Science.gov

Sample records for acid n-terminal sequence

  1. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis.

    PubMed

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P; Marians, Kenneth J; Erdjument-Bromage, Hediye

    2016-07-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods. PMID:27006647

  2. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis

    PubMed Central

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P.; Marians, Kenneth J.

    2016-01-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods. PMID:27006647

  3. N-terminal sequence of amino acids and some properties of an acid-stable alpha-amylase from citric acid-koji (Aspergillus usamii var.).

    PubMed

    Suganuma, T; Tahara, N; Kitahara, K; Nagahama, T; Inuzuka, K

    1996-01-01

    An acid-stable alpha-amylase (AA) was purified from an acidic extract of citric acid-koji (A. usamii var.). The N-terminal sequence of the first 20 amino acids of the enzyme was identical with that of AA from A. niger, but the two enzymes differed in molecular weight. HPLC analysis for identifying the anomers of products indicated that the AA hydrolyzed maltopentaose (G5) at the third glycoside bond predominantly, which differed from Taka-amylase A and the neutral alpha-amylase (NA) from the citric acid-koji. PMID:8824843

  4. Ferredoxin:NADP oxidoreductase of Cyanophora paradoxa: purification, partial characterization, and N-terminal amino acid sequence.

    PubMed

    Gebhart, U B; Maier, T L; Stevanović, S; Bayer, M G; Schenk, H E

    1992-06-01

    The ferredoxin:NADP+ oxidoreductase of the protist Cyanophora paradoxa, as a descendant of a former symbiotic consortium, an important model organism in view of the Endosymbiosis Theory, is the first enzyme purified from a formerly original endocytobiont (cyanelle) that is found to be encoded in the nucleus of the host. This cyanoplast enzyme was isolated by FPLC (19% yield) and characterized with respect to the uv-vis spectrum, pH optimum (pH 9), molecular mass of 34 kDa, and an N-terminal amino acid sequence (24 residues). The enzyme shows, as known from other organisms, molecular heterogeneity. The N-terminus of a further ferredoxin:NADP+ oxidoreductase polypeptide represents a shorter sequence missing the first four amino acids of the mature enzyme. PMID:1392619

  5. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  6. Comparative studies on tree pollen allergens. X. Further purification and N-terminal amino acid sequence analyses of the major allergen of birch pollen (Betula verrucosa).

    PubMed

    Vik, H; Elsayed, S

    1986-01-01

    The previously isolated major allergen of birch pollen (fraction BV45), Int. Archs Allergy appl. Immun. 68: 70-78 (1982), was further purified by recycling chromatography. The purified preparation was run on a high-performance liquid chromatography (HPLC) TSK-G-2000 gel filtration chromatography column and, finally, on paper high-volt electrophoresis. The protein recovered met the homogeneity criteria required for performing the N-terminal sequence analysis. The allergenic and antigenic reactivities of the HPLC-purified protein, designated BV45B, was examined. A single homogeneous precipitation line in crossed immunoelectrophoresis (CIE) was shown. Specific IgE-inhibition tests and immuno-autoradiographic prints indicated that this allergen could bind reaginic IgE specificially and with good affinity. The homogeneity of BV45B was examined by isoelectric focusing (IEF). Several minor bands of pI differences of less than 0.1 units were visible, demonstrating the existence of some molecular variants of this protein. The N-terminal sequence analysis of the molecule was performed, and the following four amino acids were tentatively shown by sequential cleavage: NH2-Ala-Gly-Ile-Val-. The demonstration of one dominant N-terminal 1-dimethyl-amino-5-naphthalene sulphonyl (DNS)-amino acid by polyamide thin-layer chromatography at each sequence step confirmed that the N-terminal residue of the protein was not blocked; the heterogeneity shown by the IEF system was merely due to the presence of several homologous polymorphic proteins with identical N-terminal amino acid, the adequacy of the purification repertoire used. PMID:3957444

  7. Bile acid sulfotransferase I from rat liver sulfates bile acids and 3-hydroxy steroids: purification, N-terminal amino acid sequence, and kinetic properties.

    PubMed

    Barnes, S; Buchina, E S; King, R J; McBurnett, T; Taylor, K B

    1989-04-01

    A bile acid:3'phosphoadenosine-5'phosphosulfate:sulfotransferase (BAST I) from adult female rat liver cytosol has been purified 157-fold by a two-step isolation procedure. The N-terminal amino acid sequence of the 30,000 subunit has been determined for the first 35 residues. The Vmax of purified BAST I is 18.7 nmol/min per mg protein with N-(3-hydroxy-5 beta-cholanoyl)glycine (glycolithocholic acid) as substrate, comparable to that of the corresponding purified human BAST (Chen, L-J., and I. H. Segel, 1985. Arch. Biochem. Biophys. 241: 371-379). BAST I activity has a broad pH optimum from 5.5-7.5. Although maximum activity occurs with 5 mM MgCl2, Mg2+ is not essential for BAST I activity. The greatest sulfotransferase activity and the highest substrate affinity is observed with bile acids or steroids that have a steroid nucleus containing a 3 beta-hydroxy group and a 5-6 double bond or a trans A-B ring junction. These substrates have normal hyperbolic initial velocity curves with substrate inhibition occurring above 5 microM. Of the saturated 5 beta-bile acids, those with a single 3-hydroxy group are the most active. The addition of a second hydroxy group at the 6- or 7-position eliminates more than 99% of the activity. In contrast, 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) is an excellent substrate. The initial velocity curves for glycolithocholic and deoxycholic acid conjugates are sigmoidal rather than hyperbolic, suggestive of an allosteric effect. Maximum activity is observed at 80 microM for glycolithocholic acid. All substrates, bile acids and steroids, are inhibited by the 5 beta-bile acid, 3-keto-5 beta-cholanoic acid. The data suggest that BAST I is the same protein as hydrosteroid sulfotransferase 2 (Marcus, C. J., et al. 1980. Anal. Biochem. 107: 296-304). PMID:2754334

  8. UNIT 11.10 N-Terminal Sequence Analysis of Proteins and Peptides

    PubMed Central

    Speicher, Kaye D.; Gorman, Nicole; Speicher, David W.

    2009-01-01

    Automated N-terminal sequence analysis involves a series of chemical reactions that derivatize and remove one amino acid at a time from the N-terminal of purified peptides or intact proteins. At least several pmoles of a purified protein or 10 to 20 pmoles of a purified peptide with an unmodified N-terminal is required in order to obtain useful sequence information. In recent years the demand for N-terminal sequencing has decreased substantially as some applications for protein identification and characterization can now be more effectively performed using mass spectrometry. However, N-terminal sequencing remains the method of choice for verifying the N-terminal boundary of recombinant proteins, determining the N-terminal of protease-resistant domains, identifying proteins isolated from species where most of the genome has not yet been sequenced, and mapping modified or crosslinked sites in proteins that prove to be refractory to analysis by mass spectrometry. PMID:18429102

  9. Purification, N-terminal amino acid sequence, and some properties of Cu, Zn-superoxide dismutase from Japanese flounder (Paralichthys olivaceus) hepato-pancreas.

    PubMed

    Osatomi, K; Masuda, Y; Hara, K; Ishihara, T

    2001-04-01

    Cu, Zn-superoxide dismutase (SOD) has been purified to homogeneity from Japanese flounder Paralichthys olivaceus hepato-pancreas. The purification of the enzyme was carried out by an ethanol/chloroform treatment and acetone precipitation, and then followed by column chromatographies on Q-Sepharose, S-Sepharose and Ultrogel AcA 54. On SDS-PAGE, the purified enzyme gave a single protein band with molecular mass of 17.8 kDa under reducing conditions, and showed approximately equal proportions of 17.8 and 36 kDa molecular mass under non-reducing conditions. Three bands were obtained when the purified enzyme was subjected to native-PAGE, both on protein and activity staining, but the electrophoretic mobility of the purified enzyme differed from that of bovine erythrocyte Cu, Zn-SOD. Isoelectric point values of 5.9, 6.0 and 6.2, respectively, were obtained for the three components. The N-terminal amino acid sequence of the purified enzyme was determined for 25 amino acid residues, and the sequence was compared with other Cu, Zn-SODs. The N-terminal alanine residue was unacetylated, as in the case of swordfish SOD. Above 60 degrees C, the thermostability of the enzyme was much lower than that of bovine Cu, Zn-SOD. PMID:11290457

  10. DNA sequence of the control region of phage D108: the N-terminal amino acid sequences of repressor and transposase are similar both in phage D108 and in its relative, phage Mu.

    PubMed Central

    Mizuuchi, M; Weisberg, R A; Mizuuchi, K

    1986-01-01

    We have determined the DNA sequence of the control region of phage D108 up to position 1419 at the left end of the phage genome. Open reading frames for the repressor gene, ner gene, and the 5' part of the A gene (which codes for transposase) are found in the sequence. The genetic organization of this region of phage D108 is quite similar to that of phage Mu in spite of considerable divergence, both in the nucleotide sequence and in the amino acid sequences of the regulatory proteins of the two phages. The N-terminal amino acid sequences of the transposases of the two phages also share only limited homology. On the other hand, a significant amino acid sequence homology was found within each phage between the N-terminal parts of the repressor and transposase. We propose that the N-terminal domains of the repressor and transposase of each phage interact functionally in the process of making the decision between the lytic and the lysogenic mode of growth. PMID:3012481

  11. Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry.

    PubMed Central

    Sonnenberg, M G; Belisle, J T

    1997-01-01

    A number of the culture filtrate proteins secreted by Mycobacterium tuberculosis are known to contribute to the immunology of tuberculosis and to possess enzymatic activities associated with pathogenicity. However, a complete analysis of the protein composition of this fraction has been lacking. By using two-dimensional polyacrylamide gel electrophoresis, detailed maps of the culture filtrate proteins of M. tuberculosis H37Rv were generated. In total, 205 protein spots were observed. The coupling of this electrophoretic technique with Western blot analysis allowed the identification and mapping of 32 proteins. Further molecular characterization of abundant proteins within this fraction was achieved by N-terminal amino acid sequencing and liquid chromatography-mass spectrometry. Eighteen proteins were subjected to N-group analysis; of these, only 10 could be sequenced by Edman degradation. Among the most interesting were a novel 52-kDa protein demonstrating significant homology to an alpha-hydroxysteroid dehydrogenase of Eubacterium sp. strain VPI 12708, a 25-kDa protein corresponding to open reading frame 28 of the M. tuberculosis cosmid MTCY1A11, and a 31-kDa protein exhibiting an amino acid sequence identical to that of antigen 85A and 85B. This latter product migrated with an isoelectric point between those of antigen 85A and 85C but did not react with the antibody specific for this complex, suggesting that there is a fourth member of the antigen 85 complex. Novel N-terminal amino acid sequences were obtained for three additional culture filtrate proteins; however, these did not yield significant homology to known protein sequences. A protein cluster of 85 to 88 kDa, recognized by the monoclonal antibodies IT-57 and IT-42 and known to react with sera from a large proportion of tuberculosis patients, was refractory to N-group analysis. Nevertheless, mass spectrometry of peptides obtained from one member of this complex identified it as the M. tuberculosis Kat

  12. Purification and N-terminal amino acid sequence of a chondroitin sulphate/dermatan sulphate proteoglycan isolated from intima/media preparations of human aorta.

    PubMed

    Stöcker, G; Meyer, H E; Wagener, C; Greiling, H

    1991-03-01

    A proteoglycan (PG) was purified to homogeneity from intima/media preparations of human aorta specimens by the following chromatographic steps: Sepharose Q anion exchange, Sepharose CL-4B size exclusion, hydroxyapatite, MonoQ anion exchange and TSK G 4000 SW size exclusion. The purity of the preparation was established by SDS/PAGE using direct staining by silver or Dimethylmethylene Blue, as well as by Western blots of biotin-labelled samples. The electrophoretic mobility of the native PG was less than that of a 200,000-Mr standard protein. After treatment with chondroitin sulphate lyase ABC, a core protein of Mr 15,000 was revealed. The Mr of the glycosaminoglycan (GAG) peptides was less than 24,000, by comparison with a keratan sulphate peptide. The composition of the GAG chains was determined by differential digestion of the PG by chondroitin sulphate lyases AC/ABC or chondroitin sulphate lyase AC alone followed by anion-exchange chromatography of the resulting disaccharides. The GAG chains are composed of approximately one-third of dermatan sulphate and two-thirds chondroitin sulphate disaccharide units. The sequence of the 20 N-terminal amino acids is identical with the sequence previously reported for PG I isolated from human developing bone [Fisher, Termine & Young (1989) J. Biol. Chem. 264, 4571-4576]. The assignment of glycosylation sites to the serine residues in positions 5 and 10 was confirmed. The findings indicate that the chondroitin sulphate/dermatan sulphate PG is a major PG in intima/media preparations of human aorta and represents a biglycan-type PG. PMID:1848758

  13. Top-down N-terminal sequencing of Immunoglobulin subunits with electrospray ionization time of flight mass spectrometry.

    PubMed

    Ren, Da; Pipes, Gary D; Hambly, David; Bondarenko, Pavel V; Treuheit, Michael J; Gadgil, Himanshu S

    2009-01-01

    An N-terminal top-down sequencing approach was developed for IgG characterization, using high-resolution HPLC separation and collisionally activated dissociation (CAD) on a single-stage LCT Premier time of flight (TOF) mass spectrometer. Fragmentation of the IgG chains on the LCT Premier was optimized by varying the ion guide voltage values. Ion guide 1 voltage had the most significant effect on the fragmentation of the IgG chains. An ion guide 1 voltage value of 100 V was found to be optimum for the N-terminal fragmentation of IgG heavy and light chains, which are approximately 50 and 25 kDa, respectively. The most prominent ion series in this CAD experiment was the terminal b-ion series which allows N-terminal sequencing. Using this technique, we were able to confirm the sequence of up to seven N-terminal residues. Applications of this method for the identification of N-terminal pyroglutamic acid formation will be discussed. The method described could be used as a high-throughput method for the rapid N-terminal sequencing of IgG chains and for the detection of chemical modifications in the terminal residues. PMID:18834850

  14. N-terminal sequence of some ribosome-inactivating proteins.

    PubMed

    Montecucchi, P C; Lazzarini, A M; Barbieri, L; Stirpe, F; Soria, M; Lappi, D

    1989-04-01

    The N-terminal portion of some type 1 ribosome-inactivating proteins (RIPs) isolated from the seeds of Gelonium multiflorum, Momordica charantia, Bryonia dioica, Saponaria officinalis and from the leaves of Saponaria officinalis are reported in the present paper. Their relationship with other RIPs is discussed. PMID:2753596

  15. Partial N-terminal sequence analysis of human class II molecules expressing the DQw3 determinant.

    PubMed

    Obata, F; Endo, T; Yoshii, M; Otani, F; Igarashi, M; Takenouchi, T; Ikeda, H; Ogasawara, K; Kasahara, M; Wakisaka, A

    1985-09-01

    HLA-DQ molecules were isolated from DRw9-homozygous and DR4-homozygous cell lines by using a monoclonal antibody HU-18, which recognizes class II molecules carrying the conventional DQw3 determinant. The partial N-terminal sequence analysis of the DQw3 molecules revealed that they have sequences homologous to those of murine I-A molecules. Within the limits of our sequence analysis, the DQw3 molecules from the two cell lines are identical to each other in both the alpha and beta chains. The DQ alpha as well as DQ beta chains were found to have amino acid substitutions when compared to other I-A-like molecules whose sequences have been reported. These differences may contribute to the DQw supertypic specificity. The polymorphic nature of DQ molecules is in marked contrast to that of DR molecules where DR alpha chains are highly conserved while DR beta chains have easily detectable amino acid substitutions. PMID:2411700

  16. HIGHLY CONSERVED N-TERMINAL SEQUENCE FOR TELEOST VITELLOGENIN WITH POTENTIAL VALUE TO THE BIOCHEMISTRY, MOLECULAR BIOLOGY AND PATHOLOGY OF VITELLOGENESIS

    EPA Science Inventory

    N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish: striped bass, Morone saxatillus; mummichog, Fundulus heteroclitus; pinfish, Lagodon rhomboides; brown bullhead, Ameiurus nebulosus; medaka, Oryzias latipes; yellow perch, Percaflavescens and ...

  17. N-Terminal signal sequence is required for cellular trafficking and hyaluronan-depolymerization of KIAA1199.

    PubMed

    Yoshida, Hiroyuki; Nagaoka, Aya; Nakamura, Sachiko; Tobiishi, Megumi; Sugiyama, Yoshinori; Inoue, Shintaro

    2014-01-01

    Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization. PMID:24269685

  18. N-terminal sequences direct the autophosphorylation states of the FER tyrosine kinases in vivo.

    PubMed

    Orlovsky, K; Ben-Dor, I; Priel-Halachmi, S; Malovany, H; Nir, U

    2000-09-12

    p94(fer) and p51(ferT) are two tyrosine kinases which share identical SH2 and kinase domains but differ in their N-terminal regions. While p94(fer) is expressed in most mammalian cells, the accumulation of p51(ferT) is restricted to meiotic spermatocytes. Here we show that the different N-terminal tails of p94(fer) and p51(ferT) direct different autophosphorylation states of these two kinases in vivo. N-terminal coiled-coil domains cooperated to drive the oligomerization and autophosphorylation in trans of p94(fer). Moreover, the ectopically expressed N-terminal tail of p94(fer) could act as a dominant negative mutant and associated with the endogenous p94(fer) protein in CHO cells. This increased significantly the percentage of cells residing in the G0/G1 phase, thus suggesting a role for p94(fer) in the regulation of G1 progression. Unlike p94(fer), overexpressed p51(ferT) was not autophosphorylated in COS1 cells. However, removal of the unique N-terminal 43 aa of p51(ferT) or the replacement of this region by a parallel segment from p94(fer) endowed the modified p51(ferT) with the ability to autophosphorylate. The unique N-terminal sequences of p51(ferT) thus interfere with its ability to autophosphorylate in vivo. These experiments indicate that the N-terminal sequences of the FER tyrosine kinases direct their different cellular autophosphorylation states, thereby dictating their different cellular functions. PMID:10998246

  19. Divergent N-Terminal Sequences Target an Inducible Testis Deubiquitinating Enzyme to Distinct Subcellular Structures

    PubMed Central

    Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.

    2000-01-01

    Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131

  20. Microheterogeneity of odorant-binding proteins in the porcupine revealed by N-terminal sequencing and mass spectrometry.

    PubMed

    Ganni, M; Garibotti, M; Scaloni, A; Pucci, P; Pelosi, P

    1997-06-01

    Several odorant-binding proteins (OBP) have been previously purified from the nasal mucosa of the old world porcupine Hystrix cristata. In this paper, we report their N-terminal amino-acid sequences and accurate molecular weights, as measured by electrospray mass spectrometry. The partial amino acid sequences reveal significant similarity with OBPs of other mammalian species and segregate the eight proteins purified into two subclasses. Mass spectrometry has revealed microheterogeneity among the proteins belonging to each of these two groups, suggesting a total number of OBPs of at least nine. The molecular weight differences between OBPs cannot be readily accounted for by common post-translation modifications and indicate different gene products. Such a large number of different OBPs may represent further support to an odour discriminating role for these proteins. PMID:9226887

  1. N-terminal peptide sequence repetition influences the kinetics of backbone fragmentation: a manifestation of the Jahn-Teller effect?

    PubMed

    Good, David M; Yang, Hongqian; Zubarev, Roman A

    2013-11-01

    Analysis of large (>10,000 entries) databases consisting of high-resolution tandem mass spectra of peptide dications revealed with high statistical significance (P < 1[Symbol: see text]10(-3)) that peptides with non-identical first two N-terminal amino acids undergo cleavages of the second peptide bond at higher rates than repetitive sequences composed of the same amino acids (i.e., in general AB- and BA- bonds cleave more often than AA- and BB- bonds). This effect seems to depend upon the collisional energy, being stronger at lower energies. The phenomenon is likely to indicate the presence of the diketopiperazine structure for at least some b2 (+) ions. When consisting of two identical amino acids, these species should form through intermediates that have a symmetric geometry and, thus, must be subject to the Jahn-Teller effect that reduces the stability of such systems. PMID:23633015

  2. A highly conserved N-terminal sequence for teleost vitellogenin with potential value to the biochemistry, molecular biology and pathology of vitellogenesis

    USGS Publications Warehouse

    Folmar, L.D.; Denslow, N.D.; Wallace, R.A.; LaFleur, G.; Gross, T.S.; Bonomelli, S.; Sullivan, C.V.

    1995-01-01

    N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish (striped bass, mummichog, pinfish, brown bullhead, medaka, yellow perch and the sturgeon) are compared with published N-terminal Vtg sequences for the lamprey, clawed frog and domestic chicken. Striped bass and mummichog had 100% identical amino acids between positions 7 and 21, while pinfish, brown bullhead, sturgeon, lamprey, Xenopus and chicken had 87%, 93%, 60%, 47%, 47-60%) for four transcripts and had 40% identical, respectively, with striped bass for the same positions. Partial sequences obtained for medaka and yellow perch were 100% identical between positions 5 to 10. The potential utility of this conserved sequence for studies on the biochemistry, molecular biology and pathology of vitellogenesis is discussed.

  3. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    SciTech Connect

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine; Drummer, Heidi E.; Poumbourios, Pantelis . E-mail: apoumbourios@burnet.edu.au

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.

  4. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability.

    PubMed

    Wilson, Kirilee A; Maerz, Anne L; Bär, Séverine; Drummer, Heidi E; Poumbourios, Pantelis

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Bär, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function. PMID:17577584

  5. Modifications in the purification protocol of Celosia cristata antiviral proteins lead to protein that can be N-terminally sequenced.

    PubMed

    Gholizadeh, Ashraf; Kapoor, H C

    2004-12-01

    Plants antiviral proteins are being used as anticancer agents and inhibit other viral diseases in humans. We modified the purification protocol of the two N-terminally blocked antiviral glycoproteins, CCP-25 and CCP-27, purified from the leaves of Celosia cristata. This not only gave rise to single pure samples with few steps of purification but also resulted in N-terminally free proteins. The extra purity of the samples was analyzed by reverse phase HPLC. Deglycosylation studies of CCP-25 with PNGase F enzyme revealed that its asparagine or asparagine-linked glycon contents are negligible. Partial N-terminal sequence of the CCP-25 showed the sequence (ANDIS), which seems to be conserved among plant antiviral proteins. PMID:15579125

  6. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.

    PubMed

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A; Genazzani, Armando A; Ribchester, Richard R; Magni, Giulio; Coleman, Michael

    2009-02-23

    The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration. PMID:19237596

  7. WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice

    PubMed Central

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A.; Genazzani, Armando A.; Ribchester, Richard R.; Magni, Giulio

    2009-01-01

    The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration. PMID:19237596

  8. The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains.

    PubMed

    Pedone, P V; Omichinski, J G; Nony, P; Trainor, C; Gronenborn, A M; Clore, G M; Felsenfeld, G

    1997-05-15

    The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo. PMID:9184231

  9. Identification of a 35-kilodalton serovar-cross-reactive flagellar protein, FlaB, from Leptospira interrogans by N-terminal sequencing, gene cloning, and sequence analysis.

    PubMed Central

    Lin, M; Surujballi, O; Nielsen, K; Nadin-Davis, S; Randall, G

    1997-01-01

    During the screening of antibodies to pathogenic leptospires, a murine monoclonal antibody (designated M138) was found to react with various serovars. An antigen of approximately 35 kDa from Leptospira interrogans serovar pomona, which reacted strongly with M138, was characterized by N-terminal amino acid sequencing and identified as a flagellin, a class B polypeptide subunit (FlaB) of the periplasmic flagella. The gene encoding the FlaB protein, flaB, was amplified from the genomic DNA of several pathogenic serovars by PCR with a single pair of oligonucleotide primers, suggesting that FlaB is highly conserved among these serovars. Cloning and sequence analysis of flaB from serovar pomona revealed that it contains an 849-bp open reading frame with a G + C content of 46.88% which encodes a 283-amino-acid protein with a calculated molecular mass of 31.297 kDa and a predicted pI of 9.065. A sequence comparison of flagellin proteins revealed that the amino acid sequence is most variable in the central portion of the serovar pomona FlaB, which is believed to contain specific sequence information and which may thus be useful in the design of DNA or synthetic peptide probes suitable for the detection of infection with pathogenic leptospires. PMID:9317049

  10. Galactinol synthase from kidney bean cotyledon and zucchini leaf. Purification and N-terminal sequences.

    PubMed Central

    Liu, J J; Odegard, W; de Lumen, B O

    1995-01-01

    Galactinol synthase (GS) was purified 1591-fold with a 3.9% recovery from the cotyledon of kidney bean (Phaseolus vulgaris) by a novel scheme consisting of ammonium sulfate fractionation followed by diethylaminoethyl, Affi-Gel Blue, and UDP-hexanolamine affinity chromatography. The purified enzyme had a specific activity of 8.75 mumol mg-1 min-1, a pH optimum of 7.0, and requirements for manganese ion and DTT. The enzyme exhibited a Km = 0.4 mM for UDP-galactose and a Km = 4.5 mM for myo-inositol. It was identified as a 38-kD peptide that co-purified with a 41- and a 43-kD peptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purification to homogeneity was achieved by isolating the 38-kD peptide from the SDS-PAGE gel. To clarify conflicting reports in the literature about the relative molecular mass of purified GS from zucchini leaf (Cucurbita pepo), a similar scheme with modified eluting conditions was used to purify GS from this source. Zucchini leaf GS was purified to homogeneity and identified as a 36-kD peptide on SDS-PAGE. Partial N-terminal sequences of the 38-kD peptide from kidney bean cotyledon and the 36-kD peptide from zucchini leaf were obtained. To facilitate identification of GS during the purification, an assay utilizing thin-layer chromatography and an isotopic analytic imaging scanner was developed. PMID:7480343

  11. Deriving ribosomal binding site (RBS) statistical models from unannotated DNA sequences and the use of the RBS model for N-terminal prediction.

    PubMed

    Hayes, W S; Borodovsky, M

    1998-01-01

    Accurate prediction of the position of translation initiation (N-terminal prediction) is a difficult problem. N-terminal prediction from DNA sequence alone is ambiguous is several candidate start sites are close to each other. Protein similarity search is usually unable to indicate the true start of a gene as it would require a strong protein sequence similarity at the N-terminal portion of a protein where conservative regions are rarely situated. With the aid of the GeneMark program for gene identification, we extract DNA sequence fragments presumably containing ribosome binding sites (RBS) from unannotated complete genomic sequences. These DNA segments are aligned to generate the RBS model using the Gibbs' sampling method. N-terminal prediction is then performed by using the RBS model in conjunction with the GeneMark start codon prediction to aid in determining the true N-terminal site. PMID:9697189

  12. N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors.

    PubMed

    Sun, Xiaolin; Jones, William T; Harvey, Dawn; Edwards, Patrick J B; Pascal, Steven M; Kirk, Christopher; Considine, Thérèse; Sheerin, David J; Rakonjac, Jasna; Oldfield, Christopher J; Xue, Bin; Dunker, A Keith; Uversky, Vladimir N

    2010-04-01

    The plant growth-repressing DELLA proteins (DELLAs) are known to represent a convergence point in integration of multiple developmental and environmental signals in planta, one of which is hormone gibberellic acid (GA). Binding of the liganded GA receptor (GID1/GA) to the N-terminal domain of DELLAs is required for GA-induced degradation of DELLAs via the ubiquitin-proteasome pathway, thus derepressing plant growth. However, the conformational changes of DELLAs upon binding to GID1/GA, which are the key to understanding the precise mechanism of GID1/GA-mediated degradation of DELLAs, remain unclear. Using biophysical, biochemical, and bioinformatics approaches, we demonstrated for the first time that the unbound N-terminal domains of DELLAs are intrinsically unstructured proteins under physiological conditions. Within the intrinsically disordered N-terminal domain of DELLAs, we have identified several molecular recognition features, sequences known to undergo disorder-to-order transitions upon binding to interacting proteins in intrinsically unstructured proteins. In accordance with the molecular recognition feature analyses, we have observed the binding-induced folding of N-terminal domains of DELLAs upon interaction with AtGID1/GA. Our results also indicate that DELLA proteins can be divided into two subgroups in terms of their molecular compactness and their interactions with monoclonal antibodies. PMID:20103592

  13. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding.

    PubMed

    Kilka, Susann; Erdmann, Frank; Migdoll, Alexander; Fischer, Gunter; Weiwad, Matthias

    2009-03-10

    Three different genes of catalytic subunit A of the Ca(2+)-dependent serine/threonine protein phosphatase calcineurin (CaN) are encoded in the human genome forming heterodimers with regulatory subunit B. Even though physiological roles of CaN have been investigated extensively, less is known about the specific functions of the different catalytic isoforms. In this study, all human CaN holoenzymes containing either the alpha, beta, or gamma isoform of the catalytic subunit (CaN alpha, beta, or gamma, respectively) were expressed for the first time. Comparative kinetic analysis of the dephosphorylation of five specific CaN substrates provided evidence that the distinct isoforms of the catalytic subunit confer substrate specificities to the holoenzymes. CaN alpha dephosphorylates the transcription factor Elk-1 with 7- and 2-fold higher catalytic efficiencies than the beta and gamma isoforms, respectively. CaN gamma exhibits the highest k(cat)/K(m) value for DARPP-32, whereas the catalytic efficiencies for the dephosphorylation of NFAT and RII peptide were 3- and 5-fold lower, respectively, when compared with the other isoforms. Elk-1 and NFAT reporter gene activity measurements revealed even more pronounced substrate preferences of CaNA isoforms. Moreover, kinetic analysis demonstrated that CaN beta exhibits for all tested protein substrates the lowest K(m) values. Enzymatic characterization of the CaN beta(P14G/P18G) variant as well as the N-terminal truncated form CaN beta(22-524) revealed that the proline-rich sequence of CaN beta is involved in substrate recognition. CaN beta(22-524) exhibits an at least 4-fold decreased substrate affinity and a 5-fold increased turnover number. Since this study demonstrates that all CaN isoforms display the same cytoplasmic subcellular distribution and are expressed in each tested cell line, differences in substrate specificities may determine specific physiological functions of the distinct isoforms. PMID:19154138

  14. A modification of the N-terminal amino acid in the eremomycin aglycone.

    PubMed

    Miroshnikova, O V; Berdnikova, T F; Olsufyeva, E N; Pavlov, A Y; Reznikova, M I; Preobrazhenskaya, M N; Ciabatti, R; Malabarba, A; Colombo, L

    1996-11-01

    An Edman degradation of the antibiotic eremomycin aglycone produced the corresponding hexapeptide, which was aminoacylated with D-lysine, D-histidine or D-tryptophan derivatives to give new heptapeptide analogs of the eremomycin aglycone. The aminoacylation of the eremomycin aglycone produced an octapeptide analog. The substitution of D-lysine for the N-terminal N-methyl-D-leucine does not seriously affect the in vitro antibacterial properties of the eremomycin aglycone whereas the heptapeptides with the N-terminal D-tryptophan or D-histidine moieties and the octapeptide with the N-terminal D-lysine are practically devoid of the antibacterial properties. PMID:8982345

  15. The predicted N-terminal signal sequence of the human α₂C-adrenoceptor does not act as a functional cleavable signal peptide.

    PubMed

    Jahnsen, Jan Anker; Uhlén, Staffan

    2012-06-01

    The N-terminal region of the human α(2C)-adrenoceptor has a 22 amino acid sequence MASPALAAALAVAAAAGPNASG. This stretch is predicted to be a cleavable signal peptide. Signal peptides facilitate the translocation of membrane proteins from ribosomes into the endoplasmatic reticulum (ER) for further transport to the plasma membrane. However, recently it has been suggested that the hydrophobic stretch ALAAALAAAAA in the N-tail of the rat α(2C)-adrenoceptor, rather than being part of a signal peptide, is an ER retention signal (Angelotti, 2010). Here, we have investigated the functionality of the N-terminal region of the human α(2C)-adrenoceptor further. The predicted signal peptide was found to be non-cleavable, as shown for a modified α(2C)-adrenoceptor construct equipped with a FLAG epitope. The influence of the N-terminal region on receptor translocation to the plasma membrane was investigated by rebuilding the N-tail and then by analyzing the expression level of binding-competent receptors in transfected COS-7 cell membranes. Truncated α(2C)-adrenoceptor constructs showed decreased expression levels as compared to the wild type α(2C)-adrenoceptor. Addition of, or exchange for, the influenza virus hemagglutinin signal peptide to the α(2C)-adrenoceptor had no effect, respectively decreased, the expression level of binding-competent receptor in the membranes. Our analysis supports the conclusions that the predicted signal peptide in the N-terminal tail of the α(2C)-adrenoceptor does not act as a cleavable signal peptide. In addition, the results indicate that the presence of an intact N-tail is augmenting the amount of binding-competent α(2C)-adrenoceptors at the cell surface. PMID:22503931

  16. N-terminal sequence tagging using reliably determined b2 ions: a useful approach to deconvolute tandem mass spectra of co-fragmented peptides in proteomics.

    PubMed

    Kryuchkov, Fedor; Verano-Braga, Thiago; Kjeldsen, Frank

    2014-05-30

    With the recent introduction of higher-energy collisional dissociation (HCD) in Orbitrap mass spectrometry, the popularity of that technique has grown tremendously in the proteomics society. HCD spectra, however, are characterized by a limited distribution of bn-type ions, which permit the generation of reliable sequence tags based on complementary b,y pairs both for de novo sequencing and sequence tagging strategies. Instead, most peptide HCD spectra (~95%) are dominated with b2 ions. In this work, we analyzed positive predictive values of b2 ions in HCD, and found that b2 ions can be determined with >97% certainty in the presence of a2 and its complementary yn-2 ions. Analytically, b2 ions provide information on the composition of the first two N-terminal amino acids in peptides. Their utilization in N-terminal sequence tagging leads to a significant decrease in false discovery rate by filtering out false positives while retaining true positive identifications. As a consequence, the number of peptide spectrum matches (PSMs) increased by 4.8% at fixed FDR (1%). This approach allows for deconvolution of mixture spectra and increased the number of PSM to 9.2% in a complex human sample and to 24% in a complex sample of synthetic peptides at 1% FDR. PMID:24726481

  17. Analysis of human follistatin structure: identification of two discontinuous N-terminal sequences coding for activin A binding and structural consequences of activin binding to native proteins.

    PubMed

    Wang, Q; Keutmann, H T; Schneyer, A L; Sluss, P M

    2000-09-01

    A primary physiological function of follistatin is the binding and neutralization of activin, a transforming growth factor-beta family growth factor, and loss of function mutations are lethal. Despite the critical biological importance of follistatin's neutralization of activin, the structural basis of activin's binding to follistatin is poorly understood. The purposes of these studies were 1) to identify the primary sequence(s) within the N-terminal domain of the follistatin coding for activin binding, and 2) to determine whether activin binding to the native protein causes changes in other structural domains of follistatin. Synthetic peptide mimotopes identified within a 63-residue N-terminal domain two discontinuous sequences capable of binding labeled activin A. The first is located in a region (amino acids 3-26) of follistatin, a site previously identified by directed mutagenesis as important for activin binding. The second epitope, predicted to be located between amino acids 46 and 59, is newly identified. Although the sequences 3-26 and 46-59 code for activin binding, native follistatin only binds activin if disulfide bonding is intact. Furthermore, pyridylethylation of Cys residues followed by N-terminal sequencing and amino acid analysis revealed that all of the Cys residues in follistatin are involved in disulfide bonds and lack reactive free sulfhydryl groups. Specific ligands were used to probe the structural effects of activin binding on the other domains of the full-length molecule, comprised largely of the three 10-Cys follistatin module domains. No effects on ligand binding to follistatin-like module I or II were observed after the binding of activin A to native protein. In contrast, activin binding diminished recognition of domain III and enhanced that of the C domain by their respective monoclonal antibody probes, indicating an alteration of the antigenic structures of these regions. Thus, subsequent to activin binding, interactions are likely to

  18. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  19. Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch).

    PubMed

    Gao, Rong; Zhang, Yong; Gopalakrishnakone, Ponnampalam

    2008-08-01

    A serine proteinase-like protein was isolated from the venom of Chinese red scorpion (Buthus martensii Karsch) by combination of gel filtration, ion-exchange and reveres-phase chromatography and named BMK-CBP. The apparent molecular weight of BMK-CBP was identified as 33 kDa by SDS-PAGE under non-reducing condition. The sequence of N-terminal 40 amino acids was obtained by Edman degradation. The sequence shows highest similarity to proteinase from insect source. When tested with commonly used substrates of proteinase, no significant hydrolytic activity was observed for BMK-CBP. The purified BMK-CBP was found to bind to the cancer cell line MCF-7 and the cell binding ability was dose-dependent. PMID:18625260

  20. Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences.

    PubMed

    de Felipe, Pablo; Luke, Garry A; Brown, Jeremy D; Ryan, Martin D

    2010-02-01

    Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl-prolyl peptide bond at the C-terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and '2A-like' sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co- and post-translationally targeted to a variety of sub-cellular sites. In the case of polyproteins bearing N-terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of 'slipstream' translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N-terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C-terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins. PMID:19946875

  1. Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences

    PubMed Central

    de Felipe, Pablo; Luke, Garry A; Brown, Jeremy D; Ryan, Martin D

    2010-01-01

    Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl-prolyl peptide bond at the C-terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and ‘2A-like’ sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co- and post-translationally targeted to a variety of sub-cellular sites. In the case of polyproteins bearing N-terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of ‘slipstream’ translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N-terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C-terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins. PMID:19946875

  2. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    SciTech Connect

    Shiheido, Hirokazu Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  3. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems.

    PubMed

    Van Lancker, Fien; Adams, An; De Kimpe, Norbert

    2012-05-01

    Only a minor part of Maillard reaction studies in the literature focused on the reaction between carbohydrates and peptides. Therefore, in continuation of a previous study in which the influence of the peptide C-terminal amino acid was investigated, this study focused on the influence of the peptide N-terminal amino acid on the production of pyrazines in model reactions of glucose, methylglyoxal, or glyoxal. Nine different dipeptides and three tripeptides were selected. It was shown that the structure of the N-terminal amino acid is determinative for the overall pyrazine production. Especially, the production of 2,5(6)-dimethylpyrazine and trimethylpyrazine was low in the case of proline, valine, or leucine at the N-terminus, whereas it was very high for glycine, alanine, or serine. In contrast to the alkyl-substituted pyrazines, unsubstituted pyrazine was always produced more in the case of experiments with free amino acids. It is clear that different mechanisms must be responsible for this observation. This study clearly illustrates the capability of peptides to produce flavor compounds such as pyrazines. PMID:22463717

  4. New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics

    PubMed Central

    2015-01-01

    Compstatin peptides are complement inhibitors that bind and inhibit cleavage of complement C3. Peptide binding is enhanced by hydrophobic interactions; however, poor solubility promotes aggregation in aqueous environments. We have designed new compstatin peptides derived from the W4A9 sequence (Ac-ICVWQDWGAHRCT-NH2, cyclized between C2 and C12), based on structural, computational, and experimental studies. Furthermore, we developed and utilized a computational framework for the design of peptides containing non-natural amino acids. These new compstatin peptides contain polar N-terminal extensions and non-natural amino acid substitutions at positions 4 and 9. Peptides with α-modified non-natural alanine analogs at position 9, as well as peptides containing only N-terminal polar extensions, exhibited similar activity compared to W4A9, as quantified via ELISA, hemolytic, and cell-based assays, and showed improved solubility, as measured by UV absorbance and reverse-phase HPLC experiments. Because of their potency and solubility, these peptides are promising candidates for therapeutic development in numerous complement-mediated diseases. PMID:25494040

  5. Characterization of PA-N terminal domain of Influenza A polymerase reveals sequence specific RNA cleavage.

    PubMed

    Datta, Kausiki; Wolkerstorfer, Andrea; Szolar, Oliver H J; Cusack, Stephen; Klumpp, Klaus

    2013-09-01

    Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3' end of a guanine (G) base in RNA. The G specificity is exhibited by the native influenza polymerase complex associated with viral ribonucleoprotein particles and is conferred by an intrinsic G specificity of the isolated PA endonuclease domain PA-Nter. In addition, RNA cleavage site choice by the full polymerase is also guided by cap binding to the PB2 subunit, from which RNA cleavage preferentially occurs at the 12th nt downstream of the cap. However, if a G residue is present in the region of 10-13 nucleotides from the cap, cleavage preferentially occurs at G. This is the first biochemical evidence of influenza polymerase PA showing intrinsic sequence selective endonuclease activity. PMID:23847103

  6. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.

    PubMed

    Song, Letian; Tsang, Adrian; Sylvestre, Michel

    2015-06-01

    Xylanases are used in many industrial processes including pulp bleaching, baking, detergent, and the hydrolysis of plant cell wall in biofuels production. In this work we have evolved a single domain GH10 xylanase, Xyn10A_ASPNG, from Aspergillus niger to improve its thermostability. We introduced a rational approach involving as the first step a computational analysis to guide the design of a mutagenesis library in targeted regions which identified thermal important residues that were subsequently randomly mutagenized through rounds of iterative saturation mutagenesis (ISM). Focusing on five residues, four rounds of ISM had generated a quintuple mutant 4S1 (R25W/V29A/I31L/L43F/T58I) which exhibited thermal inactivation half-life (t1/2 ) at 60°C that was prolonged by 30 folds in comparison with wild-type enzyme. Whereas the wild-type enzyme retained 0.2% of its initial activity after a heat treatment of 10 min at 60°C and was completely inactivated after 2 min at 65°C, 4S1 mutant retained 30% of its initial activity after 15 min heating at 65°C. Furthermore, the mutant melting temperature (Tm ) increased by 17.4°C compared to the wild type. Each of the five mutations in 4S1 was found to contribute to thermoresistance, but the dramatic improvement of enzyme thermoresistance of 4S1 was attributed to the synergistic effects of the five mutations. Comparison of biochemical data and model structure between 4S1 and the wild-type enzyme suggested that the N-terminal coil of the enzyme is important in stabilizing GH10 xylanase structure. Based on model structure analyses, we propose that enforced hydrophobic interactions within N-terminal elements and between N- and C-terminal ends are responsible for the improved thermostability of Xyn10A_ASPNG. PMID:25640404

  7. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants.

    PubMed

    Maita, Chinatsu; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is a novel oncogene and also a causative gene for familial Parkinson's disease (park7). DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106) of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18) DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria. PMID:23326576

  8. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. PMID:25600804

  9. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    PubMed Central

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  10. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    SciTech Connect

    Whatcott, Clifford J.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Myron K.

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  11. Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.

    2010-01-01

    Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of

  12. N-terminal Huntingtin Knock-In Mice: Implications of Removing the N-terminal Region of Huntingtin for Therapy.

    PubMed

    Liu, Xudong; Wang, Chuan-En; Hong, Yan; Zhao, Ting; Wang, Guohao; Gaertig, Marta A; Sun, Miao; Li, Shihua; Li, Xiao-Jiang

    2016-05-01

    The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1-208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD. PMID:27203582

  13. N-terminal Huntingtin Knock-In Mice: Implications of Removing the N-terminal Region of Huntingtin for Therapy

    PubMed Central

    Liu, Xudong; Wang, Chuan-En; Hong, Yan; Zhao, Ting; Wang, Guohao; Gaertig, Marta A.; Sun, Miao; Li, Shihua; Li, Xiao-Jiang

    2016-01-01

    The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1–208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD. PMID:27203582

  14. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  15. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain.

