acid) requires a higher level of control in virtually all the stages of manufacture. Formation charging and charge conditioning is a particular case in point. Whether the valve-regulated battery is of the starved-electrolyte or gelled-electrolyte type, the final stages of formation and charge conditioning require careful attention to control the cell voltage. Charge rates that exceed the oxygen-recombination rate will cause excess gassing and thus reduce the available electrolyte. This, in turn, reduces battery life and, in the case of gelled-electrolyte batteries, causes improper cracking of the gell and concomitant reduction in capacity, performance and life. Valve-regulated batteries require charging equipment that can automatically regulate charge/discharge current and voltage. Given the requirement for multiple steps of battery conditioning, computer control provides a totally effective way to control the voltage, current, time, ampere hours and charge/discharge functions without operator assistance.

  10. Modeling of the charge acceptance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Thele, M.; Schiffer, J.; Karden, E.; Surewaard, E.; Sauer, D. U.

    This paper presents a model for flooded and VRLA batteries that is parameterized by impedance spectroscopy and includes the overcharging effects to allow charge-acceptance simulations (e.g. for regenerative-braking drive-cycle profiles). The full dynamic behavior and the short-term charge/discharge history is taken into account. This is achieved by a detailed modeling of the sulfate crystal growth and modeling of the internal gas recombination cycle. The model is applicable in the full realistic temperature and current range of automotive applications. For model validation, several load profiles (covering the dynamics and the current range appearing in electrically assisted or hybrid cars) are examined and the charge-acceptance limiting effects are elaborately discussed. The validation measurements have been performed for different types of lead-acid batteries (flooded and VRLA). The model is therefore an important tool for the development of automotive power nets, but it also allows to analyze different charging strategies and energy gains which can be achieved during regenerative-braking.

  11. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  12. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  13. Anaerobic microbial dissolution of lead and production of organic acids

    SciTech Connect

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1988-07-19

    A method of solubilizing lead oxide in industrial wastes and producing soluble Pb/sup 2+/ which is described comprises dissolving the lead oxide by contacting the wastes with an anaerobic bacterial culture containing Clostridium sp. ATCC No. 53464 before the wastes are dumped into the environment, and removing the solubilized lead from the wastes by chemical separation and bioaccumulation.

  14. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment.

    PubMed

    Wang, Mei; Zhang, Chao; Zhang, Zhuo; Li, Fasheng; Guo, Guanlin

    2016-06-01

    Lead-acid battery sites have contributed enormous amounts of lead to the environment, significantly affecting its global biogeochemical cycle and leaving the potential risks to human health. An abandoned lead-acid battery site prepared for redevelopment was selected in order to study the distribution of lead in soils, plants, rhizosphere soils and soil solutions. In total, 197 samples from 77 boreholes were collected and analyzed. Single extractions by acetic acid (HOAc) were conducted to assess the bioavailability and speciation of lead in soils for comparison with the parts of the plants that are aboveground. Health risks for future residential development were evaluated by the integrated exposure uptake biokinetic (IEUBK) model. The results indicated that lead concentrations in 83% of the soil samples exceeded the Chinese Environmental Quality Standard for soil (350 mg/kg for Pb) and mainly occurred at depths between 0 and 1.5 m while accumulating at the surface of demolished construction waste and miscellaneous fill. Lead concentrations in soil solutions and HOAc extraction leachates were linked closely to the contents of aboveground Broussonetia papyrifera and Artemisia annua, two main types of local plants that were found at the site. The probability density of lead in blood (PbB) in excess of 10 µg/dL could overtake the 99% mark in the residential scenario. The findings provided a relatively integrated method to illustrate the onsite investigations and assessment for similar sites before remediation and future development from more comprehensive aspects. PMID:26921546

  15. Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ji, Keju; Xu, Chen; Zhao, Huihui; Dai, Zhendong

    2014-02-01

    Contemporary lead-acid batteries have a high internal resistance and a limited utilization of their positive active materials (PAM). In order to alleviate these problems, lead (alloy) foam-based positive electrodes for lead-acid batteries are prepared by electrodepositing lead on a copper-foam substrate. Using scanning electron microscopy, flame atomic absorption spectrometry, finite element analysis, cyclic voltammetry, and galvanostatic charge/discharge tests, the effect of the lead foam collectors on the electrochemical performance of the positive electrodes is characterized. The thickness of the lead coating has a strong effect on the corrosion-stability of the copper-foam substrate. In addition, the charge/discharge performance of the batteries is greatly improved by the lead-foam collectors. At the 20-2 h discharge rates, the utilization efficiency of the PAM of 40-PPI lead-foam battery is improved by 19-36% from the cast-grid battery. Combined with the finite element analysis, it appears that the 3D connected network structure of the positive lead foam electrode can reduce the surface current density, the polarization resistance, and the ohmic resistance of the battery because of its larger contact area with the active material. As a result, the lead foam battery has a higher utilization efficiency of the PAM.

  16. An evaluation of the significance of mouth and hand contamination for lead absorption in lead-acid battery workers.

    PubMed

    Far, H S; Pin, N T; Kong, C Y; Fong, K S; Kian, C W; Yan, C K

    1993-01-01

    The present study was conducted to evaluate the role of ingestion through hand and mouth contamination in the absorption of lead in 25 lead-acid battery workers. Levels of personal exposure to airborne lead ranged from 0.004 to 2.58 mg/m3 [geometric mean 0.098, with 25% of samples exceeding threshold limit values (ACGIH) of 0.15 mg/m3]; the mean (SD) blood lead level was 48.9 (10.8) micrograms/dl. Mean hand lead contents increased 33-fold from preshift levels on Monday mornings (33.5 micrograms/500 ml) to midshift levels on Thursday afternoons (1121 micrograms/500 ml). Mouth lead contents increased 16-fold from 0.021 micrograms/50 ml on Mondays to 0.345 micrograms/50 ml on Thursdays. The typical Malay racial habit of feeding with bare hands and fingers without utensils (closely associated with mouth and hand lead levels on Mondays) explained the bulk of the variance in blood lead levels (40%), with mouth lead on Thursdays (closely associated with poor personal hygiene) explaining a further 10%. Air lead was not a significant explanatory variable. The implementation of a programme of reinforcing hand-washing and mouth-rinsing practices resulted in a reduction of the blood lead level by 11.5% 6 months later. These results indicate that parenteral intake from hand and mouth contamination is an important cause of lead absorption in lead-exposed workers. PMID:8458660

  17. Reinforced Positive Filler Paste For Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B.; Rippel, Wally E.

    1991-01-01

    Lead-coated glass fibers extend battery life. Mixture of lead-coated glass fibers and positive paste form pellets of active material between grid wires of positive battery electrode. Fibers contribute to charge capacity, electrical conductivity, and mechanical stability of electrode.

  18. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II). Part VI. Studies of the lead dioxide positive electrode

    NASA Astrophysics Data System (ADS)

    Pletcher, Derek; Zhou, Hantao; Kear, Gareth; Low, C. T. John; Walsh, Frank C.; Wills, Richard G. A.

    The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities >100 mA cm -2 in electrolytes containing 0.1-1.5 M lead(II) and methanesulfonic acid concentrations in the range 0-2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C 16H 33(CH 3) 3N +. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed.

  19. Influences and trends in lead/acid battery demand, lead supply and prices

    NASA Astrophysics Data System (ADS)

    Hawkes, N.

    This study examines: (i) the historical trends and influences in Western World lead demand, paying particular attention to the battery sector; (ii) the historical trends in Western World lead production in both the primary and secondary sectors, highlighting key influences; (iii) the long-term relationship between consumption and both primary and secondary lead production, and (iv) the lead price and stock history, before summarizing the current situation in the lead market. Finally suggestions are given for a few points to watch for in the future. Most of the paper refers separately to 'Western World' and 'Eastern Bloc' countries. The definition of Western World includes all countries except the following: PR China, all CIS republics (the former USSR), Mongolia, North Korea, Cuba, Cambodia, Laos, Vietnam, and the Eastern European countries of Poland, Bulgaria, Romania, Czech and Slovak Republics, Hungary and Albania. These countries are collectively referred to as 'Eastern Bloc'.

  20. Citric acid-assisted phytoextraction of lead: a field experiment.

    PubMed

    Freitas, Eriberto Vagner; Nascimento, Clístenes Williams; Souza, Adailson; Silva, Fernando Bruno

    2013-06-01

    Soil contamination with heavy metals has become a serious environmental problem that requires affordable strategies of remediation. This study was carried out to assess the performance of maize and vetiver in the phytoextraction of Pb from a soil contaminated by battery recycling activities. The species were planted with different spacings between rows (0.80, 0.65 and 0.50m). Citric acid (40mmolkg(-1)) was applied on each experimental plot on the 61st d of cultivation in order to solubilize the Pb and assist the phytoextraction. The results showed that the chelating agent promoted a 14-fold increase in the Pb concentration in maize shoots as compared to the control, which accumulated only 111mgkg(-1) of the metal. The citric acid induced a Pb concentration in vetiver shoots that was 7.2-6.7-fold higher than the control at both the 0.65 and 0.50m plant spacing, respectively. The use of citric acid increased substantially the uptake and translocation of Pb to the shoots, regardless of plant spacing. Citric acid was efficient in solubilizing Pb from the soil and inducing its uptake by both species. Environmentally-friendly and cost effective, commercial citric acid is recommended for assisting Pb-phytoextraction in the studied area. Due to the low natural solubility of Pb and a time frame needed of longer than 150yr to accomplish the clean-up, phytoextraction with no chelate assistance is not recommended for the area. PMID:23490185

  1. Recycling and management of waste lead-acid batteries: A mini-review.

    PubMed

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. PMID:26941209

  2. Waste minimization charges up recycling of spent lead-acid batteries

    SciTech Connect

    Queneau, P.B.; Troutman, A.L. )

    1993-08-01

    Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developing and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.

  3. Uncovering the Evolution of Lead In-Use Stocks in Lead-Acid Batteries and the Impact on Future Lead Metabolism in China.

    PubMed

    Liu, Wei; Chen, Lujun; Tian, Jinping

    2016-05-17

    This study aims to illustrate the evolution of lead in-use stocks, particularly in lead-acid batteries (LABs), and their impact on future lead metabolism in China. First, we used a bottom-up methodology to study the evolution of lead in-use stocks in China from 2000 to 2014. It was found that the lead in-use stocks increased from 0.91 to 7.75 Mt. The principal driving force of such change is the rapid development of LABs-driven electric vehicles. Then, we proposed three scenarios, low, baseline, and high in-use stocks, to project the lead demand and supply toward 2030. The results show that the LAB demand will decrease as a result of competition and replacement by lithium ion batteries. The lead demand in China will come to a peak around 2018-2020 under the three scenarios, then reduce to 3.7, 4.6, and 5.3 Mt/yr in 2030. Meanwhile, primary lead outputs will follow the increase of zinc production in China. Secondary lead recovered from spent LABs will also increase gradually. The overall unused lead stocks in 2030 will be 49.6, 44.8, and 41.2 Mt under the three scenarios, some 3.5-5.7 times as big as the lead in-use stocks. Thus, a large amount of lead will have to be safely stockpiled or exported in China. PMID:27145338

  4. Utilization of a bipolar lead acid battery for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Gentry, William O.; Vidas, Robin; Miles, Ronald; Eckles, Steven

    1991-01-01

    The development of a battery comprised of bipolar lead acid modules is discussed. The battery is designed to satisfy the requirements of the Advanced Launch System (ALS). The battery will have the following design features: (1) conventional lead acid chemistry; (2) thin electrode/active materials; (3) a thin separator; (4) sealed construction (gas recombinant); and (5) welded plastic frames for the external seal.

  5. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  6. Use of secondary lead for new generations of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    de Guibert, A.; Chaumont, B.; Albert, L.; Caillerie, J. L.; Ueberschaer, A.; Höhn, R.; Davis, W.; Weighall, M. J.

    Secondary lead will become more and more the main source of raw material for battery producers. The final objective of this study is to define maximum levels of impurities compatible with the use of secondary lead for oxide production for maintenance-free automotive batteries. Today, statistical investigations show that the quality of secondary lead can vary with the smelter, and can be adjusted in certain cases, but it is necessary to evaluate more accurately the effect of each harmful impurity (alone or in combination). Impurities affect principally the self-discharge of batteries. Addition of impurities to the electrolyte has been proved to give non-realistic values of their real influence in batteries. In order to obtain accurate results of the effect of impurities at various levels, syntheses of Barton or mill oxides containing Bi or Ag added to lead of high purity have been undertaken. It has been clearly shown that levels up to 200 ppm Bi or 40 ppm Ag can be admitted without significant differences in the performances of automotive batteries.

  7. Lead

    MedlinePlus

    ... Lead Share Facebook Twitter Google+ Pinterest Contact Us Lead Poisoning is Preventable If your home was built before ... of the RRP rule. Read more . Learn about Lead Poisoning Prevention Week . Report Uncertified Contractors and Environmental Violations ...