    PubMed

    Ampah-Korsah, Henry; Anderberg, Hanna I; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  16. Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin from Naja atra venom.

    PubMed

    Lou, Xiaohua; Tu, Xiongying; Pan, Guoqiang; Xu, Chaoyin; Fan, Rong; Lu, Wanhua; Deng, Wenhan; Rao, Pingfan; Teng, Maikun; Niu, Liwen

    2003-06-01

    Atratoxin-b, a short-chain alpha-neurotoxin purified from Naja atra (mainland Chinese cobra) venom using a three-step chromatography procedure, has an apparent molecular mass of 6950 Da with an alkaline pI value (>9.5) and consists of one single polypeptide chain as estimated by MALDI-TOF mass spectrometry and SDS-PAGE. The protein is toxic to mice, with an in vitro LD(50) of about 0.18 mg kg(-1). Its N-terminal amino-acid sequence, LECHNQQSSQTPTIT, displays a very high homology to those of other alpha-neurotoxins. The overall three-dimensional structure of atratoxin-b is very similar to that of the homologous erabutoxin-a, as shown by the crystallographic molecular replacement and preliminary refinement results, with an R factor and R(free) of 27 and 29%, respectively. The microcrystal slowly grew to dimensions of approximate 0.1 x 0.1 x 0.15 mm over eight months using hanging-drop vapour-diffusion method. It gave a set of diffraction data to 1.56 A resolution using X-rays of wavelength 1.1516 A generated by the X-ray Diffraction and Scattering Station of beamline U7B at the National Synchrotron Radiation Laboratory (Hefei, China); this is the first example of the use of this beamline in protein crystallography. The crystals belong to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = 49.28, c = 44.80 A, corresponding to one molecule per asymmetric unit and a volume-to-mass ratio of 1.96 A(3) Da(-1). PMID:12777767

  17. Two Distinctive Binding Modes of Endonuclease Inhibitors to the N-Terminal Region of Influenza Virus Polymerase Acidic Subunit.

    PubMed

    Fudo, Satoshi; Yamamoto, Norio; Nukaga, Michiyoshi; Odagiri, Takato; Tashiro, Masato; Hoshino, Tyuji

    2016-05-10

    Influenza viruses are global threat to humans, and the development of new antiviral agents are still demanded to prepare for pandemics and to overcome the emerging resistance to the current drugs. Influenza polymerase acidic protein N-terminal domain (PAN) has endonuclease activity and is one of the appropriate targets for novel antiviral agents. First, we performed X-ray cocrystal analysis on the complex structures of PAN with two endonuclease inhibitors. The protein crystallization and the inhibitor soaking were done at pH 5.8. The binding modes of the two inhibitors were different from a common binding mode previously reported for the other influenza virus endonuclease inhibitors. We additionally clarified the complex structures of PAN with the same two endonuclease inhibitors at pH 7.0. In one of the crystal structures, an additional inhibitor molecule, which chelated to the two metal ions in the active site, was observed. On the basis of the crystal structures at pH 7.0, we carried out 100 ns molecular dynamics (MD) simulations for both of the complexes. The analysis of simulation results suggested that the binding mode of each inhibitor to PAN was stable in spite of the partial deviation of the simulation structure from the crystal one. Furthermore, crystal structure analysis and MD simulation were performed for PAN in complex with an inhibitor, which was already reported to have a high compound potency for comparison. The findings on the presence of multiple binding sites at around the PAN substrate-binding pocket will provide a hint for enhancing the binding affinity of inhibitors. PMID:27088785

  18. The N-terminal of a heparin-binding sperm membrane mitogen possess lectin-like sequence

    SciTech Connect

    Mor, Visesato; Chatterjee, Tapati . E-mail: c_tapati@yahoo.com

    2007-03-02

    Glycosaminoglycans like heparin and heparin sulfate in follicular fluid induce changes in the intracellular environment during the spermatozoal functional maturation. We previously reported the isolation, purification and partial characterization of a heparin binding sperm membrane protein (HBSM). In the present study, the amino acids analysis provided evidence of a single sequence, which suggest the homogeneity of the purified HBSM. Fourteen amino acids-{sup 1} A D T I V A V E L D T Y P N {sup 14}-correspond to the amino terminal sequence of Concanavalin A (Con A) and contain 45.2% carbohydrate by weight. HBSM possess mitogenic property on lymphocytes with comparable magnitude to the well-known mitogen; Con A, inducing 83% radiolabel thymidine incorporation in growing lymphocytes. Unlike Con A, there was no agglutination of cell by HBSM upto 5 ng/ml concentration. Interestingly, we found that heparin and chondroitin sulfate-conjugated HBSM inhibit the proliferative activity. Similar effect was also found with an in-house isolate sulfated glycans; G-I (28% sulfate). In contrast, there was no inhibition by the desulfated form; G-ID. Altogether, our data suggest that the mechanism of cell proliferative pathway may be different for HBSM and Con A.

  19. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain

    PubMed Central

    Kimura, Yuta; Fujino, Kaien; Ogawa, Kana; Masuda, Kiyoshi

    2014-01-01

    Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS) motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1) and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1. PMID:24616728

  20. Identification of N-terminal methionine in the precursor of immunoglobulin light chain. Initiation of translation of messenger ribonucleic acid in plants and animals.

    PubMed Central

    Schechter, I; Burstein, Y

    1976-01-01

    The proteins programmed in the wheat-germ cell-free system by the mRNA coding for the MOPC-321 mouse myeloma L (light) chain were labelled with [35S]methionine, [4,5-3H]leucine or [3-3H]serine, and were subjected to amino acid-sequence analyses. Over 95% of the total cell-free product was sequenced as one homogeneous protein, which corresponds to the precursor of the L-chain protein. In the precursor, 20 amino acid residues precede the N-terminus of the mature protein. This extra piece contains one methionine residue at the N-terminus, one serine residue at position 18, and six leucine residues, which are clustered in two triplets at positions 6, 7, 8 and 11, 12, 13. The identification of methionine at the N-terminus of the precursor is in agreement with the evidence showing that unblocked methionine is the initiator residue for protein synthesis in eukaryotes. The absence of methionine at position 20, which precedes the N-terminal residue of the mature protein, suggests that myeloma cells synthesize the precursor. However, within the cell the precursor should be rapidly processed to the mature L chain, since precursor molecules have not yet been found in the intact animal. The abundance (30%) of leucine residues indicates that the extra-piece moiety is quite hydrophobic. The extra piece of the MOPC-321 L-chain precursor synthesized with the aid of the Krebs II ascites cell-free system is of identical size and it has the same leucine sequence [Schechter et al. (1975) Science 188, 160-162]. This indicates that cell-free systems derived from the plant and animal kingdom initiate mRNA translation from the same point. It is shown that the amino acid sequence of minute amounts of a highly labelled protein (0.1 pmol) can be faithfully determined in the presence of a large excess (over 2000 000-fold) of unrelated non-radioactive proteins. Images PLATE 2 PLATE 1 PMID:821467

  1. Cooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain

    PubMed Central

    Mendiratta, Geetu; Eriksson, Peter R.; Clark, David J.

    2007-01-01

    The yeast Spt10p activator is a putative histone acetyltransferase (HAT) possessing a sequence-specific DNA-binding domain (DBD) which binds to the upstream activation sequences (UAS elements) in the histone gene promoters. Spt10p binds to a pair of histone UAS elements with extreme positive cooperativity. The molecular basis of this cooperativity was addressed. Spt10p (640 residues) is an elongated dimer, but the isolated DBD (residues 283–396) is a monomer and binds non-cooperatively to DNA. A Spt10p fragment comprising the N-terminal domain (NTD), HAT domain and DBD (residues 1–396) binds cooperatively and is a dimer, whereas an overlapping Spt10p fragment comprising the DBD and C-terminal domains (residues 283–640) binds non-cooperatively and is a monomer. These observations imply that cooperative binding requires dimerization. The isolated NTD (residues 1–98) is a dimer and is responsible for dimerization. We propose that cooperativity involves a conformational change in the Spt10p dimer which facilitates the simultaneous recognition of two UAS elements. In vivo, deletion of the NTD results in poor growth, but does not prevent the binding at the HTA1 promoter, suggesting that dimerization is biologically important. Residues 1–396 are sufficient for normal growth, indicating that the critical functions of Spt10p reside in the N-terminal domains. PMID:17202156

  2. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning.

    PubMed

    Golubovskaya, Vita M; Finch, Richard; Zheng, Min; Kurenova, Elena V; Cance, William G

    2008-04-01

    It is known that p53 alterations are commonly found in tumour cells. Another marker of tumorigenesis is FAK (focal adhesion kinase), a non-receptor kinase that is overexpressed in many types of tumours. Previously we determined that the N-terminal domain of FAK physically interacted with the N-terminal domain of p53. In the present study, using phage display, sitedirected mutagenesis, pulldown and immunoprecipitation assays we localized the site of FAK binding to a 7-amino-acid region(amino acids 65-71) in the N-terminal proline-rich domain of human p53. Mutation of the binding site in p53 reversed the suppressive effect of FAK on p53-mediated transactivation ofp21, BAX (Bcl-2-associated X protein) and Mdm2 (murine double minute 2) promoters. In addition, to functionally test this p53 site, we conjugated p53 peptides [wild-type (containing the wild-type binding site) and mutant (with a mutated 7-aminoacid binding site)] to a TAT peptide sequence to penetrate the cells, and demonstrated that the wild-type p53 peptide disrupted binding of FAK and p53 proteins and significantly inhibited cell viability of HCT116 p53+/+ cells compared with the control mutant peptide and HCT116 p53-/- cells. Furthermore, the TAT-p53 peptide decreased the viability of MCF-7 cells, whereas the mutant peptide did not cause this effect. Normal fibroblast p53+/+ and p53-/- MEF (murine embryonic fibroblast) cells and breast MCF10A cells were not sensitive to p53 peptide. Thus, for the first time, we have identified the binding site of the p53 andFAK interaction and have demonstrated that mutating this site and targeting the site with peptides affects p53 functioning and viability in the cells. PMID:18215142

  3. Isolation of a novel cold-active family 11 Xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability.

    PubMed

    Liu, Qiong; Wang, Yaru; Luo, Huiying; Wang, Liwen; Shi, Pengjun; Huang, Huoqing; Yang, Peilong; Yao, Bin

    2015-01-01

    In the present study, we first reported a cold-active xylanase of glycosyl hydrolase family 11, Xyn11, from the filamentous fungus Bispora antennata. The coding gene (xyn11) was cloned and successfully expressed in Pichia pastoris. Deduced Xyn11 exhibited the highest identity of 65 % with a family 11 endo-β-1,4-xylanase from Alternaria sp. HB186. Recombinant Xyn11 exhibited maximal activity at 35 °C and remained 21 % of the activity at 0 °C. Sequence alignment showed that the N-terminal sequence of Xyn11 is distinct from those of thermophilic xylanases of family 11. To determine its effect on enzyme properties, the Xyn11 mutant without the N-terminal sequence, t-Xyn11, was then constructed, expressed in P. pastoris, and compared with Xyn11. Both enzymes showed optimal activities at 35 °C and pH 5.5 and were stable at pH 2.0-12.0. Compared with truncated mutant t-Xyn11, Xyn11 retained more activity after 20-min incubation at 40 °C (Xyn11:28 % vs. t-Xyn11:4 %) and degraded xylan substrates more completely. Thus, a new factor affecting the thermostability of cold-active xylanase of family 11 was identified. PMID:25351632

  4. Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain.

    PubMed

    Sivolob, Andrei; Lavelle, Christophe; Prunell, Ariel

    2003-02-01

    Relaxation of nucleosomes on an homologous series (pBR) of ca 350-370 bp DNA minicircles originating from plasmid pBR322 was recently used as a tool to study their structure and dynamics. These nucleosomes thermally fluctuated between three distinct DNA conformations within a histone N-terminal tail-modulated equilibrium: one conformation was canonical, with 1.75 turn wrapping and negatively crossed entering and exiting DNAs; another was also "closed", but with these DNAs positively crossed; and the third was "open", with a lower than 1.5 turn wrapping and uncrossed DNAs. In this work, a new minicircle series (5S) of similar size was used, which contained the 5S nucleosome positioning sequence. Results showed that DNA in pBR nucleosomes was untwisted by approximately 0.2 turn relative to 5S nucleosomes, which DNase I footprinting confirmed in revealing a approximately 1 bp untwisting at each of the two dyad-distal sites where H2B N-terminal tails pass between the two gyres. In contrast, both nucleosomes showed untwistings at the dyad-proximal sites, i.e. on the other gyre, which were also observed in the high-resolution crystal structure. 5S nucleosomes also differ with respect to their dynamics: they hardly accessed the positively crossed conformation, but had an easier access to the negatively crossed conformation. Simulation showed that such reverse effects on the conformational free energies could be simply achieved by slightly altering the trajectories of entering and exiting DNAs. We propose that this is accomplished by H2B tail untwisting at the distal sites through action at a distance ( approximately 20 bp) on H3-tail interactions with the small groove at the nucleosome entry-exit. These results may help to gain a first glimpse into the two perhaps most intriguing features of the high-resolution structure: the alignment of the grooves on the two gyres and the passage of H2B and H3 N-terminal tails between them. PMID:12547190

  5. Mammalian Bcnt/Cfdp1, a potential epigenetic factor characterized by an acidic stretch in the disordered N-terminal and Ser250 phosphorylation in the conserved C-terminal regions

    PubMed Central

    Iwashita, Shintaro; Suzuki, Takehiro; Yasuda, Takeshi; Nakashima, Kentaro; Sakamoto, Taiichi; Kohno, Toshiyuki; Takahashi, Ichiro; Kobayashi, Takayasu; Ohno-Iwashita, Yoshiko; Imajoh-Ohmi, Shinobu; Song, Si-Young; Dohmae, Naoshi

    2015-01-01

    The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His–Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser250, which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser250 substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser250 phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys268 in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels. PMID:26182435

  6. Mammalian Bcnt/Cfdp1, a potential epigenetic factor characterized by an acidic stretch in the disordered N-terminal and Ser250 phosphorylation in the conserved C-terminal regions.

    PubMed

    Iwashita, Shintaro; Suzuki, Takehiro; Yasuda, Takeshi; Nakashima, Kentaro; Sakamoto, Taiichi; Kohno, Toshiyuki; Takahashi, Ichiro; Kobayashi, Takayasu; Ohno-Iwashita, Yoshiko; Imajoh-Ohmi, Shinobu; Song, Si-Young; Dohmae, Naoshi

    2015-01-01

    The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His-Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser(250), which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser(250) substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser(250) phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys(268) in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels. PMID:26182435

  7. The 5-amino acid N-terminal extension of non-sulfated drosulfakinin II is a unique target to generate novel agonists.

    PubMed

    Leander, M; Heimonen, J; Brocke, T; Rasmussen, M; Bass, C; Palmer, G; Egle, J; Mispelon, M; Berry, K; Nichols, R

    2016-09-01

    The ability to design agonists that target peptide signaling is a strategy to delineate underlying mechanisms and influence biology. A sequence that uniquely characterizes a peptide provides a distinct site to generate novel agonists. Drosophila melanogaster sulfakinin encodes non-sulfated drosulfakinin I (nsDSK I; FDDYGHMRF-NH2) and nsDSK II (GGDDQFDDYGHMRF-NH2). Drosulfakinin is typical of sulfakinin precursors, which are conserved throughout invertebrates. Non-sulfated DSK II is structurally related to DSK I, however, it contains a unique 5-residue N-terminal extension; drosulfakinins signal through G-protein coupled receptors, DSK-R1 and DSK-R2. Drosulfakinin II distinctly influences adult and larval gut motility and larval locomotion; yet, its structure-activity relationship was unreported. We hypothesized substitution of an N-terminal extension residue may alter nsDSK II activity. By targeting the extension we identified, not unexpectedly, analogs mimicking nsDSK II, yet, surprisingly, we also discovered novel agonists with increased (super) and opposite (protean) effects. We determined [A3] nsDSK II increased larval gut contractility rather than, like nsDSK II, decrease it. [N4] nsDSK II impacted larval locomotion, although nsDSK II was inactive. In adult gut, [A1] nsDSK II, [A2] nsDSKII, and [A3] nsDSK II mimicked nsDSK II, and [A4] nsDSK II and [A5] nsDSK II were more potent; [N3] nsDSK II and [N4] nsDSK II mimicked nsDSK II. This study reports nsDSK II signals through DSK-R2 to influence gut motility and locomotion, identifying a novel role for the N-terminal extension in sulfakinin biology and receptor activation; it also led to the discovery of nsDSK II structural analogs that act as super and protean agonists. PMID:27397853

  8. Immunodetection and N-terminal sequencing of DNA replication proteins of bacteriophage BFK20 - lytic phage of Brevibacterium flavum.

    PubMed

    Bukovská, G; Halgašová, N; Hromadová, L; Koščová, H; Bukovský, M

    2014-01-01

    Phages are excellent models for studying the mechanism of DNA replication in prokaryotes. Identification of phage proteins involved in phage DNA replication is the first prerequisite for elucidation of the phage replication module. We focused on replication proteins gp41 (a putative helicase from SF2 superfamily), gp43 (a RepA-like protein), and gp44 (a putative DNA polymerase A) of phage BFK20 grown in Brevibacterium flavum. To identify them in the phage-host system, we prepared antibodies to these proteins which were cloned and expressed in Escherichia coli as his-tagged recombinant proteins. After purification to homogeneity the recombinant proteins served for raising specific polyclonal antibodies in mice. Using these antibodies in Western blot analysis the phage proteins gp41, gp43 and gp44 were detected during the phage growth cycle. The proteins gp41 and gp43, prepared from cell lysate by ammonium sulphate precipitation, were N-terminally sequenced and found to contain the sequences N-SVKPRELR-C and N-MLGSTML-C, respectively. This means that gp41 starts with serine but not with common methionine. We consider these findings an initial but important step towards more thorough characterization of replication proteins of phage BFK20. PMID:24957720

  9. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding.

    PubMed

    Ziere, G J; Bijsterbosch, M K; van Berkel, T J

    1993-12-25

    Lactoferrin inhibits the hepatic uptake of lipoprotein remnants, and we showed earlier that arginine residues of lactoferrin are involved. In this study, lactoferrin was treated with aminopeptidase M (APM), which resulted in removal of 14 N-terminal amino acids, including 4 clustered arginine residues at positions 2-5 (APM-lactoferrin). After intravenous injection into rats, 125I-labeled APM-lactoferrin was cleared within 10 min by the liver parenchymal cells (74.7% of the dose). In contrast to native lactoferrin, APM-lactoferrin was rapidly internalized after liver association (> 80% of the liver-associated radioactivity was internalized within 10 min). Binding of APM-lactoferrin to isolated parenchymal liver cells was saturable with a Kd of 186 nM (750,000 sites/cell). This is in striking contrast to the binding of native lactoferrin (Kd 10 microM; 20 x 10(6) sites/cell). Preinjection of rats with 20 mg of APM-lactoferrin/kg of body weight reduced the liver association of beta-very low density lipoprotein (beta-VLDL) by 50%, whereas lactoferrin had no effect at this dose. With isolated parenchymal liver cells, APM-lactoferrin was a more effective competitor for beta-VLDL binding than native lactoferrin (50% inhibition at 0.5 mg/ml versus 8.0 mg/ml). Selective modification of the arginines of APM-lactoferrin with 1,2-cyclohexanedione reduced the liver association by approximately 60% and abolished the capacity of APM-lactoferrin to inhibit the binding of 125I-labeled beta-VLDL in vitro. In conclusion, our data indicate that the four-arginine cluster of lactoferrin at positions 2-5 is involved in its massive, low affinity association of lactoferrin with the liver, possibly to proteoglycans, but is not essential for the inhibition of lipoprotein remnant uptake. The Arg-Lys sequence at positions 25-31, which resembles the binding site of apolipoprotein E, may mediate the high affinity binding of lactoferrin and block the binding of beta-VLDL to the remnant receptor

  10. Improvement of expression level of keratinase Sfp2 from Streptomyces fradiae by site-directed mutagenesis of its N-terminal pro-sequence.

    PubMed

    Li, Junxia; Chen, Dongdong; Yu, Zhanqiao; Zhao, Longmei; Zhang, Rijun

    2013-05-01

    The keratinase Sfp2, produced by Streptomyces fradiae var. k11, is a serine alkaline protease first synthesized as pre-pro-mature precursor, of which the N-terminal propeptide must be autocatalytically cleaved on the C-terminal of P1 amino acid to produce mature enzyme. Single amino acid substitutions were introduced at positions -1 and -2 to improve the expression level of mature Sfp2. The specific activity of L(-1)F mutant (48935 U/mg) was nine times that of wild-type Sfp2, whereas the mutants L(-1)D, L(-1)G, L(-1)H, K(-2)E, and K(-2)L had 2-52 % of the specific activity of wild-type. The yield of mature Sfp2 of L(-1)F mutant was estimated to be 800 μg/mg total protein and 112 mg/l culture supernatant, nine and twice that of wild-type, respectively. The L(-1)F mutant exhibited similar enzymatic properties to wild-type. PMID:23355035

  11. High-level expression of human dihydropteridine reductase (EC 1.6.99.7), without N-terminal amino acid protection, in Escherichia coli.

    PubMed Central

    Armarego, W L; Cotton, R G; Dahl, H H; Dixon, N E

    1989-01-01

    The cDNA coding for human dihydropteridine reductase [Dahl, Hutchinson, McAdam, Wake, Morgan & Cotton (1987) Nucleic Acids Res. 15, 1921-1936] was inserted downstream of tandem bacteriophage lambda PR and PL promoters in Escherichia coli vector pCE30. Since pCE30 also expresses the lambda c1857ts gene, transcription may be controlled by variation of temperature. The recombinant plasmid in an E. coli K12 strain grown at 30 degrees C, then at 45 degrees C, directed the synthesis of dihydropteridine reductase to very high levels. The protein was soluble, at least as active as the authentic human enzyme, and lacked the N-terminal amino acid protection. Images Fig. 1. Fig. 2. PMID:2673215

  12. Protein N-terminal acetyltransferases in cancer.

    PubMed

    Kalvik, T V; Arnesen, T

    2013-01-17

    The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80-90% of all human proteins. Six NAT types are present in humans, NatA-NatF, each is composed of specific subunits and each acetylates a set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which was coupled to a number of signaling molecules including hypoxia inducible factor-1α, β-catenin/cyclin D1, TSC2/mammalian target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein. PMID:22391571

  13. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.

    PubMed

    Ferré, Cécile A; Davezac, Noélie; Thouard, Anne; Peyrin, Jean-Michel; Belenguer, Pascale; Miquel, Marie-Christine; Gonzalez-Dunia, Daniel; Szelechowski, Marion

    2016-04-01

    To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. PMID:26700735

  14. Hypochlorous acid reacts with the N-terminal methionines of proteins to give dehydromethionine, a potential biomarker for neutrophil-induced oxidative stress.

    PubMed

    Beal, Jennifer L; Foster, Steven B; Ashby, Michael T

    2009-11-24

    Electrophilic halogenating agents, including hypohalous acids and haloamines, oxidize free methionine and the N-terminal methionines of peptides and proteins (e.g., Met-1 of anti-inflammatory peptide 1 and ubiquitin) to produce dehydromethionine (a five-membered isothiazolidinium heterocycle). Amide derivatives of methionine are oxidized to the corresponding sulfoxide derivatives under the same reaction conditions (e.g., Met-3 of anti-inflammatory peptide 1). Other biological oxidants, including hydrogen peroxide and peroxynitrite, also produce only the corresponding sulfoxides. Hypothiocyanite does not react with methionine residues. We suggest that dehydromethionine may be a useful biomarker for the myeloperoxidase-induced oxidative stress associated with many inflammatory diseases. PMID:19839600

  15. Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization

    SciTech Connect

    Sekhri, Palak; Tao, Tao; Kaplan, Feige; Zhang, Xiang-Dong

    2015-02-27

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs and Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.

  16. N-terminal basic amino acid residues of Beet black scorch virus capsid protein play a critical role in virion assembly and systemic movement

    PubMed Central

    2013-01-01

    Background Beet black scorch virus (BBSV) is a small single-stranded, positive-sense RNA plant virus belonging to the genus Necrovirus, family Tombusviridae. Its capsid protein (CP) contains a 13 amino acid long basic region at the N-terminus, rich in arginine and lysine residues, which is thought to interact with viral RNA to initiate virion assembly. Results In the current study, a series of BBSV mutants containing amino acid substitutions as well as deletions within the N-terminal region were generated and examined for their effects on viral RNA replication, virion assembly, and long distance spread in protoplasts and whole host plants of BBSV. The RNA-binding activities of the mutated CPs were also evaluated in vitro. These experiments allowed us to identify two key basic amino acid residues in this region that are responsible for initiating virus assembly through RNA-binding. Proper assembly of BBSV particles is in turn needed for efficient viral systemic movement. Conclusions We have identified two basic amino acid residues near the N-terminus of the BBSV CP that bind viral RNA with high affinity to initiate virion assembly. We further provide evidence showing that systemic spread of BBSV in infected plants requires intact virions. This study represents the first in-depth investigation of the role of basic amino acid residues within the N-terminus of a necroviral CP. PMID:23786675

  17. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence

    PubMed Central

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C.

    2016-01-01

    Calmodulins (CaMs) are important mediators of Ca2+ signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca2+ signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system. PMID:27029353

  18. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence.

    PubMed

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C

    2016-06-01

    Calmodulins (CaMs) are important mediators of Ca(2+) signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca(2+) signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system. PMID:27029353

  19. Removing N-terminal sequences in pre-S1 domain enhanced antibody and B-cell responses by an HBV large surface antigen DNA vaccine.

    PubMed

    Ge, Guohong; Wang, Shixia; Han, Yaping; Zhang, Chunhua; Lu, Shan; Huang, Zuhu

    2012-01-01

    Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens. PMID:22844502

  20. A protective surface protein from type V group B streptococci shares N-terminal sequence homology with the alpha C protein.

    PubMed

    Lachenauer, C S; Madoff, L C

    1996-10-01

    Infection by group B streptococci (GBS) is an important cause of bacterial disease in neonates, pregnant women, and nonpregnant adults. Historically, serotypes Ia, Ib, II, and III have been most prevalent among disease cases; recently, type V strains have emerged as important strains in the United States and elsewhere. In addition to type-specific capsular polysaccharides, many GBS strains possess surface proteins which demonstrate a laddering pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and resistance to trypsin digestion. These include the alpha C protein, the R proteins, and protein Rib. Some of these proteins elicit protective antibodies in animals. We demonstrate a trypsin-resistant laddering protein purified from a type V GBS strain by mutanolysin extraction and column chromatography. This protein contains a major 90-kDa band and a series of smaller bands spaced approximately 10 kDa apart on SDS-PAGE. Cross-reactivity of the type V protein with the alpha C protein and with R1 was demonstrated on Western blot (immunoblot). N-terminal sequence analysis of the protein revealed residue identity with 17 of 18 residues at corresponding positions on the alpha protein. Western blot of SDS extracts of 41 clinical type V isolates with rabbit antiserum to the protein demonstrated a homologous protein in 25 isolates (61%); two additional strains exhibited a heterologous pattern which was also demonstrated with 4G8, a monoclonal antibody directed to the alpha C protein repeat region. Rabbit antiserum raised to the type V protein conferred protection in neonatal mice against a type V strain bearing a homologous protein. These data support the hypothesis that there exists a family of trypsin-resistant, laddering GBS surface proteins which may play a role in immunity to GBS infection. PMID:8926097

  1. The PNT domain from Drosophila pointed-P2 contains a dynamic N-terminal helix preceded by a disordered phosphoacceptor sequence.

    PubMed

    Lau, Desmond K W; Okon, Mark; McIntosh, Lawrence P

    2012-11-01

    Pointed-P2, the Drosophila ortholog of human ETS1 and ETS2, is a transcription factor involved in Ras/MAP kinase-regulated gene expression. In addition to a DNA-binding ETS domain, Pointed-P2 contains a PNT (or SAM) domain that serves as a docking module to enhance phosphorylation of an adjacent phosphoacceptor threonine by the ERK2 MAP kinase Rolled. Using NMR chemical shift, ¹⁵N relaxation, and amide hydrogen exchange measurements, we demonstrate that the Pointed-P2 PNT domain contains a dynamic N-terminal helix H0 appended to a core conserved five-helix bundle diagnostic of the SAM domain fold. Neither the secondary structure nor dynamics of the PNT domain is perturbed significantly upon in vitro ERK2 phosphorylation of three threonine residues in a disordered sequence immediately preceding this domain. These data thus confirm that the Drosophila Pointed-P2 PNT domain and phosphoacceptors are highly similar to those of the well-characterized human ETS1 transcription factor. NMR-monitored titrations also revealed that the phosphoacceptors and helix H0, as well as region of the core helical bundle identified previously by mutational analyses as a kinase docking site, are selectively perturbed upon ERK2 binding by Pointed-P2. Based on a homology model derived from the ETS1 PNT domain, helix H0 is predicted to partially occlude the docking interface. Therefore, this dynamic helix must be displaced to allow both docking of the kinase, as well as binding of Mae, a Drosophila protein that negatively regulates Pointed-P2 by competing with the kinase for its docking site. PMID:22936607

  2. A protective surface protein from type V group B streptococci shares N-terminal sequence homology with the alpha C protein.

    PubMed Central

    Lachenauer, C S; Madoff, L C

    1996-01-01

    Infection by group B streptococci (GBS) is an important cause of bacterial disease in neonates, pregnant women, and nonpregnant adults. Historically, serotypes Ia, Ib, II, and III have been most prevalent among disease cases; recently, type V strains have emerged as important strains in the United States and elsewhere. In addition to type-specific capsular polysaccharides, many GBS strains possess surface proteins which demonstrate a laddering pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and resistance to trypsin digestion. These include the alpha C protein, the R proteins, and protein Rib. Some of these proteins elicit protective antibodies in animals. We demonstrate a trypsin-resistant laddering protein purified from a type V GBS strain by mutanolysin extraction and column chromatography. This protein contains a major 90-kDa band and a series of smaller bands spaced approximately 10 kDa apart on SDS-PAGE. Cross-reactivity of the type V protein with the alpha C protein and with R1 was demonstrated on Western blot (immunoblot). N-terminal sequence analysis of the protein revealed residue identity with 17 of 18 residues at corresponding positions on the alpha protein. Western blot of SDS extracts of 41 clinical type V isolates with rabbit antiserum to the protein demonstrated a homologous protein in 25 isolates (61%); two additional strains exhibited a heterologous pattern which was also demonstrated with 4G8, a monoclonal antibody directed to the alpha C protein repeat region. Rabbit antiserum raised to the type V protein conferred protection in neonatal mice against a type V strain bearing a homologous protein. These data support the hypothesis that there exists a family of trypsin-resistant, laddering GBS surface proteins which may play a role in immunity to GBS infection. PMID:8926097

  3. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase.

    PubMed

    Gao, Xuefei; Li, Kuai; Hui, Xiaoyan; Kong, Xiangping; Sweeney, Gary; Wang, Yu; Xu, Aimin; Teng, Maikun; Liu, Pentao; Wu, Donghai

    2011-05-01

    The adipocyte is the principal cell type for fat storage. CPT1 (carnitine palmitoyltransferase-1) is the rate-limiting enzyme for fatty acid β-oxidation, but the physiological role of CPT1 in adipocytes remains unclear. In the present study, we focused on the specific role of CPT1A in the normal functioning of adipocytes. Three 3T3-L1 adipocyte cell lines stably expressing hCPT1A (human CPT1A) cDNA, mouse CPT1A shRNA (short-hairpin RNA) or GFP (green fluorescent protein) were generated and the biological functions of these cell lines were characterized. Alteration in CPT1 activity, either by ectopic overexpression or pharmacological inhibition using etomoxir, did not affect adipocyte differentiation. However, overexpression of hCPT1A significantly reduced the content of intracellular NEFAs (non-esterified fatty acids) compared with the control cells when adipocytes were challenged with fatty acids. The changes were accompanied by an increase in fatty acid uptake and a decrease in fatty acid release. Interestingly, CPT1A protected against fatty acid-induced insulin resistance and expression of pro-inflammatory adipokines such as TNF-α (tumour necrosis factor-α) and IL-6 (interleukin-6) in adipocytes. Further studies demonstrated that JNK (c-Jun N terminal kinase) activity was substantially suppressed upon CPT1A overexpression, whereas knockdown or pharmacological inhibition of CPT1 caused a significant enhancement of JNK activity. The specific inhibitor of JNK SP600125 largely abolished the changes caused by the shRNA- and etomoxir-mediated decrease in CPT1 activity. Moreover, C2C12 myocytes co-cultured with adipocytes pre-treated with fatty acids displayed altered insulin sensitivity. Taken together, our findings have identified a favourable role for CPT1A in adipocytes to attenuate fatty acid-evoked insulin resistance and inflammation via suppression of JNK. PMID:21348853

  4. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination

    PubMed Central

    Sims, Gregory E.; Wentworth, David E.; Halpin, Rebecca A.; Robinson, Christine C.; Town, Christopher D.; Holmes, Kathryn V.

    2012-01-01

    This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1–600, aa 1–200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world. PMID:22837419

  5. Secondary structure and membrane topology of dengue virus NS4B N-terminal 125 amino acids.

    PubMed

    Li, Yan; Kim, Young Mee; Zou, Jing; Wang, Qing-Yin; Gayen, Shovanlal; Wong, Ying Lei; Lee, Le Tian; Xie, Xuping; Huang, Qiwei; Lescar, Julien; Shi, Pei-Yong; Kang, CongBao

    2015-12-01

    The transmembrane NS4B protein of dengue virus (DENV) is a validated antiviral target that plays important roles in viral replication and invasion of innate immune response. The first 125 amino acids of DENV NS4B are sufficient for inhibition of alpha/beta interferon signaling. Resistance mutations to NS4B inhibitors are all mapped to the first 125 amino acids. In this study, we expressed and purified a protein representing the first 125 amino acids of NS4B (NS4B(1-125)). This recombinant NS4B(1-125) protein was reconstituted into detergent micelles. Solution NMR spectroscopy demonstrated that there are five helices (α1 to α5) present in NS4B(1-125). Dynamic studies, together with a paramagnetic relaxation enhancement experiment demonstrated that four helices, α2, α3, α4, and α5 are embedded in the detergent micelles. Comparison of wild type and V63I mutant (a mutation that confers resistance to NS4B inhibitor) NS4B(1-125) proteins demonstrated that V63I mutation did not cause significant conformational changes, however, V63 may have a molecular interaction with residues in the α5 transmembrane domain under certain conditions. The structural and dynamic information obtained in study is helpful to understand the structure and function of NS4B. PMID:26403837

  6. Amino acid sequence prerequisites for the formation of cn ions.

    PubMed

    Downard, K M; Biemann, K

    1993-11-01

    Ammo acid sequence prerequisites are described for the formation of c, ions observed in high-energy collision-induced decomposition spectra of peptides. It is shown that the formation of cn ions is promoted by the nature of the amino acid C-terminal to the cleavage site. A propensity for cn cleavage preceding threonine, and to a lesser extent tryptophan, lysine, and serine, is demonstrated where fragmentation is directed N-terminally at these residues. In addition, the nature of the residue N-terminal to the cleavage site is shown to have little effect on cn ion formation. A mechanism for cn ion formation is proposed and its applicability to the results observed is discussed. PMID:24227531

  7. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I.

    PubMed

    Monchois, V; Vignon, M; Russell, R R

    1999-11-01

    Related streptococcal and Leuconostoc mesenteroides glucansucrases are enzymes of medical and biotechnological interest. Molecular modelling has suggested that the catalytic domain contains a circularly permuted version of the (beta/alpha)8 barrel structure found in the amylase superfamily, and site-directed mutagenesis has identified critical amino acids in this region. In this study, sequential N-terminal truncations of Streptococcus downei GTF-I showed that key amino acids are also present in the first one-third of the core domain. Mutations were introduced at Trp-344, Glu-349 and His-355, residues that are conserved in all glucansucrases and lie within a region which is a target for inhibitory antibodies. W344L, E349L and H355V substitutions were assayed for their effect on mutan synthesis and also on oligosaccharide synthesis with various acceptors. It appeared that Trp-344 and His-355 are involved in the action mechanism of GTF-I; His-355 may also play a role in a binding subsite necessary for oligosaccharide and glucan elongation. PMID:10570812

  8. Sequence-specific and general transcriptional activation by the bovine papillomavirus-1 E2 trans-activator require an N-terminal amphipathic helix-containing E2 domain.

    PubMed

    Haugen, T H; Turek, L P; Mercurio, F M; Cripe, T P; Olson, B J; Anderson, R D; Seidl, D; Karin, M; Schiller, J

    1988-12-20

    The sequence-specific trans-activator protein of bovine papillomavirus (BPV)-1, E2, strongly increases transcription at promoters containing papillomaviral ACCG(N)4CGGT (E2P) cis motifs, but can also activate a wide range of co-transfected promoters without E2P cores to a lower extent. Analysis of multiple E2 mutants in transfected cells revealed that the C-terminal DNA binding E2 domain binds to the E2P cis sequences in the form of pre-existing nuclear dimers. The DNA binding function of E2 was required for specific trans-activation of the E2P elements, as well as for the function of the previously described C-terminal 'short E2' transrepressor. In addition to the C terminus, specific trans-activation also required an intact N-terminal half of the E2 protein. When expressed alone, the N-terminal E2 domain was found to activate heterologous promoters without E2P elements to an extent comparable to wild-type E2, and therefore represents the functional transcription activation domain of the E2 factor. In contrast to other DNA-binding activator proteins described to date, the transcriptional activation by the E2 factor can occur without specific DNA binding. Its mechanism may thus involve protein--protein interactions between common transcription factors and the N-terminal E2 domain which contains amphipathic helix motifs. PMID:2854060

  9. Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine).

    PubMed

    Zlokovic, B V; Begley, D J; Chain-Eliash, D G

    1985-06-10

    The permeability of the blood-brain barrier to [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) (abbreviated to Leu-Enk) and of its synthetic analogue D-alanine2-[tyrosyl-3,5-3H]enkephalin-(5-D-leucine) (abbreviated to D-Ala2-D-Leu5-Enk) was studied, in the adult rat, by means of Oldendorf's27 intracarotid injection technique. The brain uptake index (BUI) corrected for residual vascular radioactivity was about the same for both peptides, indicating a low extraction from the blood during a 5- or 15-s period of exposure to the peptides. Transport of Leu-Enk was not saturated by unlabelled Enk at a concentration as high as 5 mM but was completely abolished by 5mM tyrosine and by the inhibitor of aminopeptidase activity, bacitracin (2 mM). Also the typical L-transport system substrate, 2-aminobicyclo(2,2,1)heptane-2 carboxylic acid (BCH)9 at 10 mM concentration markedly reduced (by 80%) Leu-Enk uptake by the brain. In contrast, brain uptake of D-Ala2-D-Leu5-Enk was reduced only to about one-half of its control value by bacitracin or by 25% by BCH. Brain uptake for L-tyrosine was typically large and markedly inhibited by BCH but not inhibited by 5 mM unlabelled Leu-Enk. These results show that the measurable but low first-pass extractions for enkephalins are not representative of the uptake of these peptides into the brain, but rather reflect their extreme sensitivity to enzymatic degradation with a release of the N-terminal tyrosine residue. The results also suggest that small amounts of D-Ala2-D-Leu5-Enk might cross the blood-brain barrier in an intact form.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3891014

  10. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase.

    PubMed Central

    Fukushima, J; Yamamoto, S; Morihara, K; Atsumi, Y; Takeuchi, H; Kawamoto, S; Okuda, K

    1989-01-01

    The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin. PMID:2493453

  11. The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II

    PubMed Central

    Nishimura, Taishi; Nagao, Ryo; Noguchi, Takumi; Nield, Jon; Sato, Fumihiko; Ifuku, Kentaro

    2016-01-01

    The PsbP protein, an extrinsic subunit of photosystem II (PSII) in green plants, is known to induce a conformational change around the catalytic Mn4CaO5 cluster securing the binding of Ca2+ and Cl– in PSII. PsbP has multiple interactions with the membrane subunits of PSII, but how these affect the structure and function of PSII requires clarification. Here, we focus on the interactions between the N-terminal residues of PsbP and the α subunit of Cytochrome (Cyt) b559 (PsbE). A key observation was that a peptide fragment formed of the first N-terminal 15 residues of PsbP, ‘pN15’, was able to convert Cyt b559 into its HP form. Interestingly, addition of pN15 to NaCl-washed PSII membranes decreased PSII’s oxygen-evolving activity, even in the presence of saturating Ca2+ and Cl– ions. In fact, pN15 reversibly inhibited the S1 to S2 transition of the OEC in PSII. These data suggest that pN15 can modulate the redox property of Cyt b559 involved in the side-electron pathway in PSII. This potential change of Cyt b559, in the absence of the C-terminal domain of PsbP, however, would interfere with any electron donation from the Mn4CaO5 cluster, leading to the possibility that multiple interactions of PsbP, binding to PSII, have distinct roles in regulating electron transfer within PSII. PMID:26887804

  12. The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II.

    PubMed

    Nishimura, Taishi; Nagao, Ryo; Noguchi, Takumi; Nield, Jon; Sato, Fumihiko; Ifuku, Kentaro

    2016-01-01

    The PsbP protein, an extrinsic subunit of photosystem II (PSII) in green plants, is known to induce a conformational change around the catalytic Mn4CaO5 cluster securing the binding of Ca(2+) and Cl(-) in PSII. PsbP has multiple interactions with the membrane subunits of PSII, but how these affect the structure and function of PSII requires clarification. Here, we focus on the interactions between the N-terminal residues of PsbP and the α subunit of Cytochrome (Cyt) b559 (PsbE). A key observation was that a peptide fragment formed of the first N-terminal 15 residues of PsbP, 'pN15', was able to convert Cyt b559 into its HP form. Interestingly, addition of pN15 to NaCl-washed PSII membranes decreased PSII's oxygen-evolving activity, even in the presence of saturating Ca(2+) and Cl(-) ions. In fact, pN15 reversibly inhibited the S1 to S2 transition of the OEC in PSII. These data suggest that pN15 can modulate the redox property of Cyt b559 involved in the side-electron pathway in PSII. This potential change of Cyt b559, in the absence of the C-terminal domain of PsbP, however, would interfere with any electron donation from the Mn4CaO5 cluster, leading to the possibility that multiple interactions of PsbP, binding to PSII, have distinct roles in regulating electron transfer within PSII. PMID:26887804

  13. Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study[C][W

    PubMed Central

    Traverso, José A.; Micalella, Chiara; Martinez, Aude; Brown, Spencer C.; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-01-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX–green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane. PMID:23543785

  14. The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly.

    PubMed

    Park, Sang-Ho; Sit, Tim L; Kim, Kook-Hyung; Lommel, Steven A

    2013-09-01

    The red clover necrotic mosaic virus (RCNMV) bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, we investigated the RNA-binding properties of the RCNMV capsid protein (CP). Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for stable virion formation and the region spanning CP residues 5-15 is required for systemic movement. Thus, the N-terminal region of the CP is involved in both producing two virion populations due to its RNA binding properties and virion stability. PMID:23747688

  15. Enzyme-Dependent [4 + 2] Cycloaddition Depends on Lid-like Interaction of the N-Terminal Sequence with the Catalytic Core in PyrI4.