  8. The distribution of blood lead levels and job titles among lead-acid battery workers in Taiwan.

    PubMed

    Chao, Kun-Yu; Shin, Wen-Yi; Chuang, Hung-Yi; Wang, Jung-Der

    2002-07-01

    There were several reports about elevated blood lead levels in lead battery workers. However, their subjects came from only one or several plants. We visited all the 23 registered lead-acid battery plants in Taiwan and collected their health examination records in 1992, the blood lead analyses of which were completed in 3 medical college hospitals. In total, we have obtained 1726 records. The average blood lead concentration was 37.1 ug/dl, and 37% of blood lead levels were more than 40 ug/dl (action level). The overall participation rate for health examination among employees was 69.4%. The participation rates were different among both plant sizes and job titles. Assuming that there was no peculiar variation within the four working zones (plate manufacture jobs, assembly jobs, part-time exposure jobs, and office jobs) in each plant, and that blood lead levels of our samples were stable after deleting newly hired workers, we estimated that the blood lead distributions of 2486 employees in these plants were 63.3%, 26.4%, 9.25% and 1.05% for below 40, 40-59, 60-79, and above 80 ug/dl respectively. We conclude that such an analysis should be performed each year to monitor the effectiveness of occupational hygiene in workplace of lead battery plants. PMID:12380325

  9. The performance of Ebonex ® electrodes in bipolar lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ellis, Keith; Hill, Andrew; Hill, John; Loyns, Andrew; Partington, Tom

    Recent work by Atraverda on the production of an Ebonex ® material that can be cheaply formulated and manufactured to form bipolar substrate plates for bipolar lead-acid batteries is described. In addition, data obtained by Atraverda from laboratory lead-acid batteries is presented indicating that weight savings of around 40% for a bipolar 36 V design (20 Ah capacity, 5 h rate, 9 kW) are potentially achievable in comparison to more conventional designs containing monopolar lead grids. Results indicate that their use as bipolar substrate materials will provide light-weight, long-lasting lead-acid batteries suitable for automotive, standby and power tool applications.

  10. The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Wu, L.; Ren, C.; Luo, Q. Z.; Xie, Z. H.; Jiang, X.; Zhu, S. P.; Xia, Y. K.; Luo, Y. R.

    Flooded automotive and motorcycle lead-acid batteries were manufactured from three kinds of lead oxides including electrolyzed pure lead (99.99 wt.% Pb) oxide, electrolyzed pure lead oxide doped with Bi 2O 3 (0.02 wt.% Bi 2O 3) and bismuth-bearing refined lead (0.02 wt.% Bi) oxide. The first cranking and cold cranking curves of the automotive batteries show that there is no obvious difference among the above lead oxides. Bismuth in lead oxide does not affect the water loss of flooded batteries. However, bismuth results in the improvement of capacity and charge-acceptance capability. In discharge, the positive voltage versus cadmium of plates with bismuth decreases more slowly than that of plates without bismuth. In order to investigate the mechanism of the function of bismuth, three other kinds of test electrodes were prepared from electrolyzed pure lead (99.99 wt.% Pb) oxide, electrolyzed pure lead oxide doped 0.02 wt.% Bi 2O 3 and electrolyzed pure lead oxide doped 0.06 wt.% Bi 2O 3. The cyclic voltammetry curve shows that bismuth has no significant influence on the electrochemical behavior of the positive active-material. There is an opposite result concerning the cathodic polarization curves between bismuth doped in the electrode and Bi 3+ ion doped in the electrolyte. Bismuth doped in the electrode results in a decrease of the hydrogen overpotential. Conversely, Bi 3+ ion doped in the electrolyte results is an increase. The chemical analysis confirms that a trace of Bi 3+ ion exists in sulfuric acid solution (e.g. plates soaking, after formation, after cycling). A higher porosity is observed in the positive active-material containing bismuth by SEM technique. SEM morphology shows that needle-like crystals begin to occur after a few cycles. X-ray diffraction phase analysis proves that the amount of α-PbO 2 is increased by doping bismuth in to lead oxide. The existing forms, chemical characteristics and electrochemical reactions of bismuth during manufacture

  11. Research results from the Advanced Lead-Acid Battery Consortium point the way to longer life and higher specific energy for lead/acid electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Moseley, P. T.

    Amidst the welter of publicity devoted to the newer battery chemistries, the remarkable progress made by lead/acid battery technologists in response to the needs of the emerging electric-vehicle market has tended to be overlooked. The flooded design of battery, launched by Gaston Planté around 1860, has given way to a valve-regulated variant which has a history dating only from the 1970s. The key parameters of this `maintenance free' battery have been improved markedly during the course of the development programme of the Advanced Lead-Acid Battery Consortium (ALABC), and it is likely that lead/acid will continue to feature strongly in motive-power applications as a result of its cost advantage and of its enhanced effectiveness.

  12. Lead

    MedlinePlus

    ... obvious symptoms, it frequently goes unrecognized. CDC’s Childhood Lead Poisoning Prevention Program is committed to the Healthy People ... Lead Levels Information for Parents Tips for preventing lead poisoning About Us Overview of CDC’s Childhood Lead Poisoning ...

  13. Acid-fast intranuclear inclusion bodies in the kidneys of mallards fed lead shot

    USGS Publications Warehouse

    Locke, L.N.; Bagley, G.E.; Irby, H.D.

    1966-01-01

    Acid-fast intranuclear inclusion bodies were found in the cells of the proximal convoluted tubules of the kidneys of mallards fed one, two, three or eight number 6 lead shot and maintained on cracked or whole corn and on grain-duck pellet diets. No acid-fast inclusion bodies were found in mallards fed one or three lead shot but maintained on a duck pellet ration. Dietary factors may be responsible for the failure of mallards fed a duck pellet ration to develop lead Inclusion bodies when treated with one or three lead shot. The authors suggest these inclusion bodies can be used as presumptive evidence for lead intoxication in mallards.

  14. Lead acid battery pulse discharge investigation. Final report

    SciTech Connect

    Dowgiallo, E

    1980-04-01

    The effects of high current pulses caused by electric vehicle silicon-controlled rectifier and transistor chopper controllers on battery energy, lifetime, and microstructure were studied. Test equipment and results are described. It was found that the energy of improved golf cart-type batteries deteriorated under pulsed conditions by about 10% with respect to dc conditions for pulses between 16 and 333 Hz - no difference was noted above 333 Hz. Frequencies and duty cycles characteristic of electric vehicle controllers produce ampere-hour capacities similar in magnitude to dc discharges of the same average currents. The amount of positive plate corrosion under pulsed conditions was about twice that ot the unpulsed. Unusually large lead sulfate crystals were found in isolated colonies in pulsed plates, whereas a battery that had been discharged each cycle at an equivalent steady state did not show these large crystals. 5 figures, 3 tables. (RWR)

  15. Towards the year 2000 — the prospects for lead/acid batteries in Europe

    NASA Astrophysics Data System (ADS)

    Moreau, G.

    A review is presented of lead/acid battery production in the countries of Western and Eastern Europe (except CIS), based on statistics for lead consumption in lead/acid batteries. The breakdown between automotive and industrial batteries is also detailed. The foreseeable development of the various markets for lead/acid batteries towards the year 2000 is described. The analysis uses a broad range of published forecasts. Emphasis is given to the accuracy of the forecasts, as it is common for the latter to be based on forecasts for other industrial activities and to rely heavily on assumptions that are made about the evolution of battery service life. The range of forecasts obtained for each battery market is discussed, especially in Eastern Europe, where many different scenarios are still possible. It is concluded that quantitative growth of the lead/acid battery market should be higher in Western than in Eastern Europe, and higher for industrial than for automotive batteries.

  16. Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid.

    PubMed

    Chilakapati, Jaya; Wallace, Kathleen; Ren, Hongzu; Fricke, Michael; Bailey, Kathryn; Ward, William; Creed, Jack; Kitchin, Kirk

    2010-01-31

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII) and dimethylthioarsinic acid (DMTA), a sulfur containing dimethyl arsenic metabolite, in human bronchial epithelial (BEAS-2B) cells. Cells were exposed to 3, 15 microM-iAsIII; 0.3, 1 microM-MMAIII; 0.2, 1 microM-DMAIII; 0.2, 0.9 microM-DMTA as non-cytotoxic and minimally cytotoxic ( approximately 20%) concentrations based on Neutral Red uptake assays after 24h of culture. Total RNA was isolated and gene expression analysis conducted using Affymetrix Human Genome 133 Plus 2.0 arrays. Differentially expressed genes (DEGs) were determined using a one-way ANOVA (p < or =0.05) by Rosetta Resolver, a Benjamini-Hochberg FDR (false discovery rate) multiple testing correction (< 0.05) followed by a Scheffe's post hoc test. For all compounds except DMTA, > 90% of DEG altered in the low concentration were also changed at the high concentration. There was a clear dose-response seen in the number of DEGs for all four compounds. iAsIII showed the highest number of DEG at both concentrations (2708 and 123, high and low, respectively). 1749, 420 and 120 DEGs were unique to the high concentrations of iAsIII, MMAIII and DMAIII, respectively. Transferrin receptor is a common DEG in low concentration arsenical treated cells. Ingenuity Pathway Analysis revealed p53 signaling (E2F1 and 2, SERPIN), and cell cycle related genes (cyclin D1) were altered by the high concentrations of DMTA, MMAIII and iAsIII. Oxidative stress (DUSP1, GPX2, NQO1, GCLC) and NF-kappaB signaling (TLR4, NF-kappaB) pathways were changed by the high concentrations of MMAIII and iAsIII. The genes identified in this study can be a valuable tool to determine the mechanism of arsenic toxicity and cancer formation. A number of

  17. The relationship between blood lead levels and morbidities among workers employed in a factory manufacturing lead-acid storage battery.

    PubMed

    Kalahasthi, Ravi Babu; Barman, Tapu; Rajmohan, H R

    2014-01-01

    The present study was carried out to find the relationship between blood lead levels (BLLs) and morbidities among 391 male workers employed in a factory manufacturing lead-acid storage batteries. A predesigned questionnaire was used to collect information on subjective health complaints and clinical observation made during a clinical examination. In addition to monitoring of BLL, other laboratory parameters investigated included hematological and urine-δ-aminolevulinic acid levels. Logistic regression method was used to evaluate the relationship between BLL and morbidities. The BLL among workers was associated with an odd ratio of respiratory, gastrointestinal (GI), and musculoskeletal (MSD) morbidities. Mean corpuscular hemoglobin and packed cell volume variables were associated with respiratory problems. The variables of alcohol consumption and hematological parameters were associated with GI complaints. Systolic blood pressure was related to MSD in workers exposed to Pb during the manufacturing process. PMID:23859360

  18. Evaluation of preventive and control measures for lead exposure in a South African lead-acid battery recycling smelter.

    PubMed

    Dyosi, Sindiswa

    2007-10-01

    In South Africa, new lead regulations released in February 2002 served as motivation for a cross-sectional study investigating the effectiveness of preventive and control measures implemented in a lead smelter that recycles lead-acid batteries. Twenty-two workers were observed and interviewed. Structured questionnaires were used to gather workers' personal information, perception about their work environment, health risks, and work practices. Retrospective data from air monitoring and medical surveillance programs were obtained from the plant's records. The smelter implemented a number of control measures for lead exposure, including engineering controls, administrative controls, and, as a last resort, personal protective equipment. Engineering controls were rated the best control measure and included local exhaust ventilation systems and wet methods. Positive pressure systems were used in the offices and laboratory. The local exhaust ventilation system was rated the best engineering control measure. Although control measures were used, areas such as smelting and refinery had average lead in air levels above 0.15 mg/m(3), the occupational exposure limit for lead. This was a concern especially with regard to the smelting area because those workers had the second highest mean blood lead levels; workers in the battery breaking area had the highest. Regular use of personal protective equipment by some workers in the "lead exposure zones" was not observed. Although the mean blood lead levels had been below 40 micro g/dL for more than 90% of the workers since 2001, more than 70% of workers reported concerns about their health while working in the smelter. Even though control measures were implemented, they were not adequate because in some areas lead in air exceeded the occupational exposure limit. Therefore, improvement of existing measures and regular monitoring of personal protective equipment use were included in the recommendations given to the smelter. PMID

  19. The development of a new sealed bipolar lead-acid battery

    NASA Technical Reports Server (NTRS)

    Attia, A. I.; Rowlette, J. J.

    1988-01-01

    New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.