    PubMed

    Zheng, Qingfei; Guo, Yujiao; Yang, Linlin; Zhao, Zhixiong; Wu, Zhuhua; Zhang, Hua; Liu, Jianping; Cheng, Xiaofang; Wu, Jiequn; Yang, Huaiyu; Jiang, Hualiang; Pan, Lifeng; Liu, Wen

    2016-03-17

    The Diels-Alder [4 + 2] cycloaddition reaction is one of the most powerful and elegant organic synthesis methods for forming 6-membered molecules and has been known for nearly a century. However, whether and how enzymes catalyze this type of reaction is still not completely clear. Here we focus on PyrI4, an enzyme found in the biosynthetic pathway of pyrroindomycins where it catalyzes the formation of a spiro-conjugate via an enzyme-dependent exo-selective [4 + 2] cycloaddition reaction. We report the crystal structures of PyrI4 alone and in complex with its product. Comparative analysis of these structures, combined with biochemical analysis, lead us to propose a unique trapping mechanism whereby the lid-like action of the N-terminal tail imposes conformational constraints on the β barrel catalytic core, which enhances the proximity and polarization effects of reactive groups (1,3-diene and alkene) to drive cyclization in a regio- and stereo-specific manner. This work represents an important step toward the wider application of enzyme-catalyzed [4 + 2] cyclization for synthetic purposes. PMID:26877021

  16. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities. PMID:4029488

  17. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution.

    PubMed

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-01-01

    Alzheimer's disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD's neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer's Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ-Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD. PMID:24619194

  18. Structure of N-Terminal Sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-Peptide with Phospholipase A2 from Venom of Andaman Cobra Sub-Species Naja naja sagittifera at 2.0 Å Resolution

    PubMed Central

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-01-01

    Alzheimer’s disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD’s neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer’s Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ–Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD. PMID:24619194

  19. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  20. A novel Drosophila model of TDP-43 proteinopathies: N-terminal sequences combined with the Q/N domain induce protein functional loss and locomotion defects

    PubMed Central

    Romano, Giulia; Klima, Raffaella; Feiguin, Fabian; Cragnaz, Lucia; Romano, Maurizio

    2016-01-01

    ABSTRACT Transactive response DNA-binding protein 43 kDa (TDP-43, also known as TBPH in Drosophila melanogaster and TARDBP in mammals) is the main protein component of the pathological inclusions observed in neurons of patients affected by different neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). The number of studies investigating the molecular mechanisms underlying neurodegeneration is constantly growing; however, the role played by TDP-43 in disease onset and progression is still unclear. A fundamental shortcoming that hampers progress is the lack of animal models showing aggregation of TDP-43 without overexpression. In this manuscript, we have extended our cellular model of aggregation to a transgenic Drosophila line. Our fly model is not based on the overexpression of a wild-type TDP-43 transgene. By contrast, we engineered a construct that includes only the specific TDP-43 amino acid sequences necessary to trigger aggregate formation and capable of trapping endogenous Drosophila TDP-43 into a non-functional insoluble form. Importantly, the resulting recombinant product lacks functional RNA recognition motifs (RRMs) and, thus, does not have specific TDP-43-physiological functions (i.e. splicing regulation ability) that might affect the animal phenotype per se. This novel Drosophila model exhibits an evident degenerative phenotype with reduced lifespan and early locomotion defects. Additionally, we show that important proteins involved in neuromuscular junction function, such as syntaxin (SYX), decrease their levels as a consequence of TDP-43 loss of function implying that the degenerative phenotype is a consequence of TDP-43 sequestration into the aggregates. Our data lend further support to the role of TDP-43 loss-of-function in the pathogenesis of neurodegenerative disorders. The novel transgenic Drosophila model presented in this study will help to gain further insight into the

  1. A novel Drosophila model of TDP-43 proteinopathies: N-terminal sequences combined with the Q/N domain induce protein functional loss and locomotion defects.

    PubMed

    Langellotti, Simona; Romano, Valentina; Romano, Giulia; Klima, Raffaella; Feiguin, Fabian; Cragnaz, Lucia; Romano, Maurizio; Baralle, Francisco E

    2016-06-01

    Transactive response DNA-binding protein 43 kDa (TDP-43, also known as TBPH in Drosophila melanogaster and TARDBP in mammals) is the main protein component of the pathological inclusions observed in neurons of patients affected by different neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). The number of studies investigating the molecular mechanisms underlying neurodegeneration is constantly growing; however, the role played by TDP-43 in disease onset and progression is still unclear. A fundamental shortcoming that hampers progress is the lack of animal models showing aggregation of TDP-43 without overexpression. In this manuscript, we have extended our cellular model of aggregation to a transgenic Drosophila line. Our fly model is not based on the overexpression of a wild-type TDP-43 transgene. By contrast, we engineered a construct that includes only the specific TDP-43 amino acid sequences necessary to trigger aggregate formation and capable of trapping endogenous Drosophila TDP-43 into a non-functional insoluble form. Importantly, the resulting recombinant product lacks functional RNA recognition motifs (RRMs) and, thus, does not have specific TDP-43-physiological functions (i.e. splicing regulation ability) that might affect the animal phenotype per se. This novel Drosophila model exhibits an evident degenerative phenotype with reduced lifespan and early locomotion defects. Additionally, we show that important proteins involved in neuromuscular junction function, such as syntaxin (SYX), decrease their levels as a consequence of TDP-43 loss of function implying that the degenerative phenotype is a consequence of TDP-43 sequestration into the aggregates. Our data lend further support to the role of TDP-43 loss-of-function in the pathogenesis of neurodegenerative disorders. The novel transgenic Drosophila model presented in this study will help to gain further insight into the molecular

  2. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  3. N-terminal processing of proteins exported by malaria parasites

    PubMed Central

    Chang, Henry H.; Falick, Arnold M.; Carlton, Peter M.; Sedat, John W.; DeRisi, Joseph L.; Marletta, Michael A.

    2010-01-01

    Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence. PMID:18534695

  4. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains.

    PubMed

    Brown, Laura E; Nicholson, Martin W; Arama, Jessica E; Mercer, Audrey; Thomson, Alex M; Jovanovic, Jasmina N

    2016-07-01

    The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific. PMID:27129275

  5. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains*

    PubMed Central

    Brown, Laura E.; Nicholson, Martin W.; Arama, Jessica E.; Thomson, Alex M.

    2016-01-01

    The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific. PMID:27129275

  6. The amino-acid sequence of kangaroo pancreatic ribonuclease.

    PubMed

    Gaastra, W; Welling, G W; Beintema, J J

    1978-05-01

    Red kangaroo (Macropus rufus) ribonuclease was isolated from pancreatic tissue by affinity chromatography. The amino acid sequence was determined by automatic sequencing of overlapping large fragments and by analysis of shorter peptides obtained by digestion with a number of proteolytic enzymes. The polypeptide chain consists of 122 amino acid residues. Compared to other ribonucleases, the N-terminal residue and residue 114 are deleted. In other pancreatic ribonucleases position 114 is occupied by a cis proline residue in an external loop at the surface of the molecule. Other remarkable substitutions are the presence of a tyrosine residue at position 123 instead of a serine which forms a hydrogen bond with the pyrimidine ring of a nucleotide substrate, and a number of hydrophobichydrophilic interchanges in the sequence 51-55, which forms part of an alpha-helix in bovine ribonuclease and exhibits few substitutions in the placental mammals. Kangaroo ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64). The enzyme differs at about 35-40% of the positions from all other mammalian pancreatic ribonucleases sequenced to date, which is in agreement with the early divergence between the marsupials and the placental mammals. From fragmentary data a tentative sequence of red-necked wallaby (Macropus rufogriseus) pancreatic ribonuclease has been derived. Eight differences with the kangaroo sequence were found. PMID:658039

  7. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation.

    PubMed Central

    Rahman, S; Aitken, A; Flynn, G; Formstone, C; Savidge, G F

    1998-01-01

    Several recent studies have demonstrated that the amino acid residues flanking the RGD sequence of high-affinity ligands modulate their specificity of interaction with integrin complexes. The present study has addressed the role of the residues flanking the RGD sequence in regulating the recognition by disintegrin of the alphaIIb beta3 and alpha5beta1 complexes by construction of a panel of recombinant molecules of Elegantin (the platelet aggregation inhibitor from the venom of Trimerasurus elegans) expressing specific RGD sequence motifs. Wild-type Elegantin (ARGDNP) and several variants including Eleg. AM (ARGDMP), Eleg. PM (PRGDMP) and Eleg. PN (PRGDNP) were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The inhibitory efficacies of the panel of Elegantin variants were analysed in platelet adhesion assays with substrates immobilized with fibrinogen and fibronectin. Elegantin molecules containing an Ala residue N-terminal to the RGD sequence (wild-type Elegantin and Eleg. AM) showed strong inhibitory activity towards alphaIIbbeta3-dependent platelet adhesion on fibronectin, whereas a Pro residue in this position (Eleg. PM and Kistrin, the inhibitor from the venom of Calloselasma rhodostoma) engendered lower activity. The decreased activity could not be attributed to a decrease in the affinity of the disintegrin for the alphaIIb beta3 complex because both Eleg. AM and Eleg. PM had similar Kd (app) values. In contrast, Elegantin molecules into which a Met residue was introduced in place of the Asn residue C-terminal to the RGD sequence showed 10-13-fold elevated inhibitory activity towards platelet adhesion on fibrinogen and this was maintained with either a Pro or Ala residue N-terminal to the RGD sequence. In experiments with the alpha5 beta1 complex on K562 cells, the inhibitory efficacies of the panel of Elegantin molecules were analysed under two different cation conditions. First, in the presence of Ca2+/Mg2+, K562 cell

  8. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain.

    PubMed

    Pedersen, L B; Birkelund, S; Holm, A; Ostergaard, S; Christiansen, G

    1996-02-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may, in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect the DNA-binding properties of Hc1. PMID:8576073

  9. SHAPE Analysis of the RNA Secondary Structure of the Mouse Hepatitis Virus 5′ Untranslated Region and N-Terminal Nsp1 Coding Sequences

    PubMed Central

    Yang, Dong; Liu, Pinghua; Wudeck, Elyse V.; Giedroc, David P.; Leibowitz, Julian L.

    2014-01-01

    SHAPE technology was used to analyze RNA secondary structure of the 5′ most 474 nts of the MHV-A59 genome encompassing the minimal 5′ cis-acting region required for defective interfering RNA replication. The structures generated were in agreement with previous characterizations of SL1 through SL4 and two recently predicted secondary structure elements, S5 and SL5A. SHAPE provided biochemical support for four additional stem-loops not previously functionally investigated in MHV. Secondary structure predictions for 5′ regions of MHV-A59, BCoV and SARS-CoV were similar despite high sequence divergence. The pattern of SHAPE reactivity of in virio genomic RNA, ex virio genomic RNA, and in vitro synthesized RNA were similar, suggesting that binding of N protein or other proteins to virion RNA fails to protect the RNA from reaction with lipid permeable SHAPE reagent. Reverse genetic experiments suggested that SL5C and SL6 within the nsp1 coding sequence are not required for viral replication. PMID:25462342

  10. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  11. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  12. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  13. pH-sensitive Self-associations of the N-terminal Domain of NBCe1-A Suggest a Compact Conformation under Acidic Intracellular Conditions

    PubMed Central

    Gill, Harindarpal S

    2012-01-01

    NBCe1-A is an integral membrane protein that cotransports Na+ and HCO3- ions across the basolateral membrane of the proximal tubule. It is essential for maintaining a homeostatic balance of cellular and blood pH. In X-ray diffraction studies, we reported that the cytoplasmic, N-terminal domain of NBCe1-A (NtNBCe1-A) is a dimer. Here, biophysical measurements show that the dimer is in a concentration-dependent dynamic equilibrium among three additional states in solution that are characterized by its hydrodynamic properties, molar masses, emission spectra, binding properties, and stabilities as a function of pH. Under physiological conditions, dimers are in equilibrium with monomers that are pronounced at low concentration and clusters of molecular masses up to 3-5 times that of a dimer that are pronounced at high concentration. The equilibrium can be influenced so that individual dimers predominate in a taut conformation by lowering the pH. Conversely, dimers begin to relax and disassociate into an increasing population of monomers by elevating the pH. A mechanistic diagram for the inter-conversion of these states is given. The self-associations are further supported by surface plasmon resonance (SPR-Biacore) techniques that illustrate NtNBCe1-A molecules transiently bind with one another. Bicarbonate and bicarbonate-analog bisulfite appear to enhance dimerization and induce a small amount of tetramers. A model is proposed, where the Nt responds to pH or bicarbonate fluctuations inside the cell and plays a role in self-association of entire NBCe1-A molecules in the membrane. PMID:22316307

  14. pH-sensitive self-associations of the N-terminal domain of NBCe1-A suggest a compact conformation under acidic intracellular conditions.

    PubMed

    Gill, Harindarpal S

    2012-10-01

    NBCe1-A is an integral membrane protein that cotransports Na+ and HCO3 - ions across the basolateral membrane of the proximal tubule. It is essential for maintaining a homeostatic balance of cellular and blood pH. In X-ray diffraction studies, we reported that the cytoplasmic, N-terminal domain of NBCe1-A (NtNBCe1-A) is a dimer. Here, biophysical measurements show that the dimer is in a concentration-dependent dynamic equilibrium among three additional states in solution that are characterized by its hydrodynamic properties, molar masses, emission spectra, binding properties, and stabilities as a function of pH. Under physiological conditions, dimers are in equilibrium with monomers that are pronounced at low concentration and clusters of molecular masses up to 3-5 times that of a dimer that are pronounced at high concentration. The equilibrium can be influenced so that individual dimers predominate in a taut conformation by lowering the pH. Conversely, dimers begin to relax and disassociate into an increasing population of monomers by elevating the pH. A mechanistic diagram for the inter-conversion of these states is given. The self-associations are further supported by surface plasmon resonance (SPR-Biacore) techniques that illustrate NtNBCe1-A molecules transiently bind with one another. Bicarbonate and bicarbonate-analog bisulfite appear to enhance dimerization and induce a small amount of tetramers. A model is proposed, where the Nt responds to pH or bicarbonate fluctuations inside the cell and plays a role in self-association of entire NBCe1-A molecules in the membrane. PMID:22316307

  15. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region.

    PubMed

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A; Vigoreaux, Jim O

    2016-03-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region. PMID:26691840

  16. Streptomyces coelicolor A3(2) CYP102 Protein, a Novel Fatty Acid Hydroxylase Encoded as a Heme Domain without an N-Terminal Redox Partner▿

    PubMed Central

    Lamb, David C.; Lei, Li; Zhao, Bin; Yuan, Hang; Jackson, Colin J.; Warrilow, Andrew G. S.; Skaug, Tove; Dyson, Paul J.; Dawson, Eric S.; Kelly, Steven L.; Hachey, David L.; Waterman, Michael R.

    2010-01-01

    The gene from Streptomyces coelicolor A3(2) encoding CYP102B1, a recently discovered CYP102 subfamily which exists solely as a single P450 heme domain, has been cloned, expressed in Escherichia coli, purified, characterized, and compared to its fusion protein family members. Purified reconstitution metabolism experiments with spinach ferredoxin, ferredoxin reductase, and NADPH revealed differences in the regio- and stereoselective metabolism of arachidonic acid compared to that of CYP102A1, exclusively producing 11,12-epoxyeicosa-5,8,14-trienoic acid in addition to the shared metabolites 18-hydroxy arachidonic acid and 14,15-epoxyeicosa-5,8,11-trienoic acid. Consequently, in order to elucidate the physiological function of CYP102B1, transposon mutagenesis was used to generate an S. coelicolor A3(2) strain lacking CYP102B1 activity and the phenotype was assessed. PMID:20097805

  17. The amino acid sequence of rabbit muscle triose phosphate isomerase.

    PubMed Central

    Corran, P H; Waley, S G

    1975-01-01

    The amino acid sequence of rabbit muscle triose phosphate isomerase was deduced by characterizing peptides that overlap the tryptic peptides. Thiol groups were modified by oxidation, carboxymethylation or aminoen. About 50 peptides that provided information about overlaps were isolated; the peptides were mostly characterized by their compositions and N-terminal residues. The peptide chains contain 248 amino acid residues, and no evidence for dissimilarity of the two subunits that comprise the native enzyme was found. The sequence of the rabbit muscle enzyme may be compared with that of the coelacanth enzyme (Kolb et al., 1974): 84% of the residues are in identical positions. Similarly, comparison of the sequence with that inferred for the chicken enzyme (Furth et al., 1974) shows that 87% of the residues are in identical positions. Limited though these comparisons are, they suggest that triose phosphate isomerase has one of the lowest rates of evolutionary change. An extended version of the present paper has been deposited as Supplementary Publication SUP 50040 (42 pages) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1975) 145, 5. PMID:1171682

  18. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner.

    PubMed

    Tirodkar, Tejas S; Lu, Ping; Bai, Aiping; Scheffel, Matthew J; Gencer, Salih; Garrett-Mayer, Elizabeth; Bielawska, Alicja; Ogretmen, Besim; Voelkel-Johnson, Christina

    2015-05-22

    A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity. PMID:25839235

  19. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    SciTech Connect

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  20. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  1. Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae shows great potential for development of bioreactor systems geared towards the production of high-value lipids such as polyunsaturated omega-3 fatty acids, the yields of which are largely dependent on the activity of ectopically-expressed enzymes. Here we show that the addit...

  2. The N-terminal basolateral targeting signal unlikely acts alone in the differential trafficking of membrane transporters in MDCK cells.

    PubMed

    Kuo, Shiu-Ming; Wang, Li-Yuan; Yu, Siyuan; Campbell, Christine E; Valiyaparambil, Sujith A; Rance, Mark; Blumenthal, Kenneth M

    2013-07-30

    We have shown previously, using confocal imaging and transport assays, that the N-terminus of sodium-dependent vitamin C transporter 2 (SVCT2) can redirect apical SVCT1 to the basolateral membrane. Here, the SVCT model was used to further characterize the basolateral targeting peptide signal. Both the length (31 amino acids) and sequence accuracy of the N-terminus of SVCT2 were found to be important in basolateral targeting activity, suggesting a structural requirement. However, the N-terminal basolateral targeting sequence did not appear to act alone, based on analyses of heterologous chimeras. Although diverse N-terminal basolateral targeting signals from multipass membrane proteins can all redirect apical protein from the same gene family to the basolateral membrane, none of the N-terminal basolateral targeting signals can redirect the transmembrane and C-terminal regions from a different gene family. Instead, the presence of these heterologous N-terminal basolateral targeting signals affected the trafficking of otherwise apical protein, causing their accumulation in a stable tubulin-like non-actin structure. Nontargeting N-terminal sequences had no effect. Similar protein retention was observed previously and in this study when the C-terminus of apical or basolateral protein was mutated. These results suggest that the N- and C-termini interact, directly or indirectly, within each gene family for basolateral targeting. Circular dichroism and two-dimensional nuclear magnetic resonance analyses both found a lack of regular secondary structure in the conserved N-terminus of SVCT2, consistent with the presence of partner(s) in the targeting unit. Our finding, a departure from the prevailing single-peptide motif model, is consistent with the evolution of basolateral transporters from the corresponding apical genes. The interaction among the N-terminus, its partner(s), and the cellular basolateral targeting machinery needs to be further elucidated. PMID:23837633

  3. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-05-15

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  4. The preparation and partial characterization of N-terminal and C-terminal iron-binding fragments from rabbit serum transferrin.

    PubMed Central

    Heaphy, S; Williams, J

    1982-01-01

    Two iron-binding fragments of Mr 36 000 and 33 000 corresponding to the N-terminal domain of rabbit serum transferrin were prepared. One iron-binding fragment of Mr 39 000 corresponding to the C-terminal domain was prepared. The N-terminal amino acid sequence of rabbit serum transferrin is: Val-Thr-Glu-Lys-Thr-Val-Asn-Trp-?-Ala-Val-Ser. One glycan unit is presented in rabbit serum transferrin and it is located in the C-terminal domain. Images Fig. 2. Fig. 3. Fig. 4. PMID:6816218

  5. Replacement of the N-terminal tyrosine residue in opioid peptides with 3-(2,6-dimethyl-4-carbamoylphenyl)propanoic acid (Dcp) results in novel opioid antagonists.

    PubMed

    Lu, Yixin; Lum, Tze Keong; Leow Augustine, Yoon Wui; Weltrowska, Grazyna; Nguyen, Thi M-D; Lemieux, Carole; Chung, Nga N; Schiller, Peter W

    2006-08-24

    3-(2,6-Dimethyl-4-carbamoylphenyl)propanoic acid (Dcp), a 2',6'-dimethyltyrosine analogue containing a carbamoyl group in place of the hydroxyl function and lacking the amino group, was synthesized. The replacement of Tyr1 in an enkephalin analogue and in dynorphin A(1-11)-NH2 with Dcp resulted in the first opioid peptide-derived antagonists that do not contain a phenolic hydroxyl group at the 1-position residue. The cyclic peptide Dcp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 represents a novel, potent mu opioid antagonist. PMID:16913729

  6. Human parainfluenza type 3 virus hemagglutinin-neuraminidase glycoprotein: nucleotide sequence of mRNA and limited amino acid sequence of the purified protein.

    PubMed Central

    Elango, N; Coligan, J E; Jambou, R C; Venkatesan, S

    1986-01-01

    The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5. Images PMID:3003381

  7. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  8. Oxidative Folding and N-terminal Cyclization of Onconase+

    PubMed Central

    Welker, Ervin; Hathaway, Laura; Xu, Guoqiang; Narayan, Mahesh; Pradeep, Lovy; Shin, Hang-Cheol; Scheraga, Harold A.

    2008-01-01

    Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein, but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC-catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally. PMID:17439243

  9. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells.

    PubMed

    Kisiela, Dagmara I; Aulik, Nicole A; Atapattu, Dhammika N; Czuprynski, Charles J

    2010-07-01

    Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria. PMID:20109159

  10. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.

    PubMed Central

    Sanford, J C; Pan, Y; Wessling-Resnick, M

    1995-01-01

    Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue. Images PMID:7749197

  11. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication

    PubMed Central

    Zhang, Jie; Guo, Hong; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2016-01-01

    Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection. PMID:26871941

  12. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    PubMed Central

    Xu, Cheng; Li, Ying-Chun; Yang, Hua; Long, Yan; Chen, Min-Jian; Qin, Yu-Feng; Xia, Yan-Kai; Song, Ling; Gu, Ai-Hua; Wang, Xin-Ru

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa) as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+)-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star™ (DE3) and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks) after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels. PMID:24713829

  13. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine.

    PubMed

    Xu, Cheng; Li, Ying-Chun; Yang, Hua; Long, Yan; Chen, Min-Jian; Qin, Yu-Feng; Xia, Yan-Kai; Song, Ling; Gu, Ai-Hua; Wang, Xin-Ru

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa) as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+)-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star TM (DE3) and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks) after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels. PMID:24713829

  14. β-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin

    PubMed Central

    Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.

    2009-01-01

    Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645

  15. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  16. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1α-c-Jun N-terminal kinase cascade in non-small cell lung cancer cells

    PubMed Central

    Tang, Zheng-Hai; Zhang, Le-Le; Li, Ting; Lu, Jia-Hong; Ma, Dik-Lung; Leung, Chung-Hang; Chen, Xiu-Ping; Jiang, Hu-Lin; Wang, Yi-Tao; Lu, Jin-Jian

    2015-01-01

    Glycerrhetinic acid (GA), one of the main bioactive constituents of Glycyrrhiza uralensis Fisch, exerts anti-cancer effects on various cancer cells. We confirmed that GA inhibited cell proliferation and induced apoptosis in non-small cell lung cancer A549 and NCI-H1299 cells. GA also induced expression of autophagy marker phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II) and punta formation of green fluorescent protein microtubule-associated protein light-chain 3. We further proved that expression of GA-increased autophagy marker was attributed to activation instead of suppression of autophagic flux. The c-jun N-terminal kinase (JNK) pathway was activated after incubation with GA. Pretreatment with the JNK inhibitor SP600125 or silencing of the JNK pathway by siRNA of JNK or c-jun decreased GA-induced autophagy. The endoplasmic reticulum (ER) stress responses were also apparently stimulated by GA by triggering the inositol-requiring enzyme 1α (IRE1α) pathway. The GA-induced JNK pathway activation and autophagy were decreased by IRE1α knockdown, and inhibition of autophagy or the JNK cascade increased GA-stimulated IRE1α expression. In addition, GA-induced cell proliferative inhibition and apoptosis were increased by inhibition of autophagy or the JNK pathway. Our study was the first to demonstrate that GA induces cytoprotective autophagy in non-small cell lung cancer cells by activating the IRE1α-JNK/c-jun pathway. The combined treatment of autophagy inhibitors markedly enhances the anti-neoplasmic activity of GA. Such combination shows potential as a strategy for GA or GA-contained prescriptions in cancer therapy. PMID:26549806

  17. "De-novo" amino acid sequence elucidation of protein G'e by combined "Top-Down" and "Bottom-Up" mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F. M.; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L.; Glocker, Michael O.

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein Ǵ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α- N-gluconoylation and α- N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α- N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant ( K d ) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  18. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins. PMID:25560987

  19. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  20. Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C.

    PubMed

    Liu, Xiaoji; Vederas, John C; Whittal, Randy M; Zheng, Jing; Stiles, Michael E; Carlson, Denise; Franz, Charles M A P; McMullen, Lynn M; van Belkum, Marco J

    2011-05-25

    Enterococcus faecalis 710C, isolated from beef product, has a broad antimicrobial activity spectrum against foodborne pathogens. Two bacteriocins, enterocin 7A (Ent7A) and enterocin 7B (Ent7B), were purified from the culture supernatant of E. faecalis 710C and characterized using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and electrospray infusion tandem mass spectrometry analyses. These data and subsequent genetic analysis showed that Ent7A and Ent7B are produced without N-terminal leader sequences and have amino acid sequences that are identical to those of enterocins MR10A and MR10B, respectively. However, the observed masses for Ent7A and Ent7B are 5200.80 and 5206.65 Da (monoisotopic mass), respectively, which are higher than the theoretical molecular masses of MR10A and MR10B, respectively. This study provides evidence that both Ent7A and Ent7B are formylated on the N-terminal methionine residue. Purified Ent7A and Ent7B are active against spoilage microorganisms and foodborne pathogens, including Clostridium sporogenes , Listeria monocytogenes , and Staphylococcus aureus as well as Brevundimonas diminuta , which has been associated with infections among immune-suppressed cancer patients. PMID:21469734

  1. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues. PMID:26632841

  2. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  3. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  4. A new idea for simple and rapid monitoring of gene expression: requirement of nucleotide sequences encoding an N-terminal HA tag in the T7 promoter-driven expression in E. coli.

    PubMed

    Moon, Jeong-Mi; Kim, Goo-Young; Rhim, Hyangshuk

    2012-10-01

    Mammalian expression vectors are used to overexpress genes of interest in mammalian cells. High temperature requirement protein A1 (HtrA1), used as a specific target, was expressed from the pHA-M-HtrA1 plasmid in HEK293T cells, inducing cell death. Expression of HtrA1 was driven by the pHA-M-HtrA1 mammalian expression vector in E. coli resulting in growth suppression of E. coli in an HtrA1 serine protease-dependent manner. By using various combinations of promoters, target genes and N-terminal tags, the T7 promoter and N-terminal HA tag in the mammalian expression vector were shown to be responsible for expression of target genes in E. coli. Thus the pHA-M-HtrA1 plasmid can be used as a novel, rapid pre-test system for expression and cytotoxicity of the specific target gene in E. coli before assessing its functions in mammalian cells. PMID:22714269

  5. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway.

    PubMed

    Serero, Alexandre; Giglione, Carmela; Sardini, Alessandro; Martinez-Sanz, Juan; Meinnel, Thierry

    2003-12-26

    Dedicated machinery for N-terminal methionine excision (NME) was recently identified in plant organelles and shown to be essential in plastids. We report here the existence of mitochondrial NME in mammals, as shown by the identification of cDNAs encoding specific peptide deformylases (PDFs) and new methionine aminopeptidases (MAP1D). We cloned the two full-length human cDNAs and showed that the N-terminal domains of the encoded enzymes were specifically involved in targeting to mitochondria. In contrast to mitochondrial MAP1D, the human PDF sequence differed from that of known PDFs in several key features. We characterized the human PDF fully in vivo and in vitro. Comparison of the processed human enzyme with the plant mitochondrial PDF1A, to which it is phylogenetically related, showed that the human enzyme had an extra N-terminal domain involved in both mitochondrial targeting and enzyme stability. Mammalian PDFs also display non-random substitutions in the conserved motifs important for activity. Human PDF site-directed mutagenesis variants were studied and compared with the corresponding plant PDF1A variants. We found that amino acid substitutions in human PDF specifically altered its catalytic site, resulting in an enzyme intermediate between bacterial PDF1Bs and plant PDF1As. Because (i) human PDF was found to be active both in vitro and in vivo, (ii) the entire machinery is conserved and expressed in most animals, (iii) the mitochondrial genome expresses substrates for these enzymes, and (iv) mRNA synthesis is regulated, we conclude that animal mitochondria have a functional NME machinery that can be regulated. PMID:14532271

  6. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis).

    PubMed

    Srihongthong, Saowaluck; Pakdeesuwan, Anawat; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-08-01

    Hemoglobin, α-chain, β-chain and fragmented hemoglobin of Crocodylus siamensis demonstrated both antibacterial and antioxidant activities. Antibacterial and antioxidant properties of the hemoglobin did not depend on the heme structure but could result from the compositions of amino acid residues and structures present in their primary structure. Furthermore, thirteen purified active peptides were obtained by RP-HPLC analyses, corresponding to fragments in the α-globin chain and the β-globin chain which are mostly located at the N-terminal and C-terminal parts. These active peptides operate on the bacterial cell membrane. The globin chains of Crocodylus siamensis showed similar amino acids to the sequences of Crocodylus niloticus. The novel amino acid substitutions of α-chain and β-chain are not associated with the heme binding site or the bicarbonate ion binding site, but could be important through their interactions with membranes of bacteria. PMID:22648692

  7. All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal.

    PubMed

    Ye, Yuan; Dan, Zili

    2010-12-01

    Following acute and chronic liver injury, hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content, but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood. The influence of retinoids on HSCs and hepatic fibrosis remains controversial. The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation, mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), fibrolytic genes (MMP-3, MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G). Cell proliferation was evaluated by measuring BrdU incorporation. The mRNA expression levels of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and fibrolytic genes (MMP-3, MMP-13) were quantitatively detected by using real-time PCR. The mRNA expression of JNK and AP-1 was quantified by RT-PCR. The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)] and profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1. These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal, then decrease the mRNAs expression of profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly induce the mRNA expression of MMP-3 and MMP-13. PMID:21181362

  8. Protein location prediction using atomic composition and global features of the amino acid sequence

    SciTech Connect

    Cherian, Betsy Sheena; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.

  9. Evidence for N-Terminal Myristoylation of Tetrahymena Arginine Kinase Using Peptide Mass Fingerprinting Analysis.

    PubMed

    Motomura, Shou; Suzuki, Tomohiko

    2016-06-01

    In this study, we confirmed N-terminal myristoylation of Tetrahymena pyriformis arginine kinase (AK1) by identifying a myristoylation signal sequence at the N-terminus. A sufficient amount of modified enzyme was synthesized using an insect cell-free protein synthesis system that contains all of the elements necessary for post-transcriptional modification by fatty acids. Subsequent peptide mass fingerprinting (PMF) analyses were performed after digestion with trypsin. The PMF data covered 39 % (143 residues) of internal peptides. The target N-myristoylated peptide had a theoretical mass of 832.4477 and was clearly observed with an experimental mass (m/z-H(+)) of 832.4747. The difference between the two masses was 0.0271, supporting the accuracy of identification and indicating that the synthesized T. pyriformis AK1 is myristoylated. The fixed specimens of T. pyriformis were reacted with an anti-AK1 peptide antibody followed by a secondary antibody with a fluorescent chromophore and were observed using immunofluorescence microscope. In agreement with previous western blotting analyses, microscopic observations suggested that AK1 is localized in the cilia. The present PMF and microscopic analyses indicate that T. pyriformis AK1 may be localized and anchored to ciliary membranes via N-terminal myristoyl groups. PMID:27129461

  10. X-ray crystal structure of the trimeric N-terminal domain of gephyrin.

    PubMed

    Sola, M; Kneussel, M; Heck, I S; Betz, H; Weissenhorn, W

    2001-07-01

    Gephyrin is a ubiquitously expressed protein that, in the central nervous system, forms a submembraneous scaffold for anchoring inhibitory neurotransmitter receptors in the postsynaptic membrane. The N- and C-terminal domains of gephyrin are homologous to the Escherichia coli enzymes MogA and MoeA, respectively, both of which are involved in molybdenum cofactor biosynthesis. This enzymatic pathway is highly conserved from bacteria to mammals, as underlined by the ability of gephyrin to rescue molybdenum cofactor deficiencies in different organisms. Here we report the x-ray crystal structure of the N-terminal domain (amino acids 2-188) of rat gephyrin at 1.9-A resolution. Gephyrin-(2-188) forms trimers in solution, and a sequence motif thought to be involved in molybdopterin binding is highly conserved between gephyrin and the E. coli protein. The atomic structure of gephyrin-(2-188) resembles MogA, albeit with two major differences. The path of the C-terminal ends of gephyrin-(2-188) indicates that the central and C-terminal domains, absent in this structure, should follow a similar 3-fold arrangement as the N-terminal region. In addition, a central beta-hairpin loop found in MogA is lacking in gephyrin-(2-188). Despite these differences, both structures show a high degree of surface charge conservation, which is consistent with their common catalytic function. PMID:11325967

  11. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells.

    PubMed Central

    Mann, K; Deutzmann, R; Aumailley, M; Timpl, R; Raimondi, L; Yamada, Y; Pan, T C; Conway, D; Chu, M L

    1989-01-01

    The whole amino acid sequence of nidogen was deduced from cDNA clones isolated from expression libraries and confirmed to approximately 50% by Edman degradation of peptides. The protein consists of some 1217 amino acid residues and a 28-residue signal peptide. The data support a previously proposed dumb-bell model of nidogen by demonstrating a large N-terminal globular domain (641 residues), five EGF-like repeats constituting the rod-like domain (248 residues) and a smaller C-terminal globule (328 residues). Two more EGF-like repeats interrupt the N-terminal and terminate the C-terminal sequences. Weak sequence homologies (25%) were detected between some regions of nidogen, the LDL receptor, thyroglobulin and the EGF precursor. Nidogen contains two consensus sequences for tyrosine sulfation and for asparagine beta-hydroxylation, two N-linked carbohydrate acceptor sites and, within one of the EGF-like repeats an Arg-Gly-Asp sequence. The latter was shown to be functional in cell attachment to nidogen. Binding sites for laminin and collagen IV are present on the C-terminal globule but not yet precisely localized. Images PMID:2496973

  12. Purification and amino acid sequence of aminopeptidase P from pig kidney.

    PubMed

    Vergas Romero, C; Neudorfer, I; Mann, K; Schäfer, W

    1995-04-01

    Aminopeptidase P from kidney cortex was purified in high yield (recovery greater than or equal to 20%) by a series of column chromatographic steps after solubilization of the membrane-bound glycoprotein with n-butanol. A coupled enzymic assay, using Gly-Pro-Pro-NH-Nap as substrate and dipeptidyl-peptidase IV as auxilliary enzyme, was used to monitor the purification. The purification procedure yielded two forms of aminopeptidase P differing in their carbohydrate composition (glycoforms). Both enzyme preparations were homogeneous as assessed by SDS/PAGE silver staining, and isoelectric focusing. Both forms possessed the same substrate specificity, catalysed the same reaction, and consisted of identical protein chains. The amino acid sequence determined by Edman degradation and mass spectrometry consisted of 623 amino acids. Six N-glycosylation sites, all contained in the N-terminal half of the protein, were characterized. PMID:7744038

  13. Bioinformatic mapping and production of recombinant N-terminal domains of human cardiac ryanodine receptor 2

    PubMed Central

    Bauerová-Hlinková, Vladena; Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Borko, Ľubomír; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef

    2010-01-01

    We report the domain analysis of the N-terminal region (residues 1–759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR21–606·His6, RyR2391–606·His6, RyR2409–606·His6, Trx·RyR2384–606·His6, Trx·RyR2391-606·His6 and Trx·RyR2409–606·His6. The folding of RyR21–606·His6 was analyzed by circular dichroism spectroscopy resulting in α-helix and β-sheet content of ∼23% and ∼29%, respectively, at temperatures up to 35 °C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR21–606·His6, resulted in the appearance of two specific subfragments of ∼40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His6·Tag antibody indicated that RyR21–606·His6 is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively. PMID:20045464

  14. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  15. Amino-Acid Sequence of Porcine Pepsin

    PubMed Central

    Tang, J.; Sepulveda, P.; Marciniszyn, J.; Chen, K. C. S.; Huang, W-Y.; Tao, N.; Liu, D.; Lanier, J. P.

    1973-01-01

    As the culmination of several years of experiments, we propose a complete amino-acid sequence for porcine pepsin, an enzyme containing 327 amino-acid residues in a single polypeptide chain. In the sequence determination, the enzyme was treated with cyanogen bromide. Five resulting fragments were purified. The amino-acid sequence of four of the fragments accounted for 290 residues. Because the structure of a 37-residue carboxyl-terminal fragment was already known, it was not studied. The alignment of these fragments was determined from the sequence of methionyl-peptides we had previously reported. We also discovered the locations of activesite aspartyl residues, as well as the pairing of the three disulfide bridges. A minor component of commercial crystalline pepsin was found to contain two extra amino-acid residues, Ala-Leu-, at the amino-terminus of the molecule. This minor component was apparently derived from a different site of cleavage during the activation of porcine pepsinogen. PMID:4587252

  16. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  17. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-07-21

    A method is disclosed for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe. 11 figs.

  18. Peptide mapping and amino acid sequencing of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24.

    PubMed

    Kim, S I; Ha, K S

    1997-10-31

    The partial amino acid sequences of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24 have been determined by analysis of peptides after cleavages with endopeptidase Lys-C, endopeptidase Glu-C, trypsin, and chemicals (cyanogen bromide and BNPS-skatole). They include 248 amino acid sequences (4 fragments) of CD I1 and 211 amino acid sequences (5 fragments) of CD I2. Two enzymes have more than 50% sequence homology with type I catechol 1,2-dioxygenases and less than 30% sequence homology with type II catechol 1,2-dioxygenases. Two enzymes have similar hydropathy profiles in the N-terminal region, suggesting that they have similar secondary structures. PMID:9387151

  19. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    PubMed Central

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  20. Methods for analyzing nucleic acid sequences

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.

  1. The N-Terminal Intrinsically Disordered Domain of Mgm101p Is Localized to the Mitochondrial Nucleoid

    PubMed Central

    Hayward, David C.; Dosztányi, Zsuzsanna; Clark-Walker, George Desmond

    2013-01-01

    The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted. PMID:23418572

  2. N-Terminal Region of the Catalytic Domain of Human N-Myristoyltransferase 1 Acts as an Inhibitory Module

    PubMed Central

    Kumar, Sujeet; Sharma, Rajendra K.

    2015-01-01

    N-myristoyltransferase (NMT) plays critical roles in the modulation of various signaling molecules, however, the regulation of this enzyme in diverse cellular states remains poorly understood. We provide experimental evidence to show for the first time that for the isoform 1 of human NMT (hNMT1), the regulatory roles extend into the catalytic core. In our present study, we expressed, purified, and characterized a truncation mutant devoid of 28 N-terminal amino acids from the catalytic module (Δ28-hNMT1s) and compared its properties to the full-length catalytic domain of hNMT1. The deletion of the N-terminal peptide had no effect on the enzyme stability. Our findings suggest that the N-terminal region in the catalytic module of hNMT1 functions serves as a regulatory control element. The observations of an ~3 fold increase in enzymatic efficiency following removal of the N-terminal peptide of hNMT1s indicates that N-terminal amino acids acts as an inhibitory segment and negatively regulate the enzyme activity. Our findings that the N-terminal region confers control over activity, taken together with the earlier observations that the N-terminal of hNMT1 is differentially processed in diverse cellular states, suggests that the proteolytic processing of the peptide segment containing the inhibitory region provides a molecular mechanism for physiological up-regulation of myristoyltransferase activity. PMID:26000639

  3. Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi.

    PubMed

    Huang, B; Ng, T B; Fong, W P; Wan, C C; Yeung, H W

    1999-06-01

    A trypsin inhibitor, MCCTI-1, with a molecular weight of 3479 Da as determined by mass spectrometry, was isolated from Momordica cochinchinensis seeds with a procedure involving extraction with 5% acetic acid, ammonium sulfate precipitation, ion exchange chromatography on CM-Sepharose and reverse-phase high performance liquid chromatography. The sequence of its first 13 N-terminal amino acid residues was ILKKCRRDSDCPG which was about 85% identical with the sequence of trypsin inhibitor MCTI-1 from Momordica charantia Linn. When compared with the sequences of most other squash family trypsin inhibitors, the sequence of MCCTI-1 was characterized by the deletion of a pentapeptide from the N-terminus. Trypsin inhibitors also existed in seeds of some hitherto uninvestigated Cucurbitaceae species. PMID:10404643

  4. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    PubMed

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016. PMID:27271816

  5. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  6. Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage

    PubMed Central

    Ebhardt, H Alexander; Nan, Jie; Chaulk, Steven G; Fahlman, Richard P; Aebersold, Ruedi

    2014-01-01

    RATIONALE Tandem mass (MS/MS) spectra generated by collision-induced dissociation (CID) typically lack redundant peptide sequence information in the form of e.g. b- and y-ion series due to frequent use of sequence-specific endopeptidases cleaving C- or N-terminal to Arg or Lys residues. METHODS Here we introduce arginyl-tRNA protein transferase (ATE, EC 2.3.2.8) for proteomics. ATE recognizes acidic amino acids or oxidized Cys at the N-terminus of a substrate peptide and conjugates an arginine from an aminoacylated tRNAArg onto the N-terminus of the substrate peptide. This enzymatic reaction is carried out under physiological conditions and, in combination with Lys-C/Asp-N double digest, results in arginylated peptides with basic amino acids on both termini. RESULTS We demonstrate that in vitro arginylation of peptides using yeast arginyl tRNA protein transferase 1 (yATE1) is a robust enzymatic reaction, specific to only modifying N-terminal acidic amino acids. Precursors originating from arginylated peptides generally have an increased protonation state compared with their non-arginylated forms. Furthermore, the product ion spectra of arginylated peptides show near complete 2× fragment ladders within the same MS/MS spectrum using commonly available electrospray ionization peptide fragmentation modes. Unexpectedly, arginylated peptides generate complete y- and c-ion series using electron transfer dissociation (ETD) despite having an internal proline residue. CONCLUSIONS We introduce a rapid enzymatic method to generate peptides flanked on either terminus by basic amino acids, resulting in a rich, redundant MS/MS fragment pattern. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:25380496

  7. Expression of active streptolysin O in Escherichia coli as a maltose-binding-protein--streptolysin-O fusion protein. The N-terminal 70 amino acids are not required for hemolytic activity.