  20. Investigation of lead dendrite growth in the formation of valve-regulated lead-acid batteries for electric bicycle applications

    NASA Astrophysics Data System (ADS)

    Zeng, Yanzhen; Hu, Jingcheng; Ye, Wenmei; Zhao, Wenchao; Zhou, Gang; Guo, Yonglang

    2015-07-01

    The battery temperature, H2SO4 distribution, Pb2+ ion concentration and composition of the plates during the plate soaking of the 12 V 12 Ah valve-regulated lead-acid (VRLA) battery are studied. A simulated cell composed by two pure Pb plates and the absorptive glass mat (AGM) separator is used to investigate the growth of the lead dendrite in the separator, which is verified by analyzing the faulty batteries after the formation and the failure batteries after the usage. It is found that the H2SO4 is exhausted very quickly after filling and the separator near the plates can become neutral during soaking. Low acidity, high temperature and small PbSO4 particle size will increase the Pb2+ ion concentration. Higher Pb2+ ion concentration makes more PbSO4 tend to deposit on the coarse glass fibers, develop along them and even enwrap the entire fiber. And the fine PbSO4 crystals are continually transformed into large PbSO4 crystals via dissolution-deposition. In the subsequent charge, these PbSO4 crystals will be reduced to the club-shaped lead dendrites and may lead to short circuit of the battery.

  1. Manufacture and application of valve-regulated lead/acid batteries in China

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    This paper introduces the manufacture and application of valve-regulated lead/acid batteries in China. The contents cover the following topics: (i) background development; (ii) materials; (iii) manufacturing technology and equipment; (iv) application and market prospects.

  2. Delta-aminolevulinic acid dehydratase: Inhibition in ducks dosed with lead shot

    USGS Publications Warehouse

    Finley, M.T.; Dieter, M.P.; Locke, L.N.

    1976-01-01

    Lead concentration in blood and erythrocyte delta-aminolevulinic acid dehydratase (ALAD) activity was measured in mallard ducks dosed with one all-lead shot or one lead-iron combination shot. For 2 weeks after dosage, lead in blood of ducks given an all-lead shot was fourfold higher than in those dosed with lead-iron shot. At 3 and 4 weeks, the differences in lead residues were directly proportional to lead content of the shots. ALAD activities measured at these intervals were inversely correlated (P < 0.01) with the concentration of lead in the blood, suggesting that biochemical responses to the two types of shot were dependent upon the quantity of lead present.

  3. Influence of the degree of exposure to lead on relations between alcohol consumption and the biological indices of lead exposure: epidemiological study in a lead acid battery factory.

    PubMed

    Cezard, C; Demarquilly, C; Boniface, M; Haguenoer, J M

    1992-09-01

    Alcohol has been shown to interact with lead to influence haem biosynthesis. The aim of this study was to define the dependence of this interaction on the degree of exposure to lead. Exposure to alcohol was estimated by measurement of alcohol concentrations in a sample of urine collected during the morning (AlcUM) (0.82 (SD 4.36) mmol/l) and in a sample collected during the afternoon (AlcUA) (1.15 (SD 3.49) mmol/l). The biological monitoring of exposure to lead included measurements of blood lead (Pb-B) (1.82 (SD 0.72) mumol/l), urinary delta-aminolaevulinic acid (ALAU) (35.33 (SD 28.00) mumol/l; d = 1.015), and erythrocyte zinc-protoporphyrin (ZPP) (112.90 (SD 83.71) nmol/mmol Hb) concentrations. The study of the influence of the degree of occupational exposure to lead on relations between alcohol consumption and effects of the exposure to lead led to the consideration of two different groups--namely, mildly and strongly exposed subjects. In the first group, individual biological susceptibility seemed to play a preponderant part. In the second, the pool of lead present in the body seemed to be sufficiently important to mask the effects of individual susceptibility. PMID:1390270

  4. Recovery of lead from smelting fly ash of waste lead-acid battery by leaching and electrowinning.

    PubMed

    Chen, Chuh-Shun; Shih, Yu-Jen; Huang, Yao-Hui

    2016-06-01

    Fly ash that was enriched with lead (Pb), formed as an intermediate in waste lead-acid battery (WLAB) smelting, was recycled by the hydro-electrometallurgy. Characterization of fly ash thereof indicated that the Pb was in the forms of PbSO4 (anglesite) and Pb2OSO4 (lanarkite). Nitric acid and sodium hydroxide were firstly used to study the leaching of the fly ash sample, which was affected by leachant dosage and solid-to-liquid ratio (S/L). At an S/L of 60gL(-1), the leachability of Pb was 43% and 67% in 2M acidic and basic solutions, respectively, based on an average 70wt% of Pb in the original fly ash. Anglesite was completely soluble in NaOH and lanarkite was mildly soluble in HNO3. Pb was recovered from the pregnant leach solution within an electrolytic cell constructed with graphite or RuO2/IrO2-coated titanium (Ti-DSA) anodes and a stainless steel cathode. Properties of anodes deposited with lead dioxides were analyzed by cyclic voltammetry. The optimized parameters of electrowinning were 2M NaOH leachant, a current density of 0.75Adm(-2) and an electrolytic process duration of 120min, which yielded a Pb removal of higher than 99% and a specific energy consumption of 0.57Whg(-1). This process constitutes an eco-friendly and economic alternative to the presently utilized secondary pyrometallurgy for treating lead-containing fly ash. PMID:27072618

  5. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, E. E.; Loyson, P.; Poorun, A.

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics.

  6. Effect of triethyl lead chloride on delta-aminolevulinic acid dehydratase

    SciTech Connect

    Bondy, S.C.

    1986-01-01

    The effect of various organic metal compounds on delta-aminolevulinic acid dehydratase (ALAD, porphobilinogen synthetase) activity has been studied. Various organic tin and lead compounds have little effect on this enzyme. However, triethyl lead chloride has a potency similar to that of inorganic lead nitrate in inhibiting ALAD both for in vitro study and after in vivo dosing. Liver and blood ALAD have a similar sensitivity to lead compounds, which is reduced in the presence of zinc. Trimethyl lead chloride inhibits ALAD in vitro to a lesser extent. The results suggest that amphiphilic organic lead compounds may directly inhibit ALAD without prior degradation to inorganic lead. The diffusibility and persistence of triethyl lead combine to make it an especially hazardous lead compound.

  7. Environmental and biological monitoring in a lead acid battery manufacturing unit in India.

    PubMed

    Ravichandran, B; Ravibabu, K; Raghavan, S; Krishnamurthy, V; Rajan, B K; Rajmohan, H R

    2005-07-01

    An environmental and biological monitoring of a lead acid battery manufacturing unit was carried out to measure the respirable particulate matter, lead content in working atmosphere and blood lead levels of workers employed in different sections. The results showed high mean air lead concentration in buffing (1444.45 microg/m(3)), plate cutting (430.14 microg/m(3)) and pasting (277.48 microg/m(3)) sections. The mean blood lead levels of employees in these sections were also higher than the values prescribed by ACGIH. PMID:16096364

  8. The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Hu, Chiyu; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Conventional tetrabasic lead sulfate used as positive active material additive shows the results of the low effective lead dioxide conversion rate due to the large grain size and crossed the crystal structure. In this paper, we study on a type of nanometer tetrabasic lead sulfate. Through the XRD and SEM test and Material Studio software calculation, the purity of tetrabasic lead sulfate is very high, the grain size of the nanometer 4BS is almost unanimous, and can be controlled below 200 nm. When charged and discharged in 1.75 V-2.42 V with the current density of 40 mA g-1, 80 mA g-1 and 160 mA g-1, the effective lead dioxide conversion rate of nanometer 4BS after formation can achieve to 83.48%, 71.42%, and 66.96%. Subsequently, the nanometer 4BS as additive is added to positive paste of lead-acid battery. When the batteries are tested galvanostatically between 1.75 V and 2.42 V at 0.25 C charge and 0.5 C discharge rates at room temperature. The ratio of adding nanometer 4BS is 0%, 1% and 4% and the initial discharge specific capacities are 60 mAh g-1, 65 mAh g-1 and 68 mAh g-1. After 80 cycles, the initial discharge capacity of positive active material with 1% nanometer 4BS decreased less than 10%, while adding 4% nanometer 4BS, the initial discharge capacity doesn't decrease obviously.

  9. Improved fiber optic device for in situ determination of electrolyte stratification in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Gajdátsy, G.; Benedek, F.; Kokavecz, J.; Szabó, G.; Kornis, J.

    2009-12-01

    A three-channel, highly sensitive, fiber optic device is presented to measure acid concentration in lead-acid batteries during their operation. The refractive index and thereby the concentration of sulfuric acid is measured by a bent, silica glass fiber tip, stripped off its cladding. Sensor heads of the device are small enough to be inserted at different positions in the cell of an ordinary, flooded lead-acid battery. Measuring the concentration of the electrolyte at different depths of the battery cell, acid stratification can be accurately determined. During the test of the instrument, about 0.3 Hz temporal and 0.05 wt % concentration resolutions were achieved while the temperature drift was found to be -0.25 wt %/°C.

  10. Improved fiber optic device for in situ determination of electrolyte stratification in lead-acid batteries.

    PubMed

    Gajdátsy, G; Benedek, F; Kokavecz, J; Szabó, G; Kornis, J

    2009-12-01

    A three-channel, highly sensitive, fiber optic device is presented to measure acid concentration in lead-acid batteries during their operation. The refractive index and thereby the concentration of sulfuric acid is measured by a bent, silica glass fiber tip, stripped off its cladding. Sensor heads of the device are small enough to be inserted at different positions in the cell of an ordinary, flooded lead-acid battery. Measuring the concentration of the electrolyte at different depths of the battery cell, acid stratification can be accurately determined. During the test of the instrument, about 0.3 Hz temporal and 0.05 wt % concentration resolutions were achieved while the temperature drift was found to be -0.25 wt %/degrees C. PMID:20059171

  11. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  12. Changing corporate culture within the European lead/acid battery industry

    NASA Astrophysics Data System (ADS)

    Mayer, M. G.

    1994-02-01

    Recent economic and political factors have had a strong influence on the lead/acid battery industry in both West and East Europe. Since the publication in 1989 by Batteries International and The Lead Development Association of a map of European battery factories, the number of battery companies has declined. By 1992, a significant shift had taken place in the share of the lead/acid battery market in Europe with the result that a few companies came to influence a major proportion of battery production and sales. the reasons for this relatively fast structural change are examined. Under the pressure from continuing internal and external forces, likely outcomes for battery business in Europe are proposed as the lead/acid industry changes to meet new challenges.

  13. Changing corporate culture within the European lead/acid battery industry

    NASA Astrophysics Data System (ADS)

    Mayer, M. G.

    1994-02-01

    Recent economic and political factors have had a strong influence on the lead/acid battery industry in both West and East Europe. Since the publication in 1989 by Batteries International and The Lead Development Association of a map of European battery factories, the number of battery companies has declined. By 1992, a significant shift had taken place in the share of the lead/acid battery market in Europe with the result that a few companies came to influence a major proportion of battery production and sales. The reasons for this relatively fast structural change are examined. Under the pressure from continuing internal and external forces, likely outcomes for battery business in Europe are proposed as the lead/acid industry changes to meet new challenges.

  14. Dietary Stearic Acid Leads to a Reduction of Visceral Adipose Tissue in Athymic Nude Mice

    PubMed Central

    Siegal, Gene P.; Desmond, Renee; Hardy, Robert W.

    2014-01-01

    Stearic acid (C18:0) is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil), or oleic acid (corn oil) enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1) compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death) and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2) and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes. PMID:25222131

  15. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice.

    PubMed

    Shen, Ming-Che; Zhao, Xiangmin; Siegal, Gene P; Desmond, Renee; Hardy, Robert W

    2014-01-01

    Stearic acid (C18:0) is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil), or oleic acid (corn oil) enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1) compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death) and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2) and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes. PMID:25222131

  16. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  17. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  18. Vibration test methods and their experimental research on the performance of the lead-acid battery

    NASA Astrophysics Data System (ADS)

    He, Baoxiang; Wang, Hua; He, Xie

    2014-12-01

    As we know, Lead-acid battery is difficult to balance many factors such as the accuracy and the on-line testing requirement. The detecting system, as stated in this article, is based on the vibration test procedure, dynamically following the electrochemical process of the Lead-acid Battery, and collects the real-time state parameters for calculation, analysis and judgment. It also quantizes precisely the degradation and chargeability of the battery and therefore self-adapts to the ideal target values. During the test, it has not charged and discharged large current to the lead-acid battery, it only plus a smaller and shorter time of impulse voltage signal on both ends of lead-acid battery, so the battery measured is damage free, and the system energy consumption is small; Using the load compensation technology, it has solved the influence of load on the test results. What's more, the load characteristics are improved at the same time, it realized the online detection. The vibration detection is based on the adaptive fuzzy inference model which has taken various factors into account, concerning the choices of input aspects which may influence the output value. It realized a number of Lead-acid Battery voltage self-adaption and accomplished a variety of high-precise tests.

  19. Large lead/acid batteries for frequency regulation, load levelling and solar power applications

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    Lead/acid batteries are suitable for a multitude of utility applications. This paper presents some examples where large lead/acid batteries have been used for frequency regulation, load levelling and solar power applications. The operational experiences are given together with a discussion about the design and technical specialities of these batteries. In 1986, a 17 MW/14 MWh battery was installed at BEWAG in Berlin which, at that time, was the largest lead/acid battery in the world. Designed to strengthen Berlin's 'island' system, it was used since the beginning of 1987 for frequency regulation and spinning reserve. In December 1993, when Berlin was connected to the electricity grid, frequency regulation was no longer required but the battery was still used for spinning reserve. For many years, the industrial battery plant of Hagen in Soest has used a large lead/acid battery for load levelling. The experience gained during more than ten years shows that load levelling and peak shaving can be a marked benefit for customers and utilities with regard to reducing their peak demand. In the summer of 1992, a 216 V and 2200 Ah lead/acid battery with positive tubular plates and gelled electrolyte was installed at a solar power plant in Flanitzhutte, a small village in the south of Germany which is not connected to the electricity grid. A report is given of the first years of use and includes a discussion about the best charge strategy for such gel batteries when used for solar power applications.

  20. Design and synthesis of pentahydroxylhexylamino acids and their effect on lead decorporation.

    PubMed

    Wang, Yuji; Bi, Lanrong; Hou, Baoguang; Chen, Yu; Zhao, Ming; Wang, Chao; Wang, Wei; Ju, Jingfang; Peng, Shiqi

    2007-04-01

    A series of enantiopure pentahydroxylhexylamino acids 4a-t were synthesized via an improved one-pot-three-step procedure. Their potential as antagonists for lead intoxication was investigated both in vitro and in vivo. Lead decorporation assays in vivo confirmed that after treatment with 4a-t, the levels of lead in treated mice were significantly reduced in the liver, kidney, bone, and brain compared to those in the control group. In addition, the lead levels in feces and urine were significantly higher after treatment with 4a-t than those of the control group. In particular, the lead decorporation potency of compounds 4b, 4i, 4j, and 4s were comparable or better than that of dl-penicillamine. Furthermore, new chelating agents did not affect the levels of endogenous essential metals. The stability constants of the formed lead complexes of 4a-t were determined by potentiometric titration. It seems that the therapeutic efficiency of the lead chelating agents depends on factors that affect the stability constants of the formed lead complexes. The membrane permeability of representative compounds was evaluated in a Caco-2 cell monolayer. A good correlation between in vitro results and in vivo lead decorporation capacity of the chelating agents was observed. Some of these new pentahydroxylhexylamino acids (4b, 4i, 4j, and 4s) may be developed as effective lead chelating agents. PMID:17381133

  1. Epidemiological-environmental study of lead acid battery workers. II. Acute effects of sulfuric acid on the respiratory system

    SciTech Connect

    Gamble, J.; Jones, W.; Hancock, J.

    1984-10-01

    Two hundred and twenty-five (225) workers in five lead acid battery plants were administered a questionnaire containing work-related symptoms, underwent spirometry, and had personal samples for H/sub 2/SO/sub 4/ taken over the shift. Most personal samples were less than 1 mg/m/sup 3/ H/sub 2/SO/sub 4/. Mass median aerodynamic diameter of H/sub 2/SO/sub 4/ from area samples in the formation areas was 2.6-10 ..mu..m. Workers with a higher exposure to acid did not have an increased rate of acute work-related symptoms. Changes in pulmonary function over the shift were not related to levels of airborne lead or airborne acid, sex, age, or smoking status. In acclimated workers, there is no evidence of acute symptoms or reductions in pulmonary function over the shift at concentrations less than 1 mg/m/sup 3/.

  2. A new electrolyte formulation for low cost cycling lead acid batteries

    NASA Astrophysics Data System (ADS)

    Torcheux, L.; Lailler, P.

    This paper is devoted to the development of a new lead acid battery electrolyte formulation for cycling applications, especially for renewable energy markets in developing countries. These emerging markets, such as solar home systems, require lead acid batteries at very low prices and improved performances compared to automotive batteries produced locally. The new acid formulation developed is a mixture of sulphuric acid, liquid colloidal silica and other additives including phosphoric acid. The colloidal silica is used at a low concentration in order to decrease the acid stratification process during cycling at high depth of discharge. Phosphoric acid is used for the improvement of the textural evolution of the positive active material during cycling. After a description of the markets and of the additives used in the new acid formulation, this paper presents the results obtained with normalised photovoltaic cycle testing on low cost automotive batteries modified by the new electrolyte formulation. It is shown that the cycling life of such batteries is much increased in the presence of the new formulation. These results are explained by the improved evolution of positive active mass softening parameters (specific surface and β-PbO 2 crystallite size) and also by a more homogeneous sulphating process on both plates.

  3. An overview of the development of lead/acid traction batteries for electric vehicles in India

    NASA Astrophysics Data System (ADS)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  4. Development of a valve-regulated lead/acid battery for automotive use

    NASA Astrophysics Data System (ADS)

    Calasanzio, D.; Cecchinato, G.; Marchetto, M.

    The use of valve-regulated lead/acid batteries (VRLA) in automotive applications provides some important advantages with respect to traditional flooded designs. Difficulties are reported for flooded lead/acid batteries that use PbCa alloys in the positive grids with respect to recovery of capacity after deep discharge. This problem is no longer valid for recombinant batteries using absortive glass-mat (AGM) separators. Further, this truly maintenance-free battery can be installed in any position, even outside the engine compartment, because of the absence of gas emission or electrolyte spillage. The shelf life is very long and the battery can be stored at open circuit for 12 months with no significant loss of performance. The cold-cranking capacity is higher than the equivalent conventional lead/acid battery due to the reduced internal resistance.

  5. The development of advanced lead-acid batteries for utility applications

    SciTech Connect

    Szymborski, J.; Jungst, R.G.

    1993-10-01

    Technical advances in lead-acid battery design have created new opportunities for battery systems in telecommunications, computer backup power and vehicle propulsion power. Now the lead-acid battery has the opportunity to become a major element in the mix of technologies used by electric utilities for several power quality and energy and resource management functions within the network. Since their introduction into industrial applications, Valve Regulated Lead-Acid (VRLA) batteries have received widespread acceptance and use in critical telecommunications and computer installations, and have developed over 10 years of reliable operational history. As further enhancements in performance, reliability and manufacturing processes are made, these VRLA batteries are expanding the role of battery-based energy storage systems within utility companies portfolios. This paper discusses the rationale and process of designing, optimizing and testing VRLA batteries for specific utility application requirements.

  6. Lead-acid battery research and development—a vital key to winning new business

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Battery strings are operated in a partial-state-of-charge mode (PSoC) in several new and changing applications for lead-acid batteries, in which the battery is seldom, if ever, fully charged or discharged. The lead battery industry faces new challenges as additional failure modes become evident in these PSoC applications. Without overcharge, cell imbalances caused by variations in cell temperature will cause premature failures. Valve-regulated lead-acid batteries are especially susceptible because of the heat generated by oxygen recombination at the negative plate. Improved thermal properties are shown by a proprietary battery design that combines absorptive glass mat and gelled acid technologies. Well-designed power systems are also required to reduce cell-to-cell temperature variations and, thereby, increase battery life.

  7. Early results from a systems approach to improving the performance and lifetime of lead acid batteries

    NASA Astrophysics Data System (ADS)

    Kellaway, M. J.; Jennings, P.; Stone, D.; Crowe, E.; Cooper, A.

    Lead acid batteries offer important advantages in respect of unit cost and ease of recycling. They also have good power and low temperature performance. However, for hybrid electric vehicle (HEV) duty with their extreme rates and continuous PSoC operation, improvements are required to significantly extend service life. The Reliable Highly Optimised Lead Acid Battery (RHOLAB) project is taking a radical approach to the design of a lead acid HEV battery pack to address this issue, taking a systems approach to produce a complete pack that is attractive to vehicle manufacturers. This paper describes the project at an intermediate stage where some testing has been completed and the construction of the complete pack system is well under way.

  8. Structural alteration of spermatozoa in the persons employed in lead acid battery factory.

    PubMed

    Naha, Nibedita; Bhar, R B; Mukherjee, A; Chowdhury, Amal Roy

    2005-04-01

    Lead is one of the industrially heavy metals that caused adverse effects on male reproductive system among battery factory workers, but information on the possible impact of lead on the structural integrity of sperm cell is limited. Thus present study was undertaken to assess the structural details of human spermatozoa of lead acid battery factory workers. Blood and semen samples were collected from total 80 workers (7-15 years exposure) and 40 non-occupationally exposed control subjects. The lead exposed battery factory workers showed lowering (P < 0.001) of sperm count, density, motility and semen volume along with an increase incidence of sperm abnormality and prolong liquefaction time. Structural alteration of sperm cell was prevalent among the exposed population as evidenced by significantly (P < 0.001) low sperm viability, low hypoosmotic swelling test (HOST) percentage, high lipid peroxidation of sperm membrane with concomitant alterations of seminal plasma total and dehydro ascorbate level. Sharp depressions, membrane folding and granularity at sperm head surfaces were observed by scanning electron microscopy (SEM). Both blood lead and semen lead was significantly (P < 0.001) higher among the factory workers. Thus it appears plausible that lead may reduce the antioxidant level in seminal plasma and enhance the lipid peroxidative changes in sperm membrane leading to concomitant structural damage of sperm cell surface in the workers employed in lead acid battery factories. PMID:16170983

  9. Analysis of lead/acid battery life cycle factors: their impact on society and the lead industry

    NASA Astrophysics Data System (ADS)

    Robertson, J. G. S.; Wood, J. R.; Ralph, B.; Fenn, R.

    The underlying theme of this paper is that society, globally, is undergoing a fundamental conceptual shift in the way it views the environment and the role of industry within it. There are views in certain quarters that this could result in the virtual elimination of the lead industry's entire product range. Despite these threats, it is argued that the prospects for the lead industry appear to be relatively favourable in a number of respects. The industry's future depends to a significant degree, however, upon its ability to argue its case in a number of key areas. It is contended, therefore, that if appropriate strategies and means are promulgated, the prospects of the industry would appear to be relatively healthy. But, for this to happen with optimal effectiveness, a conceptual change will be necessary within the industry. New strategies and tools will have to be developed. These will require a significantly more integrated, holistically based and 'reflexive' approach than previously. The main elements of such an approach are outlined. With reference to the authors' ongoing research into automotive lead/acid starting lighting ignition (SLI) batteries, the paper shows how the technique of in-depth life cycle assessment (LCA), appropriately adapted to the needs of the industry, will provide a crucial role in this new approach. It also shows how it may be used as an internal design and assessment tool to identify those stages in the battery life cycle that give rise to the greatest environmental burdens, and to assess the effects of changes in the cycle to those burdens. It is argued that the development of this approach requires the serious and urgent attention of the whole of the lead industry. Also to make the LCA tool fully effective, it must be based on a 'live' database that is produced, maintained and continually updated by the industry.

  10. Application features and considerations in advanced lead-acid and nickel/iron EV batteries

    SciTech Connect

    Miller, J.F.; Rajan, J.B.; Lee, T.S.; Christianson, C.C.; Hornstra, F.; Yao, N.P.

    1983-01-01

    In the development of advanced lead-acid and nickel/iron EV batteries, major efforts have focussed on improving specific energy, specific power, cycle life, and cost. Nonetheless, other battery characteristics related to application needs are also important features which must be considered during the battery development process. This paper describes various application features and improvements incorporated in these advanced lead-acid and nickel/iron EV batteries. Their volumetric energy density and packaging flexibility are presented: their charged-stand capabilities and energy efficiencies are reported; and development work on the safe control of battery off-gases and the implementation of single-point watering systems is discussed.

  11. The advanced lead-acid battery consortium—a worldwide cooperation brings rapid progress

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.

    The development of valve regulated lead-acid (VRLA) batteries has, in recent years, been carried forward rapidly through the collaborative efforts of a worldwide consortium of battery manufacturers and related elements of industry; the Advanced Lead-Acid Battery Consortium (ALABC). This group has set aside its competitive instincts in order to achieve acceptable goals in respect of those parameters that are key factors controlling the marketability of electric vehicles (EVs): cost, cycle life, specific energy, specific power and rate of recharge. This paper provides an overview of the principal themes of the ALABC research and development programme.

  12. Lead-acid battery use in the development of renewable energy systems in China

    NASA Astrophysics Data System (ADS)

    Chang, Yu; Mao, Xianxian; Zhao, Yanfang; Feng, Shaoli; Chen, Hongyu; Finlow, David

    Policies and laws encouraging the development of renewable energy systems in China have led to rapid progress in the past 2 years, particularly in the solar cell (photovoltaic) industry. The development of the photovoltaic (PV) and wind power markets in China is outlined in this paper, with emphasis on the utilization of lead-acid batteries. The storage battery is a key component of PV/wind power systems, yet many deficiencies remain to be resolved. Some experimental results are presented, along with examples of potential applications of valve regulated lead-acid (VRLA) batteries, both the absorbed glass mat (AGM) and gelled types.