    PubMed

    Weller, U; Müller, L; Messner, M; Palmer, M; Valeva, A; Tranum-Jensen, J; Agrawal, P; Biermann, C; Döbereiner, A; Kehoe, M A; Bhakdi, S

    1996-02-15

    Streptolysin 0 (SLO) is the prototype of a family of cytolysins that consists of proteins which bind to cholesterol and form very large transmembrane pores. Structure/function studies on the pore-forming cytolysin SLO have been complicated by the proteolytic inactivation of a substantial portion of recombinant SLO (rSLO) expressed in Escherichia coli. To overcome this problem, translational fusions between the E. coli maltose-binding protein (MBP) gene and SLO were constructed, using the vectors pMAL-p2 and pMAL-c2. MBP-SLO fusion proteins were degraded if secreted into the E. coli periplasm, but intact, soluble MBP-SLO fusion proteins were produced at high levels in the cytoplasm. Active SLO with the expected N-terminus was separated from the MBP carrier by cleavage with factor Xa. Cleavage with plasmin or trypsin also yielded active, but slightly smaller forms of SLO. Surprisingly, uncleaved MBP-SLO was also hemolytic and cytotoxic to human fibroblasts and keratinocytes. The MBP-SLO fusion protein displayed equal activities to SLO. Sucrose density gradient analyses showed that the fusion protein assembled into polymers, and no difference in structure was discerned compared with polymers formed by native SLO. These studies show that the N-terminal 70 residues of mature (secreted) SLO are not required for pore formation and that the N-terminus of the molecule is probably not inserted into the bilayer. In addition, they provide a simple means for producing mutants for structure/function studies and highly purified SLO for use as a permeabilising reagent in cell biology research. PMID:8617283

  8. Trypanosome Alternative Oxidase Possesses both an N-Terminal and Internal Mitochondrial Targeting Signal

    PubMed Central

    Hamilton, VaNae; Singha, Ujjal K.; Smith, Joseph T.; Weems, Ebony

    2014-01-01

    Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria. PMID:24562910

  9. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  10. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase.

    PubMed

    Taillon, B E; Little, R; Lawther, R P

    1988-03-31

    The nucleotide sequence of the gene, ilvA, for biosynthetic threonine deaminase (Tda) from Salmonella typhimurium was determined. The deduced amino acid sequence was compared with the deduced amino acid sequences of the biosynthetic Tda from Escherichia coli K-12 (ilvA) and Saccharomyces cerevisiae (ILV1) and the biodegradative Tda from E. coli K-12 (tdc). The comparison indicated the presence of two types of blocks of homologous amino acids. The first type of homology is in the N-terminal portion of all four isozymes of Tda and probably indicates amino acids involved in catalysis. The second type of homology is found in the C-terminal portion of the three biosynthetic isozymes and presumably is involved in either (i) the binding or interaction of the allosteric effector isoleucine with the enzyme, or (ii) subunit interactions. The sites of amino acid changes of two E. coli K-12 ilvA alleles with altered response to isoleucine are consistent with the conclusion that the C-terminal portion of biosynthetic Tda is involved in allosteric regulation. PMID:3290055

  11. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA.

    PubMed Central

    Devault, A; Lazure, C; Nault, C; Le Moual, H; Seidah, N G; Chrétien, M; Kahn, P; Powell, J; Mallet, J; Beaumont, A

    1987-01-01

    Neutral endopeptidase (EC 3.4.24.11) is a major constituent of kidney brush border membranes. It is also present in the brain where it has been shown to be involved in the inactivation of opioid peptides, methionine- and leucine-enkephalins. For this reason this enzyme is often called 'enkephalinase'. In order to characterize the primary structure of the enzyme, oligonucleotide probes were designed from partial amino acid sequences and used to isolate clones from kidney cDNA libraries. Sequencing of the cDNA inserts revealed the complete primary structure of the enzyme. Neutral endopeptidase consists of 750 amino acids. It contains a short N-terminal cytoplasmic domain (27 amino acids), a single membrane-spanning segment (23 amino acids) and an extracellular domain that comprises most of the protein mass. The comparison of the primary structure of neutral endopeptidase with that of thermolysin, a bacterial Zn-metallopeptidase, indicates that most of the amino acid residues involved in Zn coordination and catalytic activity in thermolysin are found within highly honmologous sequences in neutral endopeptidase. Images Fig. 1. Fig. 3. PMID:2440677

  12. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the

  13. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  14. The N-terminal acetyltransferase Naa10 is essential for zebrafish development

    PubMed Central

    Ree, Rasmus; Myklebust, Line M.; Thiel, Puja; Foyn, Håvard; Fladmark, Kari E.; Arnesen, Thomas

    2015-01-01

    N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish. PMID:26251455

  15. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-01-01

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro. PMID:26909973

  16. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  17. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid sequence disclosures must include a copy of the sequence listing in accordance with the requirements in 37 CFR...

  18. N-terminal protein processing: A comparative proteogenomic analysis

    SciTech Connect

    Bonissone, Stefano; Gupta, Nitin; Romine, Margaret F.; Bradshaw, Ralph A.; Pevzner, Pavel A.

    2013-01-01

    N-Terminal Methionine Excision (NME) is a universally conserved mechanism with the same specificity across all life forms that removes the first Methionine in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val. In spite of its necessity for proper cell functioning, the functional role of NME remains unclear. In 1988, Arfin and Bradshaw connected NME with the N-end protein degradation rule and postulated that the role of NME is to expose the stabilizing residues with the goal to resist protein degradation. While this explanation (that treats 7 stabilizing residues in the same manner) has become the de facto dogma of NME, comparative proteogenomics analysis of NME tells a different story. We suggest that the primary role of NME is to expose only two (rather than seven) amino acids Ala and Ser for post-translational modifications (e.g., acetylation) rather than to regulate protein degradation. We argue that, contrary to the existing view, NME is not crucially important for proteins with 5 other stabilizing residue at the 2nd positions that are merely bystanders (their function is not affected by NME) that become exposed to NME because their sizes are comparable or smaller than the size of Ala and Ser.

  19. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis

    PubMed Central

    Linster, Eric; Stephan, Iwona; Bienvenut, Willy V.; Maple-Grødem, Jodi; Myklebust, Line M.; Huber, Monika; Reichelt, Michael; Sticht, Carsten; Geir Møller, Simon; Meinnel, Thierry; Arnesen, Thomas; Giglione, Carmela; Hell, Rüdiger; Wirtz, Markus

    2015-01-01

    N-terminal acetylation (NTA) catalysed by N-terminal acetyltransferases (Nats) is among the most common protein modifications in eukaryotes, but its significance is still enigmatic. Here we characterize the plant NatA complex and reveal evolutionary conservation of NatA biochemical properties in higher eukaryotes and uncover specific and essential functions of NatA for development, biosynthetic pathways and stress responses in plants. We show that NTA decreases significantly after drought stress, and NatA abundance is rapidly downregulated by the phytohormone abscisic acid. Accordingly, transgenic downregulation of NatA induces the drought stress response and results in strikingly drought resistant plants. Thus, we propose that NTA by the NatA complex acts as a cellular surveillance mechanism during stress and that imprinting of the proteome by NatA is an important switch for the control of metabolism, development and cellular stress responses downstream of abscisic acid. PMID:26184543

  20. The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor.

    PubMed Central

    Viriyakosol, S; Kirkland, T N

    1996-01-01

    CD14, a glycosylphosphatidylinositol-anchored protein on the surface of monocytes, macrophages, and polymorphonuclear leukocytes, is a receptor for lipopolysaccharide (LPS). It was recently reported that an N-terminal 152-amino-acid fragment of soluble CD14 was an active soluble lipopolysaccharide receptor (T. S. -C. Juan, M. J. Kelley, D. A. Johnson, L. A. Busse, E. Hailman, S. D. Wright, and H. S. Lichenstein, J. Biol. Chem. 270:1382-1387, 1995). To determine whether the N-terminal half of the membrane CD14 was a functional LPS receptor on the cell membrane, we engineered a chimeric gene coding for amino acids 1 to 151 of CD14 fused to the C-terminal region of decay-accelerating factor and expressed it in Chinese hamster ovary cells and 70Z/3 cells. We found that the chimeric, truncated CD14 is a fully functional LPS receptor in both cell lines. PMID:8550221

  1. Predicting intrinsic disorder from amino acid sequence.

    PubMed

    Obradovic, Zoran; Peng, Kang; Vucetic, Slobodan; Radivojac, Predrag; Brown, Celeste J; Dunker, A Keith

    2003-01-01

    Blind predictions of intrinsic order and disorder were made on 42 proteins subsequently revealed to contain 9,044 ordered residues, 284 disordered residues in 26 segments of length 30 residues or less, and 281 disordered residues in 2 disordered segments of length greater than 30 residues. The accuracies of the six predictors used in this experiment ranged from 77% to 91% for the ordered regions and from 56% to 78% for the disordered segments. The average of the order and disorder predictions ranged from 73% to 77%. The prediction of disorder in the shorter segments was poor, from 25% to 66% correct, while the prediction of disorder in the longer segments was better, from 75% to 95% correct. Four of the predictors were composed of ensembles of neural networks. This enabled them to deal more efficiently with the large asymmetry in the training data through diversified sampling from the significantly larger ordered set and achieve better accuracy on ordered and long disordered regions. The exclusive use of long disordered regions for predictor training likely contributed to the disparity of the predictions on long versus short disordered regions, while averaging the output values over 61-residue windows to eliminate short predictions of order or disorder probably contributed to the even greater disparity for three of the predictors. This experiment supports the predictability of intrinsic disorder from amino acid sequence. PMID:14579347

  2. Purification and N-terminal analysis of urease from Helicobacter pylori.

    PubMed

    Hu, L T; Mobley, H L

    1990-04-01

    Urease of Helicobacter pylori (formerly Campylobacter pylori) is believed to represent a critical virulence determinant for this species. Ammonia generated by hydrolysis of urea may protect the acid-sensitive bacterium as it colonizes human gastric mucosa. An H. pylori strain, cultured from a gastric biopsy of a patient with complaints of abdominal pain and a history of peptic ulcer disease, was isolated on selective medium and cultured in Mueller-Hinton broth supplemented with 4% fetal calf serum. Whole cells were ruptured by French pressure cell lysis, and soluble protein was chromatographed on DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 resins. Purified urease represented 6% of the soluble protein of crude extract, was estimated to have a native molecular size of 550 kilodaltons (kDa), and was composed of two distinct subunits of apparent molecular sizes of 66 and 29.5 kDa. On the basis of subunit size, a 1:1 subunit ratio as measured by scanning densitometry of Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels, and estimated native molecular size, the data are consistent with a stoichiometry of (29.5 kDa-66 kDa)6 for the structure of the native enzyme. Km for urea was estimated at 0.2 mM. By N-terminal analysis, the 29.5-kDa subunit of H. pylori urease was found to share significant amino acid sequence similarity with the smallest of three subunits of the Proteus mirabilis and Morganella morganii ureases, as well as to the amino terminus of the unique jack bean subunit. The 66-kDa subunit also shared up to 80% similarity with the largest of three subunits of P. mirabilis, M. morganii, and Klebsiella aerogenes ureases and to internal sequences (amino acids 271 to 285) of the jack bean urease subunit. Thus, the amino acid sequence is conserved among ureases with one, two, and three distinct subunits, suggesting a common ancestral urease gene. Also, urease subunits of M. morganii and jack bean were specifically recognized by antisera

  3. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading.

    PubMed

    Liang, Xiquan; Lu, Yun; Wilkes, Meredith; Neubert, Thomas A; Resh, Marilyn D

    2004-02-27

    The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function. PMID:14660555

  4. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats.

    PubMed

    Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang; Hsieh, Ching-Liang

    2013-01-01

    Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1 β , IL-6, and tumor necrosis factor- α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period. PMID:24381640

  5. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family.

    PubMed

    Ito, Y; Yoshikawa, A; Hotani, T; Fukuda, S; Sugimura, K; Imoto, T

    1999-01-01

    Lysozymes were purified from three invertebrates: a marine bivalve, a marine conch, and an earthworm. The purified lysozymes all showed a similar molecular weight of 13 kDa on SDS/PAGE. Their N-terminal sequences up to the 33rd residue determined here were apparently homologous among them; in addition, they had a homology with a partial sequence of a starfish lysozyme which had been reported before. The complete sequence of the bivalve lysozyme was determined by peptide mapping and subsequent sequence analysis. This was composed of 123 amino acids including as many as 14 cysteine residues and did not show a clear homology with the known types of lysozymes. However, the homology search of this protein on the protein or nucleic acid database revealed two homologous proteins. One of them was a gene product, CELF22 A3.6 of C. elegans, which was a functionally unknown protein. The other was an isopeptidase of a medicinal leech, named destabilase. Thus, a new type of lysozyme found in at least four species across the three classes of the invertebrates demonstrates a novel class of protein/lysozyme family in invertebrates. The bivalve lysozyme, first characterized here, showed extremely high protein stability and hen lysozyme-like enzymatic features. PMID:9914527

  6. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  7. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  8. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  9. Correlation between spina bifida manifesta in fetal rats and c-Jun N-terminal kinase signaling★

    PubMed Central

    Ma, Yinghuan; Bao, Yongxin; Li, Chenghao; Jiao, Fubin; Xin, Hongjie; Yuan, Zhengwei

    2012-01-01

    Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway. PMID:25337099

  10. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    SciTech Connect

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon; Oh, Sung Jin; Kim, Do Jin; Kang, Ji Yong; Yoon, Hye Jin; Kim, Se-Hee; Seo, Ji Hae; Kim, Kyu-Won; Suh, Se Won

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediates ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent content of 42

  11. N-terminal-mediated oligomerization of DnaA drives the occupancy-dependent rejuvenation of the protein on the membrane

    PubMed Central

    Aranovich, Alexander; Braier-Marcovitz, Shani; Ansbacher, Esti; Granek, Rony; Parola, Abraham H.; Fishov, Itzhak

    2015-01-01

    DnaA, the initiator of chromosome replication in most known eubacteria species, is activated once per cell division cycle. Its overall activity cycle is driven by ATP hydrolysis and ADP–ATP exchange. The latter can be promoted by binding to specific sequences on the chromosome and/or to acidic phospholipids in the membrane. We have previously shown that the transition into an active form (rejuvenation) is strongly co-operative with respect to DnaA membrane occupancy. Only at low membrane occupancy is DnaA reactivation efficiently catalysed by the acidic phospholipids. The present study was aimed at unravelling the molecular mechanism underlying the occupancy-dependent DnaA rejuvenation. We found that truncation of the DnaA N-terminal completely abolishes the co-operative transformation between the high and low occupancy states (I and II respectively) without affecting the membrane binding. The environmentally sensitive fluorophore specifically attached to the N-terminal cysteines of DnaA reported on occupancy-correlated changes in its vicinity. Cross-linking of DnaA with a short homobifunctional reagent revealed that state II of the protein on the membrane corresponds to a distinct oligomeric form of DnaA. The kinetic transition of DnaA on the membrane surface is described in the present study by a generalized 2D condensation phase transition model, confirming the existence of two states of DnaA on the membrane and pointing to the possibility that membrane protein density serves as an on-off switch in vivo. We conclude that the DnaA conformation attained at low surface density drives its N-terminal-mediated oligomerization, which is presumably a pre-requisite for facilitated nt exchange. PMID:26272946

  12. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms. PMID:2695392

  13. Structure of the human histone chaperone FACT Spt16 N-terminal domain.

    PubMed

    Marcianò, G; Huang, D T

    2016-02-01

    The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding. PMID:26841762

  14. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  15. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect

    States, David J.

    2004-07-28

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  16. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect

    David J. States

    1998-08-01

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  17. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  18. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.

    PubMed

    Pastor, Ashutosh; Singh, Amit K; Shukla, Prakash K; Equbal, Md Javed; Malik, Shikha T; Singh, Tej P; Chaudhuri, Tapan K

    2016-09-01

    Maltodextrin glucosidase (MalZ) hydrolyses short malto-oligosaccharides from the reducing end releasing glucose and maltose in Escherichia coli. MalZ is a highly aggregation prone protein and molecular chaperonins GroEL and GroES assist in the folding of this protein to a substantial level. The N-terminal region of this enzyme appears to be a unique domain as seen in sequence comparison studies with other amylases as well as through homology modelling. The sequence and homology model analysis show a probability of disorder in the N-Terminal region of MalZ. The crystal structure of this enzyme has been reported in the present communication. Based on the crystallographic structure, it has been interpreted that the N-terminal region of the enzyme (Met1-Phe131) might be unstructured or flexible. To understand the role of the N-terminal region of MalZ in its enzymatic activity, and overall stability, a truncated version (Ala111-His616) of MalZ was created. The truncated version failed to fold into an active enzyme both in E. coli cytosol and in vitro even with the assistance of chaperonins GroEL and GroES. Furthermore, the refolding effort of N-truncated MalZ in the presence of isolated N-terminal domain didn't succeed. Our studies suggest that while the structural rigidity or orientation of the N-terminal region of the MalZ protein may not be essential for its stability and function, but the said domain is likely to play an important role in the formation of the native structure of the protein when present as an integral part of the protein. PMID:27317979

  19. Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta.

    PubMed

    Klonisch, T; Hombach-Klonisch, S; Froehlich, C; Kauffold, J; Steger, K; Steinetz, B G; Fischer, B

    1999-03-01

    Employing uteroplacental tissue at Day 35 of gestation, we determined the nucleic acid sequence of canine preprorelaxin using reverse transcription- and rapid amplification of cDNA ends-polymerase chain reaction. Canine preprorelaxin cDNA consisted of 534 base pairs encoding a protein of 177 amino acids with a signal peptide of 25 amino acids (aa), a B domain of 35 aa, a C domain of 93 aa, and an A domain of 24 aa. The putative receptor binding region in the N'-terminal part of the canine relaxin B domain GRDYVR contained two substitutions from the classical motif (E-->D and L-->Y). Canine preprorelaxin shared highest homology with porcine and equine preprorelaxin. Northern analysis revealed a 1-kilobase transcript present in total RNA of canine uteroplacental tissue but not of kidney tissue. Uteroplacental tissue from two bitches each at Days 30 and 35 of gestation were studied by in situ hybridization to localize relaxin mRNA. Immunohistochemistry for relaxin, cytokeratin, vimentin, and von Willebrand factor was performed on uteroplacental tissue at Day 30 of gestation. The basal cell layer at the core of the chorionic villi was devoid of relaxin mRNA and immunoreactive relaxin or vimentin but was immunopositive for cytokeratin and identified as cytotrophoblast cells. The cell layer surrounding the chorionic villi displayed specific hybridization signals for relaxin mRNA and immunoreactivity for relaxin and cytokeratin but not for vimentin, and was identified as syncytiotrophoblast. Those areas of the chorioallantoic tissue with most intense relaxin immunoreactivity were highly vascularized as demonstrated by immunoreactive von Willebrand factor expressed on vascular endothelium. The uterine glands and nonplacental uterine areas of the canine zonary girdle placenta were devoid of relaxin mRNA and relaxin. We conclude that the syncytiotrophoblast is the source of relaxin in the canine placenta. PMID:10026098

  20. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    PubMed

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria. PMID:8024546

  1. From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides.

    PubMed

    Morys, Stephan; Wagner, Ernst; Lächelt, Ulrich

    2016-01-01

    Artificial oligoamino acids with appropriate protecting groups can be used for the sequential assembly of oligoaminoamides on solid-phase. With the help of these oligoamino acids multifunctional nucleic acid (NA) carriers can be designed and produced in highly defined topologies. Here we describe the synthesis of the artificial oligoamino acid Fmoc-Stp(Boc3)-OH, the subsequent assembly into sequence-defined oligomers and the formulation of tumor-targeted plasmid DNA (pDNA) polyplexes. PMID:27436323

  2. Emerging Functions for N-Terminal Protein Acetylation in Plants.

    PubMed

    Gibbs, Daniel J

    2015-10-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour. PMID:26319188

  3. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  4. Determination of statherin N-terminal peptide conformation on hydroxyapatite crystals

    SciTech Connect

    Shaw, W.J.; Long, J.R.; Dindot, J.L.; Campbell, A.A.; Stayton, P.S.; Drobny, G.P.

    2000-03-01

    Proteins play an important role in inorganic crystal engineering during the development and growth of hard tissues such as bone and teeth. Although many of these proteins have been studied in the liquid state, there is little direct information describing molecular recognition at the protein-crystal interface. The authors have used {sup 13}C solid-state NMR (SSNMR) techniques to investigate the conformation of an N-terminal peptide of salivary statherin both free and adsorbed on hydroxyapatite (HAP) crystals. The torsion angle {var{underscore}phi} was determined at three positions along the backbone of the phosphorylated N-terminal 15 amino acid peptide fragment (DpSpSEEKFLRRIGRFG) by measuring distances between the backbone carbonyls carbons in the indicated adjacent amino acids using dipolar recoupling with a windowless sequence (DRAWS). Global secondary structure was determined by measuring the dipolar coupling between the {sup 13}C backbone carbonyl and the backbone {sup 15}N in the i {r{underscore}arrow} i + 4 residues (DpSpSEEKFLRRIGRFG) using rotational echo double resonance (REDOR). Peptides singly labeled at amino acids pS{sub 3}, L{sub 8}, and G{sub 12} were used for relaxation and line width measurements. The peptides adsorbed to the HAP surface have an average {var{underscore}phi} of {minus}85{degree} at the N-terminus (pSpS), {minus}60{degree} in the middle (FL) and {minus}73{degree} near the C-terminus (IG). The average {var{underscore}phi} angle measured at the pSpS position and the observed high conformational dispersion suggest a random coil conformation at this position. However, the FL position displays an average {var{underscore}phi} that indicates significant {alpha}-helical content, and the long time points in the DRAWS experiment fit best to a relatively narrow distribution of {var{underscore}phi} that falls within the protein data bank {alpha}-helical conformational space. REDOR measurements confirm the presence of helical content, where the

  5. Detecting frame shifts by amino acid sequence comparison.

    PubMed

    Claverie, J M

    1993-12-20

    Various amino acid substitution scoring matrices are used in conjunction with local alignments programs to detect regions of similarity and infer potential common ancestry between proteins. The usual scoring schemes derive from the implicit hypothesis that related proteins evolve from a common ancestor by the accumulation of point mutations and that amino acids tend to be progressively substituted by others with similar properties. However, other frequent single mutation events, like nucleotide insertion or deletion and gene inversion, change the translation reading frame and cause previously encoded amino acid sequences to become unrecognizable at once. Here, I derive five new types of scoring matrix, each capable of detecting a specific frame shift (deletion, insertion and inversion in 3 frames) and use them with a regular local alignments program to detect amino acid sequences that may have derived from alternative reading frames of the same nucleotide sequence. Frame shifts are inferred from the sole comparison of the protein sequences. The five scoring matrices were used with the BLASTP program to compare all the protein sequences in the Swissprot database. Surprisingly, the searches revealed hundreds of highly significant frame shift matches, of which many are likely to represent sequencing errors. Others provide some evidence that frame shift mutations might be used in protein evolution as a way to create new amino acid sequences from pre-existing coding regions. PMID:7903399

  6. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-11-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine. PMID:7474152

  7. Segments of amino acid sequence similarity in beta-amylases.

    PubMed

    Friedberg, F; Rhodes, C

    1988-01-01

    In alpha-amylases from animals, plants and bacteria and in beta-amylases from plants and bacteria a number of segments exhibit amino acid sequence similarity specific to the alpha or to the beta type, respectively. In the case of the beta-amylases the similar sequence regions are extensive and they are disrupted only by short interspersed dissimilar regions. Close to the C terminus, however, no such sequence similarity exist. PMID:2464171

  8. Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants partially related through N-terminal alpha -helix motifs.

    PubMed

    Wang, X; Hu, B; Zimmermann, B; Kilimann, M W

    2001-08-31

    Rim1 is a protein of the presynaptic active zone, the area of the plasma membrane specialized for neurotransmitter exocytosis, and interacts with Rab3, a small GTPase implicated in neurotransmitter vesicle dynamics. Here, we have studied the molecular determinants of Rim1 that are responsible for Rab3 binding, employing surface plasmon resonance and recombinant, bacterially expressed Rab3 and Rim1 proteins. A site that binds GTP- but not GDP-saturated Rab3 was localized to a short alpha-helical sequence near the Rim1 N terminus (amino acids 19-55). Rab3 isoforms A, C, and D were bound with similar affinities (K(d) = 1-2 microm). Low affinity binding of Rab6A-GTP was also observed (K(d) = 16 microm), whereas Rab1B, -5, -7, -8, or -11A did not bind. Adjacent sequences up to amino acid 387, encompassing differentially spliced sequences, the zinc finger module, and the SGAWFF motif of Rim1, did not significantly contribute to the strength or the specificity of Rab3 binding, whereas a point mutation within the helix (R33G) abolished binding. This Rab3 binding site of Rim1 is reminiscent of the N-terminal alpha-helix that is part of the Rab3-binding region of rabphilin-3, and indeed we observed low affinity, specific binding of Rab3A (K(d) on the order of magnitude of 10-100 microm) to this region of rabphilin-3 alone (amino acids 40-88), whereas additional sequences up to amino acid 178 are needed for high affinity Rab3A binding to rabphilin-3 (K(d) = 10-20 nm). In contrast, an N-terminal alpha-helix motif in aczonin, with sequence similarity to the Rab3-binding site of Rim1, did not bind Rab3A, -C, or -D or several other Rab proteins. These results were qualitatively confirmed in pull-down experiments with native, prenylated Rab3 from brain lysate in Triton X-100. Munc13 bound to the zinc finger domain of Rim1 but not to the rabphilin-3 or aczonin zinc fingers. Pull-down experiments from brain lysate in the presence of cholate as detergent detected binding to

  9. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Uversky, Vladimir N; Ferreira, Gloria C

    2016-05-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme, catalyzes the initial step of heme biosynthesis in non-plant eukaryotes. The precursor form of the enzyme is translated in the cytosol, and upon mitochondrial import, the N-terminal targeting presequence is proteolytically cleaved to generate mature ALAS. In bone marrow-derived erythroid cells, a mitochondrial- and site-specific endoprotease of yet unknown primary structure, produces a protein shorter than mature erythroid ALAS (ALAS2) found in peripheral blood erythroid cells. This truncated ALAS2 lacks the presequence and the N-terminal sequence (corresponding to ~7 KDa molecular mass) present in ALAS2 from peripheral blood erythroid cells. How the truncation affects the structural topology and catalytic properties of ALAS2 is presently not known. To address this question, we created a recombinant, truncated, murine ALAS2 (ΔmALAS2) devoid of the cleavable N-terminal region and examined its catalytic and biophysical properties. The N-terminal truncation of mALAS2 did not significantly affect the organization of the secondary structure, but a subtle reduction in the rigidity of the tertiary structure was noted. Furthermore, thermal denaturation studies revealed a decrease of 4.3°C in the Tm value of ΔmALAS2, implicating lower thermal stability. While the kcat of ΔmALAS2 is slightly increased over that of the wild-type enzyme, the slowest step in the ΔmALAS2-catalyzed reaction remains dominated by ALA release. Importantly, intrinsic disorder algorithms imply that the N-terminal region of mALAS2 is highly disordered, and thus susceptible to proteolysis. We propose that the N-terminal truncation offers a cell-specific ALAS2 regulatory mechanism without hindering heme synthesis. PMID:26854603

  10. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  11. Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency

    PubMed Central

    Rope, Alan F.; Wang, Kai; Evjenth, Rune; Xing, Jinchuan; Johnston, Jennifer J.; Swensen, Jeffrey J.; Johnson, W. Evan; Moore, Barry; Huff, Chad D.; Bird, Lynne M.; Carey, John C.; Opitz, John M.; Stevens, Cathy A.; Jiang, Tao; Schank, Christa; Fain, Heidi Deborah; Robison, Reid; Dalley, Brian; Chin, Steven; South, Sarah T.; Pysher, Theodore J.; Jorde, Lynn B.; Hakonarson, Hakon; Lillehaug, Johan R.; Biesecker, Leslie G.; Yandell, Mark; Arnesen, Thomas; Lyon, Gholson J.

    2011-01-01

    We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans. PMID:21700266

  12. Analysis of the complete sequences of two biologically distinct Zucchini yellow mosaic virus isolates further evidences the involvement of a single amino acid in the virus pathogenicity.

    PubMed

    Nováková, S; Svoboda, J; Glasa, M

    2014-01-01

    The complete genome sequences of two Slovak Zucchini yellow mosaic virus isolates (ZYMV-H and ZYMV-SE04T) were determined. These isolates differ significantly in their pathogenicity, producing either severe or very mild symptoms on susceptible cucurbit hosts. The viral genome of both isolates consisted of 9593 nucleotides in size, and contained an open reading frame encoding a single polyprotein of 3080 amino acids. Despite their different biological properties, an extremely high nucleotide identity could be noted (99.8%), resulting in differences of only 5 aa, located in the HC-Pro, P3, and NIb, respectively. In silico analysis including 5 additional fully-sequenced and phylogenetically closely-related isolates known to induce different symptoms in cucurbits was performed. This suggested that the key single mutation responsible for virus pathogenicity is likely located in the N-terminal part of P3, adjacent to the PIPO. PMID:25518719

  13. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  14. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  15. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  16. The N-terminal and C-terminal portions of NifV are encoded by two different genes in Clostridium pasteurianum.

    PubMed

    Wang, S Z; Dean, D R; Chen, J S; Johnson, J L

    1991-05-01

    The nifV gene products from Azotobacter vinelandii and Klebsiella pneumoniae share a high level of primary sequence identity and are proposed to catalyze the synthesis of homocitrate. While searching for potential nif (nitrogen fixation) genes within the genomic region located downstream from the nifN-B gene of Clostridium pasteurianum, we observed two open reading frames (ORFs) whose deduced amino acid sequences exhibit nonoverlapping sequence identity to different portions of the nifV gene products from A. vinelandii and K. pneumoniae. Conserved regions were located between the C-terminal 195 amino acid residues of the first ORF and the C-terminal portion of the nifV gene product and between the entire sequence of the second ORF (269 amino acid residues) and the N-terminal portion of the nifV gene product. We therefore designated the first ORF nifV omega and the second ORF nifV alpha. The deduced amino acid sequences of nifV omega and nifV alpha were also found to have sequence similarity when compared with the primary sequence of the leuA gene product from Salmonella typhimurium, which encodes alpha-isopropylmalate synthase. Marker rescue experiments were performed by recombining nifV omega and nifV alpha from C. pasteurianum, singly and in combination, into the genome of an A. vinelandii mutant strain which has an insertion and a deletion mutation located within its nifV gene. A NifV+ phenotype was obtained only when both the C. pasteurianum nifV omega and nifV alpha genes were introduced into the chromosome of this mutant strain. These results suggest that the nifV omega and nifV alpha genes encode separate domains, both of which are required for homocitrate synthesis in C. pasteurianum. PMID:2022611

  17. Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering.

    PubMed

    Papageorgiou, Nicolas; Lichière, Julie; Baklouti, Amal; Ferron, François; Sévajol, Marion; Canard, Bruno; Coutard, Bruno

    2016-02-01

    The N protein of coronaviruses is a multifunctional protein that is organized into several domains. The N-terminal part is composed of an intrinsically disordered region (IDR) followed by a structured domain called the N-terminal domain (NTD). In this study, the structure determination of the N-terminal region of the MERS-CoV N protein via X-ray diffraction measurements is reported at a resolution of 2.4 Å. Since the first 30 amino acids were not resolved by X-ray diffraction, the structural study was completed by a SAXS experiment to propose a structural model including the IDR. This model presents the N-terminal region of the MERS-CoV as a monomer that displays structural features in common with other coronavirus NTDs. PMID:26894667

  18. A method to find palindromes in nucleic acid sequences.

    PubMed

    Anjana, Ramnath; Shankar, Mani; Vaishnavi, Marthandan Kirti; Sekar, Kanagaraj

    2013-01-01

    Various types of sequences in the human genome are known to play important roles in different aspects of genomic functioning. Among these sequences, palindromic nucleic acid sequences are one such type that have been studied in detail and found to influence a wide variety of genomic characteristics. For a nucleotide sequence to be considered as a palindrome, its complementary strand must read the same in the opposite direction. For example, both the strands i.e the strand going from 5' to 3' and its complementary strand from 3' to 5' must be complementary. A typical nucleotide palindromic sequence would be TATA (5' to 3') and its complimentary sequence from 3' to 5' would be ATAT. Thus, a new method has been developed using dynamic programming to fetch the palindromic nucleic acid sequences. The new method uses less memory and thereby it increases the overall speed and efficiency. The proposed method has been tested using the bacterial (3891 KB bases) and human chromosomal sequences (Chr-18: 74366 kb and Chr-Y: 25554 kb) and the computation time for finding the palindromic sequences is in milli seconds. PMID:23515654

  19. The Localization of Cytochrome P450s CYP1A1 and CYP1A2 into Different Lipid Microdomains Is Governed by Their N-terminal and Internal Protein Regions.

    PubMed

    Park, Ji Won; Reed, James R; Backes, Wayne L

    2015-12-01

    In cellular membranes, different lipid species are heterogeneously distributed forming domains with different characteristics. Ordered domains are tightly packed with cholesterol, sphingomyelin, and saturated fatty acids, whereas disordered domains contain high levels of unsaturated fatty acids. Our laboratory has shown that membrane heterogeneity affects the organization of cytochrome P450s and their cognate redox partner, the cytochrome P450 reductase (CPR). Despite the high degree of sequence similarity, CYP1A1 was found to localize to disordered regions, whereas CYP1A2 resided in ordered domains. We hypothesized that regions of amino acid sequence variability may contain signal motifs that direct CYP1A proteins into ordered or disordered domains. Thus, chimeric constructs of CYP1A1 and CYP1A2 were created, and their localization was tested in HEK293T cells. CYP1A2, containing the N-terminal regions from CYP1A1, no longer localized in ordered domains, whereas the N terminus of CYP1A2 partially directed CYP1A1 into ordered regions. In addition, intact CYP1A2 containing a 206-302-residue peptide segment of CYP1A1 had less affinity to bind to ordered microdomains. After expression, the catalytic activity of CYP1A2 was higher than that of the CYP1A1-CYP1A2 chimera containing the N-terminal end of CYP1A1 with subsaturating CPR concentrations, but it was approximately equal with excess CPR suggesting that the localization of the CYP1A enzyme in ordered domains favored its interaction with CPR. These data demonstrate that both the N-terminal end and an internal region of CYP1A2 play roles in targeting CYP1A2 to ordered domains, and domain localization may influence P450 function under conditions that resemble those found in vivo. PMID:26468279

  20. The S-layer proteins of two Bacillus stearothermophilus wild-type strains are bound via their N-terminal region to a secondary cell wall polymer of identical chemical composition.

    PubMed

    Egelseer, E M; Leitner, K; Jarosch, M; Hotzy, C; Zayni, S; Sleytr, U B; Sára, M

    1998-03-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1gamma chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  1. Extended string-like binding of the phosphorylated HP1α N-terminal tail to the lysine 9-methylated histone H3 tail

    PubMed Central

    Shimojo, Hideaki; Kawaguchi, Ayumi; Oda, Takashi; Hashiguchi, Nobuto; Omori, Satoshi; Moritsugu, Kei; Kidera, Akinori; Hiragami-Hamada, Kyoko; Nakayama, Jun-ichi; Sato, Mamoru; Nishimura, Yoshifumi

    2016-01-01

    The chromodomain of HP1α binds directly to lysine 9-methylated histone H3 (H3K9me). This interaction is enhanced by phosphorylation of serine residues in the N-terminal tail of HP1α by unknown mechanism. Here we show that phosphorylation modulates flexibility of HP1α’s N-terminal tail, which strengthens the interaction with H3. NMR analysis of HP1α’s chromodomain with N-terminal tail reveals that phosphorylation does not change the overall tertiary structure, but apparently reduces the tail dynamics. Small angle X-ray scattering confirms that phosphorylation contributes to extending HP1α’s N-terminal tail. Systematic analysis using deletion mutants and replica exchange molecular dynamics simulations indicate that the phosphorylated serines and following acidic segment behave like an extended string and dynamically bind to H3 basic residues; without phosphorylation, the most N-terminal basic segment of HP1α inhibits interaction of the acidic segment with H3. Thus, the dynamic string-like behavior of HP1α’s N-terminal tail underlies the enhancement in H3 binding due to phosphorylation. PMID:26934956

  2. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences.

    PubMed

    Navon, Sharon Penias; Kornberg, Guy; Chen, Jin; Schwartzman, Tali; Tsai, Albert; Puglisi, Elisabetta Viani; Puglisi, Joseph D; Adir, Noam

    2016-06-28

    Bioinformatic analysis of Escherichia coli proteomes revealed that all possible amino acid triplet sequences occur at their expected frequencies, with four exceptions. Two of the four underrepresented sequences (URSs) were shown to interfere with translation in vivo and in vitro. Enlarging the URS by a single amino acid resulted in increased translational inhibition. Single-molecule methods revealed stalling of translation at the entrance of the peptide exit tunnel of the ribosome, adjacent to ribosomal nucleotides A2062 and U2585. Interaction with these same ribosomal residues is involved in regulation of translation by longer, naturally occurring protein sequences. The E. coli exit tunnel has evidently evolved to minimize interaction with the exit tunnel and maximize the sequence diversity of the proteome, although allowing some interactions for regulatory purposes. Bioinformatic analysis of the human proteome revealed no underrepresented triplet sequences, possibly reflecting an absence of regulation by interaction with the exit tunnel. PMID:27307442

  3. Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion.

    PubMed

    Barnes, Dawn E; Hwang, Hyundoo; Ono, Kanako; Lu, Hang; Ono, Shoichiro

    2016-03-01

    The troponin complex, composed of troponin T (TnT), troponin I (TnI), and troponin C (TnC), is the major calcium-dependent regulator of muscle contraction, which is present widely in both vertebrates and invertebrates. Little is known about evolutionary aspects of troponin in the animal kingdom. Using a combination of data mining and functional analysis of TnI, we report evidence that an N-terminal extension of TnI is present in most of bilaterian animals as a functionally important domain. Troponin components have been reported in species in most of representative bilaterian phyla. Comparison of TnI sequences shows that the core domains are conserved in all examined TnIs, and that N- and C-terminal extensions are variable among isoforms and species. In particular, N-terminal extensions are present in all protostome TnIs and chordate cardiac TnIs but lost in a subset of chordate TnIs including vertebrate skeletal-muscle isoforms. Transgenic rescue experiments in Caenorhabditis elegans striated muscle show that the N-terminal extension of TnI (UNC-27) is required for coordinated worm locomotion but not in sarcomere assembly and single muscle-contractility kinetics. These results suggest that N-terminal extensions of TnIs are retained from a TnI ancestor as a functional domain. © 2016 Wiley Periodicals, Inc. PMID:26849746

  4. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  5. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454.

    PubMed

    Yildirim, Z; Winters, D K; Johnson, M G

    1999-01-01

    Bifidocin B produced by Bifidobacterium bifidum NCFB 1454 was purified to homogeneity by a rapid and simple three step purification procedure which included freeze drying, Micro-Cel adsorption/desorption and cation exchange chromatography. The purification resulted in 18% recovery and an approximately 1900-fold increase in the specific activity and purity of bifidocin B. Treatment with bifidocin B caused sensitive cells to lose high amounts of intracellular K+ ions and u.v.-absorbing materials, and to become more permeable to ONPG. Bifidocin B adsorbed to the Gram-positive bacteria but not the Gram-negative bacteria tested. Its adsorption was pH-dependent but not time-dependent. For sensitive cells, the adsorption and lethal action of bifidocin B was very rapid. In 5 min, 95% of bifidocin B adsorbed onto sensitive cells. Several salts inhibited the binding of bifidocin B, which could be overcome by increasing the amount of bifidocin B added. Pre-treatment of sensitive cells and cell walls with detergents, organic solvents or enzymes did not cause a reduction in subsequent cellular binding of bifidocin B, but cell wall preparations treated with methanol:chloroform and hot 20% (w/v) TCA lost the ability to adsorb bifidocin B. Also, the addition of purified heterologous lipoteichoic acid to sensitive cells completely blocked the adsorption of bifidocin B. The amino acid sequence indicated that the bacteriocin contained 36 residues. N-terminal amino acid sequence analysis yielded a sequence of KYYGNGVTCGLHDCRVDRGKATCGIINNGGMWGDIG. Curing experiments with 20 micrograms ml-1 acriflavine yielded cell derivatives that no longer produced bifidocin B but retained immunity to bifidocin B. Production of bifidocin B, but not immunity to bifidocin B, was associated with a plasmid of about 8 kb in this strain. PMID:10030011

  6. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    SciTech Connect

    Borko, Ľubomír; Bauerová-Hlinková, Vladena Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.

  7. The N-terminal region of the heme-regulated eIF2alpha kinase is an autonomous heme binding domain.

    PubMed

    Uma, S; Matts, R L; Guo, Y; White, S; Chen, J J

    2000-01-01

    The N-terminal domain (NTD) of the heme-regulated eukaryotic initiation factor (eIF)2alpha kinase (HRI) was aligned to sequences in the NCBI data base using ENTREZ and a PAM250 matrix. Significant similarity was found between amino acids 11-118 in the NTD of rabbit HRI and amino acids 16-120 in mammalian alpha-globins. Several conserved amino acid residues present in globins are conserved in the NTD of HRI. His83 of HRI was predicted to be equivalent to the proximal heme ligand (HisF8) that is conserved in all globins. Molecular modeling of the NTD indicated that its amino acid sequence was compatible with the globin fold. Recombinant NTD (residues 1-159) was expressed in Escherichia coli. Spectral analysis of affinity purified recombinant NTD indicated that the NTD contained stably bound hemin. Mutational analysis indicated that His83 played a critical structural role in the stable binding of heme to the NTD, and was required to stabilize full length HRI synthesized de novo in the rabbit reticulocyte lysate. These results indicate that the NTD of HRI is an autonomous heme-binding domain, with His83 possibly serving as the proximal heme binding ligand. PMID:10632719

  8. The N-terminal domain of Npro of classical swine fever virus determines its stability and regulates type I IFN production.

    PubMed

    Mine, Junki; Tamura, Tomokazu; Mitsuhashi, Kazuya; Okamatsu, Masatoshi; Parchariyanon, Sujira; Pinyochon, Wasana; Ruggli, Nicolas; Tratschin, Jon-Duri; Kida, Hiroshi; Sakoda, Yoshihiro

    2015-07-01

    The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/β) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/β induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/β production. PMID:25809915

  9. Rescue and Stabilization of Acetylcholinesterase in Skeletal Muscle by N-terminal Peptides Derived from the Noncatalytic Subunits.