  13. Research on valve-regulated lead/acid batteries for automobiles

    NASA Astrophysics Data System (ADS)

    Chen, Hongyu; Duan, Shuzhen

    This paper introduces design technology for automotive valve-regulated lead/acid (VRLA) batteries, such as grid alloy separator, container, positive and negative plate additives, and grid frame. Compared with conventional flooded-electrolyte lead/acid batteries, automotive VRLA batteries are influenced by high charge voltage and by high temperature. If the voltage of the automotive charging system is reduced and the battery is located outside the engine compartment of the automobile, VRLA batteries will enjoy longer service lives than flooded-electrolyte counterparts. The same assembly line can produce both automotive VRLA batteries and polyethylene envelope batteries. This reduces the production costs for automotive VRLA batteries.

  14. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  15. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  16. Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels.

    PubMed

    Kayaaltı, Zeliha; Sert, Selda; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2016-01-01

    Lead inhibits the delta-aminolevulinic acid dehydratase (ALAD) activity and results in neurotoxic aminolevulinic acid accumulation in the blood. During pregnancy, lead in the maternal blood can easily cross the placenta. The aim of this study was to determine whether the maternal ALAD G177C polymorphism (rs1800435) was related to the placental lead levels. The study population comprised 97 blood samples taken from mothers to investigate ALAD G177C polymorphism and their placentas to measure lead levels. ALAD G177C polymorphism was detected by standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique and atomic absorption spectrometry (AAS) equipped with a graphite furnace and Zeeman background correction system was used for lead determination. The median placental lead levels for ALAD1-1, ALAD1-2 and ALAD2-2 genotypes were 7.54 μg/kg, 11.78 μg/kg and 18.53 μg/kg, respectively. Statistically significant association was found between the maternal ALAD G177C polymorphism and placental lead levels (p<0.05). This study suggested that maternal ALAD G177C polymorphism was associated with placental lead levels. PMID:26701682

  17. Relationships between blood lead concentration and aminolevulinic acid dehydratase in alcoholics and workers industrially exposed to lead

    SciTech Connect

    Bortoli, A.; Fazzin, G.; Marin, V.; Trabuio, G.; Zotti, S.

    1986-07-01

    Blood lead concentration (Pb-B), aminolevulinic acid dehydratase (ALAD), and gamma-GT were measured in 265 workers industrially exposed to lead and in 184 patients with liver disease resulting from alcohol consumption. The first group was divided according to alcohol use, i.e., nondrinkers, moderate drinkers, and heavy drinkers. The second group was divided according to the following criteria: hepatopatic without cirrhosis, hepatopatic with compensated cirrhosis, and hepatopatic with decompensated cirrhosis. Heavy drinkers who were industrially exposed had the highest Pb-B (40.4 +/- 14.6 micrograms/dl) and the lowest ALAD (22.2 +/- 9.1 U/L). The correlations between Pb-B and ALAD show no significant change with the increase of Pb-B. In the alcoholic group, 76 patients with alcoholic liver disease without cirrhosis had the highest Pb-B (40.3-9.1 micrograms/dl) and ALAD the lowest (18.6 +/- 7.7 U/L). The negative correlation between Pb-B and log ALAD disappeared completely in individuals with Pb-B that exceeded 50 micrograms/dl, independent from the seriousness of illness.

  18. Semen quality and fertility of men employed in a South African lead acid battery plant.

    PubMed

    Robins, T G; Bornman, M S; Ehrlich, R I; Cantrell, A C; Pienaar, E; Vallabh, J; Miller, S

    1997-10-01

    Previous studies of the associations of measures of occupational lead exposure with measures of semen quality and infertility among male workers have produced conflicting results. The current study was undertaken to examine these associations among a population of workers with a broad range of measures of current and historical lead exposure. Ninety-seven lead-exposed workers from a South African lead acid battery facility provided semen samples that were analyzed for sperm density, sperm count, sperm motility, sperm morphology, and presence of antisperm antibodies. Questionnaire data were collected for reported histories of sub- or infertility. Current blood leads ranged from 28 to 93 micrograms/dl. Semen lead ranged from 1 to 87 micrograms/dl. Reasonably consistent and significant associations were found between an increased percentage of sperm with abnormal morphology and higher measures of current blood lead, cumulative blood lead, and duration of exposure. An increased percent of immotile sperm was associated only with zinc protoporphyrin (ZPP) among the lead exposure measures. There were no associations of sperm density or sperm count with any of the lead exposure measures. A weak association of increased percent of sperm with antisperm antibodies with increased semen lead was present. There were no consistent associations of measures of lead exposure with measures of fertility or procreativity. This study, while supporting the association of lead exposure with increased risk of abnormal sperm morphology seen in some previous studies, does not lend support to previously reported associations of sperm density or count or infertility with measures of lead exposure. However, the relatively high range of current blood leads, high prevalence of abnormalities in semen quality, and the lack of a control population, suggest that these negative findings should be interpreted with caution. PMID:9258391

  19. Investigation of organic expanders effects on the electrochemical behaviors of new synthesized nanostructured lead dioxide and commercial positive plates of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Alipour, Mahboobeh

    Positive electrode with uniform lead dioxide nanostructures was directly synthesized by pulsed current electrochemical method on the lead substrate in 4.8 M sulfuric acid solution. The effect of synthesis parameters were studied by the "one at a time" method on the morphology and particle size of lead dioxide. The composition, morphology and structure were investigated using energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction techniques (XRD). The effect of conventional organic expanders including humic acid, 1,2-acid (α-hydroxy β-naphtoic acid) and Vanillex was studied on the electrochemical behaviors of the prepared positive electrodes by cyclic voltammetry and on the discharge capacity and cyclelife of commercial positive plates. The used organic expanders improve the performance of negative plates but, they have not positive effects on the performance of positive electrodes of lead-acid batteries.

  20. Program to analyze the failure mode of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Zuckerbrod, David

    1986-03-01

    The electrical characteristics of large lead-acid cells from nuclear power plants were studied. The overall goal was to develop non-destructive tests to predict cell failure using this easily obtained information. Cell capacitance, internal resistance, reaction resistance for hydrogen evolution and cell capacity were measured on a lead-calcium cell in good condition. A high float voltage and low internal resistance were found to correlate with good cell capacity in cells selected from a set of six lead-antimony cells in poor conditions.

  1. Designing lead-acid batteries to meet energy and power requirements of future automobiles

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.; Rand, David A. J.; Monahov, Boris

    2012-12-01

    A review is given of the factors that mitigate against the successful use of lead-acid batteries in the high-rate partial-state-of-charge (HRPSoC) duties experienced in hybrid electric vehicles, together with a consideration of successful remedies for those factors.

  2. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    ERIC Educational Resources Information Center

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  3. History and current status of valve-regulated lead/acid batteries in Japan

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroto; Fuchida, Kyo

    The valve-regulated design of the sealed lead/acid battery (VRB), developed in the first half of the 1960s in Japan for use in portable television sets, has achieved successful market growth. This paper reviews the history of development of VRBs during the past thirty years, present production models, production quality, major applications, and technical problems.

  4. {Delta}-Aminolevulinic acid dehydratase: A sensitive indicator of lead exposure in broiler chicks: (Gallus domesticus)

    SciTech Connect

    Bakalli, R.I.; Pesti, G.M.; Konjufca, V.

    1995-12-01

    Delta-aminolevulinic acid dehydratase, EC 4.2.1.24 (ALAD) is one of the enzymes participating in heme synthesis. The study reported in this paper was designed to determine the activity of erythrocyte ALAD anbd the relationship between this enzyme and tissue lead levels in chickens, during Pb intake and after withdrawing Bv from the feed. 20 refs., 3 tabs.

  5. Using Diagnostic Assessment to Help Teachers Understand the Chemistry of the Lead-Acid Battery

    ERIC Educational Resources Information Center

    Cheung, Derek

    2011-01-01

    Nineteen pre-service and in-service teachers taking a chemistry teaching methods course at a university in Hong Kong were asked to take a diagnostic assessment. It consisted of seven multiple-choice questions about the chemistry of the lead-acid battery. Analysis of the teachers' responses to the questions indicated that they had difficulty in…

  6. Effect of depth of discharge on lead-acid battery overcharge requirements

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.

    1986-02-01

    The develop an optimal charge procedure, the relation between battery available capacity, applied overcharge, and the depth-of-discharge (DOD) level prior to charging needed to be established. Therefore, a series of parametric tests was conducted to measure the charge acceptance of lead-acid batteries from initial DOD levels of 25, 50, 75, and 100%. Because the available capacity and charge acceptance of the lead-acid battery are dependent on operating temperature, all the charges and discharges were initiated at a fixed temperature. Also because of the typical variation in available capacity of the lead-acid battery with age, baseline performance measurements were periodically acquired for normalization of the charge acceptance test data. The results from these tests show that the amount of overcharge needed to obtain the maximum available capacity from an EV-3000 improved lead-acid battery (which uses electrolyte mixing) is greatly reduced from that needed for commercially available golf-car lead-acid batteries. This was true for all initial DOD levels. The overcharges needed by the EV-3000 battery was a function of the DOD level prior to charging, but the overcharge needed for the golf-car battery was independent of DOD level. The acquired data can be used to derive an optium charge algorithm that relates capacity, overcharge, and DOD level. Applying only the minimum overcharge level needed for full capacity offers advantages of: (1) reduced generation of gases, (2) reduced water consumption, (3) cleaner battery containers, (4) reduced maintenance, and (5) increased battery life.

  7. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept

    NASA Astrophysics Data System (ADS)

    Kirchev, Angel; Kircheva, Nina; Perrin, Marion

    2011-10-01

    The carbon honeycomb grid is proposed as innovative solution for high energy density lead acid battery. The proof of concept is demonstrated, developing grids suitable for the small capacity, scale of valve-regulated lead acid batteries with 2.5-3 Ah plates. The manufacturing of the grids, includes fast, known and simple processes which can be rescaled for mass production with a minimum, investment costs. The most critical process of green composite carbonisation by heating in inert, atmosphere from 200 to 1000 °C takes about 5 h, guaranteeing the low cost of the grids. An AGM-VRLA, cell with prototype positive plate based on the lead-2% tin electroplated carbon honeycomb grid and, conventional negative plates is cycled demonstrating 191 deep cycles. The impedance spectroscopy, measurements indicate the grid performance remains acceptable despite the evolution of the corrosion, processes during the cycling.

  8. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  9. Process for the extended use of strip acid employed in the reclamation of battery acid fluid from expanded lead-acid batteries

    SciTech Connect

    Spitz, R.A.; Bricker, M.

    1991-04-23

    This patent describes a method for recycling contaminated sulfuric acid from lead acid batteries to reclaimed sulfuric acid for reuse in the batteries by removing contaminating iron impurities. It includes diluting the contaminated sulfuric acid to a concentration between 150 and 230 grams per liter; filtering the sulfuric acid through a first filter means to remove solid impurities; oxidizing the sulfuric acid to assure that the iron contaminants are substantially in a ferric form; removing the iron contaminants from the sulfuric acid through liquid-liquid extracting using an extraction agent comprising mixture of a mono- or di-alkyl phosphoric acid and a metal chelation collector selected from the group consisting of a 8- hydroxyquinoline substituted in the No. 7 position with a long chain aliphatic hydrocarbon radical and an oil-soluble 2-hydroxy benzophenoneoxime, a modifier which maintains solubility of the phosphoric acid and the metal chelation collector and enhances phase disengagement, and a water immiscible carrier, the molar ratio of the 8-hydroxyquinoline and the phosphoric acid being between 1:1::1:4, respectively; wherein the ratio of extraction agent to water immiscible carrier is greater than 10:90; the extraction performed at a volumetric ratio between 4:1::1:4, and repeated until the contaminating iron impurities are substantially reduced.

  10. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance

    NASA Astrophysics Data System (ADS)

    Swogger, Steven W.; Everill, Paul; Dubey, D. P.; Sugumaran, Nanjan

    2014-09-01

    Performance demands placed upon lead acid batteries have outgrown the technology's ability to deliver. These demands, typically leading to Negative Active Material (NAM) failure, include: short, high-current surges; prolonged, minimal, overvoltage charging; repeated, Ah deficit charging; and frequent deep discharges. Research shows these failure mechanisms are attenuated by inclusion of carbon allotropes into the NAM. Addition of significant quantities of carbon, however, produces detrimental changes in paste rheology, leading to lowered industrial throughput. Additionally, capacity, cold-cranking performance, and other battery metrics are negatively affected at high carbon loads. Presented here is Molecular Rebar® Lead Negative, a new battery additive comprising discrete carbon nanotubes (dCNT) which uniformly disperse within battery pastes during mixing. NS40ZL batteries containing dCNT show enhanced charge acceptance, reserve capacity, and cold-cranking performance, decreased risk of polarization, and no detrimental changes to paste properties, when compared to dCNT-free controls. This work focuses on the dCNT as NAM additives only, but early-stage research is underway to test their functionality as a PAM additive. Batteries infused with Molecular Rebar® Lead Negative address the needs of modern lead acid battery applications, produce none of the detrimental side effects associated with carbon additives, and require no change to existing production lines.

  11. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA)

    SciTech Connect

    Tasmin, Saira; Furusawa, Hana; Ahmad, Sk. Akhtar; Watanabe, Chiho

    2015-01-15

    Background and objective: Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this study investigated whether the ALAD genotype influenced urinary excretion of delta-aminolevulinic acid (U-ALA) among children exposed to environmental lead in Bangladesh. Methods: Subjects were elementary schoolchildren from a semi-urban industrialized area in Bangladesh. A total of 222 children were studied. Blood and urine were collected to determine ALAD genotypes, blood lead levels and urinary aminolevulinic acid (U-ALA). Results: The mean BPb level was 9.7 µg/dl for the study children. BPb was significantly positively correlated with hemoglobin (p<0.01). In total, allele frequency for ALAD 1 and 2 was 0.83 and 0.17 respectively. The mean U-ALA concentration was lower in ALAD1-2/2-2 carriers than ALAD1-1 carriers for boys (p=0.001). But for girls, U-ALA did not differ significantly by genotype (p=0.26). When U-ALA was compared by genotype at the same exposure level in a multiple linear regression analysis, boys who were ALAD1-2/2-2 carriers still had a lower level of U-ALA compared to ALAD1-1carriers. Conclusion: This study provides information about the influence of ALAD polymorphism and its association with U-ALA in Bangladeshi children. Our results indicate that the ALAD1-2/2-2 genotype may have a protective effect in terms of U-ALA for environmentally lead exposed boys. - Highlights: • High blood lead level for the environmentally exposed schoolchildren. • BPb was significantly correlated with U-ALA and Hb. • Effect of ALAD genotype on U-ALA is differed by sex. • Lower U-ALA in ALAD2 than ALAD1 carriers only for boys at same exposure.

  12. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings. PMID:25069575

  13. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  14. Influence of 2,3-dimercaptosuccinic acid on gastrointestinal lead absorption and whole-body lead retention

    SciTech Connect

    Kapoor, S.C.; Wielopolski, L.; Graziano, J.H.; LoIacono, N.J. )

    1989-03-01

    2,3-Dimercaptosuccinic acid (DMSA) is a new orally active heavy metal chelator for the treatment of childhood Pb intoxication on an outpatient basis. The influence of DMSA, as well as other chelating agents, on gastrointestinal 203Pb absorption and whole-body {sup 203}Pb retention was examined. Groups of Sprague-Dawley rats (230-260 g) were gavaged with a solution containing approximately 25 mg/kg Pb (as Pb(NO{sub 3})2) plus 15 microCi {sup 203}Pb. Some groups were then immediately given 0.11 mmol/kg of either DMSA, CaNa2EDTA, D-penicillamine, or BAL by oral gavage, while other groups received the same drugs by ip injection. Control groups received solutions of the drug vehicles po or ip. Whole-body Pb retention and gastrointestinal Pb absorption (whole body retention + urinary Pb excretion) were significantly decreased in rats that received DMSA po. This finding implies that the use of DMSA to treat childhood lead intoxication on an outpatient basis is not associated with a risk for increased Pb absorption.

  15. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  16. ANN modeling of cold cranking test for sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Karimi, Mohammad Ali; Mahdipour, Maryam

    A cold cranking test for 17 sealed lead-acid batteries with grids of lead-calcium alloy at -18 °C was performed at different discharge currents. Time-voltage behavior of the batteries during 10 s discharge, voltage values at discharge times of 30, 60 and 90 s, and time of discharge to reach a final voltage of 6 V are critical points in the cold cranking test. These were modeled by artificial neural networks in MATLAB 7 media. Nine discharge currents were used for the training set, five discharge currents for the prediction set and three discharge currents for the validation set. Maximum prediction errors in the modeling of the time-voltage behavior during a 10 s discharge (model 1), the voltage of critical points of 30, 60, 90 s (model 2) and the time to reach a final voltage of 6 V (model 3) were under 3.1%, 3.3%, and 3.5%, respectively for each model. The results obtained showed that the models can be used in the battery industry for the prediction of the cold cranking behavior of lead-acid batteries at high discharge currents based on experimental cold cranking data at low discharge currents without the use of expensive and complex instruments. A file (EXE file) based on the model obtained by WinNN 32 was prepared to enable inexpert operators in the lead-acid battery industry to use the method.

  17. Development of a lead-acid battery for a hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Cooper, A.

    In September 2000, a project reliable, highly optimized lead-acid battery (RHOLAB) started under the UK Foresight Vehicle Programme with the objective of developing an optimized lead-acid battery solution for hybrid electric vehicles. The work is based on a novel, individual, spirally-wound valve-regulated lead-acid 2 V cell optimized for HEV use and low variability. This cell is being used as a building block for the development of a complete battery pack that is managed at the cell level. Following bench testing, this battery pack is to be thoroughly evaluated by substituting it for the Ni-MH pack in a Honda Insight. The RHOLAB cell is based on the 8 Ah Hawker Cyclon cell which has been modified to have current take-off at both ends—the dual-tab design. In addition, a variant has been produced with modified cell chemistry to help deal with problems that can occur when these valve-regulated lead-acid battery (VRLA) cells operate in a partial-state-of-charge condition. The cells have been cycled to a specially formulated test cycle based on real vehicle data derived from testing the Honda Insight on the various test tracks at the Millbrook Proving Grounds in the UK. These cycling tests have shown that the lead-acid pack can be successfully cycled when subjected to the high current demands from the vehicle, which have been measured at up to 15 C on discharge and 8 C during regenerative recharging, and cycle life is looking very promising under this arduous test regime. Concurrent with this work, battery development has been taking place. It was decided early on to develop the 144 V battery as four 36 V modules. Data collection and control has been built-in and special steps taken to minimize the problems of interconnect in this complex system. Development of the battery modules is now at an advanced stage. The project plan then allows for extensive testing of the vehicle with its lead-acid battery at Millbrook so it can be compared with the benchmark tests which

  18. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  19. Gelled-electrolyte lead/acid batteries for stationary and traction applications

    NASA Astrophysics Data System (ADS)

    May, G. J.; Lenain, P.

    The development of new ranges of valve-regulated lead/acid (VRLA) batteries for stationary and traction applications is described. These batteries are gas recombining and use gelled electrolyte, tubular positive plates cast in lead-calcium-tin alloys and a specially-designed pressure relief valve. For stationary service, comparisons are made with VRLA batteries using absorptive glass mat separators. For traction applications, the relative merits of gel technology against alternative approaches to the achievement of lower maintenance for traction batteries are discussed. Operational experience with these batteries is outlined and guidelines indicated for correct application.

  20. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.

    PubMed

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong

    2015-11-01

    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate. PMID:26044560

  1. Lead-acid traction batteries for electric road vehicle propulsion Directions for research and development

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.

    1980-09-01

    Little information exists on the behavior of lead-acid batteries operating under the duty cycles normal to electric road vehicle service. Important battery requirements for the propulsion of traffic-compatible electric vehicles include a deep-discharge capability at high efficiencies of active material utilization, and a long cycle life. In order to optimize power-source characteristics to meet these criteria, especially for passenger cars, it is necessary to gain full knowledge of the influence of actual vehicle service on the performance of traction batteries. This article defines areas in which both fundamental and applied work are required to achieve this aim based on the current performance of the lead-acid system.

  2. Lead-acid battery performance and technology in commercial electric vehicle applications

    SciTech Connect

    Weinlein, C.E.

    1982-06-01

    The lead-acid battery system is promoted for energy storage in electric vehicles for these reasons: the industry is in place, it has the lowest material costs, it is recyclable, it has demonstrated the greatest performance improvements, and it has had more field experience than other batteries. Globe Battery has demonstrated its ability to meet state-of-the-art standards set by Argonne Laboratories in a recent program. The design approach included computerized battery modelling, use of lightweight materials, extensive internal insulation, a single-point watering and venting system, and a unique electrolyte circulation system. The water venting minimizes high electrolyte specific gravities. The electrolyte circulation eliminates a condition known as electrolyte stratification. With these improvements the lead-acid battery is again proving itself to be a tough competitor.

  3. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  4. Study of the influence of carbon on the negative lead-acid battery electrodes

    NASA Astrophysics Data System (ADS)

    Bača, Petr; Micka, Karel; Křivík, Petr; Tonar, Karel; Tošer, Pavel

    Experiments were made with negative lead-acid battery electrodes doped with different concentrations of powdered carbon. It turned out that the rate of formation decreased with the rising concentration of carbon added into the active material. During accelerated cycling in the PSoC regime, the cycle life showed a maximum at a concentration of carbon near 1%, whereas at lower or higher concentrations the cycle life was profoundly lower. A marked increase of the active mass resistance with the cycle number was recorded at carbon concentrations above 2%. Orientation experiments showed that compression of the lead-acid laboratory cells caused an increase of the cycle life of the negative electrode in the studied regime.

  5. Development of a high-performance lead-acid battery for new-generation vehicles

    NASA Astrophysics Data System (ADS)

    Cooper, Allan

    The ultimate objective of this project is to demonstrate that a valve-regulated lead-acid battery of dual-tab design can be successfully substituted for the nickel-metal hydride battery pack in a Honda Insight hybrid electric vehicle. While the realization of the construction of the battery modules, the battery management system and the associated software has been more complex and time-consuming than was originally envisaged, the battery has now been fitted into the vehicle. With the initial system integration work now complete, the project plan is to test the vehicle with its lead-acid battery for up to 50,000 miles over a combination of the high speed, hill and urban circuits at the Millbrook Proving Grounds in the UK, as well as in general road driving. Prior to this, the developmental battery will have new cells fitted because of the uncertain cycling history of the original cells during the prolonged development period.

  6. Aminolevulinic acid-dehydratase activity in green sunfish: An indicator of lead bioavailability in suspended sediments

    SciTech Connect

    Caldwell, C.; Steingraeber, M.

    1995-12-31

    Green sunfish (Lepomis cyanellus, 6-32 g) were exposed for 28 days to suspended sediments and sediments not in suspension (bedded). Blood was collected for aminolevulinic acid-dehydratase activity (ALA-D), hemoglobin and blood lead concentrations, and whole body lead concentrations. Results of the metal analysis of filtered and unfiltered water from both suspended and bedded sediment tests revealed that the majority of the metal was associated with particulate matter in suspension. Fish subjected to suspended sediments (0.2, 1.6, and 21.9 ug/g lead, dry weight) had significantly reduced ALA-D and hemoglobin concentrations than fish in bedded sediments. However, there was no significant correlation between lead concentrations in suspended sediments and ALA-D activity. In addition, there were no significant correlations between ALA-D activity and hemoglobin concentrations. Whole body analysis and blood lead concentrations were not good indicators of lead exposure in sediment tests having relatively low concentrations of lead.

  7. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect

    Not Available

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  8. Study and application of several-step tank formation of lead/acid battery plates

    NASA Astrophysics Data System (ADS)

    Chen, Hongyu; Wei, Yongzhong; Luo, Yourong; Duan, Shuzhen

    A several-step tank formation method and related charging equipment have been developed for automotive lead/acid batteries. This process offers the advantages of reduced energy requirements, increased charging efficiency and reduced environmental problems. Results also suggest that several-step formation ameliorates the problem of premature capacity loss and extends the useful service-life of automotive batteries. This is thought to be due to the production of greater amounts of α-PbO 2 in the positive plates.

  9. Enhancing the performance of lead-acid batteries with carbon - In pursuit of an understanding

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.; Rand, David A. J.; Peters, Ken

    2015-11-01

    The inherently poor dynamic charge-acceptance of the lead-acid battery can be greatly improved by the incorporation of additional carbon to the negative plate. An analysis is undertaken of the various ways by which the carbon may be introduced, and of the proposed mechanisms whereby its presence proves to be beneficial. It is intended that such an investigation should provide a guide to the selection of the optimum carbon inventory.

  10. Investigations of the factors causing performance losses of lead/acid traction batteries

    NASA Astrophysics Data System (ADS)

    Kronberger, H.; Fabjan, Ch.; Gofas, N.

    A failure analysis is carried out with a lead/acid traction battery after a two-years' test run in an electric passenger car. A survey of the operational data, in combination with laboratory tests and chemical and physical analyses, reveals the main causes of battery damage and performance loss: insufficiencies of the charging procedure, inadequate maintainance (water-refilling system), antimony-contamination and loss of the active material due to grid corrosion and shedding of PbO 2.

  11. A new equation for the limiting capacity of the lead/acid cell

    NASA Astrophysics Data System (ADS)

    Compagnone, N. F.