    PubMed

    Ruiz, Carlos A; Rossi, Susana G; Rotundo, Richard L

    2015-08-21

    The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue. PMID:26139603

  10. The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA

    PubMed Central

    Poulet, Anaïs; Pisano, Sabrina; Faivre-Moskalenko, Cendrine; Pei, Bei; Tauran, Yannick; Haftek-Terreau, Zofia; Brunet, Frédéric; Le Bihan, Yann-Vaï; Ledu, Marie-Hélène; Montel, Fabien; Hugo, Nicolas; Amiard, Simon; Argoul, Françoise; Chaboud, Annie; Giraud-Panis, Marie-Josèphe

    2012-01-01

    TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA. PMID:22139926

  11. The Unique Branching Patterns of Deinococcus Glycogen Branching Enzymes Are Determined by Their N-Terminal Domains▿

    PubMed Central

    Palomo, M.; Kralj, S.; van der Maarel, M. J. E. C.; Dijkhuizen, L.

    2009-01-01

    Glycogen branching enzymes (GBE) or 1,4-α-glucan branching enzymes (EC 2.4.1.18) introduce α-1,6 branching points in α-glucans, e.g., glycogen. To identify structural features in GBEs that determine their branching pattern specificity, the Deinococcus geothermalis and Deinococcus radiodurans GBE (GBEDg and GBEDr, respectively) were characterized. Compared to other GBEs described to date, these Deinococcus GBEs display unique branching patterns, both transferring relatively short side chains. In spite of their high amino acid sequence similarity (88%) the D. geothermalis enzyme had highest activity on amylose while the D. radiodurans enzyme preferred amylopectin. The side chain distributions of the products were clearly different: GBEDg transferred a larger number of smaller side chains; specifically, DP5 chains corresponded to 10% of the total amount of transferred chains, versus 6.5% for GBEDr. GH13-type GBEs are composed of a central (β/α) barrel catalytic domain and an N-terminal and a C-terminal domain. Characterization of hybrid Deinococcus GBEs revealed that the N2 modules of the N domains largely determined substrate specificity and the product branching pattern. The N2 module has recently been annotated as a carbohydrate binding module (CBM48). It appears likely that the distance between the sugar binding subsites in the active site and the CBM48 subdomain determines the average lengths of side chains transferred. PMID:19139240

  12. On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Iriyama, Satoshi; Ohya, Masanori

    2009-02-01

    The alignment of genome sequences or amino acid sequences is one of fundamental operations for the study of life. Usual computational complexity for the multiple alignment of N sequences with common length L by dynamic programming is O(LN). This alignment is considered as one of the NP problems, so that it is desirable to find a nice algorithm of the multiple alignment. Thus in this paper we propose the quantum algorithm for the multiple alignment based on the works12,1,2 in which the NP complete problem was shown to be the P problem by means of quantum algorithm and chaos information dynamics.

  13. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences

    PubMed Central

    Derr, Julien; Manapat, Michael L.; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A.; Chen, Irene A.

    2012-01-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life. PMID:22319215

  14. Substrate recognition of holocytochrome c synthase: N-terminal region and CXXCH motif of mitochondrial cytochrome c

    PubMed Central

    Zhang, Yulin; Stevens, Julie M.; Ferguson, Stuart J.

    2014-01-01

    Holocytochrome c synthase (HCCS) attaches heme covalently to mitochondrial respiratory cytochromes c. Little is known about the reaction of heme attachment to apocytochromes c by HCCS, although recently it has been established that the CXXCH motif and the N-terminus of the apocytochrome polypeptide are important protein–protein recognition motifs. Here, we explore further the important features of the N-terminal sequence and investigate what variations in the CXXCH residues are productively recognised by HCCS in its substrate. PMID:25084480

  15. Targeting to Transcriptionally Active Loci by the Hydrophilic N-Terminal Domain of Drosophila DNA Topoisomerase I

    PubMed Central

    Shaiu, Wen-Ling; Hsieh, Tao-shih

    1998-01-01

    DNA topoisomerase I (topo I) from Drosophila melanogaster contains a nonconserved, hydrophilic N-terminal domain of about 430 residues upstream of the conserved core domains. Deletion of this N terminus did not affect the catalytic activity of topo I, while further removal of sequences into the conserved regions inactivated its enzymatic activity. We have investigated the cellular function of the Drosophila topo I N-terminal domain with top1-lacZ transgenes. There was at least one putative nuclear localization signal within the first 315 residues of the N-terminal domain that allows efficient import of the large chimeric proteins into Drosophila nuclei. The top1-lacZ fusion proteins colocalized with RNA polymerase II (pol II) at developmental puffs on the polytene chromosomes. Either topo I or the top1-lacZ fusion protein was colocalized with RNA pol II in some but not all of the nonpuff, interband loci. However, the fusion proteins as well as RNA pol II were recruited to heat shock puffs during heat treatment, and they returned to the developmental puffs after recovery from heat shock. By immunoprecipitation, we showed that two of the largest subunits of RNA pol II coprecipitated with the N-terminal 315-residue fusion protein by using antibodies against β-galactosidase. These data suggest that the topo I fusion protein can be localized to the transcriptional complex on chromatin and that the N-terminal 315 residues were sufficient to respond to cellular processes, especially during the reprogramming of gene expression. PMID:9632819

  16. Consequences of C-terminal domains and N-terminal signal peptide deletions on LEKTI secretion, stability, and subcellular distribution.

    PubMed

    Jayakumar, Arumugam; Kang, Ya'an; Henderson, Ying; Mitsudo, Kenji; Liu, Xiaoling; Briggs, Katrina; Wang, Mary; Frederick, Mitchell J; El-Naggar, Adel K; Bebök, Zsuzsa; Clayman, Gary L

    2005-03-01

    The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion. PMID:15680911

  17. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio

    SciTech Connect

    Liebschner, Dorothee; Brzezinski, Krzysztof; Dauter, Miroslawa; Dauter, Zbigniew; Nowak, Marta; Kur, Józef; Olszewski, Marcin

    2012-12-01

    The N-terminal domain of the PriB protein from the thermophilic bacterium T. tengcongensis (TtePriB) was expressed and its crystal structure has been solved at the atomic resolution of 1.09 Å by direct methods. PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  18. Purification and antimicrobial activity studies of the N-terminal fragment of ubiquitin from human amniotic fluid.

    PubMed

    Kim, Jin-Young; Lee, Sun Young; Park, Seong-Cheol; Shin, Song Yub; Choi, Sang Joon; Park, Yoonkyung; Hahm, Kyung-Soo

    2007-09-01

    A 4.3-kDa antimicrobial peptide was isolated from human amniotic fluid by dialysis, ultrafiltration, and C18 reversed-phase high performance liquid chromatography. This peptide, which we named Amniotic Fluid Peptide-1 (AFP-1), possessed antimicrobial activity but lacked hemolytic activity. In addition, AFP-1 potently inhibited the growth of a variety of bacteria (Escherichia coli, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus), filamentous fungi (Botrytis cinerea, Aspergillus fumigatus, Neurospora crassa and Fusarium oxysporum) and yeast cells (Candida albicans and Cryptococcus neoformans). Automated Edman degradation showed that the N-terminal sequence of AFP-1 was NH(2)-Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-Thr-Ile-Thr-Leu-Glu-Val-Glu-. The partial sequence had 100% homology to the N-terminal sequence of ubiquitin. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the molecular mass of AFP-1 was 4280.2 Da. Our data show an antimicrobial activity of ubiquitin N-terminal derived peptide that makes it suitable for use as an antimicrobial agent. PMID:17669700

  19. Role of the N-Terminal Seven Residues of Surfactant Protein B (SP-B)

    PubMed Central

    Sharifahmadian, Mahzad; Sarker, Muzaddid; Palleboina, Dharamaraju; Waring, Alan J.; Walther, Frans J.; Morrow, Michael R.; Booth, Valerie

    2013-01-01

    Breathing is enabled by lung surfactant, a mixture of proteins and lipids that forms a surface-active layer and reduces surface tension at the air-water interface in lungs. Surfactant protein B (SP-B) is an essential component of lung surfactant. In this study we probe the mechanism underlying the important functional contributions made by the N-terminal 7 residues of SP-B, a region sometimes called the “insertion sequence”. These studies employed a construct of SP-B, SP-B (1–25,63–78), also called Super Mini-B, which is a 41-residue peptide with internal disulfide bonds comprising the N-terminal 7-residue insertion sequence and the N- and C-terminal helices of SP-B. Circular dichroism, solution NMR, and solid state 2H NMR were used to study the structure of SP-B (1–25,63–78) and its interactions with phospholipid bilayers. Comparison of results for SP-B (8–25,63–78) and SP-B (1–25,63–78) demonstrates that the presence of the 7-residue insertion sequence induces substantial disorder near the centre of the lipid bilayer, but without a major disruption of the overall mechanical orientation of the bilayers. This observation suggests the insertion sequence is unlikely to penetrate deeply into the bilayer. The 7-residue insertion sequence substantially increases the solution NMR linewidths, most likely due to an increase in global dynamics. PMID:24023779

  20. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection.

    PubMed

    Bahrani, F K; Johnson, D E; Robbins, D; Mobley, H L

    1991-10-01

    Urinary tract infection with Proteus mirabilis may lead to serious complications, including cystitis, acute pyelonephritis, fever, bacteremia, and death. In addition to the production of hemolysin and the enzyme urease, fimbriae and flagellum-mediated motility have been postulated as virulence factors for this species. We purified mannose-resistant/proteuslike (MR/P) fimbriae and flagella from strains CFT322 and HU2450, respectively. Electron microscopy revealed highly concentrated preparations of fimbriae and flagella. Fimbrial and flagellar structural subunits were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 18.5 and 41 kDa, respectively. N-terminal sequencing revealed that 10 of the first 20 amino acids of the major MR/P subunit matched the sequence of the P. mirabilis uroepithelial cell adhesin N terminus and 11 of 20 amino acids matched the predicted amino acid sequence of the Escherichia coli P fimbriae structural subunit, PapA. In addition, 90 and 80% homologies were found between the first 20 amino acids of P. mirabilis flagellin and those of Salmonella typhimurium phase-1 flagellin and the E. coli hag gene product, respectively. An enzyme-linked immunosorbent assay using purified antigens showed a strong reaction between the MR/P fimbriae or flagella and sera of CBA mice challenged transurethrally with P. mirabilis. A possible role for MR/P fimbriae in the pathogenesis of urinary tract infection is supported by (i) a strong immune response to the antigen in experimentally infected animals, (ii) amino acid sequence similarity to other enteric surface structure, and (iii) our previously reported observation that MR/P fimbriae are expressed preferentially as the sole fimbrial type in human pyelonephritis isolates. PMID:1680106

  1. Peptide Scrambling During Collision-Induced Dissociation is Influenced by N-terminal Residue Basicity

    NASA Astrophysics Data System (ADS)

    Chawner, Ross; Holman, Stephen W.; Gaskell, Simon J.; Eyers, Claire E.

    2014-08-01

    `Bottom up' proteomic studies typically use tandem mass spectrometry data to infer peptide ion sequence, enabling identification of the protein whence they derive. The majority of such studies employ collision-induced dissociation (CID) to induce fragmentation of the peptide structure giving diagnostic b-, y-, and a- ions. Recently, rearrangement processes that result in scrambling of the original peptide sequence during CID have been reported for these ions. Such processes have the potential to adversely affect ion accounting (and thus scores from automated search algorithms) in tandem mass spectra, and in extreme cases could lead to false peptide identification. Here, analysis of peptide species produced by Lys-N proteolysis of standard proteins is performed and sequences that exhibit such rearrangement processes identified. The effect of increasing the gas-phase basicity of the N-terminal lysine residue through derivatization to homoarginine toward such sequence scrambling is then assessed. The presence of a highly basic homoarginine (or arginine) residue at the N-terminus is found to disfavor/inhibit sequence scrambling with a coincident increase in the formation of b(n-1)+H2O product ions. Finally, further analysis of a sequence produced by Lys-C proteolysis provides evidence toward a potential mechanism for the apparent inhibition of sequence scrambling during resonance excitation CID.

  2. N-terminal {beta}{sub 2}-adrenergic receptor polymorphisms do not correlate with bronchodilator response in asthma families

    SciTech Connect

    Holyroyd, K.J.; Dragwa, C.; Xu, J.

    1994-09-01

    Family and twin studies have suggested that susceptibility to asthma is inherited. One clinically relevant phenotype in asthma is the bronchodilator response to beta adrenergic therapy (reversibility) which may also be inherited and vary among asthmatics. Two polymorphisms of the {beta}{sub 2}-adrenergic receptor common to both asthmatic and normal individuals have been reported. One polymorphism, an amino acid polymorphism at position 16, correlated in one study with the need for long-term corticosteriod use in a population of asthmatics. It is conceivable that the increased use of corticosteroids needed to control symptoms in these patients may be explained by a decreased responsiveness to brochodilators mediated through this amino acid polymorphism in the {beta}{sub 2}-adrenergic receptor. However, the response to {beta}{sub 2} bronchodilators was not tested in these patients. In our Dutch asthma families, DNA sequencing of the {beta}{sub 2}-adrenergic receptor has been performed for N-terminal polymorphisms at amino acid positions 16 and 27 in over 100 individuals, and no correlation was found with the increase of FEV{sub 1} in response to bronchodilator. Linkage analysis between bronchodilator response and marker D5S412 near the {beta}{sub 2}-adrenergic receptor gene was performed in 286 sibpairs from these families. Using a bronchodilator response of >10% in FEV{sub 1} as a qualitative definition of affected individuals, there were 145 unaffected sibpairs, 121 sibpairs where one was affected, and 20 in which both were affected. Linear regression analysis of these sibpair data suggested possible linkage (p=0.007). This supports further examination of the {beta}{sub 2}-adrenergic receptor and its regulatory regions for polymorphisms that correlate with the bronchodilator response in asthma families.

  3. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1.

    PubMed

    Sang, Yi; Li, Qing-Hua; Rubio, Vicente; Zhang, Yan-Chun; Mao, Jian; Deng, Xing-Wang; Yang, Hong-Quan

    2005-05-01

    Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway. PMID:15805487

  4. Preparation and characterization of a truncated caricain lacking 41 residues from the N-terminal.

    PubMed

    Liu, Wei; Ye, Wanhui; Wang, Zhangming; Chao, Honglin; Lian, Juyu

    2005-05-01

    We purified an 18.8 kD protease from caricain solution. This protease was derived from caricain. It does not have the first 41 residues of the N-terminal sequence of caricain, and its N-terminal residue is Thr. Also, one of the disulfide bonds of caricain (cys22-cys63) was opened during the formation of the protease. We named this 18.8 kD protease caricain II. Caricain II has a wide pH range, and it is more sensitive to temperature changes than caricain. The proteolytic activity of caricain II is twice as much as that of caricain using casein as a substrate. However, caricain II has a low hydrolytic activity with N-benzoyl-L-arginine ethyl ester (BAEE) that is one of the special substrates of caricain. Our results indicate that caricain II is remarkably different from caricain and it can provide an improvement over caricain on the proteolytic activity. PMID:16283547

  5. Plasmodium vivax: N-terminal diversity in the blood stage SERA genes from Indian isolates.

    PubMed

    Rahul, C N; Shiva Krishna, K; Meera, M; Phadke, Sandhya; Rajesh, Vidya

    2015-06-01

    Worldwide malaria risk due to Plasmodium vivax makes development of vaccine against P. vivax, a high priority. Serine Repeat Antigen of P. vivax (PvSERA) is a multigene family of blood stage proteins with 12 homologues. Sequence diversity studies are important for understanding them as potential vaccine candidates. No information on N-terminal diversity of these genes is available in literature. In this paper, we evaluate the genetic polymorphism of N-terminal regions of the highly expressed member PvSERA4 and PvSERA5 genes from Indian field isolates. Our results show that PvSERA4 has deletions and insertions in Glutamine rich tetrameric repeat units contributing to its diversity. PvSERA5 also exhibits high genetic diversity with non-synonymous substitutions leading to identification of novel haplotypes from India. Our first report helps in elucidating the allelic variants of PvSERA genes in this region and contributes to evaluating their efficacy as vaccine candidates. PMID:25976464

  6. Amino acid sequence and posttranslational modifications of human factor VII sub a from plasma and transfected baby hamster kidney cells

    SciTech Connect

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U. )

    1988-10-04

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII{sub a}, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca{sup 2+} and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII{sub a} molecule, namely, 10 {gamma}-carboxylated, N-terminally located glutamic acid residues, 1 {beta}-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII{sub a} as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII{sub a}. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII{sub a} was found to be identical with human factor VII{sub a}. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII{sub a}. In the recombinant factor VII{sub a}, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII{sub a} and human plasma factor VII{sub a}. These results show that factor VII{sub a} as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII{sub a} and that this cell line thus might represent an alternative source for human factor VII{sub a}.

  7. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.

    PubMed

    Feild, M J; Nguyen, D C; Armstrong, F B

    1989-06-13

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase (transaminase B, EC 2.6.1.42) of Salmonella typhimurium was determined. An Escherichia coli recombinant containing the ilvGEDAY gene cluster of Salmonella was used as the source of the hexameric enzyme. The peptide fragments used for sequencing were generated by treatment with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. The enzyme subunit contains 308 residues and has a molecular weight of 33,920. To determine the coenzyme-binding site, the pyridoxal 5-phosphate containing enzyme was treated with tritiated sodium borohydride prior to trypsin digestion. Peptide map comparisons with an apoenzyme tryptic digest and monitoring radioactivity incorporation allowed identification of the pyridoxylated peptide, which was then isolated and sequenced. The coenzyme-binding site is the lysyl residue at position 159. The amino acid sequence of Salmonella transaminase B is 97.4% identical with that of Escherichia coli, differing in only eight amino acid positions. Sequence comparisons of transaminase B to other known aminotransferase sequences revealed limited sequence similarity (24-33%) when conserved amino acid substitutions are allowed and alignments were forced to occur on the coenzyme-binding site. PMID:2669973

  8. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Saqi, M S; Clemetson, K J

    1997-04-15

    Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein. PMID:9163349

  9. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.

    PubMed

    Lee, Yu-Ching; Hsiao, Nai-Wan; Tseng, Tien-Sheng; Chen, Wang-Chuan; Lin, Hui-Hsiung; Leu, Sy-Jye; Yang, Ei-Wen; Tsai, Keng-Chang

    2015-02-01

    Tyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects. Thus, we systematically and comprehensively investigated the tyrosinase-inhibitory abilities of N- and C-terminal cysteine/tyrosine-containing tetrapeptides by constructing a phage-display random tetrapeptide library and conducting computational molecular docking studies on novel tyrosinase tetrapeptide inhibitors. We found that N-terminal cysteine-containing tetrapeptides exhibited the most potent tyrosinase-inhibitory abilities. The positional preference of cysteine residues at the N terminus in the tetrapeptides significantly contributed to their tyrosinase-inhibitory function. The sulfur atom in cysteine moieties of N- and C-terminal cysteine-containing tetrapeptides coordinated with copper ions, which then tightly blocked substrate-binding sites. N- and C-terminal tyrosine-containing tetrapeptides functioned as competitive inhibitors against mushroom tyrosinase by using the phenol ring of tyrosine to stack with the imidazole ring of His263, thus competing for the substrate-binding site. The N-terminal cysteine-containing tetrapeptide CRVI exhibited the strongest tyrosinase-inhibitory potency (with an IC50 of 2.7 ± 0.5 μM), which was superior to those of the known tyrosinase inhibitors (arbutin and kojic acid) and outperformed kojic acid-tripeptides, mimosine-FFY, and short-sequence oligopeptides at inhibiting mushroom tyrosinase. PMID:25403678

  10. Retroviral retargeting by envelopes expressing an N-terminal binding domain.

    PubMed Central

    Cosset, F L; Morling, F J; Takeuchi, Y; Weiss, R A; Collins, M K; Russell, S J

    1995-01-01

    We have engineered ecotropic Moloney murine leukemia virus-derived envelopes targeted to cell surface molecules expressed on human cells by the N-terminal insertion of polypeptides able to bind either Ram-1 phosphate transporter (the first 208 amino acids of amphotropic murine leukemia virus surface protein) or epidermal growth factor receptor (EGFR) (the 53 amino acids of EGF). Both envelopes were correctly processed and incorporated into viral particles. Virions carrying these envelopes could specifically bind the new cell surface receptors. Virions targeted to Ram-1 could infect human cells, although the efficiency was reduced compared with that of virions carrying wild-type amphotropic murine leukemia virus envelopes. The infectivity of virions targeted to EGFR was blocked at a postbinding step, and our results suggest that EGFR-bound virions were rapidly trafficked to lysosomes. These data suggest that retroviruses require specific properties of cell surface molecules to allow the release of viral cores into the correct cell compartment. PMID:7666532

  11. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. PMID:26954624

  12. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor

    SciTech Connect

    Fisone, G.; Berthold, M.; Bedecs, K.; Unden, A.; Bartfai, T.; Bertorelli, R.; Consolo, S.; Crawley, J.; Martin, B.; Nilsson, S.; )

    1989-12-01

    The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis. Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.

  13. Amino acid sequence of bovine heart coupling factor 6.

    PubMed Central

    Fang, J K; Jacobs, J W; Kanner, B I; Racker, E; Bradshaw, R A

    1984-01-01

    The amino acid sequence of bovine heart mitochondrial coupling factor 6 (F6) has been determined by automated Edman degradation of the whole protein and derived peptides. Preparations based on heat precipitation and ethanol extraction showed allotypic variation at three positions while material further purified by HPLC yielded only one sequence that also differed by a Phe-Thr replacement at residue 62. The mature protein contains 76 amino acids with a calculated molecular weight of 9006 and a pI of approximately equal to 5, in good agreement with experimentally measured values. The charged amino acids are mainly clustered at the termini and in one section in the middle; these three polar segments are separated by two segments relatively rich in nonpolar residues. Chou-Fasman analysis suggests three stretches of alpha-helix coinciding (or within) the high-charge-density sequences with a single beta-turn at the first polar-nonpolar junction. Comparison of the F6 sequence with those of other proteins did not reveal any homologous structures. PMID:6149548

  14. Identification of a mitochondrial-binding site on the N-terminal end of hexokinase II

    PubMed Central

    Bryan, Nadezda; Raisch, Kevin P.

    2015-01-01

    Hexokinase II (HKII) is responsible for the first step in the glycolysis pathway by adding a phosphate on to the glucose molecule so it can proceed down the pathway to produce the energy for continuous cancer cell growth. Tumour cells overexpress the HKII enzyme. In fact, it is the overexpression of the HKII enzyme that makes the diagnosis of cancer possible when imaged by positron emission tomography (PET). HKII binds to the voltage-dependent anion channel (VDAC) located on the mitochondrial outer membrane (MOM). When bound to the MOM, HKII is blocking a major cell death pathway. Thus, HKII is responsible for two characteristics of cancer cells, rapid tumour growth and inability of cancer cells to undergo apoptosis. One method to identify novel compounds that may interfere with the HKII–VDAC-binding site is to create a molecular model using the crystal structure of HKII. However, the amino acid(s) responsible for HKII binding to VDAC are not known. Therefore, a series of truncations and point mutations were made to the N-terminal end of HKII to identify the binding site to VDAC. Deletions of the first 10 and 20 amino acids indicated that important amino acid(s) for binding were located within the first 10 amino acids. Next, a series of point mutations were made within the first 10 amino acids. It is clear from the immunofluorescence images and immunoblot results that mutating the fifth amino acid from histidine to proline completely abolished binding to the MOM. PMID:26182367

  15. Sequences Of Amino Acids For Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.

    1992-01-01

    Sequences of amino acids defined for use in making polypeptides one-third to one-sixth as large as parent human serum albumin molecule. Smaller, chemically stable peptides have diverse applications including service as artificial human serum and as active components of biosensors and chromatographic matrices. In applications involving production of artificial sera from new sequences, little or no concern about viral contaminants. Smaller genetically engineered polypeptides more easily expressed and produced in large quantities, making commercial isolation and production more feasible and profitable.

  16. The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription

    PubMed Central

    Morin, Benjamin; Coutard, Bruno; Lelke, Michaela; Ferron, François; Kerber, Romy; Jamal, Saïd; Frangeul, Antoine; Baronti, Cécile; Charrel, Rémi; de Lamballerie, Xavier; Vonrhein, Clemens; Lescar, Julien; Bricogne, Gérard; Günther, Stephan; Canard, Bruno

    2010-01-01

    Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease. PMID:20862324

  17. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  18. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank. PMID:16780982

  19. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases

    SciTech Connect

    Taneja, Bhupesh; Patel, Asmita; Slesarev, Alexei; Mondragon, Alfonso

    2010-09-02

    Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.

  20. 60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth.

    PubMed

    Bicknell, Andrew B

    2016-05-01

    The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered. PMID:26759392

  1. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

    PubMed Central

    Borel, F; Vincent, C; Leberman, R; Härtlein, M

    1994-01-01

    Escherichia coli seryl-tRNA synthetase (SerRS) a dimeric class II aminoacyl-tRNA synthetase with two structural domains charges specifically the five iso-acceptor tRNA(ser) as well as the tRNA(sec) (selC product) of E. coli. The N-terminal domain is a 60 A long arm-like coiled coil structure built of 2 long antiparallel a-h helices, whereas the C-terminal domain is a alpha-beta structure. A deletion of the N-terminal arm of the enzyme does not affect the amino acid activation step of the reaction, but reduces dramatically amino-acylation activity. The Kcat/Km value for the mutant enzyme is reduced by more than 4 orders of magnitude, with a nearly 30 fold increased Km value for tRNA(ser). An only slightly truncated mutant form (16 amino acids of the tip of the arm replaced by a glycine) has an intermediate aminoacylation activity. Both mutant synthetases have lost their specificity for tRNA(ser) and charge also non-cognate type 1 tRNA(s). Our results support the hypothesis that class II synthetases have evolved from an ancestral catalytic core enzyme by adding non-catalytic N-terminal or C-terminal tRNA binding (specificity) domains which act as determinants for cognate and anti-determinants for non-cognate tRNAs. Images PMID:8065908

  2. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels

    SciTech Connect

    Hwang, Mi-Na; Min, Chan-Hee; Kim, Hyung Sik; Lee, Ho; Yoon, Kyong-Ah; Park, Sung Yong; Lee, Eun Sook; Yoon, Sungpil . E-mail: yoons@ncc.re.kr

    2007-08-24

    We determined that endogenous- and overexpressed- SOCS6 was localized in both the nucleus and cytoplasm. The localization of SOCS6 depended on amino acids 1-210 in the N-terminal region of the protein, which contains an unidentified domain. GFP-tagged SOCS6 or the N-terminal region, was exclusively localized and widely distributed throughout the entire nucleus, whereas the C-terminal region displayed a nuclear omission pattern. We also demonstrated that the SOCS6 protein could decrease the levels of the Stat3 protein in the nucleus, and that its negative regulation of the Stat3 protein level was dependent on its C-terminal region. These observations suggest that SOCS6 is composed of at least two functional domains required for its biological role in localizing and degrading Stat3 in the nucleus.

  3. Secondary structure, stability and tetramerisation of recombinant K(V)1.1 potassium channel cytoplasmic N-terminal fragment.

    PubMed

    Abbott, G W; Bloemendal, M; Van Stokkum, I H; Mercer, E A; Miller, R T; Sewing, S; Wolters, M; Pongs, O; Srai, S K

    1997-08-15

    The recombinant N-terminal fragment (amino acids 14-162) of a tetrameric voltage-gated potassium channel (K(V)1.1) has been studied using spectroscopic techniques. Evidence is presented that it forms a tetramer in aqueous solution, whereas when solubilised in 1% Triton X-100 it remains monomeric. The secondary structure content of both monomeric and tetrameric K(V)1.1 N-terminal fragment has been estimated from FTIR and CD spectroscopy to be 20-25% alpha-helix, 20-25% beta-sheet, 20% turns and 30-40% random coil. Solubilisation of the protein in detergent is shown by hydrogen-deuterium exchange analysis to alter tertiary structure rather than secondary structure and this may be the determining factor in tetramerisation ability. Using molecular modelling we propose a supersecondary structure consisting of two structural domains. PMID:9300810

  4. Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal.

    PubMed

    Wang, Shimin; Lu, Yi; Yin, Meng-Xin; Wang, Chao; Wu, Wei; Li, Jinhui; Wu, Wenqing; Ge, Ling; Hu, Lianxin; Zhao, Yun; Zhang, Lei

    2016-04-01

    The Hippo signaling pathway controls organ size by orchestrating cell proliferation and apoptosis. When the Hippo pathway was inactivated, the transcriptional co-activator Yorkie translocates into the nucleus and forms a complex with transcription factor Scalloped to promote the expression of Hippo pathway target genes. Therefore, the nuclear translocation of Yorkie is a critical step in Hippo signaling. Here, we provide evidence that the N-terminal 1-55 amino acids of Yorkie, especially Arg-15, were essential for its nuclear localization. By mass spectrometry and biochemical analyses, we found that Importin α1 can directly interact with the Yorkie N terminus and drive Yorkie into the nucleus. Further experiments show that the upstream component Hippo can inhibit Importin α1-mediated Yorkie nuclear import. Taken together, we identified a potential nuclear localization signal at the N-terminal end of Yorkie as well as a critical role for Importin α1 in Yorkie nuclear import. PMID:26887950

  5. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    SciTech Connect

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan

    2010-09-08

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal amino acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.

  6. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  7. N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b.

    PubMed

    Calcagno, Sarah; Klein, Christian D

    2016-08-01

    The methionine aminopeptidase 1b from Plasmodium falciparum (PfMetAP 1b) was cloned, expressed in Escherichia coli and characterized. Surprisingly, and in contrast to other methionine aminopeptidases (MetAPs) that require heavy-metal cofactors such as cobalt, the enzyme is reliably activated by zinc ions. Immobilization of the enzyme is possible by His-tag metal chelation to iminodiacetic acid-agarose and by covalent binding to chloroacetamido-hexyl-agarose. The covalently immobilized enzyme shows long-term stability, allowing a continuous, heterogenous processing of N-terminal methionines, for example, in recombinant proteins. Activation by zinc, instead of cobalt as for other MetAPs, avoids the introduction of heavy metals with toxicological liabilities and oxidative potential into biotechnological processes. The PfMetAP 1b therefore represents a useful tool for the enzymatic, posttranslational processing of recombinant proteins. PMID:27023914

  8. Correlation between fibroin amino acid sequence and physical silk properties.

    PubMed

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet. PMID:12816957

  9. Amino acid sequence of the nonsecretory ribonuclease of human urine.

    PubMed

    Beintema, J J; Hofsteenge, J; Iwama, M; Morita, T; Ohgi, K; Irie, M; Sugiyama, R H; Schieven, G L; Dekker, C A; Glitz, D G

    1988-06-14

    The amino acid sequence of a nonsecretory ribonuclease isolated from human urine was determined except for the identity of the residue at position 7. Sequence information indicates that the ribonucleases of human liver and spleen and an eosinophil-derived neurotoxin are identical or very closely related gene products. The sequence is identical at about 30% of the amino acid positions with those of all of the secreted mammalian ribonucleases for which information is available. Identical residues include active-site residues histidine-12, histidine-119, and lysine-41, other residues known to be important for substrate binding and catalytic activity, and all eight half-cystine residues common to these enzymes. Major differences include a deletion of six residues in the (so-called) S-peptide loop, insertions of two, and nine residues, respectively, in three other external loops of the molecule, and an addition of three residues at the amino terminus. The sequence shows the human nonsecretory ribonuclease to belong to the same ribonuclease superfamily as the mammalian secretory ribonucleases, turtle pancreatic ribonuclease, and human angiogenin. Sequence data suggest that a gene duplication occurred in an ancient vertebrate ancestor; one branch led to the nonsecretory ribonuclease, while the other branch led to a second duplication, with one line leading to the secretory ribonucleases (in mammals) and the second line leading to pancreatic ribonuclease in turtle and an angiogenic factor in mammals (human angiogenin). The nonsecretory ribonuclease has five short carbohydrate chains attached via asparagine residues at the surface of the molecule; these chains may have been shortened by exoglycosidase action.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3166997

  10. Membrane insertion of the N-terminal α-helix of equinatoxin II, a sea anemone cytolytic toxin

    PubMed Central

    2004-01-01

    Equinatoxin II (Eqt-II) is a member of the actinoporins, a unique family of cytotoxins comprising 20 kDa pore-forming proteins isolated from sea anemones. Actinoporins bind preferentially to lipid membranes containing sphingomyelin, and create cation-selective pores by oligomerization of three to four monomers. Previous studies have shown that regions of Eqt-II crucial for its cytolytic mechanism are an exposed aromatic cluster and the N-terminal region containing an amphipathic α-helix. In the present study, we have investigated the transfer of the N-terminal α-helix into the lipid membrane by the use of three mutants containing an additional tryptophan residue in different positions within the amphipathic α-helix (Ile18→Trp, Val22→Trp and Ala25→Trp). The interaction of the mutants with different model systems, such as lipid monolayers, erythrocytes and ghost membranes, was extensively characterized. Intrinsic fluorescence measurements and the use of vesicles containing brominated phospholipids indicated a deep localization of the N-terminal amphipathic helix in the lipid bilayer, except for the case of Val22→Trp. This mutant is stabilized in a state immediately prior to final pore formation. The introduction of additional tryptophan residues in the sequence of Eqt-II has proved to be a suitable approach to monitor the new environments that surround defined regions of the molecule upon membrane interaction. PMID:15317486

  11. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.

    PubMed

    Otikovs, Martins; Chen, Gefei; Nordling, Kerstin; Landreh, Michael; Meng, Qing; Jörnvall, Hans; Kronqvist, Nina; Rising, Anna; Johansson, Jan; Jaudzems, Kristaps

    2015-08-17

    Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus ((Av)MiSp NT), lack one of the glutamic acids. Here we investigate the pH-dependent structural changes of (Av)MiSp NT, revealing that it uses the same mechanism but involves a non-conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH-dependent dimerization of NT is conserved among different silk types. PMID:26033527

  12. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  13. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  14. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  15. The amino acid sequence of chymopapain from Carica papaya.

    PubMed Central

    Watson, D C; Yaguchi, M; Lynn, K R

    1990-01-01

    Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3. PMID:2106878

  16. The amino acid sequence of chymopapain from Carica papaya.

    PubMed

    Watson, D C; Yaguchi, M; Lynn, K R

    1990-02-15

    Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3. PMID:2106878

  17. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA

    PubMed Central

    Dwivedi, Gajendradhar R.; Srikanth, Kolluru D.; Anand, Praveen; Naikoo, Javed; Srilatha, N. S.; Rao, Desirazu N.

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  18. N-terminal determinants of human cytomegalovirus IE1 protein in nuclear targeting and disrupting PML-associated subnuclear structures

    SciTech Connect

    Lee, Hye-Ra; Huh, Yong Ho; Kim, Young-Eui; Lee, Karim; Kim, Sunyoung; Ahn, Jin-Hyun . E-mail: jahn@med.skku.ac.kr

    2007-05-04

    The 72-kDa IE1 protein of human cytomegalovirus disrupts PML-associated subnuclear structures (PODs) by inducing PML desumoylation. This process correlates with the functions of IE1 in transcriptional regulation and efficient viral replication. Here, we defined the N-terminal regions of IE1 required for nuclear targeting and POD-disrupting activity. Although the 24 N-terminal amino acids encoded by exon 2, which were previously shown to be essential for nuclear targeting, did not appear to contain typical basic nuclear localization signals, these residues were able to efficiently convey the GFP protein into the nucleus, suggesting a role in promoting nuclear translocation. In assays using a series of N-terminal truncation IE1 mutants, which were forced to enter the nucleus, exon 2 was completely dispensable for POD disruption. However, the predicted two {alpha}-helix regions in exon 3 were identified as important structural determinants for protein stability and for the correlating activities in POD disruption and PML desumoylation.

  19. The Pitx2c N-terminal domain is a critical interaction domain required for asymmetric morphogenesis

    PubMed Central

    Simard, Annie; Di Giorgio, Luciano; Amen, Melanie; Westwood, Ashley; Amendt, Brad A.; Ryan, Aimee K.

    2010-01-01

    The paired-like homeodomain transcription factor Pitx2c has an essential role in patterning the left-right axis. However, neither its transcriptional targets nor the molecular mechanisms through which it exerts its patterning function are known. Here we provide evidence that the N-terminal domain of Pitx2c is important for this activity. Overexpression of the Pitx2c N-terminus in ovo randomizes the direction of heart looping, the first morphological asymmetry conserved in vertebrate embryos. In addition, the Pitx2c N-terminal domain blocks the ability of Pitx2c to synergize with Nkx2.5 to transactivate the procollagen lysyl hydroxylase (Plod-1) promoter in transient transfection assays. A five amino acid region containing leucine-41 is required for both of these effects. Our data suggest that the Pitx2c N-terminal domain competes with endogenous Pitx2c for binding to a protein interaction partner that is required for the activation of genes that direct asymmetric morphogenesis along the left-right axis. PMID:19681163

  20. The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra).

    PubMed

    Wu, C Y; Chen, W C; Ho, C L; Chen, S T; Wang, K T

    1997-04-28

    The N-terminal leucine residue of snake venom cardiotoxin II (CTX II) (Naja naja atra) was systematically replaced with D-leucine (CTXII-L1-D-L), glycine (CTXII-L1G) or deleted [CTXII-(2-60)] to study the role of leucine residue in CTX II molecule. CTX II, CTXL1-D-L, CTXL1G and CTX(2-60) were produced by chemical synthesis method and purified by high performance liquid chromatography. Owing to folding problem in CTXII-(2-60), only CTX II, CTXII-L1-D-L and CTXII-L1G were produced in a pure form and characterized by amino acid analysis, mass spectrometry and peptide mapping. In the structural aspect, changing the Leu-1 by D-Leu or Gly causes a drastic alteration in the whole CTX II structure as detected by circular dichroism, 1-anilino-naphthalene-8-sulfonate (ANS) fluorescence assay. In the functional aspect, both CTXII-L1-D-L and CTXII-L1G are still retained substantial biological activity of CTX II. Therefore, the results indicate that both the chirality and the side-chain of the N-terminal leucine residue of CTX II are important elements in maintaining the whole CTX II structure. In addition, this study is the first report in elucidating the reason why the first N-terminal residue of most CTXs (90.3%) is leucine residue. PMID:9168920

  1. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA.

    PubMed

    Dwivedi, Gajendradhar R; Srikanth, Kolluru D; Anand, Praveen; Naikoo, Javed; Srilatha, N S; Rao, Desirazu N

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  2. N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis.

    PubMed

    Rada, Petr; Makki, Abhijith Radhakrishna; Zimorski, Verena; Garg, Sriram; Hampl, Vladimír; Hrdý, Ivan; Gould, Sven B; Tachezy, Jan

    2015-12-01

    Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution. PMID:26475173

  3. N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis

    PubMed Central

    Rada, Petr; Makki, Abhijith Radhakrishna; Zimorski, Verena; Garg, Sriram; Hampl, Vladimír; Hrdý, Ivan; Gould, Sven B.

    2015-01-01

    Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to “short” bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution. PMID:26475173

  4. N-terminal mutations in the anti-estradiol Fab 57-2 modify its hapten binding properties.

    PubMed Central

    Saviranta PJauria, P.; Lamminmäki, U.; Hellman, J.; Eriksson, S.; Lövgren, T.

    2000-01-01

    Recombinant antibodies often contain N-terminal mutations arising from the use of degenerate cloning primer sets and/or the introduction of restriction sites in the framework 1 regions. We studied the effects of such mutations in a recombinant anti-estradiol Fab fragment derived from the hybridoma cell line 57-2. The 5' ends of the heavy and light chain genes were originally modified to introduce the restriction sites XhoI and SacI, respectively, for cloning purposes. However, the affinity and specificity of the recombinant Fab were lowered compared to the proteolytic Fab' fragment of the parental hybridoma IgG. Replacing the mutated sites with authentic amino acid coding sequences restored the binding properties as well as increased the bacterial production levels fivefold and 10-fold at 30 and 37 degrees C, respectively. Local changes in the antigen binding site were probed by determining the affinity constants (Kd) for estradiol and four related steroids. It was found that the mutated heavy chain amino terminus specifically increased the Kd for testosterone whereas the mutated light chain amino terminus decreased the Kd for all of the steroids to the same extent; the heavy and light chain effects were additive. Analysis of a newly determined crystal structure of the authentic Fab 57-2 in complex with estradiol suggests that mutations in the residue 2 in V(H), and 2 and 4 in the V(L) domain were those responsible for the observed effects. Their general roles as structure-determining residues for the CDR3 loops imply that similar effects can occur with other recombinant antibodies as well. PMID:11206076

  5. Role of N-terminal methionine residues in the redox activity of copper bound to alpha-synuclein.

    PubMed

    Rodríguez, Esaú E; Arcos-López, Trinidad; Trujano-Ortiz, Lidia G; Fernández, Claudio O; González, Felipe J; Vela, Alberto; Quintanar, Liliana

    2016-09-01

    Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease. The interaction of copper ions with the N-terminal region of AS promotes its amyloid aggregation and metal-catalyzed oxidation has been proposed as a plausible mechanism. The AS(1-6) fragment represents the minimal sequence that models copper coordination to this intrinsically disordered protein. In this study, we evaluated the role of methionine residues Met1 and Met5 in Cu(II) coordination to the AS(1-6) fragment, and in the redox activity of the Cu-AS(1-6) complex. Spectroscopic and electronic structure calculations show that Met1 may play a role as an axial ligand in the Cu(II)-AS(1-6) complex, while Met5 does not participate in metal coordination. Cyclic voltammetry and reactivity studies demonstrate that Met residues play an important role in the reduction and reoxidation processes of this complex. However, Met1 plays a more important role than Met5, as substitution of Met1 by Ile decreases the reduction potential of the Cu-AS(1-6) complex by ~80 mV, causing a significant decrease in its rate of reduction. Reoxidation of the complex by oxygen results in oxidation of the Met residues to sulfoxide, being Met1 more susceptible to copper-catalyzed oxidation than Met5. The sulfoxide species can suffer elimination of methanesulfenic acid, rendering a peptide with no thioether moiety, which would impair the ability of AS to bind Cu(I) ions. Overall, our study underscores the important roles that Met1 plays in copper coordination and the reactivity of the Cu-AS complex. PMID:27422629

  6. Atomistic mechanisms of huntingtin N-terminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations.

    PubMed

    Côté, Sébastien; Wei, Guanghong; Mousseau, Normand

    2014-07-01

    The huntingtin protein is characterized by a segment of consecutive glutamines (Q(N)) that is responsible for its fibrillation. As with other amyloid proteins, misfolding of huntingtin is related to Huntington's disease through pathways that can involve interactions with phospholipid membranes. Experimental results suggest that the N-terminal 17-amino-acid sequence (htt(NT)) positioned just before the Q(N) region is important for the binding of huntingtin to membranes. Through all-atom explicit solvent molecular dynamics simulations, we unveil the structure and dynamics of the htt(NT)Q(N) fragment on a phospholipid membrane at the atomic level. We observe that the insertion dynamics of this peptide can be described by four main steps-approach, reorganization, anchoring, and insertion-that are very diverse at the atomic level. On the membrane, the htt(NT) peptide forms a stable α-helix essentially parallel to the membrane with its nonpolar side-chains-mainly Leu-4, Leu-7, Phe-11 and Leu-14-positioned in the hydrophobic core of the membrane. Salt-bridges involving Glu-5, Glu-12, Lys-6, and Lys-15, as well as hydrogen bonds involving Thr-3 and Ser-13 with the phospholipids also stabilize the structure and orientation of the htt(NT) peptide. These observations do not significantly change upon adding the Q(N) region whose role is rather to provide, through its hydrogen bonds with the phospholipids' head group, a stable scaffold facilitating the partitioning of the htt(NT) region in the membrane. Moreover, by staying accessible to the solvent, the amyloidogenic Q(N) region could also play a key role for the oligomerization of htt(NT)Q(N) on phospholipid membranes. PMID:24415136

  7. Kinetic Mechanism of Protein N-terminal Methyltransferase 1*

    PubMed Central

    Richardson, Stacie L.; Mao, Yunfei; Zhang, Gang; Hanjra, Pahul; Peterson, Darrell L.; Huang, Rong

    2015-01-01

    The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors. PMID:25771539

  8. Kinetic mechanism of protein N-terminal methyltransferase 1.

    PubMed

    Richardson, Stacie L; Mao, Yunfei; Zhang, Gang; Hanjra, Pahul; Peterson, Darrell L; Huang, Rong

    2015-05-01

    The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors. PMID:25771539

  9. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis

    SciTech Connect

    Castro, A; Shera, E.B.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at Los Alamos National Laboratory. There has been considerable interest in the development of very sensitive clinical diagnostic techniques over the last few years. Many pathogenic agents are often present in extremely small concentrations in clinical samples, especially at the initial stages of infection, making their detection very difficult. This project sought to develop a new technique for the detection and accurate quantification of specific bacterial and viral nucleic acid sequences in clinical samples. The scheme involved the use of novel hybridization probes for the detection of nucleic acids combined with our recently developed technique of single-molecule electrophoresis. This project is directly relevant to the DOE`s Defense Programs strategic directions in the area of biological warfare counter-proliferation.

  10. Structure of the N-terminal fragment of Escherichia coli Lon protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.; Melnikov, Edward E.; Maurizi, Michael R.; Rotanova, Tatyana V.; Dauter, Zbigniew; Wlodawer, Alexander

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.

  11. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase

    PubMed Central

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C.; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M.

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1–50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  12. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase.

    PubMed

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1-50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  13. The Presence of a Single N-terminal Histidine Residue Enhances the Fusogenic Properties of a Membranotropic Peptide Derived from Herpes Simplex Virus Type 1 Glycoprotein H

    PubMed Central

    Galdiero, Stefania; Falanga, Annarita; Vitiello, Mariateresa; Raiola, Luca; Russo, Luigi; Pedone, Carlo; Isernia, Carla; Galdiero, Massimiliano

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)-induced membrane fusion remains one of the most elusive mechanisms to be deciphered in viral entry. The structure resolution of glycoprotein gB has revealed the presence of fusogenic domains in this protein and pointed out the key role of gB in the entry mechanism of HSV-1. A second putative fusogenic glycoprotein is represented by the heterodimer comprising the membrane-anchored glycoprotein H (gH) and the small secreted glycoprotein L, which remains on the viral envelope in virtue of its non-covalent interaction with gH. Different domains scattered on the ectodomain of HSV-1 gH have been demonstrated to display membranotropic characteristics. The segment from amino acid 626 to 644 represents the most fusogenic region identified by studies with synthetic peptides and model membranes. Herein we have identified the minimal fusogenic sequence present on gH. An enlongation at the N terminus of a single histidine (His) has proved to profoundly increase the fusogenic activity of the original sequence. Nuclear magnetic resonance (NMR) studies have shown that the addition of the N-terminal His contributes to the formation and stabilization of an α-helical domain with high fusion propensity. PMID:20348105

  14. Walleye Dermal Sarcoma Virus: OrfA N-Terminal End Inhibits the Activity of a Reporter Gene Directed by Eukaryotic Promoters and Has a Negative Effect on the Growth of Fish and Mammalian Cells

    PubMed Central

    Zhang, Z.; Martineau, D.

    1999-01-01

    Walleye dermal sarcoma virus (WDSV) is a fish retrovirus causing a skin tumor termed walleye dermal sarcoma, which develops and regresses on a seasonal basis. The WDSV genome contains three short open reading frames designated orfA, orfB, and orfC in addition to the viral structural genes, gag, pol, and env. orfA and orfB transcripts are detected in tumors by reverse transcription-PCR. Recently, OrfA, whose amino acid sequence is similar to that of cyclins A and D, has been shown to complement a cyclin-deficient yeast strain. We report that expression of the accessory gene orfA inhibited nonspecifically the activity of a reporter gene directed by various eukaryotic promoters. In addition, stable transfection with the wild-type orfA generated substantially fewer G418-resistant colonies in both fish and mammalian cells than the parent vector. An orfA mutant expressing only the first N-terminal 49 residues of the full-length protein had the same negative effect on the activity of the reporter gene and on the number of stably transfected colonies as the full-length OrfA. Thus, OrfA inhibits cell growth and/or causes cell death, and the first 49 N-terminal residues of this protein are sufficient to cause these negative effects. PMID:10482648

  15. Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases

    PubMed Central

    Marino, Francesca; Mojumdar, Aditya; Zucchelli, Chiara; Bhardwaj, Amit; Buratti, Emanuele; Vindigni, Alessandro; Musco, Giovanna; Onesti, Silvia

    2016-01-01

    The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability. PMID:26888063

  16. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and alpha alpha-tropomyosin.

    PubMed Central

    Greenfield, N. J.; Stafford, W. F.; Hitchcock-DeGregori, S. E.

    1994-01-01

    We have used a synthetic peptide consisting of the first 30 residues of striated muscle alpha-tropomyosin, with GlyCys added to the C-terminus, to investigate the effect of N-terminal acetylation on the conformation and stability of the N-terminal domain of the coiled-coil protein. In aqueous buffers at low ionic strength, the reduced, unacetylated 32mer had a very low alpha-helical content (approximately 20%) that was only slightly increased by disulfide crosslinking or N-terminal acetylation. Addition of salt (> 1 M) greatly increased the helical content of the peptide. The CD spectrum, the cooperativity of folding of the peptide, and sedimentation equilibrium ultracentrifugation studies showed that it formed a 2-chained coiled coil at high ionic strength. Disulfide crosslinking and N-terminal acetylation both greatly stabilized the coiled-coil alpha-helical conformation in high salt. Addition of ethanol or trifluoroethanol to solutions of the peptide also increased its alpha-helical content. However, the CD spectra and unfolding behavior of the peptide showed no evidence of coiled-coil formation. In the presence of the organic solvents, N-terminal acetylation had very little effect on the conformation or stability of the peptide. Our results indicate that N-terminal acetylation stabilizes coiled-coil formation in the peptide. The effect cannot be explained by interactions with the "helix-dipole" because the stabilization is observed at very high salt concentrations and is independent of pH. In contrast to the results with the peptide, N-terminal acetylation has only small effects on the overall stability of tropomyosin. PMID:8019411

  17. Highly heterologous region in the N-terminal extracellular domain of reptilian follitropin receptors.

    PubMed

    Akazome, Y; Ogasawara, O; Park, M K; Mori, T

    1996-12-01

    The primary structure of the N-terminal extracellular region of the follitropin receptor (FSH-R), which is thought to be responsible for hormone binding specificity, was determined in three reptilian species (tortoise, gecko, and lizard). Remarkably low sequence homologies were detected in the C-terminal part of the extracellular domain. This region was estimated to be a part of exon 10, which is the last exon of the FSH-R gene. In this region, not only were low homologies detected among the three reptilian species, but also specific deletions and/or insertions were found. In particular, large deletions were detected in squamate (gecko and lizard) FSH-Rs. Phylogenetic analysis indicated that these large deletions occurred recently, i.e., after the Triassic period. In another region characterized, sequence homologies were high, with tortoise-rat homology 78.4%, gecko-rat 64.7%, and lizard-rat 69.1%. In this highly conserved region, however, some reptile-specific alterations were detected, such as the loss of a cysteine residue in putative exon 7 and the existence of potential N-linked glycosylation sites in putative exon 9. PMID:8954771

  18. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  19. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  20. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  1. Molecular cloning, expression, and primary sequence of outer membrane protein P2 of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Tolan, R W

    1989-01-01

    The structural gene for the porin of Haemophilus influenzae type b, designated outer membrane protein P2, was cloned, and the DNA sequence was determined. An oligonucleotide probe generated by reverse translation of N-terminal amino acid sequence data from the purified protein was used to screen genomic DNA. The probe detected a single EcoRI fragment of approximately 1,700 base pairs which was cloned to lambda gt11 and then into M13 and partially sequenced. The derived amino acid sequence indicated that we had cloned the N-terminal portion of the P2 gene. An overlapping approximately 1,600-base-pair PvuII genomic fragment was cloned into M13, and the sequence of the remainder of the P2 gene was determined. The gene for P2 was then reconstructed under the control of the T7 promoter and expressed in Escherichia coli. The N-terminal sequence of the purified protein corresponds to residues 21 through 34 of the derived amino acid sequence. Thus, the protein is synthesized with a 20-amino-acid leader peptide. The Mr of the processed protein is 37,782, in good agreement with the estimate of 37,000 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2535836

  2. Predicting protein disorder by analyzing amino acid sequence

    PubMed Central

    Yang, Jack Y; Yang, Mary Qu

    2008-01-01

    Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins. PMID:18831799

  3. Effects of pre- and pro-sequence of thaumatin on the secretion by Pichia pastoris.

    PubMed

    Ide, Nobuyuki; Masuda, Tetsuya; Kitabatake, Naofumi

    2007-11-23

    Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis. PMID:17897626

  4. N-terminal domain of complexin independently activates calcium-triggered fusion.

    PubMed

    Lai, Ying; Choi, Ucheor B; Zhang, Yunxiang; Zhao, Minglei; Pfuetzner, Richard A; Wang, Austin L; Diao, Jiajie; Brunger, Axel T

    2016-08-01

    Complexin activates Ca(2+)-triggered neurotransmitter release and regulates spontaneous release in the presynaptic terminal by cooperating with the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and the Ca(2+)-sensor synaptotagmin. The N-terminal domain of complexin is important for activation, but its molecular mechanism is still poorly understood. Here, we observed that a split pair of N-terminal and central domain fragments of complexin is sufficient to activate Ca(2+)-triggered release using a reconstituted single-vesicle fusion assay, suggesting that the N-terminal domain acts as an independent module within the synaptic fusion machinery. The N-terminal domain can also interact independently with membranes, which is enhanced by a cooperative interaction with the neuronal SNARE complex. We show by mutagenesis that membrane binding of the N-terminal domain is essential for activation of Ca(2+)-triggered fusion. Consistent with the membrane-binding property, the N-terminal domain can be substituted by the influenza virus hemagglutinin fusion peptide, and this chimera also activates Ca(2+)-triggered fusion. Membrane binding of the N-terminal domain of complexin therefore cooperates with the other fusogenic elements of the synaptic fusion machinery during Ca(2+)-triggered release. PMID:27444020

  5. N-terminal domain of complexin independently activates calcium-triggered fusion

    PubMed Central

    Lai, Ying; Choi, Ucheor B.; Zhang, Yunxiang; Zhao, Minglei; Pfuetzner, Richard A.; Wang, Austin L.; Brunger, Axel T.

    2016-01-01

    Complexin activates Ca2+-triggered neurotransmitter release and regulates spontaneous release in the presynaptic terminal by cooperating with the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and the Ca2+-sensor synaptotagmin. The N-terminal domain of complexin is important for activation, but its molecular mechanism is still poorly understood. Here, we observed that a split pair of N-terminal and central domain fragments of complexin is sufficient to activate Ca2+-triggered release using a reconstituted single-vesicle fusion assay, suggesting that the N-terminal domain acts as an independent module within the synaptic fusion machinery. The N-terminal domain can also interact independently with membranes, which is enhanced by a cooperative interaction with the neuronal SNARE complex. We show by mutagenesis that membrane binding of the N-terminal domain is essential for activation of Ca2+-triggered fusion. Consistent with the membrane-binding property, the N-terminal domain can be substituted by the influenza virus hemagglutinin fusion peptide, and this chimera also activates Ca2+-triggered fusion. Membrane binding of the N-terminal domain of complexin therefore cooperates with the other fusogenic elements of the synaptic fusion machinery during Ca2+-triggered release. PMID:27444020

  6. The N-terminal Arg Residue Is Essential for Autocatalytic Activation of a Lipopolysaccharide-responsive Protease Zymogen*

    PubMed Central

    Kobayashi, Yuki; Shiga, Takafumi; Shibata, Toshio; Sako, Miyuki; Maenaka, Katsumi; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2014-01-01

    Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules. PMID:25077965

  7. The N-terminal Arg residue is essential for autocatalytic activation of a lipopolysaccharide-responsive protease zymogen.

    PubMed

    Kobayashi, Yuki; Shiga, Takafumi; Shibata, Toshio; Sako, Miyuki; Maenaka, Katsumi; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2014-09-12

    Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules. PMID:25077965

  8. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...

  9. Assembly, trafficking and function of α1β2γ2 GABAA receptors are regulated by N-terminal regions, in a subunit-specific manner.

    PubMed

    Wong, Lik-Wei; Tae, Han-Shen; Cromer, Brett A

    2015-09-01

    GABAA receptors are pentameric ligand-gated ion channels that mediate inhibitory fast synaptic transmission in the central nervous system. Consistent with recent pentameric ligand-gated ion channels structures, sequence analysis predicts an α-helix near the N-terminus of each GABAA receptor subunit. Preceding each α-helix are 8-36 additional residues, which we term the N-terminal extension. In homomeric GABAC receptors and nicotinic acetylcholine receptors, the N-terminal α-helix is functionally essential. Here, we determined the role of the N-terminal extension and putative α-helix in heteromeric α1β2γ2 GABAA receptors. This role was most prominent in the α1 subunit, with deletion of the N-terminal extension or further deletion of the putative α-helix both dramatically reduced the number of functional receptors at the cell surface. Conversely, deletion of the β2 or γ2 N-terminal extension had little effect on the number of functional cell surface receptors. Additional deletion of the putative α-helix in the β2 or γ2 subunits did, however, decrease both functional cell surface receptors and incorporation of the γ2 subunit into mature receptors. In the β2 subunit only, α-helix deletions affected GABA sensitivity and desensitization. Our findings demonstrate that N-terminal extensions and α-helices make key subunit-specific contributions to assembly, consistent with both regions being involved in inter-subunit interactions. N-terminal α-helices and preceding sequences of eukaryotic pentameric ligand-gated ion channels are absent in prokaryotic homologues, suggesting they may not be functionally essential. Here, we show that in heteropentameric α1β2γ2 GABAA receptors, the role of these segments is highly subunit dependent. The extension preceding the α-helix in the α subunit is crucial for assembly and trafficking, but is of little importance in β and γ subunits. Indeed, robust receptor levels remain when the extension and α-helix are

  10. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  11. Activation of G Protein-Coupled Receptor Kinase 1 Involves Interactions between Its N-Terminal Region and Its Kinase Domain

    SciTech Connect

    Huang, Chih-chin; Orban, Tivadar; Jastrzebska, Beata; Palczewski, Krzysztof; Tesmer, John J.G.

    2012-03-16

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its 20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

  12. Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II.

    PubMed

    Spieß, Tobias; Korn, Sophie Marianne; Kötter, Peter; Entian, Karl-Dieter

    2015-08-15

    The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism. PMID:26025904

  13. Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II

    PubMed Central

    Spieß, Tobias; Korn, Sophie Marianne

    2015-01-01

    The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1–20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1–20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1–20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism. PMID:26025904

  14. Identification of Tuber borchii Vittad. mycelium proteins separated by two-dimensional polyacrylamide gel electrophoresis using amino acid analysis and sequence tagging.

    PubMed

    Vallorani, L; Bernardini, F; Sacconi, C; Pierleoni, R; Pieretti, B; Piccoli, G; Buffalini, M; Stocchi, V

    2000-11-01

    This paper reports the first results in the proteome analysis of Tuber borchii Vittad. mycelium, an ectomycorrhizal fungus poorly defined genetically, but known for its generation of edible fruit bodies known as white truffles. Employing isoelectric focusing on immobilized pH gradients, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we obtained an electropherogram presenting over 800 spots within the window of isoelectric points (pI) 3.5-9 and a molecular mass of 10-200 kDa. Different reducing agents were tested in the sample preparation buffers, and the standard lysis buffer plus 2% w/v polyvinylpolypyrrolidone allowed the best solubilization and resolution of the proteins. The T. borchii proteins separated in micropreparative gels were electroblotted onto polyvinylidene difluoride membranes and visualized by Coomassie staining. Twenty-three proteins were excised and analyzed by the combination of amino acid and N-terminal analysis. One protein was identified by matching its amino acid composition, estimated isoelectric point and molecular mass against the SWISS-PROT and EMBL databases. Four spots were successfully tagged by Edman microsequencing but no homologous sequences were found in databases. PMID:11271490

  15. N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42.

    PubMed

    Szczepankiewicz, Olga; Linse, Björn; Meisl, Georg; Thulin, Eva; Frohm, Birgitta; Sala Frigerio, Carlo; Colvin, Michael T; Jacavone, Angela C; Griffin, Robert G; Knowles, Tuomas; Walsh, Dominic M; Linse, Sara

    2015-11-25

    Amyloid β-protein (Aβ) sequence length variants with varying aggregation propensity coexist in vivo, where coaggregation and cross-catalysis phenomena may affect the aggregation process. Until recently, naturally occurring amyloid β-protein (Aβ) variants were believed to begin at or after the canonical β-secretase cleavage site within the amyloid β-protein precursor. However, N-terminally extended forms of Aβ (NTE-Aβ) were recently discovered and may contribute to Alzheimer's disease. Here, we have used thioflavin T fluorescence to study the aggregation kinetics of Aβ42 variants with N-terminal extensions of 5-40 residues, and transmission electron microscopy to analyze the end states. We find that all variants form amyloid fibrils of similar morphology as Aβ42, but the half-time of aggregation (t1/2) increases exponentially with extension length. Monte Carlo simulations of model peptides suggest that the retardation is due to an underlying general physicochemical effect involving reduced frequency of productive molecular encounters. Indeed, global kinetic analyses reveal that NTE-Aβ42s form fibrils via the same mechanism as Aβ42, but all microscopic rate constants (primary and secondary nucleation, elongation) are reduced for the N-terminally extended variants. Still, Aβ42 and NTE-Aβ42 coaggregate to form mixed fibrils and fibrils of either Aβ42 or NTE-Aβ42 catalyze aggregation of all monomers. NTE-Aβ42 monomers display reduced aggregation rate with all kinds of seeds implying that extended termini interfere with the ability of monomers to nucleate or elongate. Cross-seeding or coaggregation may therefore represent an important contribution in the in vivo formation of assemblies believed to be important in disease. PMID:26535489

  16. The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core.

    PubMed Central

    Schalkwijk, J; Wiedow, O; Hirose, S

    1999-01-01

    Recently, several new genes have been discovered in various species which are homologous to the well-characterized human epithelial proteinase inhibitor elafin/SKALP (skin-derived anti-leukoproteinase). Because of the high degree of conservation and the similarities in genomic organization, we propose that these genes belong to a novel gene family. At the protein level, the family members are defined by: (1) an N-terminal domain consisting of a variable number of repeats with the consensus sequence Gly-Gln-Asp-Pro-Val-Lys that can act as an anchoring motif by transglutaminase cross-linking, and (2) a C-terminal four-disulphide core or whey acidic protein (WAP) domain, which harbours a functional motif involved in binding of proteinases and possibly other proteins. We have proposed the name trappin gene family as a unifying nomenclature for this group of proteins (trappin is an acronym for TRansglutaminase substrate and wAP domain containing ProteIN, and refers to its functional property of 'getting trapped' in tissues by covalent cross-linking). Analysis of the trappin family members shows extensive diversification in bovidae and suidae, whereas the number of primate trappins is probably limited. Recent biochemical and cell biological data on the human trappin family member elafin/SKALP suggest that this molecule is induced in epidermis by cellular stress. We hypothesize that trappins play an important role in the regulation of inflammation and in protection against tissue damage in stratified epithelia. PMID:10359639

  17. The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits

    PubMed Central

    Ha, Seung-Wook; Ju, Donghong; Xie, Youming

    2014-01-01

    The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome. PMID:22349505

  18. Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1 — And Mode of Action Studies of the N-Terminal, Proline-Rich Region

    PubMed Central

    Paulsen, Victoria S.; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J.; Styrvold, Olaf B.; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH2 terminus of the peptide and the fragment arasin 1(1–23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1–23) were shown to be non-toxic to human red blood cells and arasin 1(1–23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1–23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1–23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1–23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1–23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC. PMID:23326415

  19. Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity

    PubMed Central

    D'Antuono, Alejandra; Loureiro, Maria Eugenia; Foscaldi, Sabrina; Marino-Buslje, Cristina

    2014-01-01

    ABSTRACT The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be

  20. Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti.

    PubMed

    Pieprzyk, Joanna; Zbela, Agnieszka; Jakób, Michał; Ożyhar, Andrzej; Orłowski, Marek

    2014-06-01

    The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors. PMID:24704038

  1. The C-terminus of p53 binds the N-terminal domain of MDM2

    PubMed Central

    Poyurovsky, Masha V.; Katz, Chen; Laptenko, Oleg; Beckerman, Rachel; Lokshin, Maria; Ahn, Jinwoo; Byeon, In-Ja L.; Gabizon, Ronen; Mattia, Melissa; Zupnick, Andrew; Brown, Lewis M.; Friedler, Assaf; Prives, Carol

    2010-01-01

    The p53 tumor suppressor interacts with its negative regulator Mdm2 via the former’s N-terminal region and core domain. Yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2–p53 association. We show that, the Mdm2–p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C-terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells. Further, using multiple approaches we demonstrate that a peptide from p53 C-terminus directly binds Mdm2 N-terminus in vitro. We also show that p300-acetylated p53 binds inefficiently to Mdm2 in vitro, and Nutlin-3 treatment induces C-terminal modification(s) of p53 in cells, explaining the low efficiency of Nutlin-3 in dissociating p53-MDM2 in vitro. PMID:20639885

  2. Diuretic and myotropic activities of N-terminal truncated analogs of Musca domestica kinin neuropeptide.

    PubMed

    Coast, Geoffrey M; Zabrocki, Janusz; Nachman, Ronald J

    2002-04-01

    Musca kinin (Musdo-K; NTVVLGKKQRFHSWG-NH(2)) and N-terminal truncated analogs of 4-14 residues in length were assayed for diuretic and myotropic activity on housefly Malpighian tubules and hindgut, respectively. The pentapeptide was the minimum sequence required for biological activity, but it was > 5 orders of magnitude less potent than the intact peptide. The pharmacological profiles of the different analogs in the two assays were very similar, suggesting the same receptor is present on both tissues. Potency was little affected by the deletion of Asn(1), but was reduced > 10-fold after the removal of Thr(2). Deletion of the next 5 residues had relatively little effect, but after the second lysyl residue (Lys(8)) was removed potency fell by one to two orders of magnitude. There was a similar drop in potency after the removal of Arg(10), and at 100 microM the pentapeptide had only 20% of the diuretic activity of the intact peptide. The importance of Arg(10) was confirmed by comparing dose-response curves for Musdo-K [6-15] and Acheta kinin-V (AFSHWG-NH(2)) in the diuretic assay; the substitution of arginine by alanine produced a significant reduction in potency and some loss of activity. PMID:11897389

  3. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias . E-mail: mattias.belting@med.lu.se; Graeslund, Astrid . E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  4. Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences

    SciTech Connect

    Myers, G.; Foley, B.; Korber, B.; Mellors, J.W.; Jeang, K.T.; Wain-Hobson, S.

    1997-04-01

    This compendium and the accompanying floppy diskettes are the result of an effort to compile and rapidly publish all relevant molecular data concerning the human immunodeficiency viruses (HIV) and related retroviruses. The scope of the compendium and database is best summarized by the five parts that it comprises: (1) Nuclear Acid Alignments and Sequences; (2) Amino Acid Alignments; (3) Analysis; (4) Related Sequences; and (5) Database Communications. Information within all the parts is updated throughout the year on the Web site, http://hiv-web.lanl.gov. While this publication could take the form of a review or sequence monograph, it is not so conceived. Instead, the literature from which the database is derived has simply been summarized and some elementary computational analyses have been performed upon the data. Interpretation and commentary have been avoided insofar as possible so that the reader can form his or her own judgments concerning the complex information. In addition to the general descriptions of the parts of the compendium, the user should read the individual introductions for each part.

  5. Allosteric stabilization of the amyloid-β peptide hairpin by the fluctuating N-terminal.

    PubMed

    Xu, Liang; Nussinov, Ruth; Ma, Buyong

    2016-01-28

    Immobilized ions modulate nearby hydrophobic interactions and influence molecular recognition and self-assembly. We simulated disulfide bond-locked double mutants (L17C/L34C) and observed allosteric modulation of the peptide's intra-molecular interactions by the N-terminal tail. We revealed that the non-contacting charged N-terminal residues help the transfer of entropy to the surrounding solvation shell and stabilizing β-hairpin. PMID:26666686

  6. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes*

    PubMed Central

    Mizuguchi, Chiharu; Ogata, Fuka; Mikawa, Shiho; Tsuji, Kohei; Baba, Teruhiko; Shigenaga, Akira; Shimanouchi, Toshinori; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2015-01-01

    The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation. PMID:26175149

  7. Identification of the WW domain-interaction sites in the unstructured N-terminal domain of EBV LMP 2A.

    PubMed

    Seo, Min-Duk; Park, Sung Jean; Kim, Hyun-Jung; Lee, Bong Jin

    2007-01-01

    Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase. PMID:17174309

  8. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes.

    PubMed

    Mizuguchi, Chiharu; Ogata, Fuka; Mikawa, Shiho; Tsuji, Kohei; Baba, Teruhiko; Shigenaga, Akira; Shimanouchi, Toshinori; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2015-08-21

    The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation. PMID:26175149

  9. N-terminal nesprin-2 variants regulate β-catenin signalling.

    PubMed

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa; Li, Chen; Porter, Lauren J; Zhou, Can; Gao, Fang; Zhang, Junyi; Rajgor, Dipen; Autore, Flavia; Shanahan, Catherine M; Warren, Derek T

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragment of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. PMID:27321956

  10. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    SciTech Connect

    Lin, Yi-Tzu; Wen, Wan-Ching; Yen, Pauline H.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  11. Hormone affinity and fibril formation of piscine transthyretin: the role of the N-terminal.

    PubMed

    Morgado, Isabel; Melo, Eduardo P; Lundberg, Erik; Estrela, Nídia L; Sauer-Eriksson, A Elisabeth; Power, Deborah M

    2008-11-25

    Transthyretin (TTR) transports thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3) in the blood of vertebrates. TH-binding sites are highly conserved in vertebrate TTR, however, piscine TTR has a longer N-terminus which is thought to influence TH-binding affinity and may influence TTR stability. We produced recombinant wild type sea bream TTR (sbTTRWT) plus two mutants in which 6 (sbTTRM6) and 12 (sbTTRM12) N-terminal residues were removed. Ligand-binding studies revealed similar affinities for T3 (Kd=10.6+/-1.7nM) and T4 (Kd=9.8+/-0.97nM) binding to sbTTRWT. Affinity for THs was unaltered in sbTTRM12 but sbTTRM6 had poorer affinity for T4 (Kd=252.3+/-15.8nM) implying that some residues in the N-terminus can influence T4 binding. sbTTRM6 inhibited acid-mediated fibril formation in vitro as shown by fluorometric measurements using thioflavine T. In contrast, fibril formation by sbTTRM12 was significant, probably due to decreased stability of the tetramer. Such studies also suggested that sbTTRWT is more resistant to fibril formation than human TTR. PMID:18620020

  12. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation.

    PubMed

    Vella, Roxane E; Pillon, Nicolas J; Zarrouki, Bader; Croze, Marine L; Koppe, Laetitia; Guichardant, Michel; Pesenti, Sandra; Chauvin, Marie-Agnès; Rieusset, Jennifer; Géloën, Alain; Soulage, Christophe O

    2015-03-01

    A growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases. PMID:25277399

  13. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    SciTech Connect

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residues 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length

  14. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones. PMID:26656109

  15. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza

    PubMed Central

    Zhang, Xiaoru; Dong, Juane; Liu, Hailong; Wang, Jiao; Qi, Yuexin; Liang, Zongsuo

    2016-01-01

    Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza. PMID:26808150

  16. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza.

    PubMed

    Zhang, Xiaoru; Dong, Juane; Liu, Hailong; Wang, Jiao; Qi, Yuexin; Liang, Zongsuo

    2016-01-01

    Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza. PMID:26808150

  17. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus.

    PubMed

    Stettler, M; Zurbriggen, A

    1995-05-01

    Virus persistence is essential in the chronic inflammatory canine distemper virus (CDV)-induced demyelinating disease. In the case of CDV there is a close association between persistence and virulence. Virulent CDV isolated from dogs with distemper shows immediate persistence in primary dog brain cell cultures (DBCC) and in different cell lines. We have evidence that the nucleocapsid (NP) protein plays an important role in the development of persistence. The NP-protein, the most abundant structural virus protein, also influences virus assembly and has some regulatory functions in virus transcription and replication. In this study we compared the nucleotide and deduced amino acid sequence of a virulent CDV strain (A75/17-CDV) to a culture-attenuated non-virulent strain (OP-CDV). Viral RNA was extracted from DBCC infected with virulent CDV. Virulent CDV retains its in vivo properties, such as virulence and ability to cause demyelination, when propagated in these DBCC. The viral RNA was reverse transcribed and the resulting cDNA amplified by polymerase chain reaction for subsequent cloning. The nucleotide sequences of these clones were determined by the dideoxy chain termination method. The number of nucleotides and the putative NP-protein of the virulent strain matched the attenuated CDV strain. We observed a total of 105 nucleotide differences. Three were localised within the 3' and five within the 5' non-coding region of the NP-gene. The 97 nucleotide changes within the coding region resulted in 22 amino acid differences. 10 of these amino acid (AA) modifications were within the N-terminal region (AA 1 to 159) and 12 within the C-terminal area (AA 351 to 523).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8588315

  18. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA.

    PubMed Central

    van Berkel, P H; Geerts, M E; van Veen, H A; Mericskay, M; de Boer, H A; Nuijens, J H

    1997-01-01

    Human lactoferrin (hLF), a protein involved in host defence against infection and excessive inflammation, interacts with heparin, the lipid A moiety of bacterial lipopolysaccharide, human lysozyme (hLZ) and DNA. To determine which region of the molecule is important in these interactions, solid-phase ligand binding assays were performed with hLF from human milk (natural hLF) and N-terminally deleted hLF variants. Iron-saturated and natural hLF bound equally well to heparin, lipid A, hLZ and DNA. Natural hLF lacking the first two N-terminal amino acids (Gly1-Arg2) showed reactivities of one-half, two-thirds, one-third and one-third towards heparin, lipid A, hLZ and DNA respectively compared with N-terminally intact hLF. A lack of the first three residues (Gly1-Arg2-Arg3) decreased binding to the same ligands to one-eighth, one-quarter, one-twentieth and one-seventeenth respectively. No binding occurred with a mutant lacking the first five residues (Gly1-Arg2-Arg3-Arg4-Arg5). An anti-hLF monoclonal antibody (E11) that reacts to an N-lobe epitope including Arg5 completely blocked hLF-ligand interaction. These results show that the N-terminal stretch of four consecutive arginine residues, Arg2-Arg3-Arg4-Arg5, has a decisive role in the interaction of hLF with heparin, lipid A, hLZ and DNA. The role of limited N-terminal proteolysis of hLF in its anti-infective and anti-inflammatory properties is discussed. PMID:9359845

  19. Purification and some properties of wild-type and N-terminal-truncated ethanolamine ammonia-lyase of Escherichia coli.

    PubMed

    Akita, Keita; Hieda, Naoki; Baba, Nobuyuki; Kawaguchi, Satoshi; Sakamoto, Hirohisa; Nakanishi, Yuka; Yamanishi, Mamoru; Mori, Koichi; Toraya, Tetsuo

    2010-01-01

    The methods of homologous high-level expression and simple large-scale purification for coenzyme B(12)-dependent ethanolamine ammonia-lyase of Escherichia coli were developed. The eutB and eutC genes in the eut operon encoded the large and small subunits of the enzyme, respectively. The enzyme existed as the heterododecamer alpha(6)beta(6). Upon active-site titration with adeninylpentylcobalamin, a strong competitive inhibitor for coenzyme B(12), the binding of 1 mol of the inhibitor per mol of the alphabeta unit caused complete inhibition of enzyme, in consistent with its subunit structure. EPR spectra indicated the formation of substrate-derived radicals during catalysis and the binding of cobalamin in the base-on mode, i.e. with 5,6-dimethylbenzimidazole coordinating to the cobalt atom. The purified wild-type enzyme underwent aggregation and inactivation at high concentrations. Limited proteolysis with trypsin indicated that the N-terminal region is not essential for catalysis. His-tagged truncated enzymes were similar to the wild-type enzyme in catalytic properties, but more resistant to p-chloromercuribenzoate than the wild-type enzyme. A truncated enzyme was highly soluble even in the absence of detergent and resistant to aggregation and oxidative inactivation at high concentrations, indicating that a short N-terminal sequence is sufficient to change the solubility and stability of the enzyme. PMID:19762342

  20. Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure.

    PubMed

    Zheng, Fei; Huang, Huoqing; Wang, Xiaoyu; Tu, Tao; Liu, Qiong; Meng, Kun; Wang, Yuan; Su, Xiaoyun; Xie, Xiangming; Luo, Huiying

    2016-10-01

    The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.0 and 50°C but had low catalytic efficiency (25.4±0.8mLs(-1)mg(-1)). In contrast, BaCel5(127) and BaCel5(167) showed similar enzymatic properties but improved catalytic performance. When using CMC-Na, barley β-glucan, lichenan, and cellooligosaccharides as substrates, BaCel5(127) and BaCel5(167) had increased specific activities and catalytic efficiencies by ∼1.8-6.7-fold and ∼1.0-4.7-fold, respectively. The catalytic efficiency of BaCel5(167) was even higher than that of parental proteins. The underlying mechanism was analyzed by molecular docking and molecular dynamic simulation. PMID:27372007

  1. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

    PubMed

    Raman, Swetha; Suguna, Kaza

    2015-06-01

    Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source. PMID:26057797

  2. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA.

    PubMed

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S; Renard, Emmanuelle; Salanti, Ali; Nielsen, Morten A; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development. PMID:26393516

  3. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA

    PubMed Central

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S.; Renard, Emmanuelle; Salanti, Ali; Nielsen, Morten A.; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development. PMID:26393516

  4. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    PubMed

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species. PMID:26969163

  5. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  6. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains

    PubMed Central

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-01-01

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.001 PMID:27253063

  7. Antinociceptive effects of spinally administered nociceptin/orphanin FQ and its N-terminal fragments on capsaicin-induced nociception.

    PubMed

    Katsuyama, Soh; Mizoguchi, Hirokazu; Komatsu, Takaaki; Sakurada, Chikai; Tsuzuki, Minoru; Sakurada, Shinobu; Sakurada, Tsukasa

    2011-07-01

    Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the N/OFQ peptide (NOP) receptors, has been shown to be metabolized into some fragments. We examined to determine whether intrathecal (i.t.) N/OFQ (1-13), (1-11) and (1-7) have antinociceptive activity in the pain-related behavior after intraplantar injection of capsaicin. The i.t. administration of N/OFQ (0.3-1.2 nmol) produced an appreciable and dose-dependent inhibition of capsaicin-induced paw-licking/biting response. The N-terminal fragments of N/OFQ, (1-13) and (1-11), were antinociceptive with a potency lower than N/OFQ. Calculated ID₅₀ values (nmol, i.t.) were 0.83 for N/OFQ, 2.5 for N/OFQ (1-13) and 4.75 for N/OFQ (1-11), respectively. The time-course effect revealed that the antinociceptive effects of these N-terminal fragments lasted longer than those of N/OFQ. Removal of amino acids down to N/OFQ (1-7) led to be less potent than N/OFQ and its fragments, (1-13) and (1-11). Antinociception induced by N/OFQ or N/OFQ (1-13) was reversed significantly by i.t. co-injection of [Nphe¹]N/OFQ (1-13)NH₂, a peptidergic antagonist for NOP receptors, whereas i.t. injection of the antagonist did not interfere with the action of N/OFQ (1-11) and (1-7). Pretreatment with the opioid receptor antagonist naloxone hydrochloride did not affect the antinociception induced by N/OFQ and its N-terminal fragments. These results suggest that N-terminal fragments of N/OFQ are active metabolites and may modulate the antinociceptive effect of N/OFQ in the spinal cord. The results also indicate that N/OFQ (1-13) still possess antinociceptive activity through NOP receptors. PMID:21672568

  8. Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking.

    PubMed

    Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge; Herrmann, Andreas; Küster, Andrea; Müller-Newen, Gerhard

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆IBB) deletion mutants of importin-α5, as well as ∆IBB-α3 and ∆IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the

  9. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences.

    PubMed

    James, M N; Delbaere, L T; Brayer, G D

    1978-06-01

    The three-dimensional structures of the bacterial serine proteases SGPA, SGPB, and alpha-lytic protease have been compared with those of the pancreatic enzymes alpha-chymotrypsin and elastase. This comparison shows that approximately 60% (55-64%) of the alpha-carbon atom positions of the bacterial serine proteases are topologically equivalent to the alpha-carbon atom positions of the pancreatic enzymes. The corresponding value for a comparison of the bacterial enzymes among themselves is approximately 84%. The results of these topological comparisons have been used to deduce an experimentally sound sequence alignment for these several enzymes. This alignment shows that there is extensive tertiary structural homology among the bacteria and pancreatic enzymes without significant primary sequence identity (less than 21%). The acquisition of a zymogen function by the pancreatic enzymes is accompanied by two major changes to the bacterial enzymes' architecture: an insertion of 9 residues to increase the length of the N-terminal loop, and one of 12 residues to a loop near the activation salt bridge. In addition, in these two enzyme families, the methionine loop (residues 164-182) adopts very different comformations which are associated with their altered substrate specificities. PMID:96920

  10. Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence.

    PubMed

    Tamura, Tomokazu; Ruggli, Nicolas; Nagashima, Naofumi; Okamatsu, Masatoshi; Igarashi, Manabu; Mine, Junki; Hofmann, Martin A; Liniger, Matthias; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2015-09-01

    Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE-  vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE-  replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs. PMID:26018962

  11. A Novel N-terminal Motif of Dipeptidyl Peptidase-like Proteins Produces Rapid Inactivation of Kv4.2 Channels by a Pore-blocking Mechanism

    PubMed Central

    Jerng, Henry H.; Dougherty, Kevin; Covarrubias, Manuel; Pfaffinger, Paul J.

    2010-01-01

    The somatodendritic subthreshold A-type K+ current in neurons (ISA) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the Kv4 channel complex underlying ISA are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to Kv4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the Kv4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the Kv4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K+ concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing ISA inactivation and reducing neuronal excitability. PMID:19901547

  12. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences.

    PubMed Central

    Bellini, W J; Englund, G; Richardson, C D; Rozenblatt, S; Lazzarini, R A

    1986-01-01

    The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer. Images PMID:3754588

  13. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.

    PubMed

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23-230) as detected by [(1)H, (15)N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn(2+)-binding to the octarepeat motif. PMID:27341298

  14. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain

    PubMed Central

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23–230) as detected by [1H, 15N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn2+-binding to the octarepeat motif. PMID:27341298

  15. N-terminally myristoylated feline foamy virus Gag allows Env-independent budding of sub-viral particles.

    PubMed

    Liu, Yang; Kim, Yong-Boum; Löchelt, Martin

    2011-11-01

    Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation. PMID:22163342

  16. N-Terminally Myristoylated Feline Foamy Virus Gag Allows Env-Independent Budding of Sub-Viral Particles

    PubMed Central

    Liu, Yang; Kim, Yong-Boum; Löchelt, Martin

    2011-01-01

    Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation. PMID:22163342

  17. Multiple organelle-targeting signals in the N-terminal portion of peroxisomal membrane protein PMP70.

    PubMed

    Iwashita, Shohei; Tsuchida, Masashi; Tsukuda, Miwa; Yamashita, Yukari; Emi, Yoshikazu; Kida, Yuichiro; Komori, Masayuki; Kashiwayama, Yoshinori; Imanaka, Tsuneo; Sakaguchi, Masao

    2010-04-01

    Most membrane proteins are recognized by a signal recognition particle and are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, whereas almost all peroxisomal membrane proteins are posttranslationally targeted to the destination. Here we examined organelle-targeting properties of the N-terminal portions of the peroxisomal isoform of the ABC transporter PMP70 (ABCD3) using enhanced green fluorescent protein (EGFP) fusion. When the N-terminal 80 amino acid residue (N80)-segment preceding transmembrane segment (TM) 1 was deleted and the TM1-TM2 region was fused to EGFP, the TM1 segment induced ER-targeting and integration in COS cells. When the N80-segment was fused to EGFP, the fusion protein was targeted to the outer mitochondrial membrane. When both the N80-segment and the following TM1-TM2 region were present, the fusion located exclusively to the peroxisome. The full-length PMP70 molecule was clearly located in the ER in the absence of the N80-segment, even when multiple peroxisome-targeting signals were retained. We concluded that the TM1 segment possesses a sufficient ER-targeting function and that the N80-segment is critical for suppressing the ER-targeting function to allow the TM1-TM2 region to localize to the peroxisome. Cooperation of the organelle-targeting signals enables PMP70 to correctly target to peroxisomal membranes. PMID:20007743

  18. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.

    PubMed Central

    Jordan, E T; Marita, J M; Clough, R C; Vierstra, R D

    1997-01-01

    Phytochrome A (phyA) is a red/far-red (FR) light photoreceptor responsible for initiating numerous light-mediated plant growth and developmental responses, especially in FR light-enriched environments. We previously showed that the first 70 amino acids of the polypeptide contain at least two regions with potentially opposite functions (E.T. Jordan, J.R. Cherry, J.M. Walker, R.D. Vierstra [1996] Plant J 9: 243-257). One region is required for activity and correct apoprotein/chromophore interactions, whereas the second appears to regulate phytochrome activity. We have further resolved these functional regions by analysis of N-terminal deletion and alanine-scanning mutants of oat (Avena sativa) phyA in transgenic tobacco (Nicotiana tabacum). The results indicate that the region involved in chromophore/apoprotein interactions contains two separate segments (residues 25-33 and 50-62) also required for biological activity. The region that regulates phyA activity requires only five adjacent serines (Sers) (residues 8-12). Removal or alteration of these Sers generates a photoreceptor that increases the sensitivity of transgenic seedlings to red and FR light more than intact phyA. Taken together, these data identify three distinct regions in the N-terminal domain necessary for photoreceptor activity, and further define the Ser-rich region as an important site for phyA regulation. PMID:9342873

  19. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  20. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    PubMed

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  1. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  2. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  3. Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry.