    As an alternative to the empirical Peukert equation, whose validity is restricted to intermediate discharge rates, a new equation for the limiting capacity of the lead/acid cell is proposed, formally derived from an approximate closed form solution of a two finite compartment diffusion problem. The four parameters of the equation are evaluated through a non-linear least-squares method. The resulting capacity curve fits the typically undulating experimental data closely throughout their range.

  12. Separator for starved electrolyte lead/acid battery. [perlite and glass fiber mixture

    SciTech Connect

    Bilawsky, P.D.; Cain, C.W.; Gross, S.E.; Scheffel, N.B.

    1980-11-11

    Compositions and papers made therefrom useful as separator materials in starved electrolyte lead/acid batteries are described. The compositions comprise a mixture of 30% to 80% by weight of perlite and 20% to 70% by weight of glass fibers. The glass fibers have diameters in the range of from 0.3 to 1.0 micrometers while the perlite has particle sizes in the range of from about 3 to about 100 micrometers.

  13. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code

    PubMed Central

    Bullwinkle, Tammy J; Reynolds, Noah M; Raina, Medha; Moghal, Adil; Matsa, Eleftheria; Rajkovic, Andrei; Kayadibi, Huseyin; Fazlollahi, Farbod; Ryan, Christopher; Howitz, Nathaniel; Faull, Kym F; Lazazzera, Beth A; Ibba, Michael

    2014-01-01

    Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability. DOI: http://dx.doi.org/10.7554/eLife.02501.001 PMID:24891238

  14. Low-maintenance, valve-regulated, lead/acid batteries in utility applications

    NASA Astrophysics Data System (ADS)

    Cook, G. M.; Spindler, W. C.

    Electric power utility companies have various needs for lead/acid batteries, and also are beginning to promote customer-side-of-the meter applications for mutual benefits. Increasing use of lead/acid batteries in the future will depend heavily on improving performance and reliability of sealed, recombination designs, and on their versatility for many applications. Classifying various utility uses could be by cycling requirements, depth-of-discharge, power or energy (ratio of watts to hours), or by site (utility or customer). Deep-cycling examples are energy storage, peak-shaving and electric vehicles. Shallow-cycling examples are frequency regulation and reactive power control. Infrequent discharge examples are stationary service and spinning reserve. (Float service for telecommunications and uninterruptible power sources (UPS) applications are not addressed.) Some present and planned installations of valve-regulated lead/acid batteries are surveyed. Performance characteristics will be discussed, including recent results of testing both gel and absorptive glass mat (AGM) types of deep-cycling batteries. Recommendations for future research and development of valve-regulated cell technology are outlined, based on a recent conference organized by the United States Department of Energy (USDOE) and the Electric Power Research Institute (EPRI).

  15. Rapid, efficient charging of lead-acid and nickel-zinc traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.

  16. ANN modeling of water consumption in the lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad Ali; Karami, Hassan; Mahdipour, Maryam

    Due to importance of the quantity of water loss in the life cycle of lead-acid batteries, water consumption tests were performed on 72 lead-acid batteries with low antimony grid alloy at different charge voltages and temperatures. Weight loss of batteries was measured during a period of 10 days. The behavior of batteries in different charge voltages and temperatures were modeled by artificial neural networks (ANNs) using MATLAB 7 media. Four temperatures were used in the training set, out of which three were used in prediction set and one in validation set. The network was trained by training and prediction data sets, and then was used for predicting water consumption in all three temperatures of prediction set. Finally, the network obtained was verified while being used in predicting water loss in defined temperatures of validation set. To achieve a better evaluation of the model ability, three models with different validation temperatures were used (model 1 = 50 °C, model 2 = 60 °C and model 3 = 70 °C). There was a good agreement between predicted and experimental results at prediction and validation sets for all the models. Mean prediction errors in modeling charge voltage-temperature-time behavior in the water consumption quantity for models 1-3 were below 0.99%, 0.03%, and 0.76%, respectively. The model can be simply used by inexpert operators working in lead-acid battery industry.

  17. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid. PMID:23846730

  18. Amersorb: a new high-performance polymeric separator for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, Valérie

    Given the recent improvements in valve-regulated batteries, lead-acid technology is nowadays considered to be well-suited for stationary power applications. Gel and absorptive glass mat (AGM) valve-regulated lead-acid (VRLA) batteries are complementary technologies and provide reliability and efficiency due to progressive optimization of the design and components. Special attention has been paid to the separation system, as its influence on the battery performance has been fully demonstrated. Polymeric calendered ribbed separators are traditionally used in gel VRLA batteries. For this technology, the separator is required to have high pore volume, optimized pore size, low acid displacement and low electrical resistance. It must also support efficient and controlled oxygen transfer. Glass-microfibre separators are presently the preferred material for AGM batteries. In addition to the properties listed for the polymeric type, glass-microfibre separators must not allow any drainage or stratification of the liquid electrolyte, and be able to retain their initial thickness after filling and during the battery life in order to sustain the initial compression in each cell. The Amersorb separator is well adapted to both technologies, for example: (i) the ribbed and corrugated patterns provide improved porosity (pore volume and pore-size distribution); (ii) the flat membrane is not only able to wick and retain the acid, but has also optimal compression properties (low compressibility and excellent springiness).

  19. Voltammetric and morphological study of lead electrodeposition on copper substrate for application of a lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Carlos, I. A.; Matsuo, T. T.; Siqueira, J. L. P.; de Almeida, M. R. H.

    Electrodeposition of lead on copper was investigated experimentally, mainly the adherence of the lead plate and, if possible to obtain films with characteristics suitable for use in lead battery technology. Under potentiodynamic and chronopotentiometric conditions, the lead films deposited from alkaline glycerol solutions on copper were sufficiently adherent for this substrate showed to be potentially useful as a cathode for lead deposition. Scanning electron microscopy (SEM) photographs showed that there was no dendritic growth of lead film on copper substrate, which is thus acceptable as a support in battery plates. With the help of energy dispersive X-ray spectroscopy (EDS), an explanation has been offered for the adherence of the lead deposits to the copper substrate. It was concluded that lead film deposited prior to lead bulk deposition favors the adhesion of the electrodeposits.

  20. Corrosion and Protection of Lead Anodes in Acidic Copper Sulphate Solutions

    NASA Astrophysics Data System (ADS)

    Cifuentes, L.; Astete, E.; Crisotomo, G.; Simpson, J.; Cifuentes, G.; Pilleux, M.

    It is known that lead anodes used in the industrial extraction of copper by electrolysis (electrowinning) suffer corrosion as a result of accidental or intended current interruptions. In order to improve understanding of the corrosion and protection of such anodes, the effects of the concentrations of copper, sulphuric acid, cobalt, iron, manganese, chloride and an organic additive (guar) on the corrosion of lead have been studied by means of weight loss tests and surface analysis techniques (X-ray photoelectron spectroscopy, X-ray diffraction, and wavelength dispersive spectroscopy). The rate of corrosion of lead during current interruptions increases with increasing concentration of sulphuric acid and copper, whereas it decreases markedly in the presence of cobalt and iron and, to a lesser extent, in the presence of chloride and the organic additive. Manganese is the only impurity whose presence does not reduce the rate of corrosion; it is also the only element which precipitates in significant amounts on the lead anode surface under the conditions studied. A method is proposed to establish the optimum anodic protection current density during current interruptions in electrowinning cells. Three current density ranges have been found, of which the 'high' protection range could be caused by the degree of compactness acquired by the PbO2 layer at applied anodic current densities in excess of 60 A m-2.

  1. Effects of zinc, copper, and lead toxicity on. cap alpha. -aminolevulinic acid dehydratase activity. [Rats

    SciTech Connect

    Shafiq-ur-Rehman

    1984-07-01

    The distribution of lead, zinc and copper in the human environment has been recognized as a major toxicological factor. Lead ions have been shown to inhibit the activity of delta-aminolevulinic acid dehydratase (delta-ALAD), which is involved in the biosynthesis of heme. Copper also has its inhibitory effect on delta-ALAD activity. A study has shown that the delta-ALAD was activated by zinc ions at physiological concentrations. In view of these reports, it was considered worthwhile to study the poisoning effects of lead, zinc and copper on delta-ALAD activity along with the concentrations of these metal ions in the blood. A possible role of Zn/sup + +/, Cu/sup + +/, and Pb/sup + +/ interaction and their influence on delta-ALAD has been explored in the present paper.

  2. Polydivinylferrocene surface modified electrode for measuring state-of-charge of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lee, Todd; Singh, Pritam; Baker, Murray V.; Issa, Touma B.

    This paper outlines an investigation of the electrochemical behaviour of polymeric divinylferrocene (PDVF) produced by direct polymerisation of divinylferrocene (DVF) monomer on a glassy carbon substrate. The findings indicate that PDVF undergoes reversible reduction/oxidation in neutral and acidic aqueous media containing perchlorate (ClO 4 -) and sulfhate (SO 4 2-). The anodic peak potential of the PDVF shifts linearly to less positive potentials as the sulfuric acid (H 2SO 4) concentration is increased from 1 to 5 M. The polymer film strongly adheres to the glassy carbon surface and is electrochemically stable when subjected to repeated voltammetric cycling in the potential range of -0.2 to +0.8 V vs. Ag|AgCl. The potential of the partially oxidized film of PVDF on a glassy carbon substrate against a Ag|AgCl/KCl reference electrode in sulfuric acid solution is stable, reproducible and varies linearly with the acid concentration in the range of 1-5 M. This observation may be suitable for potentiometrically measuring the state-of-charge of lead-acid batteries.

  3. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  4. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    PubMed

    Sin, Yuan Yan; Ballantyne, Laurel L; Mukherjee, Kamalika; St Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  5. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... identification as Draft Regulatory Guide, DG-1269, in the Federal Register on March 12, 2013 (78 FR 15753), for a... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The...

  6. Field turbidity method for the determination of lead in acid extracts of dried paint.

    PubMed

    Studabaker, William B; McCombs, Michelle; Sorrell, Kristen; Salmons, Cynthia; Brown, G Gordon; Binstock, David; Gutknecht, William F; Harper, Sharon L

    2010-07-01

    Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid

  7. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  8. Lead-acid bipolar battery assembled with primary chemically formed positive pasted electrode

    NASA Astrophysics Data System (ADS)

    Karami, H.; Shamsipur, M.; Ghasemi, S.; Mousavi, M. F.

    Primary chemically formed lead dioxide (PbO 2) was used as positive electrode in preparation of lead-acid bipolar batteries. Chemical oxidation was carried out by both mixing and dipping methods using an optimized amount of ammonium persulfate as a suitable oxidizing agent. X-ray diffraction studies showed that the weight ratio of β-PbO 2 to α-PbO 2 is more for mixing method before electrochemical forming. The electrochemical impedance spectroscopy (EIS) was used to investigate charge transfer resistance of the lead dioxide obtained by mixing and dipping methods before and after electrochemical forming. Four types of bipolar lead-acid batteries were produced with: (1) lead substrate and conventional electroforming; (2) carbon doped polyethylene substrate with conventional electroforming; (3) carbon doped polyethylene substrate with chemical forming after curing and drying steps in oxidant bath, followed by electrochemical forming, and (4) carbon doped polyethylene substrate with primary chemical oxidation in mixing step, followed by conventional electroforming. The capacity and cycle-life tests of the prepared bipolar batteries were performed by a home-made battery tester and using the pulsed current method. The prepared batteries showed low weight, high capacity, high energy density and high power density. The first capacities of bipolar batteries of type 1-4 were found to be 152, 150, 180 and 198 mAh g -1, respectively. The experimental results showed that the prepared 6 V bipolar batteries of type 1-4 have power density (per cell unit) of 59.7, 57.4, 78.46 and 83.30 mW g -1 (W kg -1), respectively.

  9. An analytical study of a lead-acid flow battery as an energy storage system

    NASA Astrophysics Data System (ADS)

    Bates, Alex; Mukerjee, Santanu; Lee, Sang C.; Lee, Dong-Ha; Park, Sam

    2014-03-01

    The most important issue with our current clean energy technology is the dependence on environmental conditions to produce power. To solve this problem a wide range of energy storage devices are being explored for grid-scale energy storage including soluble lead-acid flow batteries. Flow batteries offer a unique solution to grid-scale energy storage because of their electrolyte tanks which allow easy scaling of storage capacity. This study seeks to further understand the mechanisms of a soluble lead acid flow battery using simulations. The effects of varies changes to operating conditions and the system configuration can be explored through simulations. The simulations preformed are 2D and include the positive electrode, negative electrode, and the flow space between them. Simulations presented in this study show Pb(II) surface concentration, external electric potential, and PbO/PbO2 surface concentration on the positive electrode. Simulations have shown increasing cell temperature can increase external electric potential by as much as 0.2 V during charge. Simulations have also shown electrolyte velocity is an important aspect when investigating lead deposition onto the electrodes. Experimental work was performed to validate simulation results of current density and voltage. Good correlation was found between experimental work and simulation results.

  10. Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Gyenge, Elod; Jung, Joey; Mahato, Basanta

    Reticulated, open-cell structures based on vitreous carbon substrates electroplated with a Pb-Sn (1 wt.%) alloy were investigated as current collectors for lead-acid batteries. Scanning and backscattered electron microscopy, cyclic voltammetry, anodic polarization and flooded 2 V single-cell battery testing was employed to characterize the performance of the proposed collectors. A battery equipped with pasted electroplated reticulated vitreous carbon (RVC) electrodes of 137 cm 2 geometric area, at the time of manuscript submission, completed 500 cycles and over 1500 h of continuous operation. The cycling involved discharges at 63 A kg PAM-1 corresponding to a nominal 0.75 h rate and a positive active mass (PAM) utilization efficiency of 21%. The charging protocol was composed of two voltage limited (i.e. 2.6 V/cell), constant current steps of 35 and 9.5 A kg PAM-1, respectively, with a total duration of about 2 h. The charge factor was 1.05-1.15. The observed cycling behavior in conjunction with the versatility of electrodeposition to produce application-dependent optimized lead alloy coating thickness and composition shows promise for the development of lead-acid batteries using electroplated reticulated vitreous carbon collectors.

  11. [Determination of trace extractable lead in artificial acid sweat from ecological textiles by GFAAS].

    PubMed

    Liu, Chong-Hua; Fang, Han; Lin, Xiao-Yang; Zhang, Xiao-Li; Deng, Zhi-Guang; Li, Yun-Song

    2009-11-01

    Extractable trace level lead in artificial sweat solution from ecological textiles is a key item limited by eco-textile standard. But the content of this extractable Pb is not so easy to determine for the strict limit of eco-textile standard, the complicatedness of extractable solution matrix and the strong background interference of NaCl. In the present paper a method for the determination of trace extractable lead in artificial acid sweat from ecological textiles by graphite furnace atomic absorption spectrometry (GFAAS) is described. Based on a number of experiments by using different single and mixed matrix modifiers including (NH4)2 H2PO4, NH4 NO3, Pd(NO3)2, Ni(NO3)2 and ascorbic acid, an effective modifier and its quantity were selected and the graphite furnace operating parameters were optimized. Experimental test results revealed that adding 5 mL (1 : 1) mixed solution of 50 g x L(-1) ammonium nitrate and 100 mg x L(-1) palladium regent was an effective way to inhibit volatile lead and reduce background signals. The detection limit could reach a low level of 0.7 microg x L(-1). The relative standard deviation was 3.2%. Under the optimum experimental conditions, the recoveries ranged between 95.5% and 105%. PMID:20102007

  12. Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid

    USGS Publications Warehouse

    Sierra-Alvarez, R.; Yenal, U.; Feld, J.A.; Kopplin, M.; Gandolfi, A.J.; Garbarino, J.R.

    2006-01-01

    Monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are extensively utilized as pesticides, introducing large quantities of arsenic into the environment. Once released into the environment, these organoarsenicals are subject to microbial reactions. Aerobic biodegradation of MMAV and DMAV has been evaluated, but little is known about their fate in anaerobic environments. The objective of this study was to evaluate the biotransformation of MMAV and DMAV in anaerobic sludge. Biologically mediated conversion occurred under methanogenic or sulfate-reducing conditions but not in the presence of nitrate. Monomethylarsonous acid (MMAIII) was consistently observed as an important metabolite of MMAV degradation, and it was recovered in molar yields ranging from 5 to 47%. The main biotransformation product identified from DMAV metabolism was MMAV, which was recovered in molar yields ranging from 8 to 65%. The metabolites indicate that reduction and demethylation are important steps in the anaerobic bioconversion of MMAV and DMAV, respectively. ?? 2006 American Chemical Society.

  13. Hybrid modeling of lead-acid batteries in frequency and time domain

    NASA Astrophysics Data System (ADS)

    Thele, M.; Buller, S.; Sauer, D. U.; De Doncker, R. W.; Karden, E.

    This paper presents an improved impedance-based non-linear simulation model for lead-acid batteries. The parameterization of impedance-based models is difficult for operation profiles with high Ah throughput in short times. Such conditions result in non-steady-state conditions and do not allow precise measurements of impedance parameters. Therefore, the model has been extended by an electrolyte transport model which describes the generation and the transport of sulfuric acid inside the porous electrodes. This expands the model validity as higher Ah throughputs can be simulated now. A description of the Matlab/Simulink implementation and its parameterization in the time domain is given. Furthermore, the advantages and the limits of the improved model are discussed. The model allows for precise modeling of automotive batteries, both in conventional applications and in vehicles with electrically assisted propulsion. It is therefore an important tool for the design of automotive power nets.

  14. Research, development and demonstration of advanced lead-acid batteries for utility load leveling

    NASA Astrophysics Data System (ADS)

    1983-08-01

    An advanced lead acid storage battery was developed to the preprototype cell and module design stage. Each module is equipped with a low cost tray, automatic watering system, and air-lift pumps for increased acid circulation in each cell. With the qualified alloy catastrophic positive grid corrosion will not limit cell cycle life. An accelerated shallow cycle regime at room ambient tested 60 cell designs for the active material shedding failure mode. It is found that an antishedding active material additive reduces positive active material shedding significantly and extend the cycle life of both the positive and the negative plate. Equations relating cell design to deep cycle life are developed from the factorial tests on the 60 cells.

  15. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  16. Lead-acid batteries for micro- and mild-hybrid applications

    NASA Astrophysics Data System (ADS)

    Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.

    Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.

  17. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  18. Sealed NiCad vs. sealed lead acid batteries - Charge control and monitor

    SciTech Connect

    Haas, R.M. )

    1991-09-01

    A control regime for NiCad and lead acid batteries which can evaluate the available energy deliverable by the battery at any time is reported. The use of battery cell impedance, state of charge, incremental slope tests, a charge control regime, discharge monitor, and charge control circuit to monitor the battery is discussed. It is shown how the battery state of readiness can be established with reasonable accuracy for both types of batteries and how the control regime can be continually optimized for best performances.

  19. Development of sealed lead/acid battery 'SB60-S4' for automobile use

    NASA Astrophysics Data System (ADS)

    Yamada, Takashi; Nakazawa, Yoshio; Tsujino, Naohiro

    The construction and characteristics of a new sealed, automotive lead/acid battery are discussed and results from two years of field testing are presented. The starved-electrolyte design has virtually the same initial performance as a conventional flooded-electrolyte counterpart of the same size. A longer life is obtained, however, at low temperatures. The sealed batteries have generally exhibited good performance in field tests but there is a small decline in the operational characteristics at high temperatures and/or high voltage charging conditions.

  20. The European lead/acid industry and its future in the world market

    NASA Astrophysics Data System (ADS)

    Sena da Silva, Pedro

    Since 1988, the European lead/acid battery industry has undergone extensive restructuring through mergers andacquisitions. Such developments have been commonly interpreted as a normal trend to optimize economies-of-scale in order to faceincreasing competition. Although this is one of the reasons for the concentration process, other aspects should be considered in order tounderstand and prepare the future of the battery industry. The automotive (SLI) and industrial battery sectors have different challenges andopportunities. Nevertheless, for the purpose of this study, the focus is essentially on the SLI business. Where appropriate,extrapolation will be made to the industrial battery business.

  1. Computer-aided optimization of grid design for high-power lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Yamada, Keizo; Maeda, Ken-ichi; Sasaki, Kazuya; Hirasawa, Tokiyoshi

    Several high-power lead-acid batteries have been developed for automotive applications. A computer-aided optimization (CAO) technique has been used to obtain a low-resistance grid design. Unlike conventional computer simulation, the CAO technique does not require an unduly large number of designs to yield a good result. After introducing a pair of differential equations that are expected to be valid for the optimized design, the grid thickness is optimized by solving the boundary value problem of coupled differential equations. When applied for the grids of JIS B-size batteries, this technique reduces the potential drop of electrical resistance in a electrode by 11-14%.

  2. An averaging battery model for a lead-acid battery operating in an electric car

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  3. The sealed lead-acid battery: performance and present aircraft applications

    NASA Astrophysics Data System (ADS)

    Timmons, John; Kurian, Raju; Goodman, Alan; Johnson, William R.

    The United States Navy has flown valve-regulated lead-acid batteries (VRLA) for approximately 22 years. The first VRLA aircraft batteries were of a cylindrical cell design and these evolved to a prismatic design to save weight, volume, and to increase rate capability. This paper discusses the evolution of the VRLA aircraft battery designs, present VRLA battery performance, and battery size availability along with their aircraft applications (both military and commercial). The paper provides some of the reliability data from present applications. Finally, the paper discusses what future evolution of the VRLA technology is required to improve performance and to remain the technology of choice over other sealed aircraft battery designs.

  4. Distribution of current in the electrodes of lead-acid batteries: a thermographic analysis approach

    NASA Astrophysics Data System (ADS)

    Streza, M.; Nuţ, C.; Tudoran, C.; Bunea, V.; Calborean, A.; Morari, C.

    2016-02-01

    An experimental method for the investigation of the current distribution in the electrodes of lead-acid batteries has been developed. The information is extracted by analysing the heat dissipation in the electrode during the discharge by using a high-performance IR camera. The effect of the current in the metallic grid can be de-convoluted from the total heat produced in the electrode by numerical processing of the temperature distribution over the electrode surface. By its simplicity and effectiveness, the proposed method has the potential to become an important tool in optimising electrode geometry.

  5. Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shen, Zheng; Ray, Asok; Rahn, Christopher D.

    2014-12-01

    This short paper presents a recently reported dynamic data-driven method, Symbolic Dynamic Filtering (SDF), for real-time estimation of the state-of-health (SOH) and state-of-charge (SOC) in lead-acid batteries, as an alternative to model-based analysis techniques. In particular, SOC estimation relies on a k-NN regression algorithm while SOH estimation is obtained from the divergence between extracted features. The results show that the proposed data-driven method successfully distinguishes battery voltage responses under different SOC and SOH situations.

  6. Analysis of the performance parameters of lead/acid batteries in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Sauer, D. U.; Bächler, M.; Bopp, G.; Höhe, W.; Mittermeier, J.; Sprau, P.; Willer, B.; Wollny, M.

    A systematic effort is made to define analysis and performance parameters for lead/acid batteries in photovoltaic (PV) systems. In this paper, results from the data analysis are presented, showing typical current and voltage profiles and time series of state-of-charge. Four major classes of battery operating conditions in PV systems and another four classes of temperature conditions are identified. Typical results from all classes are shown as examples. These results should help system engineers to choose the right control strategies and the battery industry to choose and develop appropriate batteries for PV applications especially for Central Europe, where most of the systems under investigation are located.

  7. Development of ultra high power, valve-regulated lead-acid batteries for industrial applications

    NASA Astrophysics Data System (ADS)

    Soria, M. Luisa; Valenciano, Jesús; Ojeda, Araceli

    There is a recent market trend towards industrial battery powered products that demand occasionally very high discharge rates. This fact is today solved by oversizing the battery or by using more expensive high power nickel-cadmium batteries. Within an EC funded project, ultra high power lead-acid batteries for UPS applications are being developed. The batteries are characterised by a thin electrode design linked to the use of novel separator materials to increase the battery life under floating and deep cycling conditions. Battery performance under different working conditions is presented, in comparison to standard products, and the battery improvements and failure mechanisms are also discussed.

  8. Valve-regulated lead/acid batteries for SLI use in Japan

    NASA Astrophysics Data System (ADS)

    Isoi, T.; Furukawa, H.

    Valve-regulated lead/acid batteries for automotive applications have been on the market in Japan for more than ten years. Initially, the batteries were used only for a small-size motorcycle. Today, however, they are widely employed in all sizes of motorcycles. In the meantime, VRLA batteries have also been used for agricultural machines, and even for some types of passenger cars. This paper provides an overview of the progress in the development and application of VRLA batteries for SLI (starting, lighting and ignition) use in Japan and discusses future expected trends.

  9. Optical State-of-Change Monitor for Lead-Acid Batteries

    SciTech Connect

    Weiss, Jonathan D.

    1998-07-24

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cdl or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  10. Reliability of valve-regulated lead-acid batteries for stationary applications.

    SciTech Connect

    De Anda, Mindi Farber; Butler, Paul Charles; Miller, Jennifer L; Moseley, Patrick T.

    2004-03-01

    A survey has been carried out to quantify the performance and life of over 700,000 valve-regulated lead-acid (VRLA) cells, which have been or are being used in stationary applications across the United States. The findings derived from this study have not identified any fundamental flaws of VRLA battery technology. There is evidence that some cell designs are more successful in float duty than others. A significant number of the VRLA cells covered by the survey were found to have provided satisfactory performance.