    PubMed

    Sancho Solis, Raquel; Ge, Ying; Walker, Jeffery W

    2008-01-01

    Heterotrimeric cardiac troponin (cTn) is a critical component of the thin filament regulatory complex in cardiac muscle. Two of the three subunits, cTnI and cTnT, are subject to post-translational modifications such as proteolysis and phosphorylation, but linking modification patterns to function remains a major challenge. To obtain a global view of the biochemical state of cTn in native tissue, we performed high resolution top-down mass spectrometry of cTn heterotrimers from healthy adult rat hearts. cTn heterotrimers were affinity purified, desalted and then directly subjected to mass spectrometry using a 7 Tesla Thermo LTQ-FT-ICR instrument equipped with an ESI source. Molecular ions for N-terminally processed and acetylated cTnI and cTnT were readily detected as were other post-translationally modified forms of these proteins. cTnI was phosphorylated with a distribution of un-, mono- and bisphosphorylated forms of 41 +/- 3%, 46 +/- 1%, 13 +/- 3%, respectively. cTnT was predominantly monophosphorylated and partially proteolyzed at the Glu(29)-Pro(30) peptide bond. Also observed in high resolution spectra were 'shadow' peaks of similar intensity to 'parent' peaks exhibiting masses of cTnI+16 Da and cTnT+128 Da, subsequently shown by tandem mass spectrometry (MS/MS) to be single amino acid polymorphisms. Intact and protease-digested cTn subunits were fragmented by electron capture dissociation or collision activated dissociation to localize an Ala/Ser polymorphism at residue 7 of cTnI. Similar analysis of cTnT localized an additional Gln within a three residue alternative splice site beginning at residue 192. Besides being able to provide unique insights into the global state of post-translational modification of cTn subunits, high resolution top-down mass spectrometry readily revealed naturally occurring single amino acid sequence variants including a genetic polymorphism at residue 7 in cTnI, and an alternative splice isoform that affects a putative hinge region

  4. An N-terminal extension to the hepatitis B virus core protein forms a poorly ordered trimeric spike in assembled virus-like particles

    PubMed Central

    McGonigle, Richard; Yap, Wei Boon; Ong, Swee Tin; Gatherer, Derek; Bakker, Saskia E.; Tan, Wen Siang; Bhella, David

    2015-01-01

    Virus-like particles composed of the core antigen of hepatitis B virus (HBcAg) have been shown to be an effective platform for the display of foreign epitopes in vaccine development. Heterologous sequences have been successfully inserted at both amino and carboxy termini as well as internally at the major immunodominant epitope. We used cryogenic electron microscopy (CryoEM) and three-dimensional image reconstruction to investigate the structure of VLPs assembled from an N-terminal extended HBcAg that contained a polyhistidine tag. The insert was seen to form a trimeric spike on the capsid surface that was poorly resolved, most likely owing to it being flexible. We hypothesise that the capacity of N-terminal inserts to form trimers may have application in the development of multivalent vaccines to trimeric antigens. Our analysis also highlights the value of tools for local resolution assessment in studies of partially disordered macromolecular assemblies by cryoEM. PMID:25557498

  5. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies

    NASA Astrophysics Data System (ADS)

    Ohnishi, Koji

    1984-12-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen β and α chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both β and α) gene products, respectively, all of which being ˜90 residues long, were concluded to be homologous to β2-microglobulin (β2M). The membraneembedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II α chains than to class II β chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a β2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  6. Loss of N-terminal Acetylation Suppresses A Prion Phenotype By Modulating Global Protein Folding

    PubMed Central

    Holmes, William M.; Mannakee, Brian K.; Gutenkunst, Ryan N.; Serio, Tricia R.

    2014-01-01

    N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype. PMID:25023910

  7. The charged region of Hsp90 modulates the function of the N-terminal domain

    PubMed Central

    Scheibel, Thomas; Siegmund, Heiko Ingo; Jaenicke, Rainer; Ganz, Peter; Lilie, Hauke; Buchner, Johannes

    1999-01-01

    Hsp90, an abundant heat shock protein that is highly expressed even under physiological conditions, is involved in the folding of key molecules of the cellular signal transduction system such as kinases and steroid receptors. It seems to contain two chaperone sites differing in substrate specificity. Binding of ATP or the antitumor drug geldanamycin alters the substrate affinity of the N-terminal chaperone site, whereas both substances show no influence on the C-terminal one. In wild-type Hsp90 the fragments containing the chaperone sites are connected by a highly charged linker of various lengths in different organisms. As this linker region represents the most striking difference between bacterial and eukaryotic Hsp90s, it may be involved in a gain of function of eukaryotic Hsp90s. Here, we have analyzed a fragment of yeast Hsp90 consisting of the N-terminal domain and the charged region (N272) in comparison with the isolated N-terminal domain (N210). We show that the charged region causes an increase in the affinity of the N-terminal domain for nonnative protein and establishes a crosstalk between peptide and ATP binding. Thus, the binding of peptide to N272 decreases its affinity for ATP and geldanamycin, whereas the ATP-binding properties of the monomeric N-terminal domain N210 are not influenced by peptide binding. We propose that the charged region connecting the two chaperone domains plays an important role in regulating chaperone function of Hsp90. PMID:9990018

  8. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    SciTech Connect

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier; Pipkorn, Rüdiger; Ippel, Hans; Mayo, Kevin H.; Kübler, Dieter; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.

  9. Mechanochemical tuning of myosin-I by the N-terminal region

    PubMed Central

    Greenberg, Michael J.; Lin, Tianming; Shuman, Henry; Ostap, E. Michael

    2015-01-01

    Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of <2 pN. Additionally, we found that the NTR plays an important role in stabilizing the post–power-stroke conformation. These results identify the NTR as an important structural element in myosin force sensing and suggest a mechanism for generating diversity of function among myosin isoforms. PMID:26056287

  10. Partial amino acid sequence of human factor D:homology with serine proteases.

    PubMed Central

    Volanakis, J E; Bhown, A; Bennett, J C; Mole, J E

    1980-01-01

    Human factor D purified to homogeneity by a modified procedure was subjected to NH2-terminal amino acid sequence analysis by using a modified automated Beckman sequencer. We identified 48 of the first 57 NH2-terminal amino acids in a single sequencer run, using microgram quantities of factor D. The deduced amino acid sequence represents approximately 25% of the primary structure of factor D. This extended NH2-terminal amino acid sequence of factor D was compared to that of other trypsin-related serine proteases. By visual inspection, strong homologies (33--50% identity) were observed with all the serine proteases included in the comparison. Interestingly, factor D showed a higher degree of homology to serine proteases of pancreatic origin than to those of serum origin. Images PMID:6987665

  11. Amino acid sequence of Japanese quail (Coturnix japonica) and northern bobwhite (Colinus virginianus) myoglobin.

    PubMed

    Goodson, John; Beckstead, Robert B; Payne, Jason; Singh, Rakesh K; Mohan, Anand

    2015-08-15

    Myoglobin has an important physiological role in vertebrates, and as the primary sarcoplasmic pigment in meat, influences quality perception and consumer acceptability. In this study, the amino acid sequences of Japanese quail and northern bobwhite myoglobin were deduced by cDNA cloning of the coding sequence from mRNA. Japanese quail myoglobin was isolated from quail cardiac muscles, purified using ammonium sulphate precipitation and gel-filtration, and subjected to multiple enzymatic digestions. Mass spectrometry corroborated the deduced protein amino acid sequence at the protein level. Sequence analysis revealed both species' myoglobin structures consist of 153 amino acids, differing at only three positions. When compared with chicken myoglobin, Japanese quail showed 98% sequence identity, and northern bobwhite 97% sequence identity. The myoglobin in both quail species contained eight histidine residues instead of the nine present in chicken and turkey. PMID:25794748

  12. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  13. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  14. Chemical fragmentation by o-iodosobenzoic acid of. cap alpha. -chain of histidine decarboxylase from Micrococcus sp. n. at tryptophan residues

    SciTech Connect

    Alekseeva, E.A.; Grebenshchikova, O.G.; Prozorovskii, V.N.

    1987-02-10

    The carboxymethylated ..cap alpha..-chain of histidine decarboxylase from Micrococcus sp. n., which contains four tryptophan residues, was cleaved by o-iodosobenzoic acid. Five fragments were isolated in homogeneous form by means of gel filtration on Sephadex, rechromatography, and high-voltage paper electrophoresis. The molecular weight, amino acid composition, and N-terminal amino acid sequence were determined for all the peptides isolated.

  15. Evaluation of combined B cell specific N-terminal immunogenic domains of LipL21 for diagnosis of leptospirosis.

    PubMed

    Anita, Kumari; Premlatha, Mallela Martha; Kanagavel, Murugesan; Akino Mercy, Charles Solomon; Raja, Veerapandian; Shanmughapriya, Santhanam; Natarajaseenivasan, Kalimuthusamy

    2016-10-01

    Leptospiral outer membrane protein LipL21 and its truncated N-terminal immunogenic region (I-LipL21) were evaluated for diagnosis of leptospirosis. The complete coding sequence of LipL21 nucleotide sequence was subjected to BCPred and VaxiJen analysis for determination of B cell specific immunogenic epitopes. Epitope1 ACS STD TGQ KDA TTV GDG (1.8837), Epitope2 WGG PPE QRN DGK TPR DTN (0.9483), Epitope3 VKG VGV YEC KAT GSG SDP (1.4077) and Epitope4 NEW ECQ CVI YAK FPG GKD (0.4462) were predicted. LipL21 and N-terminal fragment having B-cell specific epitopes with higher VaxiJen score >0.9 as truncated I-LipL21 were cloned independently in pET15b and expressed in Escherichia coli. IgM ELISA and dot blot assay was performed for sera samples collected from Delhi-NCR for leptospiral whole cell lysate (WCL), recombinant LipL21 and I-LipL21. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were found to be 92.5%, 92.8%, 83.3%, and 97% respectively for recombinant I-LipL21 by IgM-ELISA. 11-14.8% increased sensitivity was observed over LipL21 and WCL. The I-LipL21 dot blot assay showed a further increased sensitivity of 3.8% over the IgM-ELISA. Therefore I-LipL21 may be the ideal candidate protein for diagnosis of leptospirosis. PMID:27259643

  16. Large and small subunits of the Aujeszky's disease virus ribonucleotide reductase: nucleotide sequence and putative structure.

    PubMed

    Kaliman, A V; Boldogköi, Z; Fodor, I

    1994-09-13

    We determined the entire DNA sequence of two adjacent open reading frames of Aujeszky's disease virus encoding ribonucleotide reductase genes with the intergenic sequence of 9 bp. From the sequence analysis we deduce that ORFs encode large and small subunits, with sizes of 835 and 303 amino acids, respectively. Amino acid sequence comparison of ADV RR2 with that of equine herpesvirus type 1, bovine herpesvirus type 1, HSV-1 and varicella zoster virus revealed that 48% of amino acids represent clusters of residues conserved in all compared sequences. In the N-terminal part ADV RR1 shows low homology to the RR1 of other herpesviruses. Rest of the RR1 protein contains highly conserved amino acid sequences divided by blocks of low homology. PMID:8086454

  17. The nucleotide sequence of the tnpA gene completes the sequence of the Pseudomonas transposon Tn501.

    PubMed Central

    Brown, N L; Winnie, J N; Fritzinger, D; Pridmore, R D

    1985-01-01

    The nucleotide sequence of the gene (tnpA) which codes for the transposase of transposon Tn501 has been determined. It contains an open reading frame for a polypeptide of Mr = 111,500, which terminates within the inverted repeat sequence of the transposon. The reading frame would be transcribed in the same direction as the mercury-resistance genes and the tnpR gene. The amino acid sequence predicted from this reading frame shows 32% identity with that of the transposase of the related transposon Tn3. The C-terminal regions of these two polypeptides show slightly greater homology than the N-terminal regions when conservative amino acid substitutions are considered. With this sequence determination, the nucleotide sequence of Tn501 is fully defined. The main features of the sequence are briefly presented. PMID:2994007

  18. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation.

    PubMed

    Obergfell, Kyle P; Seifert, H Steven

    2016-05-01

    The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3' third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic variants

  19. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation

    PubMed Central

    2016-01-01

    The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3’ third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic

  20. Stability Enhancing N-Terminal PEGylation of Oxytocin Exploiting Different Polymer Architectures and Conjugation Approaches.

    PubMed

    Collins, Jennifer; Kempe, Kristian; Wilson, Paul; Blindauer, Claudia A; McIntosh, Michelle P; Davis, Thomas P; Whittaker, Michael R; Haddleton, David M

    2016-08-01

    Oxytocin, a cyclic nine amino acid neurohypophyseal hormone therapeutic, is effectively used in the control of postpartum hemorrhaging (PPH) and is on the WHO List of Essential Medicines. However, oxytocin has limited shelf life stability in aqueous solutions, particularly at temperatures in excess of 25 °C and injectable aqueous oxytocin formulations require refrigeration (<8 °C). This is particularly problematic in the hot climates often found in many developing countries where daytime temperatures can exceed 40 °C and where reliable cold-chain storage is not always achievable. The purpose of this study was to develop N-terminal amine targeted PEGylation strategies utilizing both linear PEG and polyPEG "comb" polymers as an effective method for stabilizing solution formulations of this peptide for prolonged storage in the absence of efficient cold-chain storage. The conjugation chemistries investigated herein include irreversible amine targeted conjugation methods utilizing NHS ester and aldehyde reductive amination chemistry. Additionally, one reversible conjugation method using a Schiff base approach was explored to allow for the release of the native peptide, thus, ensuring that biological activity remains unaffected. The reversibility of this approach was investigated for the different polymer architectures, alongside a nonpolymer oxytocin analogue to monitor how pH can tune native peptide release. Elevated temperature degradation studies of the polymer conjugates were evaluated to assess the stability of the PEGylated analogues in comparison to the native peptide in aqueous formulations to mimic storage conditions in developing nations and regions where storage under appropriate conditions is challenging. PMID:27419537

  1. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    PubMed

    Funk, Christina; Ott, Melanie; Raschbichler, Verena; Nagel, Claus-Henning; Binz, Anne; Sodeik, Beate; Bauerfeind, Rudolf; Bailer, Susanne M

    2015-06-01

    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. PMID:26083367

  2. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain

    PubMed Central

    Nagel, Claus-Henning; Binz, Anne; Sodeik, Beate; Bauerfeind, Rudolf; Bailer, Susanne M.

    2015-01-01

    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. PMID:26083367

  3. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

    PubMed

    Higgins, Christina E; Gross, Steven S

    2011-04-01

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity. PMID:21163945

  4. The N-terminal Peptide of Mammalian GTP Cyclohydrolase I Is an Autoinhibitory Control Element and Contributes to Binding the Allosteric Regulatory Protein GFRP*

    PubMed Central

    Higgins, Christina E.; Gross, Steven S.

    2011-01-01

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity. PMID:21163945

  5. tax and rex Sequences of bovine leukaemia virus from globally diverse isolates: rex amino acid sequence more variable than tax.

    PubMed

    McGirr, K M; Buehring, G C

    2005-02-01

    Bovine leukaemia virus (BLV) is an important agricultural problem with high costs to the dairy industry. Here, we examine the variation of the tax and rex genes of BLV. The tax and rex genes share 420 bases and have overlapping reading frames. The tax gene encodes a protein that functions as a transactivator of the BLV promoter, is required for viral replication, acts on cellular promoters, and is responsible for oncogenesis. The rex facilitates the export of viral mRNAs from the nucleus and regulates transcription. We have sequenced five new isolates of the tax/rex gene. We examined the five new and three previously published tax/rex DNA and predicted amino acid sequences of BLV isolates from cattle in representative regions worldwide. The highest variation among nucleic acid sequences for tax and rex was 7% and 5%, respectively; among predicted amino acid sequences for Tax and Rex, 9% and 11%, respectively. Significantly more nucleotide changes resulted in predicted amino acid changes in the rex gene than in the tax gene (P < or = 0.0006). This variability is higher than previously reported for any region of the viral genome. This research may also have implications for the development of Tax-based vaccines. PMID:15702995

  6. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain.

    PubMed

    Meagher, Martin; Enemark, Eric J

    2016-07-01

    The crystal structure of the N-terminal domain of the Pyrococcus furiosus minichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation. PMID:27380371

  7. Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: synthesis and SAR studies.

    PubMed

    Doma, Anuradha; Kulkarni, Ravindra; Palakodety, Radhakrishna; Sastry, G Narahari; Sridhara, Janardhan; Garlapati, Achaiah

    2014-11-01

    Mitogen activated protein kinases including c-Jun N-terminal kinase play an indispensable role in inflammatory diseases. Investigation of reported JNK-1 inhibitors indicated that diverse heterocyclic compounds bearing an amide group rendered potent JNK-1 inhibitory activity which prompted us to synthesize new JNK-1 inhibitors containing a pyrazole heterocyclic group. A DABCO mediated 1,3-dipolar cycloaddition reaction in neat resulted in pyrazole carboxylic acid which was converted to desired amides. Upon confirmation of the structures, all the compounds were screened for JNK-1 inhibitory activity and in vivo anti-inflammatory activity. Several synthesized analogues have exhibited JNK-1 inhibitory activity less than 10 μM, in particular compounds 9 c, 10 a and 10 d were found to be potent among all the compounds. PMID:25261929

  8. The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP.

    PubMed

    Querol-Audí, Jordi; Casañas, Arnau; Usón, Isabel; Luque, Daniel; Castón, José R; Fita, Ignasi; Verdaguer, Nuria

    2009-11-01

    Vaults are ubiquitous ribonucleoprotein complexes involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. The vault particle shows a barrel-shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein MVP. Earlier data indicated that vault halves can dissociate at acidic pH. The crystal structure of the vault particle solved at 8 A resolution, together with the 2.1-A structure of the seven N-terminal domains (R1-R7) of MVP, reveal the interactions governing vault association and provide an explanation for a reversible dissociation induced by low pH. The structural comparison with the recently published 3.5 A model shows major discrepancies, both in the main chain tracing and in the side chain assignment of the two terminal domains R1 and R2. PMID:19779459

  9. 1H, 13C, 15N backbone and side chain NMR resonance assignments for the N-terminal RNA recognition motif of the HvGR-RBP1 protein involved in the regulation of barley (Hordeum vulgare L.) senescence

    PubMed Central

    Mason, Katelyn E.; Tripet, Brian P.; Parrott, David; Fischer, Andreas M.; Copié, Valérie

    2013-01-01

    Leaf senescence is an important process in the developmental life of all plant species. Senescence efficiency influences important agricultural traits such as grain protein content and plant growth, which are often limited by nitrogen use. Little is known about the molecular mechanisms regulating this highly orchestrated process. To enhance our understanding of leaf senescence and its regulation, we have undertaken the structural and functional characterization of previously unknown proteins that are involved in the control of senescence in barley (Hordeum vulgare L.). Previous microarray analysis highlighted several barley genes whose transcripts are differentially expressed during senescence, including a specific gene which is greater than 40 fold up-regulated in the flag leaves of early- as compared to late-senescing near-isogenic barley lines at 14 and 21 days past flowering (anthesis). From inspection of its amino acid sequence, this gene is predicted to encode a glycine-rich RNA-binding protein herein referred to as HvGR-RBP1. HvGR-RBP1 has been expressed as a recombinant protein in E. coli, and preliminary NMR data analysis has revealed that its glycine-rich C-terminal region [residues: 93–162] is structurally disordered whereas its N-terminal region [residues: 1–92] forms a well-folded domain. Herein, we report the complete 1H, 13C, and 15N resonance assignments of backbone and sidechain atoms, and the secondary structural topology of the N-terminal RNA Recognition Motif (RRM) domain of HvGR-RBP1, as a first step to unraveling its structural and functional role in the regulation of barley leaf senescence. PMID:23417794

  10. Mutations in N-terminal Flanking Region of Blue Light-sensing Light-Oxygen and Voltage 2 (LOV2) Domain Disrupt Its Repressive Activity on Kinase Domain in the Chlamydomonas Phototropin*

    PubMed Central

    Aihara, Yusuke; Yamamoto, Takaharu; Okajima, Koji; Yamamoto, Kazuhiko; Suzuki, Tomomi; Tokutomi, Satoru; Tanaka, Kazuma; Nagatani, Akira

    2012-01-01

    Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin. PMID:22291022

  11. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds. PMID:10504413

  12. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  13. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide.

    PubMed

    Klüppel, Michael

    2011-05-01

    Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries. PMID:21213020

  14. N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors.

    PubMed

    Chen, Qiang; Sun, Xiaqin; Zhou, Xiao-hong; Liu, Jin-huan; Wu, Jane; Zhang, Yan; Wang, Jia-huai

    2013-01-01

    Deleted in colorectal cancer (DCC) is a receptor for the axon guidance cues netrin-1 and draxin. The interactions between these guidance cues and DCC play a key role in the development of the nervous system. In the present study, we reveal the crystal structure of the N-terminal four Ig-like domains of DCC. The molecule folds into a horseshoe-like configuration. We demonstrate that this horseshoe conformation of DCC is required for guidance-cue-mediated axonal attraction. Structure-based mutations that disrupt the DCC horseshoe indeed impair its function. A comparison of the DCC horseshoe with previously described horseshoe structures has revealed striking conserved structural features and important sequence signatures. Using these signatures, a genome-wide search allows us to predict the N-terminal horseshoe arrangement in a number of other cell surface receptors, nearly all of which function in the nervous system. The N-terminal horseshoe appears to be evolutionally selected as a platform for neural receptors. PMID:23038776

  15. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers.

    PubMed Central

    Plasencia, Ines; Rivas, Luis; Keough, Kevin M W; Marsh, Derek; Pérez-Gil, Jesús

    2004-01-01

    In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglycerol) phospholipids. The peptides show higher affinity for anionic than for zwitterionic membranes. Interaction of the peptides with both zwitterionic and anionic membranes promotes phospholipid vesicle aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even in the absence of acylation, possesses an intrinsic propensity to interact with and perturb phospholipid bilayers, thereby potentially facilitating SP-C promoting bilayer-monolayer transitions at the alveolar spaces. PMID:14514353

  16. Computer Simulation of the Determination of Amino Acid Sequences in Polypeptides

    ERIC Educational Resources Information Center

    Daubert, Stephen D.; Sontum, Stephen F.

    1977-01-01

    Describes a computer program that generates a random string of amino acids and guides the student in determining the correct sequence of a given protein by using experimental analytic data for that protein. (MLH)

  17. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.

    2000-01-01

    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  18. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide.

    PubMed Central

    Akatsuka, H; Kawai, E; Omori, K; Shibatani, T

    1995-01-01

    The extracellular lipase of Serratia marcescens Sr41, lacking a typical N-terminal signal sequence, is secreted via a signal peptide-independent pathway. The 20-kb SacI DNA fragment which allowed the extracellular lipase secretion was cloned from S. marcescens by selection of a phenotype conferring the extracellular lipase activity on the Escherichia coli cells. The subcloned 6.5-kb EcoRV fragment was revealed to contain three open reading frames which are composed of 588, 443, and 437 amino acid residues constituting an operon (lipBCD). Comparisons of the deduced amino acid sequences of the lipB, lipC, and lipD genes with those of the Erwinia chrysanthemi prtDEC, prtEEC, and prtFEC genes encoding the secretion apparatus of the E. chrysanthemi protease showed 55, 46, and 42% identity, respectively. The products of the lipB and lipC genes were 54 and 45% identical to the S. marcescens hasD and hasE gene products, respectively, which were secretory components for the S. marcescens heme-binding protein and metalloprotease. In the E. coli DH5 cells, all three lipBCD genes were essential for the extracellular secretion of both S. marcescens lipase and metalloprotease proteins, both of which lack an N-terminal signal sequence and are secreted via a signal-independent pathway. Although the function of the lipD gene seemed to be analogous to those of the prtFEC and tolC genes encoding third secretory components of ABC transporters, the E. coli TolC protein, which was functional for the S. marcescens Has system, could not replace LipD in the LipB-LipC-LipD transporter reconstituted in E. coli. These results indicated that these three proteins are components of the device which allows extracellular secretion of the extracellular proteins of S. marcescens and that their style is similar to that of the PrtDEF(EC) system. PMID:7592412

  19. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets.

    PubMed

    Melo, Francisco; Marti-Renom, Marc A

    2006-06-01

    Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs. PMID:16506243

  20. Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells

    PubMed Central

    Kuang, Yi; Gao, Yuan; Xu, Bing

    2011-01-01

    Consisting of N-terminated diphenylalanine, a new type of supramolecular hydrogelators forms hydrogels within a narrow pH window (pH 5.0 to 6.0) and selectively inhibits growth of HeLa cells, which provides important and useful insights for designing molecular nanofibers as potential nanomedicines. PMID:22037699

  1. Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells.

    PubMed

    Kuang, Yi; Gao, Yuan; Xu, Bing

    2011-12-21

    Consisting of N-terminated diphenylalanine, a new type of supramolecular hydrogelators forms hydrogels within a narrow pH window (pH 5.0 to 6.0) and selectively inhibits growth of HeLa cells, which provides important and useful insights for designing molecular nanofibers as potential nanomedicines. PMID:22037699

  2. Crystal structure of the Sec18p N-terminal domain

    PubMed Central

    Babor, S. Mariana; Fass, Deborah

    1999-01-01

    Yeast Sec18p and its mammalian orthologue N-ethylmaleimide-sensitive fusion protein (NSF) are hexameric ATPases with a central role in vesicle trafficking. Aided by soluble adapter factors (SNAPs), Sec18p/NSF induces ATP-dependent disassembly of a complex of integral membrane proteins from the vesicle and target membranes (SNAP receptors). During the ATP hydrolysis cycle, the Sec18p/NSF homohexamer undergoes a large-scale conformational change involving repositioning of the most N terminal of the three domains of each protomer, a domain that is required for SNAP-mediated interaction with SNAP receptors. Whether an internal conformational change in the N-terminal domains accompanies their reorientation with respect to the rest of the hexamer remains to be addressed. We have determined the structure of the N-terminal domain from Sec18p by x-ray crystallography. The Sec18p N-terminal domain consists of two β-sheet-rich subdomains connected by a short linker. A conserved basic cleft opposite the linker may constitute a SNAP-binding site. Despite structural variability in the linker region and in an adjacent loop, all three independent molecules in the crystal asymmetric unit have the identical subdomain interface, supporting the notion that this interface is a preferred packing arrangement. However, the linker flexibility allows for the possibility that other subdomain orientations may be sampled. PMID:10611286

  3. Characterization of mouse cellular deoxyribonucleic acid homologous to Abelson murine leukemia virus-specific sequences.

    PubMed Central

    Dale, B; Ozanne, B

    1981-01-01

    The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120). Images PMID:9279386

  4. The amino acid sequence of monal pheasant lysozyme and its activity.

    PubMed

    Araki, T; Matsumoto, T; Torikata, T

    1998-10-01

    The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly). PMID:9836434

  5. Studies on monotreme proteins. VII. Amino acid sequence of myoglobin from the platypus, Ornithoryhynchus anatinus.

    PubMed

    Fisher, W K; Thompson, E O

    1976-03-01

    Myoglobin isolated from skeletal muscle of the platypus contains 153 amino acid residues. The complete amino acid sequence has been determined following cleavage with cyanogen bromide and further digestion of the four fragments with trypsin, chymotrypsin, pepsin and thermolysin. Sequences of the purified peptides were determined by the dansyl-Edman procedure. The amino acid sequence showed 25 differences from human myoglobin and 24 from kangaroo myoglobin. Amino acid sequences in myoglobins are more conserved than sequences in the alpha- and beta-globin chains, and platypus myoglobin shows a similar number of variations in sequence to kangaroo myoglobin when compared with myoglobin of other species. The date of divergence of the platypus from other mammals was estimated at 102 +/- 31 million years, based on the number of amino acid differences between species and allowing for mutations during the evolutionary period. This estimate differs widely from the estimate given by similar treatment of the alpha- and beta-chain sequences and a constant rate of mutation of globin chains is not supported. PMID:962722

  6. cDNA-derived amino acid sequences of myoglobins from nine species of whales and dolphins.

    PubMed

    Iwanami, Kentaro; Mita, Hajime; Yamamoto, Yasuhiko; Fujise, Yoshihiro; Yamada, Tadasu; Suzuki, Tomohiko

    2006-10-01

    We determined the myoglobin (Mb) cDNA sequences of nine cetaceans, of which six are the first reports of Mb sequences: sei whale (Balaenoptera borealis), Bryde's whale (Balaenoptera edeni), pygmy sperm whale (Kogia breviceps), Stejneger's beaked whale (Mesoplodon stejnegeri), Longman's beaked whale (Indopacetus pacificus), and melon-headed whale (Peponocephala electra), and three confirm the previously determined chemical amino acid sequences: sperm whale (Physeter macrocephalus), common minke whale (Balaenoptera acutorostrata) and pantropical spotted dolphin (Stenella attenuata). We found two types of Mb in the skeletal muscle of pantropical spotted dolphin: Mb I with the same amino acid sequence as that deposited in the protein database, and Mb II, which differs at two amino acid residues compared with Mb I. Using an alignment of the amino acid or cDNA sequences of cetacean Mb, we constructed a phylogenetic tree by the NJ method. Clustering of cetacean Mb amino acid and cDNA sequences essentially follows the classical taxonomy of cetaceans, suggesting that Mb sequence data is valid for classification of cetaceans at least to the family level. PMID:16962803

  7. Characterisation of the conformational preference and dynamics of the intrinsically disordered N-terminal region of Beclin 1 by NMR spectroscopy.

    PubMed

    Yao, Shenggen; Lee, Erinna F; Pettikiriarachchi, Anne; Evangelista, Marco; Keizer, David W; Fairlie, W Douglas

    2016-09-01

    Beclin 1 is a 450 amino acid protein that plays critical roles in the early stages of autophagosome formation. We recently reported the successful expression, purification and structural characterisation of the entire N-terminal region of Beclin 1 (residues 1-150), including its backbone NMR chemical shift assignments. Based on assigned backbone NMR chemical shifts, it has been established that the N-terminal region of Beclin 1 (1-150), including the BH3 domain (112-123), is intrinsically disordered in the absence of its interaction partners. Here, a detailed study of its conformational preference and backbone dynamics obtained from an analysis of its secondary structure populations using the δ2D method, and the measurements of effective hydrodynamic radius as well as (1)H temperature coefficients, (1)H solvent exchange rates, and (15)N relaxation parameters of backbone amides using NMR spectroscopy is reported. These data provide further evidence for the intrinsically disordered nature of the N-terminal region of Beclin 1 and support the view that the helical conformation adopted by the Beclin 1 BH3 domain upon interaction with binding partners such as BCL-2 pro-survival proteins is likely induced rather than pre-existing. PMID:27288992

  8. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging.

    PubMed

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A L N

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3' terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  9. Lysozyme Mutants Accumulate in Cells while Associated at their N-terminal Alpha-domain with the Endoplasmic Reticulum Chaperone GRP78/BiP

    PubMed Central

    Kamada, Yoshiki; Nawata, Yusuke; Sugimoto, Yasushi

    2016-01-01

    Amyloidogenic human lysozyme variants deposit in cells and cause systemic amyloidosis. We recently observed that such lysozymes accumulate in the endoplasmic reticulum (ER) with the ER chaperone GRP78/BiP, accompanying the ER stress response. Here we investigated the region of lysozyme that is critical to its association with GRP78/BiP. In addition to the above-mentioned variants of lysozyme, we constructed lysozyme truncation or substitution mutants. These were co-expressed with GRP78/BiP (tagged with FLAG) in cultured human embryonic kidney cells, which were analyzed by western blotting and immunocytochemistry using anti-lysozyme and anti-FLAG antibodies. The amyloidogenic variants were confirmed to be strongly associated with GRP78/BiP as revealed by the co-immunoprecipitation assay, whereas N-terminal mutants pruned of 1-41 or 1-51 residues were found not to be associated with the chaperone. Single amino acid substitutions for the leucine array along the α-helices in the N-terminal region resulted in wild-type lysozyme remaining attached to GRP78/BiP. These mutations also tended to show lowered secretion ability. We conclude that the N-terminal α-helices region of the lysozyme is pivotal for its strong adhesion to GRP78/BiP. We suspect that wild-type lysozyme interacts with the GRP at this region as a step in the proper folding monitored by the ER chaperone. PMID:26884716

  10. Lys39-Lysophosphatidate Carbonyl Oxygen Interaction Locks LPA1 N-terminal Cap to the Orthosteric Site and partners Arg124 During Receptor Activation

    PubMed Central

    Omotuyi, Olaposi I.; Nagai, Jun; Ueda, Hiroshi

    2015-01-01

    Lysophosphatidic acid (LPA) receptor 1 (LPA1) is a member of the G protein-coupled receptors mediating the biological response to LPA species. Lack of detailed mechanism underlying LPA/LPA1 interaction has hampered the development of specific antagonists. Here, novel N-terminal Lys39 has been identified as a key residue during LPA-type agonist binding and LPA1 activation. Analysis of the molecular dynamics (MD) trajectories showed that LPA-type agonist but not VPC-32183 (antagonist) evolved structures with classical GPCR activation signatures such as reduced cytoplasmic transmembrane (TM) 3/TM6 dynamic network, ruptured ionic lock, and formation of a continuous and highly ordered internal water pathway was also observed. In activated state, LPA-type agonists interact with Arg124 (R3.28), Gln125 (Q3.29), Lys294 (K7.36) and a novel N-terminal Lys39. Site-directed mutagenesis showed complete loss of intracellular calcium mobilization in B103 cells expressing R3.28A and Lys39Ala when treated with LPA-type agonists. Structurally, LPA-type agonist via Carbonyl-oxygen/Lys39 interaction facilitated the formation of a hypothetical N-terminal cap tightly packed over LPA1 heptahelical bundle. This packing may represent a key mechanism to distinguish an apo-receptor from bound LPA1. PMID:26268898

  11. Lys39-Lysophosphatidate Carbonyl Oxygen Interaction Locks LPA1 N-terminal Cap to the Orthosteric Site and partners Arg124 During Receptor Activation.

    PubMed

    Omotuyi, Olaposi I; Nagai, Jun; Ueda, Hiroshi

    2015-01-01

    Lysophosphatidic acid (LPA) receptor 1 (LPA1) is a member of the G protein-coupled receptors mediating the biological response to LPA species. Lack of detailed mechanism underlying LPA/LPA1 interaction has hampered the development of specific antagonists. Here, novel N-terminal Lys39 has been identified as a key residue during LPA-type agonist binding and LPA1 activation. Analysis of the molecular dynamics (MD) trajectories showed that LPA-type agonist but not VPC-32183 (antagonist) evolved structures with classical GPCR activation signatures such as reduced cytoplasmic transmembrane (TM) 3/TM6 dynamic network, ruptured ionic lock, and formation of a continuous and highly ordered internal water pathway was also observed. In activated state, LPA-type agonists interact with Arg124 (R3.28), Gln125 (Q3.29), Lys294 (K7.36) and a novel N-terminal Lys39. Site-directed mutagenesis showed complete loss of intracellular calcium mobilization in B103 cells expressing R3.28A and Lys39Ala when treated with LPA-type agonists. Structurally, LPA-type agonist via Carbonyl-oxygen/Lys39 interaction facilitated the formation of a hypothetical N-terminal cap tightly packed over LPA1 heptahelical bundle. This packing may represent a key mechanism to distinguish an apo-receptor from bound LPA1. PMID:26268898

  12. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging

    PubMed Central

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A. L. N.

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3′ terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  13. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    SciTech Connect

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi; Huang, Qiwei; Raida, Manfred; Kang, CongBao

    2010-12-03

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.

  14. Purification, crystallization and preliminary structural characterization of the N-terminal region of the human formin-homology protein FHOD1

    SciTech Connect

    Schulte, Antje Rak, Alexey; Pylypenko, Olena; Ludwig, Diana; Geyer, Matthias

    2007-10-01

    The N-terminal region (1–339) of the human FHOD1 protein has been crystallized in two different crystal forms. A crystal of the (C31S,C71S) mutant diffracted to around 2.3 Å resolution. Formins are key regulators of actin cytoskeletal dynamics that constitute a diverse protein family that is present in all eukaryotes examined. They typically consist of more than 1000 amino acids and are defined by the presence of two conserved regions, namely the formin homology 1 and 2 domains. Additional conserved domains comprise a GTPase-binding domain for activation, a C-terminal autoregulation motif and an N-terminal recognition domain. In this study, the N-terminal region (residues 1–339) of the human formin homology domain-containing protein 1 (FHOD1) was purified and crystallized from 20%(w/v) PEG 4000, 10%(v/v) glycerol, 0.3 M magnesium chloride and 0.1 M Tris–HCl pH 8.0. Native crystals belong to space group P1, with unit-cell parameters a = 35.4, b = 73.9, c = 78.7 Å, α = 78.2, β = 86.2, γ = 89.7°. They contain two monomers of FHOD1 in the asymmetric unit and diffract to a resolution of 2.3 Å using a synchrotron-radiation source.

  15. Serological evidence and amino acid sequence of ubiquitin-like protein isolated from coelomic fluid and cells of the earthworm Eisenia fetida andrei.

    PubMed

    Lassalle, F; Lassègues, M; Roch, P

    1993-03-01

    1. A small protein of M(r) 10 kDa has been isolated by reverse-phase chromatography of the basic proteins contained in the coelomic fluid and cell lysate of the earthworm Eisenia fetida andrei. 2. The protein crossreacted in dot-blot with an anti-bovine ubiquitin antiserum. 3. Its N-terminal primary structure was determined by automatic Edman degradation on 26 consecutive amino acids and showed 69% (based on the 26 amino acids) or 82% (based on the first 19 consecutive amino acids) identity with many ubiquitins and similar charge and hydrophobicity profiles and secondary structure conformation. PMID:8386996

  16. N-Terminal deletions modify the Cu2+ binding site in amyloid-beta.

    PubMed

    Karr, Jesse W; Akintoye, Henrietta; Kaupp, Lauren J; Szalai, Veronika A

    2005-04-12

    Copper is implicated in the in vitro formation and toxicity of Alzheimer's disease amyloid plaques containing the beta-amyloid (Abeta) peptide (Bush, A. I., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11934). By low temperature electron paramagnetic resonance (EPR) spectroscopy, the importance of the N-terminus in creating the Cu(2+) binding site in native Abeta has been examined. Peptides that contain the proposed binding site for Cu(2+)-three histidines (H6, H13, and H14) and a tyrosine (Y10)-but lack one to three N-terminal amino acids, do not bind Cu(2+) in the same coordination environment as the native peptide. EPR spectra of soluble Abeta with stoichiometric amounts of Cu(2+) show type 2 Cu(2+) EPR spectra for all peptides. The ligand donor atoms to Cu(2+) are 3N1O when Cu(2+) is bound to any of the Abetapeptides (Abeta16, Abeta28, Abeta40, and Abeta42) that contain the first 16 amino acids of full-length Abeta. When a Y10F mutant of Abeta is used, the coordination environment for Cu(2+) remains 3N1O and Cu(2+) EPR spectra of this mutant are identical to the wild-type spectra. Isotopic labeling experiments show that water is not the O-atom donor to Cu(2+) in Abeta fibrils or in the Y10F mutant. Further, we find that Cu(2+) cannot be removed from Cu(2+)-containing fibrils by washing with buffer, but that Cu(2+) binds to fibrils initially assembled without Cu(2+) in the same coordination environment as in fibrils assembled with Cu(2+). Together, these results indicate (1) that the O-atom donor ligand to Cu(2+) in Abeta is not tyrosine, (2) that the native Cu(2+) binding site in Abeta is sensitive to small changes at the N-terminus, and (3) that Cu(2+) binds to Abetafibrils in a manner that permits exchange of Cu(2+) into and out of the fibrillar architecture. PMID:15807541

  17. Widespread occurrence of N-terminal acylation in animal globins and possible origin of respiratory globins from a membrane-bound ancestor.

    PubMed

    Blank, Miriam; Burmester, Thorsten

    2012-11-01

    Proteins of the (hemo-)globin superfamily have been identified in many different animals but also occur in plants, fungi, and bacteria. Globins are renowned for their ability to store and to transport oxygen, but additional globin functions such as sensing, signaling, and detoxification have been proposed. Recently, we found that the zebrafish globin X protein is myristoylated and palmitoylated at its N-terminus. The addition of fatty acids results in an association with the cellular membranes, suggesting a previously unrecognized globin function. In this study, we show that N-terminal acylation likely occurs in globin proteins from a broad range of phyla. An N-terminal myristoylation site was identified in 90 nonredundant globins from Chlorophyta, Heterokontophyta, Cnidaria, Mollusca, Arthropoda, Nematoda, Echinodermata, Hemichordata, and Chordata (including Cephalochordata), of which 66 proteins carry an additional palmitoylation site. Bayesian phylogenetic analyses identified five major globin families, which may mirror the ancient globin diversity of the Metazoa. Globin X-like proteins form two related clades, which diverged before the radiation of the Eumetazoa. Vertebrate hemoglobin (Hb), myoglobin, cytoglobin, globin E, and globin Y form a strongly supported common clade, which is the sister group of a clade consisting of invertebrate Hbs and relatives. The N-terminally acylated globins do not form a single monophyletic group but are distributed to four distinct clades. This pattern may be either explained by multiple introduction of an N-terminal acylation site into distinct globin lineages or by the origin of animal respiratory globins from a membrane-bound ancestor. Similarly, respiratory globins were not monophyletic. This suggests that respiratory globins might have emerged independently several times and that the early metazoan globins might have been associated with a membrane and carried out a function that was related to lipid protection or

  18. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies. PMID:25233799

  19. Localization of the N-terminal and C-terminal ends of triadin with respect to the sarcoplasmic reticulum membrane of rabbit skeletal muscle.

    PubMed Central

    Marty, I; Robert, M; Ronjat, M; Bally, I; Arlaud, G; Villaz, M

    1995-01-01

    Antibodies were raised against synthetic peptides corresponding to the N-terminal (residues 2-17) and C-terminal (residues 691-706) ends of rabbit skeletal muscle triadin, a 95 kDa protein located in the sarcoplasmic reticulum membrane at the triad junction. The specificity of the antibodies generated was tested by ELISA and Western blot analysis. These tests demonstrated the ability of the antibodies to react specifically with the proteins. The anti-N-terminus antibodies bound to sarcoplasmic reticulum vesicles, indicating that the N-terminal end of the membrane-embedded triadin is exposed on the cytoplasmic side of the vesicles. In contrast, the anti-C-terminus antibodies were able to react with sarcoplasmic reticulum vesicles only after permeabilization of the vesicles with a detergent, indicating that the C-terminal end is exposed on the luminal side of the vesicles. These immunological data were complemented by proteolysis experiments using carboxypeptidases and endoproteinase Arg C. A mixture of carboxypeptidases A, B and Y was used to induce degradation of the C-terminal end of triadin in sarcoplasmic reticulum vesicles. This degradation, and a concomitant loss of reactivity of the anti-C-terminus antibodies in Western blots, was observed only when the vesicles were permeabilized, providing further evidence for the luminal localization of the C-terminal end of triadin. Treatment of sarcoplasmic reticulum vesicles with endoproteinase Arg C resulted in the removal of the N-terminal end of triadin, probably due to cleavage after Arg-34. This is a further indication of the cytoplasmic localization of the N-terminal end of triadin (and of its first 34 amino acids). When the proteolysis with endoproteinase Arg C was carried out with permeabilized vesicles, the cleavage occurred after Arg-141 or Arg-157, indicating that at least one of these residues is luminal. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:7741707

  20. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Roem, Dorina; Abrahams, Jan Pieter; Hack, C Erik; Eldering, Eric

    2003-08-01

    C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation. PMID:12773530

  1. The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor.

    PubMed

    Filippelli-Silva, Rafael; Martin, Renan P; Rodrigues, Eliete S; Nakaie, Clovis R; Oliveira, Laerte; Pesquero, João B; Shimuta, Suma I

    2016-04-01

    Bradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.35(226) and Asp6.58(298), our study aims at clarifying the BK interaction profile with the B2 receptor [receptor residue numbers are normalized according to Ballesteros and Weinstein, Methods Neurosci. 25 (1995), pp. 366-428) followed by receptor sequence numbering in brackets]. N- and C-terminal analogs of BK (-A1, -G1, -K1, -E1 and BK-A9) were tested against wild type B2, Glu5.35(226)Ala and Asp6.58(298)Ala B2 mutant receptors for their affinity and capability to elicit responses by mechanical recordings of isolated mice stomach fundus, measuring intracellular calcium mobilization, and competitive fluorimetric binding assays. BK showed 2- and 15-fold decreased potency for Glu5.35(226) and Asp6.58(298) B2 mutant receptors, respectively. In B2-Glu5.35(226)Ala BK analogs showed milder reduction in evaluated parameters. On the other hand, in the B2-Asp6.58(298)Ala mutant, no N-terminal analog was able to elicit any response. However, the BK-A9 analog presented higher affinity parameters than BK in the latter mutant. These findings provide enough support for defining a novel interaction role of BK-R9 and Asp6.58(298) receptor residues. PMID:26584354

  2. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana.

    PubMed

    Wieczorek, Przemysław; Obrępalska-Stęplowska, Aleksandra

    2016-07-01

    The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus. PMID:27072852

  3. High copy numbers and N terminal insertion position of influenza A M2E fused with hepatitis B core antigen enhanced immunogenicity.

    PubMed

    Sun, Xincheng; Wang, Yunlong; Dong, Caiwen; Hu, Jinqiang; Yang, Liping

    2015-08-01

    The extra domain of influenza M2 protein (M2e) is almost completely conserved among all influenza A virus subtypes. M2e is a promising candidate target for the development of a broad-spectrum recombinant influenza A vaccine. However, the immunogenicity of M2e needs to be improved. Copy numbers of M2e and its fusion expression with different carrier proteins may affect its immunopotency. In this study, we designed and created different constructs through genetic fusion of M2e (MSLLTEVETPTRSEWECRCSDSSD) (A/California/05/2009 (H1N1)) with the N-terminus (HBcAg1-149aa + Cys) by insertion in the N-terminus Hepatitis B Core (HBc) antigen 1-149aa and Middle 78-81aa of HBcAg1-149aa to construct a recombinant M2e-based vaccine candidate. These chimeric sequences were expressed in Escherichia coli. We constructed fusion proteins containing influenza A H1N1 influenza virus (2009), as well as one, two, and three copies of M2e and hepatitis B core antigen1-149aa amino acid-optimized codon inserted N and its intermediate. The recombinant protein was expressed and purified. Western blot analysis was employed to evaluate the expression of the M2e recombinant protein containing different copy numbers of M2e. Mice were immunized for two times with the purified fusion protein HBc/M2e BALB/c. Serum levels of M2e antibody gradually increased along with increase in immunity. The levels of different fusion protein M2e antibodies increase with increasing M2e copy number. In addition, the protein antibody level in the N terminal fusion protein is higher than that in intermediate fusion. PMID:26355223

  4. Structurally Conserved Nop56/58 N-terminal Domain Facilitates Archaeal Box C/D Ribonucleoprotein-guided Methyltransferase Activity*

    PubMed Central

    Gagnon, Keith T.; Biswas, Shyamasri; Zhang, Xinxin; Brown, Bernard A.; Wollenzien, Paul; Mattos, Carla; Maxwell, E. Stuart

    2012-01-01

    Box C/D RNA-protein complexes (RNPs) guide the 2′-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C′/D′ RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity. PMID:22496443

  5. The cytoplasmic domain of Vamp4 and Vamp5 is responsible for their correct subcellular targeting: the N-terminal extenSion of VAMP4 contains a dominant autonomous targeting signal for the trans-Golgi network.

    PubMed

    Zeng, Qi; Tran, Thi Ton Hoai; Tan, Hui-Xian; Hong, Wanjin

    2003-06-20

    SNAREs represent a superfamily of proteins responsible for the last stage of docking and subsequent fusion in diverse intracellular membrane transport events. The Vamp subfamily of SNAREs contains 7 members (Vamp1, Vamp2, Vamp3/cellubrevin, Vamp4, Vamp5, Vamp7/Ti-Vamp, and Vamp8/endobrevin) that are distributed in various post-Golgi structures. Vamp4 and Vamp5 are distributed predominantly in the trans-Golgi network (TGN) and the plasma membrane, respectively. When C-terminally tagged with enhanced green fluorescent protein, the majority of Vamp4 and Vamp5 is correctly targeted to the TGN and plasma membrane, respectively. Swapping the N-terminal cytoplasmic region and the C-terminal membrane anchor domain between Vamp4 and Vamp5 demonstrates that the N-terminal cytoplasmic region of these two SNAREs contains the correct subcellular targeting information. As compared with Vamp5, Vamp4 contains an N-terminal extension of 51 residues. Appending this 51-residue N-terminal extension onto the N terminus of Vamp5 results in targeting of the chimeric protein to the TGN, suggesting that this N-terminal extension of Vamp4 contains a dominant and autonomous targeting signal for the TGN. Analysis of deletion mutants of this N-terminal region suggests that this TGN-targeting signal is encompassed within a smaller region consisting of a di-Leu motif followed by two acidic clusters. The essential role of the di-Leu motif and the second acidic cluster was then established by site-directed mutagenesis. PMID:12682051

  6. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Aβ peptides.

    PubMed

    Oberstein, Timo Jan; Spitzer, Philipp; Klafki, Hans-Wolfgang; Linning, Philipp; Neff, Florian; Knölker, Hans-Joachim; Lewczuk, Piotr; Wiltfang, Jens; Kornhuber, Johannes; Maler, Juan Manuel

    2015-01-01

    The neuropathological hallmarks of Alzheimer's disease include extracellular neuritic plaques and neurofibrillary tangles. The neuritic plaques contain β-amyloid peptides (Aβ peptides) as the major proteinaceous constituent and are surrounded by activated microglia and astrocytes as well as dystrophic neurites. N-terminally truncated forms of Aβ peptides are highly prevalent in neuritic plaques, including Aβ 3-x beginning at Glu eventually modified to pyroglutamate (Aβ N3pE-x), Aβ 2-x, Aβ 4-x, and Aβ 5-x. The precise origin of the different N-terminally modified Aβ peptides currently remains unknown. To assess the contribution of specific cell types to the formation of different N-terminally truncated Aβ peptides, supernatants from serum-free primary cell cultures of chicken neurons, astrocytes, and microglia, as well as human astrocytes, were analyzed by Aβ-ELISA and one- and two-dimensional SDS-urea polyacrylamide gel electrophoresis followed by immunoblot analysis. To evaluate the contribution of β- and γ-secretase to the generation of N-terminally modified Aβ, cultured astrocytes were treated with membrane-anchored "tripartite β-secretase (BACE1) inhibitors" and the γ-secretase inhibitor DAPT. Neurons, astrocytes, and microglia each exhibited cell type-specific patterns of secreted Aβ peptides. Neurons predominantly secreted Aβ peptides that begin at Asp1, whereas those released from astrocytes and microglia included high proportions of N-terminally modified Aβ peptides, presumably including Aβ 2/3-x and 4/5-x. The inhibition of BACE1 reduced the amount of Aβ 1-x in cell culture supernatants but not the amount of Aβ 2-x. PMID:25204716

  7. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    SciTech Connect

    Couto, Sheila G.; Cristina Nonato, M.

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  8. N-terminal modifications contribute to flowering time and immune response regulations

    PubMed Central

    Kapos, Paul; Xu, Fang; Meinnel, Thierry; Giglione, Carmela; Li, Xin

    2015-01-01

    A variety of N-terminal co-translational modifications play crucial roles in many cellular processes across eukaryotic organisms. Recently, N-terminal acetylation has been proposed as a regulatory mechanism for the control of plant immunity. Analysis of an N-terminal acetyltransferase complex A (NatA) mutant, naa15–1, revealed that NatA controls the stability of immune receptor Suppressor of NPR1, Constitutive 1 (SNC1) in an antagonistic fashion with NatB. Here, we further report on an antagonistic regulation of flowering time by NatA and NatB, where naa15–1 plants exhibit late flowering, opposite of the early flowering phenotype previously observed in natB mutants. In addition, we provide evidence for the involvement of another N-terminal modification, N-myristoylation, in controlling pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) through the characterization of N-myristoyltransferase 1 (NMT1) defective mutants, which express a low level of NMT1 protein. The mutant line lacks induced production of reactive oxygen species and MAP kinase phosphorylation in response to treatment with the known immune elicitor flg22. NMT1 deficient plants also exhibit increased susceptibility to Pst hrcC, a non-pathogenic Pseudomonas syringae tomato strain lacking a functional type-III secretion system. The potential for the NatA-NatB antagonistic relationship to exist outside of the regulation of SNC1 as well as the disclosing of NMT1s role in PTI further supports the significant contribution of N-terminal co-translational modifications in the regulation of biological processes in plants, and present interesting areas for further exploration. PMID:26361095

  9. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs.

    PubMed Central

    Nabeshima, Y; Fujii-Kuriyama, Y; Muramatsu, M; Ogata, K

    1982-01-01

    We report here the molecular cloning and sequence analysis of DNAs complementary to mRNAs for myosin alkali light chain of chicken embryo and adult leg skeletal muscle. pSMA2-1 contained an 818 base-pair insert that includes the entire coding region and 5' and 3' untranslated regions of A2 mRNA. pSMA1-1 contained a 848 base-pair insert that included the 3' untranslated region and almost all of the coding region except for the N-terminal 13 amino acid residues of the A1 light chain. The 741 nucleotide sequences of A1 and A2 mRNAs corresponding to C-terminal 141 amino acid residues and 3' untranslated regions were identical. The 5' terminal nucleotide sequences corresponding to N-terminal 35 amino acid residues of A1 chain were quite different from the sequences corresponding to N-terminal 8 amino acid residues and of the 5' untranslated region of A2 mRNA. These findings are discussed in relation to the structures of the genes for A1 and A2 mRNA. PMID:6128725

  10. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome.

    PubMed

    Pinto, Ameet J; Sharp, Jonathan O; Yoder, Michael J; Almstrand, Robert

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  11. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome

    PubMed Central

    Pinto, Ameet J.; Sharp, Jonathan O.; Yoder, Michael J.

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  12. Two distinct ferredoxins from Rhodobacter capsulatus: complete amino acid sequences and molecular evolution.

    PubMed

    Saeki, K; Suetsugu, Y; Yao, Y; Horio, T; Marrs, B L; Matsubara, H

    1990-09-01

    Two distinct ferredoxins were purified from Rhodobacter capsulatus SB1003. Their complete amino acid sequences were determined by a combination of protease digestion, BrCN cleavage and Edman degradation. Ferredoxins I and II were composed of 64 and 111 amino acids, respectively, with molecular weights of 6,728 and 12,549 excluding iron and sulfur atoms. Both contained two Cys clusters in their amino acid sequences. The first cluster of ferredoxin I and the second cluster of ferredoxin II had a sequence, CxxCxxCxxxCP, in common with the ferredoxins found in Clostridia. The second cluster of ferredoxin I had a sequence, CxxCxxxxxxxxCxxxCM, with extra amino acids between the second and third Cys, which has been reported for other photosynthetic bacterial ferredoxins and putative ferredoxins (nif-gene products) from nitrogen-fixing bacteria, and with a unique occurrence of Met. The first cluster of ferredoxin II had a CxxCxxxxCxxxCP sequence, with two additional amino acids between the second and third Cys, a characteristics feature of Azotobacter-[3Fe-4S] [4Fe-4S]-ferredoxin. Ferredoxin II was also similar to Azotobacter-type ferredoxins with an extended carboxyl (C-) terminal sequence compared to the common Clostridium-type. The evolutionary relationship of the two together with a putative one recently found to be encoded in nifENXQ region in this bacterium [Moreno-Vivian et al. (1989) J. Bacteriol. 171, 2591-2598] is discussed. PMID:2277040

  13. Amino Acid Sequence of Anionic Peroxidase from the Windmill Palm Tree Trachycarpus fortunei

    PubMed Central

    2015-01-01

    Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications. PMID:25383699

  14. Specific binding sites for proadrenomedullin N-terminal 20 peptide (PAMP) in the rat.

    PubMed

    Iwasaki, H; Hirata, Y; Iwashina, M; Sato, K; Marumo, F

    1996-07-01

    Adrenomedullin (AM), a potent and novel vasodilator 52-residue peptide originally isolated from pheochromocytoma, is processed from a precursor molecule (preproAM) in which another unique 20-residue sequence, termed proadrenomedullin N-terminal 20 peptide (PAMP), exists. Using [125I Tyr0] rat PAMP as a radioligand, we have examined PAMP binding sites in various rat tissues and cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding sites for rat PAMP, although very low, were widely distributed in various rat tissues examined. The relatively more abundant sites were present in aorta and adrenal glands, followed by lung, kidney, brain, spleen, and heart. An equilibrium binding study using cultured rat VSMC revealed the presence of a single class of high-affinity [dissociation constant (Kd): 3.5 x 10(-8) M] binding sites for rat PAMP with a maximal binding capacity of 4.5 x 10(6) sites per cell. Binding studies revealed that synthetic rat PAMP(1-19)-NH2 was about 10-fold less potent, and rat PAMP(1-20)-OH and human PAMP were about 20-fold less potent than rat PAMP(1-20)-NH2. SDS-polyacylamide gel electrophoresis after affinity-labeling of membranes from various rat tissues (aorta, adrenal glands, lung) and VSMC revealed a distinct labeled band with the apparent molecular mass of 90 kDa, which was diminished by excess unlabeled rat PAMP. A nonhydrolyzable GTP analog (GTP-gammaS) dose-dependently reduced binding of [125I] rat PAMP to VSMC membranes, while ATP-gammaS had no effect. Neither cyclic AMP nor inositol-1,4,5-triphosphate formation was affected by rat PAMP in rat VSMC. The present study demonstrates for the first time that PAMP receptors are widely distributed in various rat tissues, among which aorta and adrenal glands have the most abundant sites. Our data suggest that PAMP receptors are functionally coupled to G-proteins, although its signal transduction remains obscure. The present study also shows that amidation of C-terminal residue

  15. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5).

    PubMed Central

    Czerny, T; Busslinger, M

    1995-01-01

    Pax-6 is known to be a key regulator of vertebrate eye development. We have now isolated cDNA for an invertebrate Pax-6 protein from sea urchin embryos. Transcripts of this gene first appear during development at the gastrula stage and are later expressed at high levels in the tube foot of the adult sea urchin. The sea urchin Pax-6 protein is highly homologous throughout the whole protein to its vertebrate counterpart with the paired domain and homeodomain being virtually identical. Consequently, we found that the DNA-binding and transactivation properties of the sea urchin and mouse Pax-6 proteins are very similar, if not identical. A potent activation domain capable of stimulating transcription from proximal promoter and distal enhancer positions was localized within the C-terminal sequences of both the sea urchin and mouse Pax-6 proteins. The homeodomain of Pax-6 was shown to cooperatively dimerize on DNA sequences consisting of an inverted repeat of the TAAT motif with a preferred spacing of 3 nucleotides. The consensus recognition sequence of the Pax-6 paired domain deviates primarily only at one position from that of BSAP (Pax-5), and yet the two proteins exhibit largely different binding specificities for individual, naturally occurring sites. By creating Pax-6-BSAP fusion proteins, we were able to identify a short amino acid stretch in the N-terminal part of the paired domain which is responsible for these differences in DNA-binding specificity. Mutation of three Pax-6-specific residues in this region (at positions 42, 44, and 47 of the paired domain) to the corresponding amino acids of BSAP resulted in a complete switch of the DNA-binding specificity from Pax-6 to BSAP. These three amino acids were furthermore shown to discriminate between the Pax-6- and BSAP-specific nucleotide at the divergent position of the two consensus recognition sequences. PMID:7739566

  16. Sequencing Lys-N proteolytic peptides by ESI and MALDI tandem mass spectrometry.

    PubMed

    Dupré, Mathieu; Cantel, Sonia; Verdié, Pascal; Martinez, Jean; Enjalbal, Christine

    2011-02-01

    In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated. PMID:21472586

  17. Sequencing Lys-N Proteolytic Peptides by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Verdié, Pascal; Martinez, Jean; Enjalbal, Christine

    2011-02-01

    In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.

  18. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor.

    PubMed

    Sallenave, J M; Ryle, A P

    1991-01-01

    Elastase-specific inhibitor (ESI) was purified from sputum of patients with chronic bronchitis and compared with mucus proteinase inhibitor (MPI, BrI) isolated, without the use of affinity chromatography on an enzyme, from non-purulent sputum of a patient with bronchial carcinoma. The N-terminal sequence of 27 residues of the latter was determined and showed serine as the only N-terminus. The partial N-terminal amino-acid sequence of ESI shows some homology with MPI, especially around the reactive site of MPI for human neutrophil elastase. This region could therefore be the reactive site of ESI. The thermodynamic and kinetic constants of the reactions of ESI with human neutrophil elastase and with porcine pancreatic elastase show that ESI is a fast-acting inhibitor. PMID:2039600

  19. Protein chemotaxonomy. XIII. Amino acid sequence of ferredoxin from Panax ginseng.

    PubMed

    Mino, Yoshiki

    2006-08-01

    The complete amino acid sequence of [2Fe-2S] ferredoxin from Panax ginseng (Araliaceae) has been determined by automated Edman degradation of the entire S-carboxymethylcysteinyl protein and of the peptides obtained by enzymatic digestion. This ferredoxin has a unique amino acid sequence, which includes an insertion of Tyr at the 3rd position from the amino-terminus and a deletion of two amino acid residues at the carboxyl terminus. This ferredoxin had 18 differences in its amino acid sequence compared to that of Petroselinum sativum (Umbelliferae). In contrast, 23-33 differences were observed compared to other dicotyledonous plants. This suggests that Panax ginseng is related taxonomically to umbelliferous plants. PMID:16880642

  20. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor. PMID:2708331

  1. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  2. Complete cDNA and derived amino acid sequence of human factor V

    SciTech Connect

    Jenny, R.J.; Pittman, D.D.; Toole, J.J.; Kriz, R.W.; Aldape, R.A.; Hewick, R.M.; Kaufman, R.J.; Mann, K.G.

    1987-07-01

    cDNA clones encoding human factor V have been isolated from an oligo(dT)-primed human fetal liver cDNA library prepared with vector Charon 21A. The cDNA sequence of factor V from three overlapping clones includes a 6672-base-pair (bp) coding region, a 90-bp 5' untranslated region, and a 163-bp 3' untranslated region within which is a poly(A)tail. The deduced amino acid sequence consists of 2224 amino acids inclusive of a 28-amino acid leader peptide. Direct comparison with human factor VIII reveals considerable homology between proteins in amino acid sequence and domain structure: a triplicated A domain and duplicated C domain show approx. 40% identity with the corresponding domains in factor VIII. As in factor VIII, the A domains of factor V share approx. 40% amino acid-sequence homology with the three highly conserved domains in ceruloplasmin. The B domain of factor V contains 35 tandem and approx. 9 additional semiconserved repeats of nine amino acids of the form Asp-Leu-Ser-Gln-Thr-Thr/Asn-Leu-Ser-Pro and 2 additional semiconserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues.

  3. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    SciTech Connect

    Oeberg, Christine; Belikov, Sergey

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, {Delta}N-hH1.4, were compared. Black-Right-Pointing-Pointer Both histones bind to chromatin, however, {Delta}N-hH1.4 displays lower binding affinity. Black-Right-Pointing-Pointer Interaction of {Delta}N-hH1.4 with chromatin includes a significant unspecific component. Black-Right-Pointing-Pointer N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain ({Delta}N-hH1.4). The {Delta}N-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that {Delta}N-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  4. The N-Terminal Region of IFITM3 Modulates Its Antiviral Activity by Regulating IFITM3 Cellular Localization

    PubMed Central

    Jia, Rui; Pan, Qinghua; Ding, Shilei; Rong, Liwei; Liu, Shan-Lu; Geng, Yunqi

    2012-01-01

    Interferon-inducible transmembrane (IFITM) protein family members IFITM1, -2, and -3 restrict the infection of multiple enveloped viruses. Significant enrichment of a minor IFITM3 allele was recently reported for patients who were hospitalized for seasonal and 2009 H1N1 pandemic flu. This IFITM3 allele lacks the region corresponding to the first amino-terminal 21 amino acids and is unable to inhibit influenza A virus. In this study, we found that deleting this 21-amino-acid region relocates IFITM3 from the endosomal compartments to the cell periphery. This finding likely underlies the lost inhibition of influenza A virus that completes its entry exclusively within endosomes at low pH. Yet, wild-type IFITM3 and the mutant with the 21-amino-acid deletion inhibit HIV-1 replication equally well. Given the pH-independent nature of HIV-1 entry, our results suggest that IFITM3 can inhibit viruses that enter cells via different routes and that its N-terminal region is specifically required for controlling pH-dependent viruses. PMID:23055554

  5. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding

    PubMed Central

    Frugier, Magali; Moulinier, Luc; Giegé, Richard

    2000-01-01

    Cytoplasmic aspartyl-tRNA synthetase (AspRS) from Saccharomyces cerevisiae is a homodimer of 64 kDa subunits. Previous studies have emphasized the high sensitivity of the N-terminal region to proteolytic cleavage, leading to truncated species that have lost the first 20–70 residues but that retain enzymatic activity and dimeric structure. In this work, we demonstrate that the N-terminal extension in yeast AspRS participates in tRNA binding and we generalize this finding to eukaryotic class IIb aminoacyl-tRNA synthetases. By gel retardation studies and footprinting experiments on yeast tRNAAsp, we show that the extension, connected to the anticodon-binding module of the synthetase, contacts tRNA on the minor groove side of its anticodon stem. Sequence comparison of eukaryotic class IIb synthetases identifies a lysine-rich 11 residue sequence (29LSKKALKKLQK39 in yeast AspRS with the consensus xSKxxLKKxxK in class IIb synthetases) that is important for this binding. Direct proof of the role of this sequence comes from a mutagenesis analysis and from binding studies using the isolated peptide. PMID:10811628

  6. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  7. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    NASA Astrophysics Data System (ADS)

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O'Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-12-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics.

  8. The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres.

    PubMed

    Saint-Léger, Adélaïde; Koelblen, Melanie; Civitelli, Livia; Bah, Amadou; Djerbi, Nadir; Giraud-Panis, Marie-Josèphe; Londoño-Vallejo, Arturo; Ascenzioni, Fiorentina; Gilson, Eric

    2014-01-01

    The stability of mammalian telomeres depends upon TRF2, which prevents inappropriate repair and checkpoint activation. By using a plasmid integration assay in yeasts carrying humanized telomeres, we demonstrated that TRF2 possesses the intrinsic property to both stimulate initial homologous recombination events and to prevent their resolution via its basic N-terminal domain. In human cells, we further showed that this TRF2 domain prevents telomere shortening mediated by the resolvase-associated protein SLX4 as well as GEN1 and MUS81, 2 different types of endonucleases with resolvase activities. We propose that various types of resolvase activities are kept in check by the basic N-terminal domain of TRF2 in order to favor an accurate repair of the stalled forks that occur during telomere replication. PMID:25483196

  9. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  10. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases.

    PubMed

    Aksnes, Henriette; Drazic, Adrian; Marie, Michaël; Arnesen, Thomas

    2016-09-01

    N-terminal (Nt) acetylation is known to be a highly abundant co-translational protein modification, but the recent discovery of Golgi- and chloroplast-resident N-terminal acetyltransferases (NATs) revealed that it can also be added post-translationally. Nt-acetylation may act as a degradation signal in a novel branch of the N-end rule pathway, whose functions include the regulation of human blood pressure. Nt-acetylation also modulates protein interactions, targeting, and folding. In plants, Nt-acetylation plays a role in the control of resistance to drought and in regulation of immune responses. Mutations of specific human NATs that decrease their activity can cause either the lethal Ogden syndrome or severe intellectual disability and cardiovascular defects. In sum, recent advances highlight Nt-acetylation as a key factor in many biological pathways. PMID:27498224

  11. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms

    PubMed Central

    Rathore, Om Singh; Faustino, Alexandra; Prudêncio, Pedro; Van Damme, Petra; Cox, Cymon J.; Martinho, Rui Gonçalo

    2016-01-01

    Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes. PMID:26861501

  12. In vitro phosphorylation of the N-terminal half of hordeivirus movement protein.

    PubMed

    Makarov, V V; Iconnikova, A Y; Guseinov, M A; Vishnichenko, V K; Kalinina, N O

    2012-09-01

    The N-terminal half of TGB1 movement protein of poa semilatent hordeivirus, which forms a ribonucleoprotein complex involved in movement of the viral genome in the plant, and its two domains, NTD and ID, are phosphorylated in vitro by a fraction enriched in cell walls from Nicotiana benthamiana. Using a set of protein kinase inhibitors with different specificities, it was found that enzymes possessing activities of casein kinase 1, protein kinase A, and protein kinase C are involved in phosphorylation. Commercial preparations of protein kinases A and C are able to phosphorylate in vitro recombinant proteins corresponding to the N-terminal half of the protein and its domains NTD and ID. Phosphorylation of the NTD has no effect on the efficiency and character of its binding to RNA. However, phosphorylation of the ID leads to a decrease in its RNA-binding activity and in the ability for homological protein-protein interactions. PMID:23157268

  13. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    SciTech Connect

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.; Moore, Ronald J.; Camp, David G.; Baker, Scott E.; Smith, Richard D.; Qian, Weijun

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significant improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.

  14. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  15. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  16. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.

    PubMed

    Absmeier, Eva; Wollenhaupt, Jan; Mozaffari-Jovin, Sina; Becke, Christian; Lee, Chung-Tien; Preussner, Marco; Heyd, Florian; Urlaub, Henning; Lührmann, Reinhard; Santos, Karine F; Wahl, Markus C

    2015-12-15

    The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation. PMID:26637280

  17. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation

    PubMed Central

    Absmeier, Eva; Wollenhaupt, Jan; Mozaffari-Jovin, Sina; Becke, Christian; Lee, Chung-Tien; Preussner, Marco; Heyd, Florian; Urlaub, Henning; Lührmann, Reinhard; Santos, Karine F.; Wahl, Markus C.

    2015-01-01

    The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation. PMID:26637280

  18. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis.

    PubMed

    Feng, Jinlin; Li, Ruiqi; Yu, Junya; Ma, Shuangshuang; Wu, Chunyan; Li, Yan; Cao, Ying; Ma, Ligeng

    2016-08-01

    Early embryonic development generates precursors of all major cell types in Arabidopsis. Among these precursors, the hypophysis divides asymmetrically to form the progenitors of the quiescent center and columella stem cells. A great deal has been learnt about the mechanisms that control the asymmetric division of the hypophysis and embryogenesis at the transcriptional level; however, no evidence of regulation at the co- or post-translational level has been reported. Here, we show that mutation of the catalytic subunit (Naa10) or auxiliary subunit (Naa15) of NatA, an N-terminal acetyltransferase that catalyzes protein N-terminal acetylation, produces an embryo-lethal phenotype. In addition, Naa10 and Naa15 were found to interact physically in planta Further analysis revealed that the observed embryonic patterning defects started at the early globular stage and that the asymmetric division of the hypophysis was irregular; thus, no quiescent center progenitor cells were generated in naa10 and naa15 embryos. We further observed that the polar distributions of auxin and its efflux carrier PIN1 were disturbed in naa10 embryos. Our results suggest that NatA is required for asymmetric division of the hypophysis and early embryonic patterning in Arabidopsis, and provides a link between protein N-terminal acetylation and embryogenesis in plants. PMID:27385766

  19. Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface

    PubMed Central

    Kimlicka, Lynn; Lau, Kelvin; Tung, Ching-Chieh; Van Petegem, Filip

    2013-01-01

    Ryanodine receptors are large channels that release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Hundreds of RyR mutations can cause cardiac and skeletal muscle disorders, yet detailed mechanisms explaining their effects have been lacking. Here we compare pseudo-atomic models and propose that channel opening coincides with widening of a cytoplasmic vestibule formed by the N-terminal region, thus altering an interface targeted by 20 disease mutations. We solve crystal structures of several disease mutants that affect intrasubunit domain–domain interfaces. Mutations affecting intrasubunit ionic pairs alter relative domain orientations, and thus couple to surrounding interfaces. Buried disease mutations cause structural changes that also connect to the intersubunit contact area. These results suggest that the intersubunit contact region between N-terminal domains is a prime target for disease mutations, direct or indirect, and we present a model whereby ryanodine receptors and inositol-1,4,5-trisphosphate receptors are activated by altering domain arrangements in the N-terminal region. PMID:23422674

  20. Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ-3-x -Peptides.

    PubMed

    Beyer, Isaak; Rezaei-Ghaleh, Nasrollah; Klafki, Hans-Wolfgang; Jahn, Olaf; Haußmann, Ute; Wiltfang, Jens; Zweckstetter, Markus; Knölker, Hans-Joachim

    2016-06-13

    In addition to the prototypic amyloid-β (Aβ) peptides Aβ1-40 and Aβ1-42 , several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ-3-38 , Aβ-3-40 , and Aβ-3-42 . Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ-3-38 and Aβ-3-40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(-3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease. PMID:27167300

  1. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis

    PubMed Central

    Feng, Jinlin; Li, Ruiqi; Yu, Junya; Ma, Shuangshuang; Wu, Chunyan; Li, Yan; Cao, Ying; Ma, Ligeng

    2016-01-01

    Early embryonic development generates precursors of all major cell types in Arabidopsis. Among these precursors, the hypophysis divides asymmetrically to form the progenitors of the quiescent center and columella stem cells. A great deal has been learnt about the mechanisms that control the asymmetric division of the hypophysis and embryogenesis at the transcriptional level; however, no evidence of regulation at the co- or post-translational level has been reported. Here, we show that mutation of the catalytic subunit (Naa10) or auxiliary subunit (Naa15) of NatA, an N-terminal acetyltransferase that catalyzes protein N-terminal acetylation, produces an embryo-lethal phenotype. In addition, Naa10 and Naa15 were found to interact physically in planta. Further analysis revealed that the observed embryonic patterning defects started at the early globular stage and that the asymmetric division of the hypophysis was irregular; thus, no quiescent center progenitor cells were generated in naa10 and naa15 embryos. We further observed that the polar distributions of auxin and its efflux carrier PIN1 were disturbed in naa10 embryos. Our results suggest that NatA is required for asymmetric division of the hypophysis and early embryonic patterning in Arabidopsis, and provides a link between protein N-terminal acetylation and embryogenesis in plants. PMID:27385766

  2. Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency.

    PubMed

    Saunier, Chloé; Støve, Svein Isungset; Popp, Bernt; Gérard, Bénédicte; Blenski, Marina; AhMew, Nicholas; de Bie, Charlotte; Goldenberg, Paula; Isidor, Bertrand; Keren, Boris; Leheup, Bruno; Lampert, Laetitia; Mignot, Cyril; Tezcan, Kamer; Mancini, Grazia M S; Nava, Caroline; Wasserstein, Melissa; Bruel, Ange-Line; Thevenon, Julien; Masurel, Alice; Duffourd, Yannis; Kuentz, Paul; Huet, Frédéric; Rivière, Jean-Baptiste; van Slegtenhorst, Marjon; Faivre, Laurence; Piton, Amélie; Reis, André; Arnesen, Thomas; Thauvin-Robinet, Christel; Zweier, Christiane

    2016-08-01

    N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X-inactivation was random in five females. The core phenotype of X-linked NAA10-related N-terminal-acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype-phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X-inactivation in females. PMID:27094817

  3. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  4. Conversion of amino-acid sequence in proteins to classical music: search for auditory patterns

    PubMed Central

    2007-01-01

    We have converted genome-encoded protein sequences into musical notes to reveal auditory patterns without compromising musicality. We derived a reduced range of 13 base notes by pairing similar amino acids and distinguishing them using variations of three-note chords and codon distribution to dictate rhythm. The conversion will help make genomic coding sequences more approachable for the general public, young children, and vision-impaired scientists. PMID:17477882

  5. Expression and Biochemical Characterization of the Human Enzyme N-Terminal Asparagine Amidohydrolase (hNTAN1)

    PubMed Central

    Cantor, Jason R.; Stone, Everett M.; Georgiou, George

    2011-01-01

    The enzymatic deamidation of N-terminal L-Asn by N-terminal asparagine amidohydrolase (NTAN1) is a feature of the ubiquitin-dependent N-end rule pathway of protein degradation, which relates the in vivo half-life of a protein to the identity of its N-terminal residue. Herein we report the bacterial expression, purification, and biochemical characterization of the human NTAN1 (hNTAN1). We show here that hNTAN1 is highly selective for the hydrolysis of N-terminal peptidyl L-Asn, but fails to deamidate free L-Asn or L-Gln, N-terminal peptidyl L-Gln, or acetylated N-terminal peptidyl L-Asn. Similar to other N-terminal deamidases, hNTAN1 is shown to possess a critical Cys residue that is absolutely required for catalysis, corroborated in part by abolishment of activity through the point mutation Cys75Ala. We also present evidence that the exposure of a conserved L-Pro at the N-terminus of hNTAN1 following removal of the initiating L-Met is important for function of the enzyme. The results presented here should assist in the elucidation of molecular mechanisms underlying the neurological defects of NTAN1-deficient mice observed in other studies, and in the discovery of potential physiological substrates targeted by the enzyme in the modulation of protein turnover via the N-end rule pathway. PMID:21375249

  6. Two N-Terminal Acetyltransferases Antagonistically Regulate the Stability of a Nod-Like Receptor in Arabidopsis

    PubMed Central

    Li, Lin; Gannon, Patrick; Linster, Eric; Huber, Monika; Kapos, Paul; Bienvenut, Willy; Giglione, Carmela; Zhang, Yuelin; Chen, She

    2015-01-01

    Nod-like receptors (NLRs) serve as immune receptors in plants and animals. The stability of NLRs is tightly regulated, though its mechanism is not well understood. Here, we show the crucial impact of N-terminal acetylation on the turnover of one plant NLR, Suppressor of NPR1, Constitutive 1 (SNC1), in Arabidopsis thaliana. Genetic and biochemical analyses of SNC1 uncovered its multilayered regulation by different N-terminal acetyltransferase (Nat) complexes. SNC1 exhibits a few distinct N-terminal isoforms generated through alternative initiation and N-terminal acetylation. Its first Met is acetylated by N-terminal acetyltransferase complex A (NatA), while the second Met is acetylated by N-terminal acetyltransferase complex B (NatB). Unexpectedly, the NatA-mediated acetylation serves as a degradation signal, while NatB-mediated acetylation stabilizes the NLR protein, thus revealing antagonistic N-terminal acetylation of a single protein substrate. Moreover, NatA also contributes to the turnover of another NLR, RESISTANCE TO P. syringae pv maculicola 1. The intricate regulation of protein stability by Nats is speculated to provide flexibility for the target protein in maintaining its homeostasis. PMID:25966763

  7. Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

    PubMed Central

    Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.

    2015-01-01

    The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668

  8. Ab initio detection of fuzzy amino acid tandem repeats in protein sequences

    PubMed Central

    2012-01-01

    Background Tandem repetitions within protein amino acid sequences often correspond to regular secondary structures and form multi-repeat 3D assemblies of varied size and function. Developing internal repetitions is one of the evolutionary mechanisms that proteins employ to adapt their structure and function under evolutionary pressure. While there is keen interest in understanding such phenomena, detection of repeating structures based only on sequence analysis is considered an arduous task, since structure and function is often preserved even under considerable sequence divergence (fuzzy tandem repeats). Results In this paper we present PTRStalker, a new algorithm for ab-initio detection of fuzzy tandem repeats in protein amino acid sequences. In the reported results we show that by feeding PTRStalker with amino acid sequences from the UniProtKB/Swiss-Prot database we detect novel tandemly repeated structures not captured by other state-of-the-art tools. Experiments with membrane proteins indicate that PTRStalker can detect global symmetries in the primary structure which are then reflected in the tertiary structure. Conclusions PTRStalker is able to detect fuzzy tandem repeating structures in protein sequences, with performance beyond the current state-of-the art. Such a tool may be a valuable support to investigating protein structural properties when tertiary X-ray data is not available. PMID:22536906

  9. Multimodal phylogeny for taxonomy: integrating information from nucleotide and amino acid sequences.

    PubMed

    Bicego, Manuele; Dellaglio, Franco; Felis, Giovanna E

    2007-10-01

    The crucial role played by the analysis of microbial diversity in biotechnology-based innovations has increased the interest in the microbial taxonomy research area. Phylogenetic sequence analyses have contributed significantly to the advances in this field, also in the view of the large amount of sequence data collected in recent years. Phylogenetic analyses could be realized on the basis of protein-encoding nucleotide sequences or encoded amino acid molecules: these two mechanisms present different peculiarities, still starting from two alternative representations of the same information. This complementarity could be exploited to achieve a multimodal phylogenetic scheme that is able to integrate gene and protein information in order to realize a single final tree. This aspect has been poorly addressed in the literature. In this paper, we propose to integrate the two phylogenetic analyses using basic schemes derived from the multimodality fusion theory (or multiclassifier systems theory), a well-founded and rigorous branch for which its powerfulness has already been demonstrated in other pattern recognition contexts. The proposed approach could be applied to distance matrix-based phylogenetic techniques (like neighbor joining), resulting in a smart and fast method. The proposed methodology has been tested in a real case involving sequences of some species of lactic acid bacteria. With this dataset, both nucleotide sequence- and amino acid sequence-based phylogenetic analyses present some drawbacks, which are overcome with the multimodal analysis. PMID:17933011

  10. Extra N-Terminal Residues Have a Profound Effect on the Aggregation Properties of the Potential Yeast Prion Protein Mca1

    PubMed Central

    Erhardt, Marc; Wegrzyn, Renee D.; Deuerling, Elke

    2010-01-01

    The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1 can give rise to two slightly different long Mca1 proteins or a short version, Mca1451/453 and Mca1432, respectively, although under normal physiological conditions Mca1432 is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich regions, while only the long variants Mca1451/453 share an extra stretch of 19 amino acids at their N-terminal end. Strikingly, only long versions of Mca1 but not Mca1432 revealed pronounced aggregation in vivo and displayed prion-like properties when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1451 to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a conformational switch might occur in vivo via the usage of alternative translational start sites. PMID:20360952

  11. The amino-acid sequence of leghemoglobin component a from Phaseolus vulgaris (kidney bean).

    PubMed

    Lehtovaara, P; Ellfolk, N

    1975-06-01

    1. Leghemoglobin component a from Phaseolus vulgaris (kidney bean) was digested with trypsin; 15 tryptic peptides and free lysine were purified and the amino acid sequences of the peptides determined. 2. The internal order of the tryptic peptides was determined by the bridge peptides obtained from the thermolytic digest and the dilute acid hydrolyzate of kidney bean leghemoglobin a; 12 thermolytic peptides and two acid hydrolysis peptides were purified and the sequences were partially or completely determined. 3. The complete amino acid sequence of kidney bean leghemoglobin a is compared to that of leghemoglobin a from soybean (Glycine max) and to some animal globins. As regards sequence, the kidney bean globin has 79% identity with the soybean globin and 21% identity with human hemoglobin gamma-chain. Seven of the 14 amino acid residues common to most globins are found in the kidney bean globin. Trp-15 and Tyr-145 are evolutionarily conserved in this globin, which confirms the concept of a common origin of animal and plant globins. PMID:809270

  12. Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1.

    PubMed

    Yamano, Y; Nishikawa, T; Komatsu, Y

    1993-05-01

    The porin oprE gene of Pseudomonas aeruginosa PAO1 was isolated. Its nucleotide sequence indicated that the structural gene of 1383 nucleotide residues encodes a precursor consisting of 460 amino acid residues with a signal peptide of 29 amino acid residues, which was confirmed by the N-terminal 23-amino-acid sequence and the reaction with anti-OprE polyclonal antiserum. Anaerobiosis induced OprE production at the transcription level. The transcription start site was determined to be 40 nucleotides upstream from the ATG initiation codon. The control region contained an appropriately situated E sigma 54 recognition site and the putative second half of an ANR box. The amino acid sequence of OprE had some clusters of sequence homologous with that of OprD of P. aeruginosa, which might be responsible for the outer membrane permeability of imipenem and basic amino acids. PMID:8394980

  13. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66.

    PubMed

    Liu, Bin; Ertesvåg, Helga; Aasen, Inga Marie; Vadstein, Olav; Brautaset, Trygve; Heggeset, Tonje Marita Bjerkan

    2016-06-01

    Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA). Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276), with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids. PMID:27222814

  14. A classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B

    1991-01-01

    The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised. PMID:1747104

  15. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B; Bairoch, A

    1993-01-01

    301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank. PMID:8352747

  16. Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection.

    PubMed

    Orum, H; Nielsen, P E; Jørgensen, M; Larsson, C; Stanley, C; Koch, T

    1995-09-01

    Using an oligohistidine peptide nucleic acids (oligohistidine-PNA) chimera, we have developed a rapid hybrid selection method that allows efficient, sequence-specific purification of a target nucleic acid. The method exploits two fundamental features of PNA. First, that PNA binds with high affinity and specificity to its complementary nucleic acid. Second, that amino acids are easily attached to the PNA oligomer during synthesis. We show that a (His)6-PNA chimera exhibits strong binding to chelated Ni2+ ions without compromising its native PNA hybridization properties. We further show that these characteristics allow the (His)6-PNA/DNA complex to be purified by the well-established method of metal ion affinity chromatography using a Ni(2+)-NTA (nitrilotriactic acid) resin. Specificity and efficiency are the touchstones of any nucleic acid purification scheme. We show that the specificity of the (His)6-PNA selection approach is such that oligonucleotides differing by only a single nucleotide can be selectively purified. We also show that large RNAs (2224 nucleotides) can be captured with high efficiency by using multiple (His)6-PNA probes. PNA can hybridize to nucleic acids in low-salt concentrations that destabilize native nucleic acid structures. We demonstrate that this property of PNA can be utilized to purify an oligonucleotide in which the target sequence forms part of an intramolecular stem/loop structure. PMID:7495562

  17. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanz